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SUMMARY

This paper proposes and studies the performance of a preconditioner suitable for solving a class of
symmetric positive de�nite systems, Apx= b, which we call lower rank extracted systems (LRES),
by the preconditioned conjugate gradient method. These systems correspond to integral equations with
convolution kernels de�ned on a union of many line segments in contrast to only one line segment
in the case of Toeplitz systems. The p×p matrix, Ap, is shown to be a principal submatrix of a
larger N ×N Toeplitz matrix, AN . The preconditioner is provided in terms of the inverse of a 2N × 2N
circulant matrix constructed from the elements of AN . The preconditioner is shown to yield clustering
in the spectrum of the preconditioned matrix similar to the clustering results for iterative algorithms
used to solve Toeplitz systems. The analysis also demonstrates that the computational expense to solve
LRE systems is reduced to O(N logN ). Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we discuss the solution of a class of symmetric positive de�nite linear systems,
Apx= b, which we call lower rank extracted systems (LRES). The coe�cient matrix, Ap, has
the form given by Ap=LTpANLp, where AN is an N ×N Toeplitz matrix having the following
structure:

AN ,




a0 a1 · · · aN−2 aN−1

a1
. . .

. . .
. . . aN−2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . a1
aN−1 · · · · · · a1 a0



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10 S. SALAPAKA, A. PEIRCE AND M. DAHLEH

and the extraction matrix, Lp, is a N ×p submatrix of an N ×N permutation matrix; i.e. Ap
is a principal submatrix of AN . Similar to Toeplitz systems, LRES arise in the numerical
modelling of convolution type integral equations. The di�erence is that typically in LRES
the domain of integration is a union of disjoint line segments. Therefore, Toeplitz systems,
which represent the convolution type integral equations on one contiguous line segment, can
be considered a special case of LRES. In this way, the Toeplitz systems and LRES have a
very close relationship: on one hand the class of Toeplitz systems form a subclass of LRES,
while on the other hand, the embedding Ap=LTpANLp implies that each LRE system can be
viewed as a subsystem of a Toeplitz system. LRES appear in a wide range of scienti�c
and engineering models, for instance in the �eld of image processing, in the modelling of
interacting cracks, in the modelling of tabular mining excavations [1], and in the �eld of
telecommunications in the modelling of elements in planar array antennae [2].
Their close relation to Toeplitz systems makes it possible to exploit various techniques from

the vast literature for Toeplitz systems to solve them. Toeplitz systems have been studied for
a long time in mathematics due to their role in trigonometric moment problems, in Szeg �o
theory of orthogonal polynomials on the unit circle, and in various other function theoretic
subjects [3]. They also arise in the solution of partial di�erential equations (in �uid dynamics
and inverse heat equations), in the solution of convolution type integral equations [1], and
in minimum realization problems in control theory, and in the areas of stochastic �ltering
and digital signal processing [4–6]. Even though most of these problems practically extend
to LRES, since the domains of integration are not always connected, not much attention has
been given to LRES. The main contribution of this paper is that it proposes a solution to a
large class of LRES which guarantees low computational expense (in the order of N logN
computations, where N is the size of the associated Toeplitz matrix AN ).
A comprehensive survey of methods to solve Toeplitz systems (especially iterative meth-

ods) has been presented in Reference [7]. There are also a number of non-iterative algorithms,
such as the Levinson algorithm [8–11], that have been proposed, which reduce the compu-
tational e�ort to the order of N 2 operations. Over the last decade, signi�cant attention has
been given to using the preconditioned conjugate gradient method (PCGM) [12, 13]. Many
algorithms based on this method reduce the computational e�ort to the order of N logN oper-
ations [14–20]. In this method, PNAN �x=PN �b is solved instead of AN �x= �b. The matrix PN is
chosen so that the matrix PNAN has its spectrum clustered, which ensures better convergence
rates.
In this paper, we use the PCGM to solve the LRES and propose a preconditioner, Pp, to

solve them more e�ciently. This preconditioner has been motivated by one used in Reference
[1] for solving interacting crack problems that arise in modelling mining excavations. For
interacting crack problems, there is a requirement to model a sequence of such sub-problems
in which the interaction between sub-blocks at one step determines the extent of sub-vectors
at a subsequent step. One option is to set up a new system matrix for each new set of in-
teracting sub-blocks. However, by treating each such subsystem as embedded in the larger
system with system matrix AN , we avoid this set-up process at each stage of the calcula-
tion and also derive a considerable computational advantage from the preconditioner. It is
remarkable that the preconditioner constructed by using the encompassing Toeplitz matrix
yields such an e�cient clustering of the eigenvalues associated with the multiple interacting
sub-problems. Indeed, the extraction operators that we introduce make it possible to cap-
ture the required information about the higher frequency modes associated with each of the
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PRECONDITIONING FOR LRES 11

subcracks=subexcavations. These extraction operators de�ne the geometry of the interacting
crack problem.
In the case of Toeplitz systems, this preconditioner reduces to one of the preconditioners

studied in Reference [14]. When compared to other iterative schemes, it has signi�cantly
better clustering characteristics and therefore, better convergence rates. In Reference [14],
an elegant analysis of the performance of this preconditioner for Toeplitz systems is pre-
sented. Furthermore, the elements of the preconditioner are shown to be approximations of
the Fourier coe�cients of the reciprocal of the generating function, a result which is not only
theoretically interesting, but also provides scope for extensions to larger classes of systems.
Similar preconditioners to solve band Toeplitz matrices [21] and block-Toeplitz Toeplitz-block
(BTTB) systems [22] have been proposed. It should be noted that even though LRES have
Toeplitz subblocks, they are fundamentally di�erent from BTTB systems, both in structure
and concept. A clear di�erence in their structure is that LRE matrices are not block-Toeplitz
while BTTB systems are. Also, LRES have rectangular subblocks (which are subblocks of
Toeplitz matrices) while ‘Toeplitz-blocks’ of BTTB are square. Furthermore, BTTB systems
are a generalization of Toeplitz systems to two dimensions and in this context they repre-
sent double-integral equations de�ned over 2-dimensional rectangular domains. On the other
hand, the LRES that we present here denote integral equations de�ned over 1-dimensional
domains. As a consequence, the coe�cient matrices in BTTB systems are generated by func-
tions of two variables, f(�1; �2) while the LRES are speci�ed by univariable functions, f(�).
It is possible to generalize LRE systems to two dimensions (2-dimensional LRES) so that
they represent double-integral equations de�ned over 2-dimensional domains which are not
necessarily rectangular. In this case, the relation between the 2-dimensional LRES and the
BTTB systems is analogous to the relation between the 1-dimensional LRES and the Toeplitz
systems. In this paper, we present the analysis of only 1-dimensional LRES. These struc-
tural and conceptual properties also di�erentiate LRES from other systems considered in
the literature to solve rectangular Toeplitz matrices [7, 23, 24] or rectangular block-Toeplitz
matrices.
In Section 2, we motivate the need to study LRE problems by giving two examples of phys-

ical models which are represented by LRES. In Section 3, we formulate the basic problem
and introduce the circulant and preconditioner matrices. We de�ne clustering and establish
some fundamental properties of the circulant matrices and their relation to the preconditioner.
The main idea that we exploit in this paper is the same as the one used in Reference [14] to
propose and analyse preconditioners for Toeplitz systems. More precisely, we show that the
eigenvalues of the circulant matrix associated with the LRE system approximate its generating
function, f, at certain points; and that the elements of the preconditioner are approximations
of the Fourier coe�cients of 1=f. These properties are then used to establish the clustering
and convergence properties of the preconditioner for the LRES. Section 4 provides the re-
sults of some simulations. First, we give simulation results of the application of the proposed
preconditioner to an example of an LRE system that represents a multi crack problem in min-
ing. We study and quantify the performance of the proposed preconditioner for this problem.
Then, we show the persistence of the performance of the algorithm for di�erent generating
functions, di�erent sizes of the matrices and di�erent shapes of the domains. We also pro-
vide results of their performance for an LRE matrix associated with a divergent sequence
to study the robustness of this algorithm. Finally, in Section 5, we present some concluding
remarks.
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12 S. SALAPAKA, A. PEIRCE AND M. DAHLEH

Notation

• [T ]p;q is the element in the pth row and the qth column of the matrix T .
• �k is the kronecker-delta function, �k =1 if k=1, and �k =0 if k �=0.
• I is the identity matrix (its dimension is �xed by the context it appears in).
• Cq is the class of q times continuously di�erentiable functions on the unit circle.
• xN is a vector of length 2N given by (x−(N−1) · · · x0 · · · xN )T.
• ‖v‖=(∑ v2i )

1=2 is the Euclidean norm of the vector v. The dimension of v is determined
from the context it appears in.

• ‖T‖ and ‖T‖F are the induced and the Frobenius (Hilbert–Schmidt) norms of the operator T .
• Tx

N , N in N, x= {xn}∞
n=−∞ is an N ×N symmetric Toeplitz matrix given by



x0 x1 · · · xN−2 xN−1

x1
. . . . . . . . . xN−2

...
. . . . . . . . .

...

...
. . . . . . . . . x1

xN−1 · · · · · · x1 x0




• Hx
N , N ∈N, x= {xn}∞

n=−∞ is an N ×N symmetric Hankel matrix given by


x1 x2 · · · xN−1 xN

x2 . . . . . . . . . xN−1

... . . . . . . . . .
...

... . . . . . . . . .
...

xN xN−1 · · · x2 x1




• JN is an N ×N counter identity matrix given by




0 · · · · · · 0 1

0 · · · . . . 1 0

... . . . . . . . . .
...

0 . . . . . . · · · 0

1 0 · · · · · · 0




Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:9–32



PRECONDITIONING FOR LRES 13

• Cx
N is a 2N × 2N circulant matrix associated with the Toeplitz matrix Tx

N given by


x0 x1 · · · x2 x1

x1
. . . . . . . . . x2

...
. . . . . . . . .

...

...
. . . . . . . . . x1

x1 · · · · · · x1 x0



=


 Tx

N JNHx
N

Hx
NJN T x

N




• Dx
L(N;m; n) is an m× n matrix given by

(Im 0 · · · · · · · · ·)




· · · 0 xN · · · x2 x1

· · · 0 . . . . . . . . . x2

. . . . . . . . .
...

. . . . . . xN

0 0

...
...







...

...

...

...

0

In




• Dx
R(N;m; n) is an m× n matrix given by

(· · · · · · · · · 0 Im)




...
...

0 0

xN
. . . . . .

...
. . . . . . . . .

x2
. . . . . . . . . 0 · · ·

x1 x2 · · · xN 0 · · ·







In

0

...

...

...

...




2. MOTIVATION

In this section, we give motivations for the need to study LRE systems and emphasize their
relations with Toeplitz systems. For any LRE system, Apx= b, with the domain given by
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14 S. SALAPAKA, A. PEIRCE AND M. DAHLEH

D=
⋃q

k=1 Vk , the coe�cient matrix, Ap is completely determined by the kernel of the associ-
ated integral equation and by the geometry of the domain. Accordingly, to every LRE system,
we associate two matrices

1. An N ×N Toeplitz matrix, AN , corresponding to the Toeplitz system representing an
integral equation with the same kernel as the LRE system, but its domain being an
interval, V , which contains the domain D of the LRE system (i.e. V is the convex hull
of the domain D). This matrix AN contains all the information about the kernel.

2. An N ×p extraction matrix, Lp (a submatrix of an N ×N permutation matrix), that
has q block-columns with the width of each column equal to the number of representative
points in the corresponding segment of the domain D. In this matrix, the ith block-column
has only one identity matrix (with all other entries in this block-column being 0); and
every alternate block-row is a zero block. In this way, the matrix Lp has the complete
information of the geometry of the domain D. Indeed, the extraction matrices, Lp are
used to de�ne the geometry of the LRE problems.

The coe�cient matrix, Ap then satis�es the relation Ap=LTpANLp. This constitutes the main
di�erence between the LRE and Toeplitz systems. The Toeplitz systems are completely de-
termined by the kernel while for the LRE systems, one needs to know also the structure of
the domain besides knowing the kernel.
The 1-dimensional integral equations and the corresponding LRE systems are often rep-

resent simpli�ed models of higher-dimensional phenomena. We present two such examples
to emphasize the importance of the LRE systems and to understand the concepts presented
above.

Example of Microstrip Re�ector Arrays [2]
Mobile and satellite communication systems require high gain antennae which are compact
and light weight. This has attracted a lot of research in development of smaller antennae.
The microstrip re�ector array (MRA) is a result of this research e�ort. The MRAs are very
advantageous since they are �at and therefore easier to fabricate, mount on �at surfaces, and
cost e�ective.
In a conventional re�ector antenna, the surface is appropriately designed (say parabolic) to

ensure a coherent phase-front for the re�ected �eld. To achieve the same goal, the MRA uses
microstrip patches (see Figure 1(a)) connected to open or short transmission lines (tails) to
form a directional beam. The patches serve as reradiators and the tails as phase shifters. In an
ideal parabolic antenna, the re�ected beam has a coherent phase-front since FM+MM′=FO+
OO′ (see Figure 1(b)). This can be achieved in a MRA by properly designing the patches
such that FP + PP′=FO′′ +O′′O′ + dP, where dP denotes the equivalent electrical length of
the patch phase shift.
One of the �rst steps in analysing this MRA structure is studying a z-directed linear array

of microstrips (see Figure 1 (Lower)). The integral equation describing the induced current
(Jz) and the incident �eld (Ei

z(z)) is,∫
D

�(z − z′)Jz(z′) dz′=−Ei
z(z)

where �(z− z′)= c(k20 +d
2=dz2)(e−jk0r=r) with r=

√
(z − z′)2 + a2, and constants c; a and k0,

is a dyadic Green’s function [2, 25]. On expanding Jz in terms of basis functions, {�n(z)} as
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Re-Radiator

Phase Shifter

Microstrip
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L dP=2βL

O'O''O F

P'P

M M'

(a) (b)

x

y

z
microstrip line 

Figure 1. (Upper) (a) An MRA and patch element; and (b) the illustration of concept of the MRA
comparing with a re�ector antenna. (Lower) The geometry of a microstrip line.

Jz(z)=
∑

n in�n(z) and by applying inner products on both sides of the integral equations by
test functions,  m (m∈N), this integral equation is reduced a linear system, Zi= v, where

[Z]m;n=
∫
D

(∫
D

�(z − z′)�n(z′) dz′
)
 m(z) dz and vm=−

∫
D

∫
D

Ei
z(z) m(z) dz

Note that for the domain in Figure 1, D is a union of linear segments (not necessarily of
same lengths) and therefore the linear system, Zi= v is an LRE system. On the other hand
if the domain D had been one segment, then this linear system would have been a Toeplitz
system.

Example of collinear cracks
A simple integral equation to describe a crack located along a line (on the interval (a; b)) in
an elastic body in a state of 2D plane strain is given by

k
∫ b

a

U (�)
(x − �)2

d�=p

where k is a constant depending on material properties, U (x) represents the crack opening
displacement, and p represents the pressure applied to the boundary of the crack. A similar
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Figure 2. The ‘rib-pillar’ mining layout. This mine geometry can be accurately modelled by collinear
segments in a state of plane strain (an LRE system).

integral equation can be used to model the closure of a tabular mining excavation, whose
length in the out-of-plane direction is much larger than b− a and in which the ambient stress
in the rock prior to mining is given by −p (see Reference [1] for details). A numerical
approximation of this equation is obtained by partitioning the interval (a; b) into N subin-
tervals of equal length and assuming a piecewise constant approximation to U (�) on each
subinterval. Finding the unknowns in this discrete approximation involve solving a symmetric
Toeplitz system, ANx= b, where [AN ]i; j= k̃=((i − j)2 − 1

4 ), k̃ is a constant, bi=p; and xi is
the approximation of U (�) at the ith element of the partition.
Similarly, an integral equation to describe q interacting collinear cracks on the intervals

(a1; b1); : : : ; (aq; bq) under the same physical assumptions is given by

k
∫
D

U (�)
(x − �)2

d�=p

where D is the union of the intervals, (a1; b1); : : : ; (aq; bq). The numerical model for this equa-
tion, obtained by applying the same procedure as in the single crack case, yields a LRE
system, Apx̃= b̃ where Ap consists of Toeplitz subblocks of AN ; and x̃ and b̃ are subvectors
of x and b, respectively. In the mining context the LRE system represents the interaction of
a sequence of coplanar tabular mining excavations in a state of plane strain. These copla-
nar mining excavations represent ‘rib-pillar’ mining layouts (see Figure 2) commonly used
in the extraction of tabular ore bodies such as those found in the gold mining industry.
Since, the extent of the mining excavations is much larger in the out-of-plane z direction,
these mine geometries can be accurately modelled by collinear segments in a state of plane
strain.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:9–32



PRECONDITIONING FOR LRES 17

3. PROBLEM FORMULATION AND SOLUTION

Problem setting. In the previous section, we have seen that for every LRE system, we can
associate a Toeplitz matrix representative of the kernel of the integral equation. This is a many-
to-one association since many LRE systems having the same kernel but di�erent geometries
can be associated with the same Toeplitz system. In this paper, we consider a sequence of
Toeplitz matrices, {AN}, and study the sequence, {LN}, of sets of LRE coe�cient matrices
(Ap) that can be associated with each AN . The sequence {AN} is assumed to satisfy
Assumption 1

1. AN =Ta
N (see Notation), formed from the N elements a0; : : : ; aN−1, of a given sequence

{an} in ‘1.
2. The sequence, {an} is such that its generating function, given by f(�)=

∑∞
−∞ akeik�, is

real, symmetric, positive, and bounded away from 0; i.e. Ma,
∑ |ak |¡∞, ak = a−k for

all k in Z, and there is a �¿0 such that f(�)¿�¿0 for all � in [−�; �].

Remark
As a consequence of the generating function being real and positive, the matrices AN , N ∈N
are symmetric and positive de�nite; and also the assumption f(�)¿�¿0 guarantees an upper
bound on the norms of A−1

N which is necessary for the well-posedness of the recursive method
to obtain the solution of the LRE system.

Preconditioned conjugate gradient method. We solve LRE systems using the preconditioned
conjugate gradient method [12, 13]. In this method, a matrix (called the preconditioner) Pp
is designed and the system PpApx=Ppb is solved instead of Apx= b. Unlike in many other
methods, here the convergence rate depends on the distribution of all eigenvalues of PpAp,
and not exclusively on its extremal eigenvalues. Moreover, the PCGM convergence is fast
when the eigenvalues are clustered and Pp are designed so as to achieve this property.

Proposed preconditioner. We prescribe a preconditioner for the coe�cient matrix, Ap, of an
LRE system in the following way. We �rst form matrices AN and Lp as in previous section and
then construct a 2N × 2N circulant matrix Ca

N (see Notation for this construction). Since Ap
is a principal submatrix of AN , given by LTpANLp, it is also a principal submatrix of Ca

N ;

i.e. Ap= �L
T
pC

a
N
�Lp, where the extracting matrix, �Lp is de�ned by �L

T
p=[0 LTp]. Its structure is

completely determined by, as well as determines, the geometry of the domain of the LRE
system. The preconditioner, Pp is then de�ned by Pp= �L

T
p(C

a
N )

−1 �Lp. In the case of Toeplitz
systems, Lp is equal to the N ×N identity matrix and hence the corresponding matrix has a
rank of N which is greater than any other LRE system associated with AN . Hence, the name
lower rank extracted matrices.
We have prescribed Pp in terms of the circulant matrix, Ca

N , because circulant matrices
are easy to invert. The linear equation with circulant matrix, Ca

Nx= b, is equivalent to the
discrete convolution, c ∗ x= b, where c is the �rst column of Ca

N . This convolution equation
can be solved easily by taking the fast Fourier transform (x̂k = b̂k =ĉk) and then obtaining x
by applying the inverse fast Fourier transform. This requires only O(N logN ) multiplications

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:9–32



18 S. SALAPAKA, A. PEIRCE AND M. DAHLEH

and the operations can be done in parallel [26]. In a similar way, the number of computations
in the multiplication of a vector by Ap can be reduced by using the fast Fourier transform (in
a similar way as shown in Reference [17]). For the PCGM, if the dimension N of the system
is large, the computational e�ort in the above algorithm is dominated by the preconditioner-
residual product Pprj and the matrix–vector product Apdj, where rj and dj are residual and
conjugate direction vectors (see the PCGM algorithm in Reference [27]). For the symmetric
LRE system considered in this paper both these matrix–vector products can be evaluated by
using the diagonal representation of the circulant Ca

N with respect to the Fourier basis and
by applying the appropriate extraction operators �Lp. These processes can be performed very
e�ciently because the proposed preconditioner product Pprj only involves division by the
same diagonal elements of the Fourier representation of Ca

N that are used for the matrix–
vector product Apdj. In the following proposition, we summarize the relevant properties of
circulant matrices.

Proposition 3.1

1. (a) The circulant matrix Ca
N is diagonalizable, i.e. C

a
N =UN�NU T

N where UN =U T
N =U−1

N

and [UN ]ij=1=
√
2N (cos(ij�N ) + sin(ij�N )) where 06i; j62N − 1; �N =�=N .

(b) �N =diag(�N
0 ; : : : ; �

N
2N−1) with �N

p =
∑N

k=−(N−1) akeikp�N ; 06p62N − 1.
(c) �N

p = �N
2N−p for 0¡p62N − 1.

2. There exists an N0 in N and an M0 in R+ such that Ca
N is positive de�nite and 1=|�N

k |¡M0

for all N¿N0 and k in Z.
3. (Ca

N )
−1 =C�N

N , where (�
N )p=: �N

p =1=2N
∑N

k=−(N−1) 1=�
N
k e

ipk�N for all p∈Z.

Proof
These results can be easily veri�ed by simple algebraic manipulations.

Clustering of the preconditioned matrices. In this section, we shall show that the precondi-
tioner that we proposed in the previous section achieves clustering of the eigenvalues. We
de�ne the clustering of the spectrum of the sequence of sets of matrices similar to the de�-
nition given for sequence of matrices in Reference [7] by

De�nion 1
A sequence, {LN} of sets of matrices is said to have spectra clustered around 1 if for any
given �¿0, there exist positive integers N0 and N1 such that for all Qp ∈LN ; N¿N0, at
most N1 eigenvalues of the matrix Qp − Ip have absolute value larger than �.

Relation to Fourier coe�cients of 1=f. Note that �N
j =

∑N
k=−(N−1) akeijk�N is an approximation

for f(�) at j�N ; and �N
p = �N =2�

∑N
k=−(N−1) 1=�

N
k e

ipk�N is a Riemann sum approximation of
the integral

1
2�

∫ �

−�

1
f(�)

eij� d�

which is the kth Fourier coe�cient of 1=f. This suggests that the elements of Pp are approx-
imations of the Fourier coe�cients of g(�), 1=f(�).
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Proposition 3.2

1. There exists a sequence {�k} ∈ ‘1(−∞;∞) with �k = �−k such that g(�)=
∑∞

k=−∞ �keik�

for all � in [−�; �].
2. limN→∞ N‖�N − �N‖2 = 0 if ∑N

k=−(N−1) |k2a2k |¡∞.

Proof

(1) This is a direct consequence of Theorem 18.21 in Reference [28, p. 367–368].
(2) We de�ne a vector hN for each N by

hN
j = g(j�N )−

N∑
k=−(N−1)

�N
k cos(jk�N )

for all −(N − 1)6j6N . But the sum on the right-hand side of this equation is an
approximation of g(j�N ) and can be simpli�ed as

N∑
k=−(N−1)

�N
k cos(jk�N ) =

N∑
l=−(N−1)

1
�N
l

(
1
2N

N∑
k=−(N−1)

cos(lk�N ) cos(jk�N )

)
=
1
�N
j

for all −(N − 1)6j6N . Now, �N
j =

∑N
k=−(N−1) akeijk�N is an approximation of f(j�N )

and if we de�ne raN (�),
∑

k¿N; k6−N akeik� and denote raN (j�N ) by Ra
j , then an estimate

of hN
j = g(j�N )− 1=�N

j can be found as follows:

hN
j = g(j�N )︸ ︷︷ ︸

= 1
f(j�N )

− 1
�N
j
=

�N
j − f(j�N )
�N
j f(j�N )

=− Ra
j

�N
j f(j�N )

⇒ |hN
j |6M0‖g‖∞︸ ︷︷ ︸

,M2

|Ra
j | (1)

This inequality can be rewritten as

|hN
j |=

∣∣∣∣∣∣∣∣∣∣∣∣
N∑

k=−(N−1)

,	N
k︷ ︸︸ ︷

(�k − �N
k ) cos(jk�N )

︸ ︷︷ ︸
xNj

+R�
j

∣∣∣∣∣∣∣∣∣∣∣∣
6M2|Ra

j | ⇒ |xNj |6M2|Ra
j |+ |R�

j | (2)

where R�
j (and r�N (�)) are de�ned in the same way as Ra

j (and raN (�)). Note that the
sequence {xNj }, −(N − 1)6j6N is a discrete Fourier series obtained from the sequence
{	N

k }, −(N−1)6k6N . Therefore, the coe�cients of these two series satisfy the Parseval
relationship [26]

‖	N‖2 = 1
2N

‖xN‖2 (3)

We assume ‖f′‖22 =
∑∞

−∞ |k2a2k |¡∞. This implies that ‖g′(�)‖22 = ‖f′(�)=f2(�)‖22 is
bounded as f(�) is bounded away from zero; i.e. ‖g′‖22 =

∑∞
−∞ k2�2k¡∞. Let �¿0. Then,

there exists an N0 in Z such that
∑∞

N k2�2k¡� and
∑∞

N |k2a2k |6� for all N¿N0.
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This implies

‖r�N‖2264
∞∑
N

�2k6
4
N 2

∞∑
N

k2�2k6
4�2

N 2

and ‖r′
N‖22 =

∑∞
N k2�2k6�2 for all N¿N0. Therefore, by using the Sobolev inequality (see

Reference [29, A. 12, p. 496]), we have an upper bound on its in�nity norm by

‖rN‖∞= c1‖r�N‖1=22 (‖r�N‖2 + ‖(r�N )′‖2)1=26
c2�√
N

where c1 and c2 are constants. This implies that |R�
j |= |r�N (j�N )|6c2�=

√
N . Similarly, we can

show that there exists c̃2 in R such that |Ra
j |6c̃2�=

√
N . Therefore, using inequality 2, we have

|xNj |6M2|Ra
j |+ |R�

j |6M3�=
√
N , where M3 =M2c̃2 +c2. Using this estimate in Equation (3), we

have

‖�N − �N‖2 = ‖	N‖2 = 1
2N

‖xN‖2¡M 2
3 �
2

N

for all N¿N0 and, therefore,

lim
N→∞

N‖�N − �N‖2 = 0

Remark
It should be noted that f∈Cq; q¿1 implies

∑∞
k=−∞ k2|ak |2¡∞. This implies that

lim
N→∞

N‖�N − �N‖2 = 0 if f∈Cq; q¿1

Clustering of the spectrum of LRE matrices. In this section, we de�ne a class of LRE sys-
tems and show the clustering properties of the corresponding preconditioned LRE matrices.
We de�ne a sequence of sets of LRE matrices associated with the sequence of Toeplitz
matrices {AN} in the following way. For every �¿0, let N0(�) and N1(�) be such that∑∞

N0 ka
2
k6�;

∑∞
N0 k�

2
k6� and N‖�N − �N‖26� for all N¿N1(�) (this is possible by Propo-

sition 3.2). Then, to every AN for N¿N1(�), we denote a set of LRE matrices by LA
N (�)

whose elements have the form given by Ap=LTpANLp, where

1. Lp has the structure given by

Lp=




Ip0 0 0 · · ·
0 0 0 · · ·
0 Ip1 0 · · ·
...

...
...

...




}r0
}r1
}r2
...

and has np block-columns (with
∑np−1

i=0 pi=p) and nr block rows. In this matrix, the
ith block-column has only one identity matrix (Ipi) (with all other entries in this block-
column being 0); and every alternate block-row is a zero block.

2. ri¿N0(�) for all 06i6nr − 1.
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To each Ap=LTpT
a
NLp ∈LA

N (�), we associate a preconditioner as described earlier in this paper;

i.e. Pp= �L
T
p(C

a
N )

−1 �Lp=LTpT
�N

N Lp. The sequence of sets of preconditioned LRE matrices can
be now de�ned by

LN (�)= {PpAp such that Ap=LTpT
a
NLp ∈LA

N (�) and Pp=LTpT
�N

N Lp}

These de�nitions being given, we present the following proposition.

Proposition 3.3
If f∈Cq; q¿1 or if

∑∞
k=−∞ |k2a2k |¡∞, and under the Assumptions 1, for every �¿0, there

exist N0 and N1 in N such that

‖I − PpAp − Dp‖F6� for all PpAp ∈LN (�) and N¿N1

where Dp is a block diagonal matrix which has at most 2np non-zero N0 ×N0 blocks.

Before proceeding with the proof of this proposition, we �rst present a lemma which will
be used in it,

Lemma 3.1
Let {
k} be a sequence of real numbers such that

∑∞
k = 1 |
k |¡∞, and {HN} be a sequence

of in�nite-dimensional Hankel matrices given by

HN =





N 
N+1 · · ·

N+1 . . . . . .

... . . . . . .




then

1. limN→∞ ‖HN‖=0.
2. limN→∞ ‖HN‖F =0 if ‖H0‖F¡∞.

Proof
See Appendix A for the proof.

Proof of Proposition 3.3
Let �¿0 and N0(�) and N1(�) be such that

∑∞
N0 ka

2
k6�;

∑∞
N0 k�

2
k6� and N‖�N − �N‖26�

for all N¿N1 (this is possible by Proposition 3.2). Let Ap ∈LA
N (�) for some N¿N1 and

Pp=LTpT
�N

N Lp be its preconditioner. We consider the product PpAp and study its spectral prop-

erties by studying the matrix, LTpT
�N

N T a
NLp − PpAp. Note that from Proposition A.1, we have

that PNAN =T�N

N T a
N = I+ �D where �D has at most 2 non-zero N0 ×N0 blocks. Also LTpT

�N

N T a
NLp
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−LTpT
�N

N Lp︸ ︷︷ ︸
Pp

LTpT
a
NLp︸ ︷︷ ︸

Ap

can be rewritten as LTpT
�N

N L̃pL̃
T
pT

a
NLp where

L̃p=




0 0 · · ·
Iqo 0 · · ·
0 0 · · ·
...

...
...




}ro
}r1
}r2
...

is such that LpLTp + L̃pL̃
T
p= I . This implies that

I + LTp �DLp − PpAp=LTpT
�N

N L̃pL̃
T
pT

a
NLp (4)

We �rst prove the following properties of LTpT
�N

N L̃p and L̃
T
pT

a
NLp which we shall use to

study the spectrum of PpAp,

1. LTpT
�N

N L̃p=LTpD
�
N L̃p + E�

N where D�
N is a block tridiagonal matrix given by

D�
N ,




0 R�
01 0 · · · · · · 0

L�
10 0 R�

12
. . . . . .

...

0
. . . 0

. . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . R�

nr−2;nr−1

0 · · · · · · 0 L�
nr−1;nr−2 0




where R�
ij=D�

R(N0; ri; rj) and L�
ij=D�

L(N0; ri; rj) (see Notation); and ‖E�
N‖F62np(nr − np)�.

2. L̃
T
pT

a
NLp= L̃

T
pD

a
NLp + Ea

N where ‖Ea
N‖F62np(nr − np)� and Da

N is de�ned in the same
way as D�

N .
3. D�

ND
a
N is a block diagonal matrix with only 2nr − 2 non-zero N0 ×N0 blocks.

(1) and (2) Consider the product LTpT
�N

N L̃p. It is independent of the nr diagonal blocks

(ri × ri blocks, 06i6nr −1) in T�N

N since Lp and L̃p are submatrices of the same permutation
matrix and satisfy LTpL̃p=0 (which is easily veri�ed using their structure). Therefore these

diagonal blocks in T�N

N can be replaced by zeros and still the product remains unchanged.
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Therefore this product can be rewritten as

LTp




0 R̃
�N

0

L̃
�N

1 0 R̃
�N

1

. . . . . . . . .

. . . . . . . . .

. . . 0 R̃
�N

nr−2

L̃
�N

nr−1 0




︸ ︷︷ ︸
,D̃�N

N

L̃p

where D̃
�N

N is obtained by substituting the diagonal blocks (the nr ri × ri blocks) in T�N

N by

zero blocks. Also note that R̃
�N

i and L̃
�N

i are submatrices of JNH
�N

N and H�N

N JN , respectively.

From our choice of N1, we have ‖JNH�N

N −JNH
�
N‖F6� which implies ‖R̃�N

i −R̃
�
i ‖F6�. Therefore

‖R̃�N

i − (R�
ij 0)‖F6‖R̃�N

i − R̃
�
i ‖F + ‖R̃�

i − (R�
ij 0)‖F62�

where the zero block is of the appropriate size. Similarly, we have ‖L̃�N

i − (0 L�
ij)‖F62�.

Therefore

‖LTpT
�N

N L̃p − LTpD
�
N L̃p︸ ︷︷ ︸

, E�
N

‖F = ‖LTp(D̃
�N

N − D�
N )L̃p‖F62np(nr − np)�

(2) This can be proved in the same way as (1).
(3) Note that the matrices R�

ij and Ra
ij have only a lower left non-zero N0 ×N0 block; and

the matrices L�
ij and La

ij have only a top right non-zero N0 ×N0 block. This structure implies
that the products R�

ijR
a
i′j′ =0 and L�

ijL
a
i′j′ =0; and the products R�

ijL
a
i′j′ and L�

ijR
a
i′j′ are block

diagonal with only one non-zero N0 ×N0 block for all 06i; j; i′; j′6nr − 1. This implies that
the product D�

ND
a
N is a block diagonal matrix (=diag(R�

01L
a
10; L

�
10R

a
01 + R�

12L
a
21; : : :)) with at

most 2nr − 2 non-zero N0 ×N0 blocks. Therefore LTpD
�
ND

a
NLp is a block diagonal matrix with

at most 2np − 2 non-zero N0 ×N0 blocks.
Also, note that from the structures of Da

N and D�
N , we have LTpD

�
NLp=0 and LTpD

a
NLp=0

and therefore LTpD
�
NLpLTpD

a
NLp=0. Now Equation (4) can be further simpli�ed as

I + LTp �DLp − PpAp = LTpT
�N

N L̃pL̃
T
pT

a
NLp=(LTpD

�
N L̃p + E�

N )(L̃
T
pD

a
NLp + Ea

N )

= LTpD
�
N L̃pL̃

T
pD

a
NLp +

=0︷ ︸︸ ︷
LTpD

�
NLpLTpD

a
NLp+E�

N (L̃
T
pD

a
NLp + Ea

N ) + (L
T
pD

�
N L̃p)Ea

N

= LTp D�
ND

a
N︸ ︷︷ ︸

,D̃

Lp + E�
N (L̃

T
pD

a
NLp + Ea

N ) + (L
T
pD

�
N L̃p)Ea

N
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From the structure of Da
N and extracting matrices L̃p and Lp, we have that L̃

T
pD

a
NLp has at most

2np(nr−np) non-zero blocks each of which is a submatrix of Ca
N . Since ‖Ca

N‖6∑∞
k=−∞ |ak |=

Ma¡∞ (from Proposition 3.1(1)), we have ‖L̃TpDa
NLp‖62np(nr − np)Ma: Similarly, there

exists an M�¿0 (since g is bounded away from 0), we obtain ‖L̃TpD�
NLp‖62np(nr − np)M�.

Therefore,

‖I − PpAp − LTp(D̃ − �D)Lp︸ ︷︷ ︸
,Dp

‖F6M�

where M, (2np(nr − np))2(Ma + 1 + M�) and Dp is a matrix with at most 2np non-zero
N0 ×N0 blocks. As �¿0 and N¿N1 were chosen arbitrarily, we have proved the proposition.

In Proposition 3.3, we showed that I − PpAp can be approximated by a matrix which has
at least p − 2npN0 zero eigenvalues. We exploit the positive de�niteness of Ap and Theorem
2 in Reference [30] to prove the following proposition.

Proposition 3.4
If f∈Cq; q¿1 or if

∑∞
k=−∞ |k2a2k |¡∞, and under the Assumptions 1, for every �¿0, there

exist N0 and N1 in N such that there are at least p−2npN0 eigenvalues 
j, of PpAp satisfying∑
(
j − 1)264�2 for all PpAp ∈LN (�) and N¿N1; i.e. the spectrum of the sequence of sets

of preconditioned LRE matrices, {LN (�)} is clustered around 1 for every �¿0.

Proof
Let �̃¿0, and PpAp ∈LN (�̃), N0, N1 and Dp (using Proposition 3.3) be such that

‖PpAp − (I − DP)︸ ︷︷ ︸
,	

‖F6�̃

First, we show that Ap ∈LA
N (�̃) is positive de�nite for some arbitrarily chosen Ap and �̃¿0 and

then study the spectrum of the symmetric operator A1=2p PpA
1=2
p which has the same spectrum

as PpAp.
From Proposition 3.1(1), for every N in N ‖Ca

N‖=maxj |�N
j =
∑N

k=−(N−1) akeikj�N |6∑∞
k=−∞ |ak |

=Ma¡∞. Therefore ‖Ap‖= ‖ �LTpCa
N
�Lp‖6‖Ca

N‖6Ma, and since Ap is symmetric, ‖(Ap)1=2‖
= ‖Ap‖1=26M 1=2

a . Note that this implies M 1=2
a is an upper bound on ‖(Ap)1=2‖ which is inde-

pendent of the geometry of the domain and the index N .
From Proposition 3.1(2), there exists an M in N such that Ca

N¿0 for all N¿M which
implies xTCa

Nx¿0 for all x in R2N , which in turn implies that yTApy¿0 for all y in Rp. There-
fore, Ap¿0 for all N¿M . Also, there exists an M0 in R such that �min(Ap)yTy¿(1=M0)yTy.
This implies ‖A−1

p ‖6M0. Since A−1
p is symmetric, ‖(Ap)−1=2‖= ‖A−1

p ‖1=26M 1=2
0 .

If we de�ne T̃, (Ap)1=2Pp(Ap)1=2, 	̃, (Ap)1=2	(Ap)−1=2 and �=(M0Ma)1=2�̃, then we
have

‖T̃ − 	̃‖6‖(Ap)1=2‖‖(Ap)−1=2‖ ‖PpAp −	‖F6�

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:9–32



PRECONDITIONING FOR LRES 25

Using Theorem 2 of Kahan [30], we have
∑

j(
j − �j)264‖T̃− 	̃‖2F where 
j are the eigen-

values of T̃ and �j are the real parts of eigenvalues of 	̃. Therefore
∑
(
j − 1)264�2 for at

least p − 2npN0 values of j. But the eigenvalues of PpAp are equal to the eigenvalues of T̃
(see Theorem 1.3.20 in p. 53 of Horn and Johnson [31]). As �̃ is chosen arbitrarily, we have
for every �¿0, there exist N0 and N1 in N such that there are at least N −2npN0 eigenvalues

j, of PpAp satisfying

∑
(
j −1)264�2 for all N¿N1. Also, since PpAp was chosen arbitrarily

from LN (�̃), the sequence of sets of matrices {LN (�)} has clustered spectra around 1.
Now, we show that minimum eigenvalue of PpAp is bounded away from zero. It fol-

lows from 1=M06�i(CN
a )6Ma for all i. This implies �min(Ap)¿1=M0 and �min(Pp)¿1=Ma.

Therefore xTPT=2
p ApP

1=2
p x¿(1=M0)xTPpx¿(1=M0Ma)xTx for all x which implies �min(PpAp)=

�min(P
T=2
p ApP

1=2
p )¿1=M0Ma¿0. Hence, the eigenvalues of the preconditioned matrices are

bounded away from zero.

Remark
It should be observed that we assumed a smoothness condition on the generating function f
(
∑

k2|ak |2) to prove the above clustering result. If we relax this condition, i.e. if we assume
only absolute summability, then we can show that the sequence of eigenvalues {�N

k (PpAp)}
and the constant sequence {1} are equally distributed (see Reference [32] for the de�nition).
This result follows from Proposition 2.2 and Theorems 2.1 from Reference [33] and 3.1 from
[32]. However, we cannot guarantee that the sequences are strongly equally distributed and
therefore cannot guarantee the clustering results proven here.

4. SIMULATION RESULTS

We have shown in previous sections that the preconditioners, Pp, which are extracted from
the inverse of the circulant matrix Ca

N yield spectra of {PpAp} that are clustered around 1.
This is desirable from a computational point of view as circulant matrices are easy to invert
and the PCGM converges more rapidly if the eigenvalues are clustered (see Reference [34]).
In Figure 3, we provide simulation results for LRE systems with di�erent kernels but de�ned

on the same domain. Each of these LRE systems, Apx= b, is described by a 51× 51 coe�cient
matrix, Ap which is a principal submatrix of a corresponding 64× 64 Toeplitz matrix, A; i.e.
Ap=LTpALp. Since, the extracting matrix, Lp, is completely characterized by the domain of
integration (see Section 2), it is the same for both these LRE systems. This domain consists
of 3 line segments and the structure of Lp (as laid out in Section 1) is completely speci�ed
by the dimensions, r0 = 17; r1 = 7; r2 = 17; r3 = 6 and r4 = 21. The kernels of the integral
equations are speci�ed by a di�erent A in each of these LRE systems. In all simulations, we
assumed that the given vector, b=[1 1 · · ·]T. All the computations were done in MATLAB.
In Figure 3 (Upper), the kernel, A is generated by the function, f(�)= �4+1. In Reference

[7], this function has been used as a test generating function to compare di�erent algorithms
to solve Toeplitz systems. Here, we use it to study the LRE systems. In (a), we plot the
number of eigenvalues of the preconditioned matrix, PpAp, in a ball of radius r centred at 1
vs the radius, r. We observe that a majority ( 32 out of 51) of the eigenvalues are clustered
around 1 (within a radius of 10−4). This clustering of the eigenvalues is exploited by the
PCGM and the rapid convergence of the PCGM can be observed in (b). We also see that
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Figure 3. (Upper) The test problem (N =64; p=51): (a) plot of number of eigenval-
ues (of PpAp) within a ball around 1 vs the radius of the ball; (b) clustering of eigen-
values of PpAp compared to that of Ap; and (c) comparison of the convergence rates of
PCGM between the preconditioned and non-preconditioned cases. (Lower) The three cracks prob-
lem (N =64; p=51): (a) plot of number of eigenvalues (of PpAp) within a ball around
1 versus the radius of the ball; and (b) comparison of the convergence rates of PCGM

between the preconditioned and non-preconditioned cases.

the remaining eigenvalues are not scattered but are in fact clustered about one other point.
This secondary clustering, although not captured directly by the analysis presented here, is
exploited by the PCGM which achieves good convergence rates as shown in (c).
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Figure 4. (Upper) LRE system with the generating sequence {(−1)rand(k)=k2}
(N =64; p=51)), (Lower) The test problem (N =128; p=90): (a) plot of num-
ber of eigenvalues (of PpAp) within a ball around 1 versus the radius of the ball; (b)
clustering of eigenvalues of PpAp compared to that of Ap; and (c) Comparison of the
convergence rates of PCGM between the preconditioned and non-preconditioned cases.
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In Figure 3 (Lower), the kernel, A is generated by the function f(�)=2� sin(|�|=2) whose
Fourier coe�cients form the sequence {an}= {−1=(n2 − 1

4 )}. This problem represents the
interaction of three cracks (see the mining example in Section 1). In this case too, we observe
(see plot (a)) that a majority (40 out of 51) of the eigenvalues are clustered around 1 (within
a radius of 10−4). This clustering of the eigenvalues is exploited by the PCGM and the rapid
convergence of the PCGM can be observed in (b). In fact, the solution within a tolerance of
10−14 is achieved in just 8 iterations. Here, it should be noted that f(�) is not bounded away
from 0, in fact f(0)=0. Equivalently, in terms of its Fourier coe�cients, ⇒ a0+2

∑∞
n=1 an=0.

Even though this function does not satisfy the hypotheses that we have assumed, we can
explain the convergence of the PCGM for this case by noting that any �nite truncation of
the Fourier series expansion of f(�) is always bounded away from 0. More precisely, in this
sequence, a0 = 4 is positive and all the other terms are negative and from the above equation
their absolute sum is equal to a0=2. This implies that any �nite truncation of f(�) given by
fM (�)=

∑M
k=−(M−1) akeik� is bounded away from 0; i.e. fM (�)¿�M ,

∑
|k|¿M+1 |ak |¿0. For

large enough M (M � N ), the analysis presented in this paper can be shown to be applicable
to this generating function.
These convergence trends were found to persist on other simulation performed with other

generating sequences as in Figure 4 (Upper). Here the generating sequence is {(−1)rand(k)=k2},
where rand(k)∈N is obtained by truncating a random real number, r (0¡r¡1000) generated
by using the ‘rand’ function in MATLAB.
We also simulated some LRE systems with di�erent sizes and domains. We also simulated

the LRE system with the kernel generated by the function f(�)= �4+1 for a geometry where
Lp is speci�ed by r0 = 17; r1 = 7; r2 = 17; r3 = 6; r4 = 21; r5 = 10; r6 = 10; r7 = 8; r8 = 15;
r9 = 7 and r4 = 21. Here Ap is a 90× 90 matrix and the corresponding A is a 128× 128 matrix.
The results are shown in Figure 4 (Lower). We again observe similar clustering and conver-
gence properties and also that the spectrum clusters around more than one
point.
The clustering, convergence and robustness properties were found to persist in many other

simulations (which we do not present here) that we did by changing the kernels, domain
geometries and matrix sizes. In this paper, the analytical results concerning the clustering of
the preconditioned matrices are presented for a speci�c class of generating functions; however,
the simulations show that these algorithms converge quickly for various generating functions
that are not limited to the assumptions made in our analysis.

5. CONCLUSIONS

In this paper, we have introduced and analysed preconditioners (Pp) in PCGM for the e�cient
solution of lower rank extracted systems (LRES), Apx= b. The elements of the preconditioners
are shown to approximate the Fourier coe�cients of the reciprocal of the generating function
associated with the LRE system. Under fairly mild assumptions on the generating function,
f(�) or alternatively on the generating sequence {aN} these properties are exploited in order
to prove clustering of the eigenvalues of the matrices PpAp. Also, these systems are shown to
be subsystems of Toeplitz systems, ANx= b. For LRES, the PCGM converges to a speci�ed
tolerance in O(N logN ) operations where N is the size of AN . To study the preconditioner,
Pp, many simulations of LRES with di�erent kernels, sizes and domains have been presented.
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Simulation results corroborate the theoretical �ndings regarding clustering of the spectra of
preconditioned matrices and the associated convergence rates. In particular, the majority of the
eigenvalues of PpAp fall in the vicinity of 1. They also indicate that the remaining eigenvalues
are not scattered but are in fact clustered about two other points. This secondary clustering,
although not captured directly by the analysis presented here, can be exploited by the PCGM.
In addition, the simulations demonstrate that the algorithm is robust in that it still yields
signi�cant clustering even for Toeplitz matrices derived from sequences which did not satisfy
the restrictions imposed by the hypotheses of the propositions presented. This indicates that
theoretical results established in this paper might be proved under more relaxed conditions.

APPENDIX A

Lemma A.1
I − PNAN can be written as a product of two symmetric Hankel matrices, that is, I −
PNAN =H�N

N Ha
N .

Let L̃N =(I 0)T be a 2N ×N matrix. Then LNLTN = I − L̃N L̃
T
N . Therefore,

I − PNAN = LTN (C
a
N )

−1Ca
NLN︸ ︷︷ ︸

=I

−LTN (C
a
N )

−1LN︸ ︷︷ ︸
=PN

LTNC
a
NLN︸ ︷︷ ︸

= AN

= LTN (C
a
N )

−1(I − LNLTN )C
a
NLN =LTNC

�N

N L̃N L̃TNC
a
NLN (A1)

Now L̃TNC
a
NLN picks up the N ×N submatrix obtained by deleting the �rst N columns and last

N rows of the circulant matrix Ca
N . Similarly, L

T
N (C

a
N )

−1L̃N is obtained from C�N

N . Therefore

I − PNT
a
N =




�N
N �N

N−1 · · · �N
2 �N

1

�N
N−1 �N

N �N
N−1 · · · �N

2

�N
N−2 �N

N−1 �N
N · · · · · ·

...
...

...
...

...

�N
1 · · · · · · �N

N−1 �N
N




JN JN︸︷︷︸
=I




aN aN−1 · · · a2 a1

aN−1 aN aN−1 · · · a2

aN−2 aN−1 aN · · · · · ·
...

...
...

...
...

a1 · · · · · · x1 aN




=H�N

N Ha
N

Proof of Lemma 3.1

(1) From Nehari’s theorem, we have

‖HN‖= inf
v0 ;v−1 ;:::

sup
�

∣∣∣∣ ∞∑
−∞

vjeij�
∣∣∣∣

where vj; j¿1 are the elements of the �rst row of HN . Therefore,

lim
N→∞

‖HN‖6 lim
N→∞

sup
�

∣∣∣∣∞∑
N


jeij�
∣∣∣∣6 lim

N→∞

∞∑
N

|
j|=0
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(2)

‖H0‖F¡∞ ⇒
∞∑
j=0
(j + 1)
2j¡∞ ⇒ ‖HN‖2F =

∞∑
N

j
2N+j6
∞∑
N
(N + j)
2N+j6

∞∑
2N

j′
2j′ → 0

as N → ∞

Therefore, limN→∞ ‖HN‖F =0.

A.1. Clustering of the spectrum of Toeplitz matrices

Here, we present a proposition that shows that in the case of Toeplitz matrices, the product
I − PNAN can be approximated by a block diagonal matrix with a large 0 block. This case
has been analysed [14] and the proposition presented here is very similar to Lemma 7 in
Reference [14]. We still present this case, because our analysis of these systems is di�erent
from the one given in Reference [14] and the concepts used in this section are used in dealing
with LRE systems.
The interpretation that �N

p is an approximation of �p is very useful as the analysis of the
spectral properties of PNAN can be estimated by studying the spectral properties of T�

NT
a
N ,

which is relatively easier to study. To study the spectrum of T�
NT

a
N , we use the structure of

H�
NH

a
N = I − T�

NT
a
N (see Lemma A.1).

Proposition A.1
If f is in Cq; q¿1 or if

∑∞
k=−∞ |k2a2k |¡∞, then for �¿0 there exist N0 and N1 in N such

that ∥∥∥H�N

N Ha
N − DN

∥∥∥
F
6� for all N¿N1

where DN is a block diagonal matrix with only two non-zero N0 ×N0 blocks.

Proof
This proof exploits the Hankel structure of the matrices Ha

N and H�
N . We show that these

matrices are close to block diagonal matrices (in the Frobenius norm) and then infer the
same property for their product. We rewrite Ha

N as

Ha
N =




DN0
1 0 0

0 0 0

0 0 JN0D
N0
1 JN0




︸ ︷︷ ︸
,Za

N

+H1 + JNH1JN (A2)

where

DN0
1 =




a1 a2 · · · aN0

a2 . . . . . . 0

... . . . . . .
...

aN0 0 · · · 0




Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:9–32



PRECONDITIONING FOR LRES 31

and

H1 =




0 · · · 0 aN0+1 · · · aN

... . . . . . . . . . . . . 0

0 . . . . . . . . . . . .
...

aN0+1 . . . . . . . . . . . .
...

... . . . . . . . . . . . .
...

aN 0 · · · · · · · · · 0




Let �̃¿0. Note that f∈Cq with q¿1 and=or
∑

k |k2a2k |¡∞ implies
∑

k k
2a2k¡∞ and

∑
k k

2�2k
¡∞. Therefore there exist constants such that ‖Ha

N‖F6Ma and ‖H�
N‖F6M�; and N0; N1 in N

such that
∑∞

N0+1 ka
2
k6�̃2;

∑∞
N0+1 k�

2
k6�̃2 and N‖�N − �N‖26�̃2 (from Proposition 3.2) for all

N¿N1. This implies ‖H1‖F6�̃ and ‖JNH1JN‖F6�̃. Therefore

‖Ha
N − Za

N︸ ︷︷ ︸
,Ea

N

‖F62�̃ and similarly ‖H�
N − Z�

N︸ ︷︷ ︸
,E�

N

‖F62�̃

for all N¿N1, where Z�
N is de�ned in the same way as Za

N (which is de�ned in Equation
(A2). Therefore, if Ma and M� represent the upper bounds on

∑∞
k=−∞ |ak | and

∑∞
k=−∞ |�k |,

respectively,

‖H�
NH

a
N −

DN︷ ︸︸ ︷
Z�
NZ

a
N ‖F6 ‖(Z�

N + E�
N )(Z

a
N + Ea

N )− Z�
NZ

a
N‖F

6 ‖Z�
N‖F‖Ea

N‖F + ‖E�
N‖F‖Ha

N‖F62(M� +Ma)�̃

⇒‖H�N

N Ha
N − DN‖F6 ‖H�N

N − H�
N‖F‖Ha

N‖+ ‖H�
NH

a
N − DN‖F

6 2(M� +Ma)�̃+Ma�̃, � (A3)

As �¿0 can be chosen arbitrarily, we have proved the proposition.
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