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SUMMARY

This paper proposes and studies the performance of a preconditioner suitable for solving a class of
symmetric positive de�nite systems, Âx = b, which we call p-level lower rank extracted systems
(p-level LRES), by the preconditioned conjugate gradient method. The study of these systems is moti-
vated by the numerical approximation of integral equations with convolution kernels de�ned on arbitrary
p-dimensional domains. This is in contrast to p-level Toeplitz systems which only apply to rectangular
domains. The coe�cient matrix, Â, is a principal submatrix of a p-level Toeplitz matrix, A, and the
preconditioner for the preconditioned conjugate gradient algorithm is provided in terms of the inverse
of a p-level circulant matrix constructed from the elements of A. The preconditioner is shown to yield
clustering in the spectrum of the preconditioned matrix which leads to a substantial reduction in the
computational cost of solving LRE systems. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: preconditioner; conjugate gradient method; integral equations; convolution; non rectangular
domains

0. INTRODUCTION

In this paper, we study the solution of a class of real symmetric positive de�nite
linear systems, Âx = b, which we call p-level lower rank extracted systems (p-level LRES).
They arise in the numerical approximation of convolution type integral equations de�ned on
arbitrary p-dimensional domains. These equations appear in diverse scienti�c and engineering
areas such as: in the solution of partial di�erential equations [1–3], in the solution of inverse
problems in signal and image reconstruction [4, 5], in the analysis of the time-series data [6],
in the modelling of tabular mining excavations [7], and in the modelling of elements in
planar array antennae in the �eld of telecommunications [8]. The coe�cient matrix, Â, is of
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the form Â =LTAL where A is a p-level Toeplitz matrix and L (which we call the extrac-
tion matrix) is a submatrix of a permutation matrix; i.e. Â is a principal submatrix of A. In
the context of integral equations, A represents the convolution kernel and L gives a complete
description of the domain of integration. For example, in two-dimensional integral equations,
the kernel is represented by a two-level Toeplitz matrix, also called a block-Toeplitz Toeplitz-
block (BTTB) matrix and the corresponding domain is described by L. The one-level LRES
have been studied and analysed in Reference [9]. It should be noted that the p-level Toeplitz
systems, which represent convolution type integral equations on rectangular domains, can be
considered a special case of p-level LRES. In this way, the Toeplitz systems and LRES
have a very close relationship: on one hand the class of Toeplitz systems form a subclass of
p-level LRES, while on the other hand, the embedding Â = LTAL implies that each LRE
system can be viewed as a subsystem of a Toeplitz system. While this analysis for p-level
LRES applies to the special case of Toeplitz systems, the analysis that exists in the literature
to assess the performance of the preconditioners for the Toeplitz systems cannot be applied
directly to the p-level LRES.
Their close relation to Toeplitz systems makes it possible to exploit various techniques from

the vast literature for Toeplitz systems to solve them. A comprehensive survey of methods
to solve Toeplitz systems (especially iterative methods) has been presented in Reference [6].
Over the last decade, signi�cant attention has been given to using the preconditioned conjugate
gradient method (PCG) [10, 11] to solve Toeplitz systems. In this method, PAx = Pb is solved
instead of Ax = b. The matrix P is chosen so that the matrix PA has its spectrum clustered,
which ensures better convergence rates. Several preconditioners based on circulant matrices
have been proposed for BTTB systems [6, 12–15]. By contrast, not much attention has been
given to p-level LRES in which the domains of integration are not always rectangular (or even
connected). Preconditioners for elliptic partial di�erential equations with irregular domains
(which have a speci�c sparse matrix structure) have been presented in References [1, 2] but
these systems are distinct from LRES. The main contribution of this paper is that it proposes
a solution strategy for a large class of p-level LRES which guarantees low computational
expense in the O(N2−1=p logN) operations where N is the size of the coe�cient matrix. This
matches with the theoretical results on computational expense for circulant like preconditioners
reported in Reference [16].
In this paper, we propose a preconditioner P̂ for use with the PCG to solve the p-level

LRES more e�ciently. This preconditioner has been motivated by the one �rst introduced
in Reference [7] for solving interacting crack problems that arise in modelling mining ex-
cavations. For interacting crack problems, there is a requirement to model a sequence of
such sub-problems in which the interaction between sub-blocks at one step determines the
extent of the sub-vectors at a subsequent step. One option is to set up a new system matrix
for each new set of interacting sub-blocks. However, by treating each such subsystem as
embedded in the larger system with system matrix A, we avoid this set-up process at each
stage of the calculation and also derive a considerable computational advantage from the pre-
conditioner. It is remarkable that the preconditioner constructed by using the encompassing
p-level Toeplitz matrix yields such an e�cient clustering of the eigenvalues associated with
the multiple interacting sub-problems. Indeed, the extraction operators that we introduce to
de�ne the geometry of the interacting crack problem make it possible to capture the required
information about the higher frequency modes associated with each of the subcracks=sub-
excavations.
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In the case of two-level Toeplitz systems, this preconditioner is very similar to the ones
presented in Reference [14] to solve BTTB systems and, in Reference [15] to solve band
Toeplitz systems. However, in Reference [15], a banded Toeplitz matrix is considered while
in the LRE systems presented in this paper, the Toeplitz kernel is full. In the case of one-
level Toeplitz systems, this preconditioner reduces to one of the preconditioners studied in
Reference [17]. When compared to other iterative schemes for one-level Toeplitz systems,
it has signi�cantly better clustering characteristics and therefore, better convergence rates. In
Reference [17], an elegant analysis of the performance of this preconditioner for one-level
Toeplitz systems is presented. Furthermore, the elements of the preconditioner are shown to
be approximations of the Fourier coe�cients of the reciprocal of the generating function, a
result which is not only theoretically interesting, but also provides scope for extensions to
larger classes of systems.
In Section 1, we formulate the basic problem and introduce the circulant and precondi-

tioner matrices. We establish some fundamental properties of the circulant matrices and their
relation to the preconditioner. The main idea that we exploit in this paper is the same as
the one used in Reference [17] to propose and analyse preconditioners for Toeplitz systems.
More precisely, we show that the eigenvalues of the circulant matrix associated with the LRE
system approximate its generating function, f, at certain points; and that the elements of
the preconditioner are approximations of the Fourier coe�cients of 1=f. These properties are
then used to establish the clustering and convergence properties of the preconditioner for the
p-level LRES in Section 2. In Section 3, the results of some simulations are provided. We give
simulation results of the application of the proposed preconditioner to several examples of
p-level LRES (with di�erent generating functions, di�erent sizes of matrices and di�erent
shapes of domains) and study and quantify its performance. We also provide results of its
performance for a p-level LRE matrix associated with a divergent series to study the robust-
ness of this algorithm. Finally in Section 4, we present some concluding remarks.

Notation
• The bold symbols denote a �nite sequence of numbers or a mathematical expression
involving them. The length of the sequence and the expression is determined by the
context in which they appear.

◦ Sums and products: m=k + l⇐⇒mj= kj + lj, m=k + l⇐⇒mj= kj + l, N=
N0N1 · · ·Np−1, 2=2p.

◦ Exponents: NQ=N�0
0 N�1

1 · · ·N�p−1

p−1 , N
2=N 2

0N
2
1 · · ·N 2

p−1, N
2 =N2.

◦ Index vector: bn= bn0n1···np−1 . However the symbol �2N is an exception and denotes
the vector ((2�=2N0)(2�=2N1) · · · (2�=2Np−1))T. If the length of the index is not clear
from the context then the subscript denotes the last index value; e.g. njk = nj0···jk and
njk jk+1 = njk+1 .

◦ Products between bold symbols is given by the sum of their term wise products:
jk�2N= j0k0(2�=2N0) + j1k1(2�=2N1) + · · ·+ jp−1kp−1(2�=2Np−1).

◦ Boolean operations: n6N⇐⇒ nj6Nj; n=N⇐⇒ nj=Nj; n¡M ⇐⇒ nj¡M; n=M
⇐⇒ nj=M ; rs¡RS⇐⇒ rjsj¡RjSj, etc.; for all j.

◦ Arithmetic operations: ∑n¡N an=
∑

n0¡N0 · · ·∑np−1¡Np−1
an0n1···np−1 ,

lim
n→∞

an= lim
nj→∞

06j6p−1
anon1···np−1
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◦ p-sequences: {ak}, k∈Zp is a sequence in R, i.e. {ak}= {ak0k1···kp−1}.
◦ Arguments of functions:

f(j�2N)⇐⇒ f(j0�0; j1�1; : : : ; jp−1�p−1)

�j , 2�=2Nj

f(�) =
∞∑

n=−∞
anein�

⇐⇒ f(�0; �1; : : : ; �p−1)

=
∑

n0¡N0
· · · ∑

¡Np−1

an0n1···np−1 × ei(n0�0+···+np−1�p−1)

• p-block matrices:

◦ A∈RN×N (N=
∏p−1

k = 0 Nk) is called a p-block matrix if A has a nested block struc-
ture with N 2

0 subblocks (each, a (N=N0)× (N=N0) matrix) which we call one-level
blocks; and each of these one-level blocks is itself a block matrix with N 2

1 subblocks
(each, a (N=N0N1)× (N=N0N1) matrix) which we call two-level blocks; and so on.
Note that the last such level is the pth level and each block in this level is a scalar.
For consistency of certain notions, we de�ne the matrix A itself to be a zero-level
block.

Example

A=

⎛
⎜⎜⎝

A0 A1 A2

A3 A4 A5

A6 A7 A8

⎞
⎟⎟⎠ ; Aj0 =

(
aj00 aj01

aj02 aj03

)

Here A is a two-block N×N matrix where N=N0 ×N1 = 3× 2. There are N 2
0 (=9)

one-level blocks, Aj0 , (06j068). The dimension of each Aj0 is (N=N0)× (N=N0)
(=2× 2): Similarly in each one-level block, there are N 2

1 (=4) two-level blocks,
Aj0j1 (06j163) each of size (N=N0N1)× (N=N0N1) (=1× 1) scalars aj0j1 (06j163).

◦ erk with 16r6p; 06k6Nr − 1 denotes a matrix given by (0 · · · 0 I 0 · · · 0)T
where 0 and I are

∏p−1
m= r Nm × ∏p−1

m=r Nm matrices and I is the kth block. Note that
if G is an (r − 1)-level block, then (erk)TGerl is a r-level block for all 16r6p. In
fact, it is the block that is both in the kth block-row and lth block-column of G. erk
and ek will be used interchangeably whenever the level r can be determined by the
context in which these matrices appear.

◦ [A]kr−1 ;lr−1 denotes an r-level block given by (erkr−1
)T · · · (e1k0)TAe1l0 · · · erlr−1

. Here,
both k and l denote are sequences of length r. Note that [A]kp−1 ;lp−1 is a scalar
and kp−1; lp−1 are vectors of length p. In this case, we use the notation [A]kp−1 ;lp−1

interchangeably with [A]k;l.
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• A and AN are used interchangeably to denote matrices, the latter is used to emphasize the
dimension of the matrix (and its structure). In particular, IN denotes an N×N identity
matrix.

• T is a symmetric p-block Toeplitz matrix if T is a p-block matrix and [T ]k;l=[T ]|k−l|;0.
Thus, the matrix T of dimension N×N can be constructed if we know a �nite
p-sequence of length, N, given by {[T ]k;0}N−1

k=0 . This p-sequence we represent by �N(T );
i.e. �N(T ), {[T ]k;0}N−1

k=0 . Often, a bi-in�nite p-sequence, �(T ), is given and the
p-block Toeplitz matrix is formed by a contiguous subsequence of this sequence, i.e.
�N(T )⊂�(T ). This bi-in�nite p-sequence is called the generating p-sequence and the
function (when it exists), f(�)=

∑∞
n=−∞ tnein� where �(T )= {tn}∞

n=−∞ is called the
generating function.

• To every generating p-sequence, {tk}, we also associate a 2N× 2N p-block symmetric
Toeplitz matrix, C2N, called the p-block circulant matrix. If �N(C) = {[C]k;0}2N−1

k=0 ,
{ck}2N−1

k=0 , then

ck0k1···kp−1 = t 0(k0) 1(k1)··· p−1(kp−1)

where  j(kj)= min(kj; 2Nj − kj).

Example
Let �(A) be given by a bi-in�nite two-sequence {aj0j1} and using this sequence we
construct the following matrix:

A=

⎛
⎜⎜⎜⎝

A0 A1 A2

A1 A0 A1

A2 A1 A0

⎞
⎟⎟⎟⎠ ; Aj0 =

⎛
⎜⎜⎜⎝

aj00 aj01 aj02

aj01 aj00 aj01

aj02 aj01 aj00

⎞
⎟⎟⎟⎠

Here A is a two-block Toeplitz matrix with [A]kr−1 ;lr−1 = [A]|kr−1−lr−1|;0r−1 ; for e.g. [A]0;1 =
[A]2;1 =A1. �N(A) is the two-sequence given by {aj0j1} where N=3× 3 and 06j6N−1.
The associated p-block circulant matrix, C2N, is a symmetric block Toeplitz matrix which
is completely determined by its �rst block row given by (C0 · · ·CN0CN0−1 · · ·C1) and
Cj0 ; 06j06N0 − 1 is itself a symmetric Toeplitz matrix where its �rst row is given by
(aj00 · · · aj0N1aj0(N1−1) · · · aj01).

• The su�x, p-block in p-block matrices, p-block Toeplitz matrices, and p-block circulant
matrices; the su�x, p- from p-sequences; and the su�x p-level from p-level LRES will
be dropped in contexts whenever there is no loss of clarity in doing so.

• ‖ · ‖ represents the norm (maximum singular value) of the matrix, A.

1. PROBLEM FORMULATION AND SOLUTION

Problem setting: For any LRE system, Âx= b, with the domain given by Ĝ, the coe�cient
matrix, Â is completely determined by the kernel of the associated integral equation and by
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the geometry of the domain. Accordingly, to every LRE system, we associate two
matrices:

1. An N×N Toeplitz matrix, A, corresponding to the p-level Toeplitz system representing
an integral equation with the same kernel as the LRE system, but whose domain, G, being
a p-cell (given by cross products of p intervals [a0; b0]× [a1; b1]× · · · × [ap−1; bp−1])
contains the domain Ĝ of the LRE system. This matrix A contains all the information
about the kernel.

2. A matrix, L, which is a submatrix of an N×N permutation matrix. This matrix L
characterizes the geometry of the domain Ĝ. The determination of its structure from the
geometry of the domain Ĝ is given in Sections 2.1 and 2.2.

The coe�cient matrix, Â then satis�es the relation Â=LTAL. This constitutes the main
di�erence between the LRE and Toeplitz systems. The Toeplitz systems are completely
determined by the kernel while for the LRES, one also needs to the know the structure
of the domain besides knowing the kernel.
The association of a p-level LRE system to a p-level Toeplitz matrix as described above

can be done in multiple ways. More precisely, this is a many-to-one association since many
LRES having the same kernel but di�erent geometries can be associated with the same Toeplitz
system. In this paper, we consider a sequence of p-block Toeplitz matrices, {AN}, and study
the sequence, {AN}, of sets of LRE coe�cient matrices (Â) that can be associated with
each AN. The sequence, {AN}, is formed from a generating p-sequence from the Wiener
class, {an} which satis�es the following assumptions.
Assumptions 1

1. The sequence {an} is in ‘1(Zp), i.e.
∑∞

n=−∞|an|, c¡∞.
2. The corresponding generating function, given by f(�)=

∑∞
n=−∞ anein� satis�es:

(a) f=
∑∞

k=−∞ akeik� is real, positive and bounded away from 0, i.e anon1···np−1 =
a±no±n1±···±np−1 for all n in Zp; and there is an �¿0 such that f(�)¿�¿0 for
all � in Tp, where T=[−� �],

(b)
∑
k2+2�|ak|2¡∞ for some �¿min(1;max(0; (p − 2)=4)).

Note that the Assumption 1-(2a) ensures that the generating function gives rise to symmetric
positive de�nite matrices. It should be remarked that we aim to study a more general class
of Toeplitz matrices with generating functions f∈L1(R). For simulations we have considered
generating functions that do not necessarily satisfy Assumption 1-(2a).
Preconditioned conjugate gradient method (PCG): We solve the LRES using the

PCGM [18]. In this method, a suitably chosen matrix P̂ (called the preconditioner) is designed
and the system P̂Âx= P̂b is solved instead of Âx= b. Unlike simpler iterative methods, the
convergence rate of the PCG depends on the distribution of all eigenvalues of P̂Â, and not
exclusively on its extremal eigenvalues. Moreover, the PCG convergence is fast when the
eigenvalues are clustered and P̂ is designed so as to achieve this property.
Proposed preconditioner. We prescribe the preconditioner for the coe�cient matrix, Â, of

an LRE system in the following way. We �rst form the matrices AN and L as in previous
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section and then construct a 2N× 2N circulant matrix C2N (see notation for this construction).
Since Â is a principal submatrix of AN, given by LTANL, it is also a principal submatrix
of C2N; i.e. Â= �L

T
C2N �L. Its structure is completely determined by the geometry of the

domain of the LRE system. The preconditioner, P̂ is then de�ned by P̂= �L
T
C−1
2N
�L. In the

case of Toeplitz systems, L is equal to an N×N Identity matrix and hence the corresponding
matrix, �L, has a rank of N which is greater than any other LRE system associated with AN.
Hence the name LRE matrices. This prescription of P̂ in terms of C2N is a generalization of
the preconditioner proposed for one-level systems in Reference [9]. Therefore, it inherits the
numerical and algorithmic advantages (see Reference [9]) of using this preconditioner in the
PCG algorithm.
In this paper, our aim is to show that the sequence CN of sets of preconditioned

LRE matrices (P̂Â) corresponding to the sequence of Toeplitz matrices {AN} have spec-
tra clustered around 1. One of the important features of our prescription is that it is given in
terms of circulant matrices whose structure is exploited to establish the clustering. We now
present some of the important properties of these matrices.

Proposition 1.1

1. (a) The circulant matrix C2N is diagonalizable, i.e. C2N=FH
N�2NFN where FN=F0 ⊗

F1 ⊗ · · · ⊗ Fp−1, FH
j =F−1

j and [Fj]kl=(1=
√
2Nj)ei2�kl=2Nj with 06k; l62Nj − 1 for

all 06j6p − 1.
(b) �2N is a diagonal matrix and its diagonal elements, �j, are given by �j=

∑N
n=−(N−1)

aneijn�2N , 06j62N − 1:
(c) �n0···nj···np−1 = �n0···(2Nj−nj)···np−1 for 0¡j¡p − 1 and 06n62N − 1.

2. There exists an N0 in Np and a c0 in R+ such that C2N is positive de�nite and ‖C−1
2N ‖¡c0

for all N¿N0 and k in Zp.
3. C−1

2N is a p-block symmetric circulant matrix, and the associated sequence, �N(C−1
2N ),

{�n} is given by �n=(1=2N)
∑N

k=−(N−1)(1=�k)e
ikn�2N ; for all n∈Zp.

These results can be easily veri�ed by simple algebraic manipulations.

Remark
Since, (C2N)−1 is a circulant matrix and �N(C−1

2N )= {�n}, the p-level Toeplitz matrix, PN, for
which �N(C−1

2N )= {�n}, forms the preconditioner of the p-level Toeplitz matrix, AN. Further-
more, for any coe�cient matrix of an LRE system given by Â=LTANL, its preconditioner
has the same structure and is given by P̂=LTPNL.

1.1. Relation to Fourier coe�cients of 1=f

Note that �j=
∑N

k=−(N−1) ake
ijk�2N is an approximation for f(�) at j�2N; and �n=(1=2N)∑N

k=−(N−1)(1=�k)e
ikn�2N is a Riemann sum approximation of the multiple integral (1=2�)∫ �

−�(1=f(�))e
ij� d�, which is the jth Fourier coe�cient of 1=f. This suggests that the ele-

ments of P̂ are approximations of the Fourier coe�cients of g(�) , 1=f(�). We establish
this in the following proposition.

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:437–472
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Proposition 1.2

1. There exists a sequence {	k} in ‘1(Zp) such that g(�)=
∑∞

k=−∞ 	keik� for all � in Tp.
2. For every 
¿0, there exist M in Np such that
(a)
∑∞

kj =Nj

∑∞
k\kj = 1 |ak|6
 and

∑∞
kj =Nj

∑∞
k\kj = 1 |	k|6
 for all N¿M,

(b)
∑N

k=−(N−1) |	k − �Nk |6
 for all N¿M.

Here the notation k \ kj denotes summation over all indices except kj, and �Nk has been
used instead of �k to emphasize the dimension, N.

Proof

(1) This is obtained by generalizing Theorem 18.21 in Reference [19, pp. 367–368].
(2a) Let 0¡�̃¡�. From the Cauchy–Schwarz inequality, we have

∑ |k1+�ak|
|k1=2+�̃| 6

(∑|k2+2�|ak|2|
)1=2(∑∣∣∣∣ 1k1+2�̃

∣∣∣∣
)1=2

¡∞ ⇒∑|k(1=2)+�ak|¡∞

where �̃= � − �̃¿0. Therefore, for every 
¿0, there exists an M in Np such that for
N¿M:

∞∑
kj =Nj

∞∑
k\kj = 1

|k(1=2)+�ak|¡
⇒
∞∑

kj =Nj

∞∑
k\kj = 1

|ak|6 


N (1=2)+�̃
j

From Lemma A.1 in Appendix A, we have that
∑
k2+2�|ak|2¡∞ ⇒ ∑k2+2�̂|	k|2¡∞

for some �̂¿0. Then we can similarly show that
∑∞

kj =Nj

∑∞
k\kj = 1 |	k|6
=N (1=2)+�̂

j .

(2b) We de�ne a sequence {hNj } by hNj = g(j�2N)−
∑N

k=−(N−1) �
N
k e

ijk�2N for all −(N−1)6j6N.
But the sum on the right side of this equation is an approximation of g(j�2N) and can
be simpli�ed as

N∑
k=−(N−1)

�Nk e
ijk�2N =

1
2N

N∑
k=−(N−1)

N∑
l=−(N−1)

1
�Nl
eikl�2Neijk�2N

=
N∑

l=−(N−1)

1
�Nl

p−1∏
�= 0

�l�−j� =
1
�Nj

for all −(N− 1)6j6N: Now, �Nj =
∑N

k=−(N−1) ake
ijk�2N is an approximation of f(j�N);

and an estimate of hNj = g(j�2N) − 1=�Nj can be found by exploiting this approximation
as follows:

hNj = g(j�2N)︸ ︷︷ ︸
= 1

f(j�2N)

− 1
�Nj
= −

, Ra
j︷ ︸︸ ︷∑∞

k=−∞akeijk�2N −∑N
k=−(N−1) ake

ijk�2N

�Nj f(j�N)

⇒ |hNj |6 c0‖g‖∞︸ ︷︷ ︸
, c2

|Ra
j | (1)
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where Ra
j is the approximation error of the truncated Fourier series of f at j�2N. Also,

hNj can be rewritten as

hNj =
N∑

k=−(N−1)

, Nk︷ ︸︸ ︷
(	k − �Nk ) e

ijk�2N

︸ ︷︷ ︸
�Nj

+R	
j

⇒ |�Nj |6|hNj |+ |R	
j | ⇒ |�Nj |62c2

∞∑
k=N

|ak|+ 2
∞∑
k=N

|	k| (2)

where R	
j is the approximation error of the truncated Fourier series of g at j�2N and

the last inequality is obtained using inequality (1). Note that the sequence �N , {�Nj },
−(N − 1)6j6N is a Discrete Fourier Series obtained from the sequence N , {Nk },
−(N − 1)6k6N. Therefore, the coe�cients of these two series satisfy the Plancherel
(Parseval) relation [10, 20, 21],

‖N‖2 = 1
2N

‖�N‖2 ⇒
N∑

k=−(N−1)
(	k − �Nk )

26
(
2c2

∞∑
k=N

|ak|+ 2
∞∑
k=N

|	k|
)2

(3)

In the proof for (2a), we have shown that
∑ |k(1=2)+�ak|¡∞ and

∑ |k(1=2)+�	k|¡∞ where
�= min{�̃; �̂}. Therefore for every 
¿0 there exists an M in Np such that

∑∞
k=N |ak|

6
=N(1=2)+� and
∑∞

k=N |	k|6
=N(1=2)+�. Therefore, inequality (3) becomes

N∑
k=−(N−1)

(	k − �Nk )
26 (2c2 + 2)2


2

N1+2�
for all N¿M

⇒
N∑

k=−(N−1)
|	k − �Nk |6(2c2 + 2) 


N� for all N¿M

where the last inequality is obtained by a simple application of the Cauchy–Schwarz
inequality.

2. p-LEVEL LOWER RANK EXTRACTED SYSTEMS

Now, we present the clustering characteristics of the spectra of the preconditioned matrices
in LRES. A similar analysis for p-level Toeplitz systems has been presented in Appendix B,
since some of the analysis in this section uses some results for Toeplitz systems, and, they
also form an important class of problems in their own right. Moreover, Toeplitz systems
are simpler systems to analyse than LRES, and therefore studying them makes it is easier
to understand certain concepts in the analysis of LRES. The analysis of one-level Toeplitz
system and the corresponding LRE system has been presented in Reference [9]. For the sake
of clearer exposition and easier understanding of these concepts and the relation of LRES
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(a) (b)

Figure 1. (a) Rectangular domain of the Toeplitz system; and (b) striped domain of the LRE system.

to corresponding Toeplitz systems, we present �rst the two-level case and then generalize to
higher dimensions.

2.1. Two-level LRE systems

We �rst derive the structure of LRES from the following set of equations:

N0−1∑
n0 = 0

N1−1∑
n1 = 0

�A|k0−n0|;|k1−n1|xn0n1 = bk0k1 06k06N0 − 1; 06k16N1 − 1

where �A, X (with elements xn0n1) and B (with elements bk0k1), are N0 ×N1 matrices. We view
the indices (n0 n1) as co-ordinates of points in a grid on a rectangular plane (see Figure 1(a)).
In the same way, xn0n1 can be thought as a numerical representation of a �eld x on the
rectangular plane. As the grid speci�ed by the co-ordinates (n0 n1) represents a rectangle, we
say that the underlying domain in the system given above is rectangular. The equations in
this system can be rearranged to give the two-level system⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 · · · AN0−1

A1
. . . . . .

...

...
. . . . . .

...

AN0−1 · · · · · · A0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x= b

where Aj is a N1 ×N1 symmetric Toeplitz matrix constructed from jth row of �A; x and b
are vectors obtained by stacking columns of the matrices X and B one below the other,
respectively. In Appendix B, we have presented the analysis of this system.
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Now, if the underlying domain in a system is not rectangular, (see Figure 1(b)) but consists
of subdomains (for instance, the domain in Figure 1(b) is the union of the shaded areas),
then the corresponding equations are written as the following LRE system:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

LT0A0L0 LT0A1L1 · · · LT0AN0−1LN0−1

LT1A1L0
. . . . . .

...

...
. . . . . .

...

LTN0−1AN0−1L0 · · · · · · LTN0−1A0LN0−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, Â

x̂= b̂ (4)

where Li are extracting matrices and contain the information about which co-ordinates in
the ith column of the rectangular grid are in the shaded part. For instance, in the above
example with the striped domain, all Li are identical and are given by

Li=L=

⎛
⎜⎜⎝

I3 0

0 0

0 I2

⎞
⎟⎟⎠

Note that Â=LTANL, where L=diag(L0; L1; : : : ; LN0−1). As mentioned earlier, the precon-
ditioner is given the same structure as Â and is given by P̂=LTPNL. For this example
N=N0 ×N1 = 7× 6, AN; PN ∈R42× 42, and L∈R42× 35 and therefore Â and P̂ in R35× 35.
Striped domain: The striped domain we mentioned above is fundamental and more com-

plex domains can be analysed in terms of this domain. In this case, the coe�cient matrix,
Â=LTANL where L= IN0 ⊗ L and L is an N1 ×K1 extracting matrix given by

L=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Im0 0 0 · · ·
0 0 0 · · ·
0 Im1 0 · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

}r0
}r1
}r2
...

where L has nm block-columns (with
∑nm−1

i= 0 mi=K1) and nr block-rows. In this matrix,
the ith block-column has only one Identity matrix (Imi) (with all other entries in this block-
column being 0); and every alternate block-row is a zero block. We impose another condition
on the structure of L in the following way. Let 
¿0 and M=M(
) in N2 be such that∑∞

k0 =−∞
∑∞

k1 =M1
|ak|6
,

∑∞
k0 =−∞

∑∞
k1 =M1

|	k|6
, and
∑N

k=−N |	k − �Nk |6
 for all N¿M
(this is possible by Proposition 1.2). Then we impose the condition that ri¿M1 for all
06i6nr − 1.
In this way, to each Toeplitz matrix, AN, and a given 
¿0, we can associate a class

of striped domains which satisfy the above conditions. We represent the set of these do-
mains by GsdN (
). Also to each domain G ∈GsdN (
), there corresponds an LRE system with the

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:437–472



448 S. SALAPAKA AND A. PEIRCE

coe�cient matrix, ÂG=LTANL, and its preconditioner P̂G=LTPNL. We represent the set
of preconditioned LRE coe�cient matrices (P̂GÂG) by CsdN (
), i.e.

CsdN (
)= {P̂GÂG|G ∈GsdN (
)}
Lemma 2.1
Under Assumptions 1, for every 
¿0, there exists an M in N2 such that for each P̂Â∈CsdN (
)
and N¿M; there exists ]∈N2 and a matrix D whose rank is at most �0N1 + �1N0 and which
satis�es ‖I − P̂Â−D‖6
. The constant, ] depends only on the geometrical parameters of the
underlying domain and 
.

We �rst introduce some notation in order to present the proof of this lemma more e�ciently.
Certain submatrices of type-L matrices are important in our analysis, which we represent
here by

Dx
L(N;m; n) is a m× n matrix given by

Dx
L(N;m; n)= (Im 0 · · · · · · · · · 0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · 0 xN · · · x2 x1

· · · 0
. . . . . . . . . x2

. . . . . . . . .
...

. . . . . . xN

0 0

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

...

...

...

0

In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Dx
R(N;m; n) is a m× n matrix given by

Dx
R(N;m; n)= (0 · · · · · · · · · 0 Im)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

0 0

xN
. . . . . .

...
. . . . . . . . .

x2
. . . . . . . . . 0 · · ·

x1 x2 · · · xN 0 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In

0

...

...

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof of Lemma 2.1
Let 
̃¿0 and M and N in N2 be such that

∑∞
k0 =−∞

∑∞
k1 =M1

|ak|6
̃,
∑∞

k0 =−∞
∑∞

k1 =M1
|	k|6
̃

and
∑N

k=−N |	k − �Nk |6
̃ (this is possible by Proposition 1.2). Also, let G ∈GsdN (
) which

Copyright ? 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:437–472



PRECONDITIONING FOR LRES 449

speci�es the structure of L (and therefore L) as described earlier in this section. Let L̃ be such
that LLT + L̃L̃T = I (since L is an extracting matrix, this can be done). Similarly we de�ne,
L̃, IN0 ⊗ L̃ which satis�es LLT + L̃L̃

T
= I . We split P into a sum of three two-level

matrices D�, F� and E� in the following way:

⎛
⎜⎜⎜⎜⎝

P0 P1 · · · PN0−1

P1
. . . . . .

...
...

. . . . . .
...

PN0−1 · · · · · · P0

⎞
⎟⎟⎟⎟⎠=
⎛
⎜⎜⎜⎜⎝

D�
0 D�

1 · · · D�
N0−1

D�
1

. . . . . .
...

...
. . . . . .

...
D�

N0−1 · · · · · · D�
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
,D�

+

⎛
⎜⎜⎜⎜⎝

F�
0 F�

1 · · · F�
N0−1

F�
1

. . . . . .
...

...
. . . . . .

...
F�

N0−1 · · · · · · F�
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, F�

+

⎛
⎜⎜⎜⎜⎝

E�
0 E�

1 · · · E�
N0−1

E�
1

. . . . . .
...

...
. . . . . .

...
E�

N0−1 · · · · · · E�
0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, E�

where D�
j is a block diagonal matrix with its kth block being the rk × rk diagonal block of

the Pj (concomitant with the structure of L):

F�
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 R�j

01 0 · · · · · · 0

L�j

10 0 R�j

12
. . . . . .

...

0
. . . 0

. . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . R�j

nr−2;nr−1

0 · · · · · · 0 L�j

nr−1;nr−2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where �j is the �rst column of the Toeplitz matrix, Pj, and, R
�j

kl =D�j

R (M1; rk ; rl) and L�j

kl =D�j

L

(M1; rk ; rl); and E�
j =Pj − D�

j − F�
j which is a Toeplitz matrix with a central band (leading

diagonals) of zeros for all 06j6N0−1. From Lemmas A.2 and A.3 and Proposition 1.2, the
norm of the matrix, E�, can be estimated by

‖E�‖62
N0−1∑
k0 = 0

N1−1∑
k1 =M1

|�Nk |62
N0−1∑
k0 = 0

N1−1∑
k1 =M1

|�Nk − 	k|+ 2
N0−1∑
k0 = 0

N1−1∑
k1 =M1

|	k|64
̃
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Note that LTD�L̃=0 and LTF�L=0. Similarly, the matrix, A, can be split as A=Da +
Fa + Ea with ‖Ea‖64
̃: Therefore,

LTPL̃L̃
T
AL=LT(D� + F� + E�)L̃L̃

T
(Da + Fa + Ea)L

=LTF�L̃L̃
T
FaL+LTE�L̃L̃

T
(Fa + Ea)L+LTF�L̃L̃

T
EaL︸ ︷︷ ︸

�E

=LTF�L̃L̃
T
FaL+LTF�LLTFaL︸ ︷︷ ︸

= 0

+ �E

=LT F�Fa︸ ︷︷ ︸
�D

L+ �E

where �D is a matrix with rank at most 2nrM1N0 (this is true due to the structures of F�

and Fa); and from the above estimates on ‖E�‖ and ‖Ea‖ and Proposition 1.1, we have
‖ �E‖64(c+ c0)
̃. Therefore

P̂Â=LTPLLTAL=LTPAL − LTPL̃L̃
T
AL

=LTIL − LT( �D+ D̃)L︸ ︷︷ ︸
,D

− ( �E +LTẼL)︸ ︷︷ ︸
, E

where the product PA is written as PA= I − (D̃ + Ẽ) using Proposition B.1 with D̃ having

rank at most
∑1

j= 0Mj(N=Nj) and ‖Ẽ‖6
̃. This implies that D has rank at most

, �0︷︸︸︷
2M0 N1 +

, �1︷ ︸︸ ︷
2(nm + 1)M1 N0. Also ‖E‖6(4(c + c0) + 1)
̃, 
. As 
̃¿0 and G ∈GsdN (
) were chosen arbi-
trarily, we have proved the lemma.

Other domains in two dimensions: In the case of striped domains, we imposed structure on
only one dimension, that is, the width of the stripes could vary (along the vertical direction)
but their lengths were identical (in the horizontal direction). This translated to the fact that all
the extracting matrices, Li were identical. In the following analysis, we retain the structure in
the vertical direction but no longer require that all Li are identical. This imposes conditions
on the horizontal directions of the grid similar to ones we imposed on the vertical direction.
We assume there are nc block-columns of widths c0; c1; : : : ; cnc−1 (see Figure 2) such that:

1. Each block-column has identical columns in the grid, i.e. the extracting matrices Li are
identical for all i corresponding to the same block-column (we represent the block-column
by a superscript; e.g. Li=Lj for all i which correspond to the jth block-column).

2. Every alternate block-column is not in the domain (see Figure 2).
3. If M in N2 is such that

∑N0
k0 =M0

∑N1
k1 =−N1 |ak|6
̃,

∑N0
k0 =M0

∑N1
k1 =−N1 |	k|6
̃ and

∑N
k=−N

|	k − �Nk |6
̃ for some arbitrarily chosen 
̃¿0 (this is possible by Proposition 1.2), then
we impose the condition that ci¿M0 for all 06i6nc − 1.
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Figure 2. A possible underlying domain in the LRE system.

Thus the extracting matrices are given by

Lj=

⎛
⎜⎜⎜⎜⎜⎜⎝

Imj
0

0 0 · · ·
0 0 0 · · ·
0 Imj

1
0 · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

}rj0
}rj1
}rj2
...

where Lj has nj
m block-columns and nj

r block-rows. In this matrix, the kth block-column has
only one Identity matrix (Imj

k
) (with all other entries in this block-column being 0); and every

alternate block-row is a zero block. As we assumed in the previous case, rjk¿M1 for all
06k6nj

r and 06j6nc −1. In the following analysis, we assume that L1; L3; : : : are not in the
domain for the sake of simplicity. The analysis of the case in which L0; L2; : : : are not in the
domain is identical to this case.
The preconditioner for the LRE system (de�ned by (4)) with the underlying domain

speci�ed by the above constraints is given by P̂=LTPL where

L=

⎛
⎜⎜⎜⎜⎜⎜⎝

L0 0 0 · · ·
0 0 0 · · ·
0 L2 0 · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

is a full rank matrix with Lj= Icj ⊗Lj. This structure on L implies that P̂=LTPL=LTP̃L
where

P̃=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00 0 P02 · · · · · · P0nc−1

0 0 · · · · · · · · · 0

P20 0 P22 · · · · · · P2nc−3

0 0 · · · 0 · · · 0

...
...

...
...

...
...

Pnc−1 0 · · · · · · · · · Pnc−1nc−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the blocks Pkl; are ckN1 × clN1 subblocks of the preconditioner (having the same struc-
ture as Â in (4)). In particular, for each 06j6nc −1, Pjj is a cjN1 × cjN1 two-level Toeplitz
matrix which has P0 in its main diagonal. This matrix can be written as a sum of two two-level
Toeplitz matrices as

P̃=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P00

0

P22

0

. . .

Pnc−1nc−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, �DP

+ �EP

where �EP= P̃− �DP has a diagonal zero-band (with width greater than M0) and therefore from
Lemmas A.2 and A.3 and Proposition 1.2

‖ �EP‖6
N0−1∑
k0 =M0

N1−1∑
k1 = 0

|�Nk |6
N0−1∑
k0 =M0

N1−1∑
k1 = 0

|	k|+
N−1∑
k= 0

|�Nk − 	k|62
̃

Therefore the preconditioner is given by P̂=DP + EP where DP=LT �DPL=diag(LT
0P00L0

LT
2P22L2 · · ·) and EP=LT �EPL and therefore ‖EP‖6‖ �EP‖62
̃. Similarly, Â is given by

Â=DA + EA where ‖EA‖62
̃. Therefore the product, P̂Â is given by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LT
0P00L0L

T
0A00L0

LT
2P22L2L

T
2A22L2

. . .

LT
nc−1Pnc−1nc−1Lnc−1L

T
nc−1A0Lnc−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+DpEA + EPÂ

Each of the products, LT
j PjjLjL

T
j AjjLj, depicts a sub-LRE system with the domain given

by a striped domain. Therefore from Lemma 2.1, there exists a Dj such that rank of Dj is
at most �j0N1 + �j1cj and ‖I − LT

j PjjLjL
T
j AjjLj − Dj‖6
̃. Therefore, if we de�ne D=diag

(D0 D2 · · ·Dnc−1), then its rank is at most
∑

j= 0;2;:::;nc−1 �
j
0N1 + �j1cj and

‖I − P̂Â − D‖6nc
̃+ 2(c+ 2c0)
̃, 
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Figure 3. A possible underlying domain in one-level LRE system.

As 
̃¿0 was chosen arbitrarily, and if we denote the domains which satisfy the conditions
described in this section by GodN (
̃) and the corresponding set of preconditioned LRE coe�cient
matrices by CN(
̃), we have proved the following proposition.

Proposition 2.1
Under Assumptions 1, for every 
¿0 there exists an M in N2 such that for each P̂Â∈CN(
)
and N¿M; there exist {]j} in N2 and a matrix D whose rank is at most

∑
j= 0;2;:::;nc−1

�j0N1 + �j1cj, and which satis�es ‖I − P̂Â − D‖6
. The sequence {]j} depends only on the
geometric parameters of the underlying domain and 
.

2.2. Characterization of domains of higher level LRE systems

In the previous section, we studied two-level LRES with a large class of underlying domains.
In higher dimensions, the underlying domains are more complex and very di�cult to visualize.
However, we can describe them as cross-product sets of one-dimensional domains.
Therefore, we develop the notation to describe the one-dimensional geometry which we

use to describe geometries in higher dimensions. The underlying domain in a one level LRE
system is described by alternating dark (gd

i ) and light (g
l
i) line segments (see Figure 3).

Also, the number of grid points in each segment is assumed to be greater than a prespeci�ed
number, M , e.g. gd

i ¿M and gl
i¿M . We represent the number of segments (dark and light

together) by n(G), where G denotes the domain given by the union of dark segments; for
instance n(G)=7 in Figure 3. We represent the space of all such domains, G, satisfying
the above constraints by GM

1 . Here, 1 in the subscript refers to the dimension of the domain
and the superscript, M , denotes the lower bound on the number of points in each segment,
gx
i (x∈ {d; l} and 06i¡n(G)). In this way, to every domain G ∈GM

1 , we associate n(G)
segments, gx

i such that

G=
⋃

i¡n(G);
x= d

gx
i

and the number of grid points in each segment (denoted by ni(G)) is at least M .
We express the class of two-dimensional domains that we considered in the previous

section as

GM2 =

⎧⎪⎨
⎪⎩G ⊂R2 |G= ⋃

j¡n(H);
x= d

G̃j × hx
j ; G̃j ∈GM0

1 and H ∈GM1
1

⎫⎪⎬
⎪⎭

where ‘×’ is the set cross product. Figure 4 depicts how the two-dimensional domain G (that
we considered in previous section) is written in terms of one-dimensional domains.
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Figure 4. The two-dimensional domain, G on the right is given in terms of the one-dimensional domains
G̃0; G̃2; G̃4; G̃6 and H . In fact G=(G̃0 × hd

0) ∪ (G̃2 × hd
2) ∪ (G̃4 × hd

4) ∪ (G̃6 × hd
6).

Similarly, we generalize the space of underlying domains to k dimensions and specify it
by the following recursion relation:

GMk+1 =

⎧⎪⎨
⎪⎩G ⊂Rk+1 |G= ⋃

j¡n(H);
x= d

G̃j × hx
j ; G̃j ∈G

M=Mk
k and H ∈GMk

1

⎫⎪⎬
⎪⎭

These constraints on the underlying domain of an LRE system translate to a speci�c structure
on the corresponding extracting matrix, L, that picks the LRE coe�cient matrix from the
Toeplitz matrix (i.e. Â=LTAL). Here we develop the notation which describes the structure
of this extracting matrix.
For an underlying domain in GMp , the corresponding extracting matrix, L has n0c block-

columns and n0r block-rows and is given by

L,L0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L0
0 0 0 · · ·

0 0 0 · · ·

0 L0
2 0 · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}c0

}c1

}c2
...

where L0
j0 = Icj0 ⊗ L1

j0

for j0 = 0; 2; : : : ; 2(n0r − 1); L1j0 is itself an extracting matrix with nj0
c block-columns and nj0

r

block-rows and is given by

L1
j0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1
j00 0 0 · · ·

0 0 0 · · ·

0 L1
j02 0 · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}cj00

}cj01

}cj02
...

where L1
j0j1 = Icj0j1 ⊗ L2

j0j1
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for j1 = 0; 2; : : : ; 2(n
j0
r −1); and again L1j0j1 is itself an extracting matrix with nj0j1

c block-columns
and nj0j1

r block-rows and so on. These matrices satisfy the following recursion relation:

Lk−1
jk−2
=Lk−1

j0j1···jk−2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Lk−1
jk−20

0 0 · · ·
0 0 0 · · ·
0 Lk−1

jk−22
0 · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

}cjk−20

}cjk−21

}cjk−22

...

where Lk−1
jk−1
= Icjk−1

⊗ Lk
jk−1

for all 16k6p − 1. (Note that Ljk−2 denotes Lj0···jk−2 and therefore Ljk−1 =Ljk−2jk−1 . See
the Notation section for details). Here, Lp−1

jp−2
has the form given by

L
p−1
jp−2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 · · ·
0 0 0 · · ·
0 I 0 · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

}cjp−20

}cjp−21

}cjp−22

...

where L
p−1
jp−2

has njp−2
c block-columns and njp−2

r block-rows. In this matrix, the kth block-
column has only one identity matrix (with all other entries in this block-column being 0);
and every alternate block-row is a zero block. Note that the matrix, L̃

p−1
jp−2
, de�ned by

L
p−1
jp−2

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
I 0 0 · · ·
0 0 0 · · ·
0 I 0 · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}cjp−20

}cjp−21

}cjp−22

...

satis�es

L
p−1
jp−2

L
(p−1)T
jp−2

+ L̃
p−1
jp−2

L̃
(p−1)T
jp−2

= I

This in turn implies that L̃
p−2
jp−2

, Icjp−2
⊗ L̃

p−1
jp−2

satis�es

L
p−2
jp−2

L
(p−2)T
jp−2

+ L̃
p−2
jp−2

L̃
(p−2)T
jp−2

= I

In the same way, we can show that

Lk−1
jk−2

L
(k−1)T
jk−2

+ L̃
k−1
jk−2

L̃
(k−1)T
jk−2

= I and Lk
jk−1

LkT
jk−1
+ L̃

k
jk−1

L̃
kT
jk−1
= I
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where

L̃
k−1
jk−2

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃
k−1
jk−20 0 0 0 · · ·
0 I 0 0 · · ·

0 0 L̃
k−1
jk−22 0 · · ·

0 0 0 I · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

}cjk−20

}cjk−21

}cjk−22

...

and L̃
k−1
jk−1

, Icjk−1
⊗ L̃

k
jk−1

for all 16k6p − 1.

2.3. p-level LRES

In this section, we present the analysis of preconditioners for p-level LRES. As in Section 2.1,
to every p-level Toeplitz matrix, AN with its underlying rectangular domain GA and 
¿0, we
associate a set of domains GN(
) in the following way:

GN(
)= {G ⊂GA |G ∈GMp }

where M is such that
∑∞

kj =Nj

∑∞
k\kj = 1|ak|6
,

∑∞
kj =Nj

∑∞
k\kj = 1|	k|6
 and

∑N
k= 1|	k − �Nk |6


for all N¿M (this can be done using Proposition 1.2). To each domain G ∈GN(
), we have
an LRE system with coe�cient matrix, ÂG and its preconditioner given by P̂G. We denote
the set of all preconditioned matrices (P̂GÂG) by CN(
), i.e

CN(
)= {P̂GÂG|G ∈GN(
)}
In the following analysis, we assume an LRE system with its domain in GN(
̃) for some
arbitrarily chosen 
̃ and N¿M (
̃). Therefore the preconditioned coe�cient matrix, P̂Â∈CN(
̃).
The assumption on the geometry of the underlying domain of the p-level LRE system

implies that the extracting matrix, L (in Â=LTAL) inherits the structure described in the
Section 2.2. The analysis of p-level LRE matrices is a natural generalization of the concepts
that were used in Section 2.1 to deal with two-level LRE matrices. However, the notation to
describe the higher level structure is more complex than the two-level case. A generalization
of the Proposition 2.1 to higher dimensions is given by the following proposition (which for
the sake of brevity is presented without proof).

Proposition 2.2
Under Assumptions 1, for every 
¿0, there exists an M in Np such that for each P̂Â∈CN(
)
and N¿M; there exists a ] in Np and a matrix D whose rank is at most 2

∑p−1
k = 0 �k(N=Nk) and

which satis�es ‖I − P̂Â − D‖6
. The constant ] depends only on the geometrical parameters
of the underlying domain and 
.

In Proposition 2.2, we showed that I − P̂Â can be approximated by a matrix which has
all but 2

∑p−1
k = 0 �k(N=Nk) eigenvalues that are zero. In the following proposition, we use the

positive de�niteness of Â and Theorem 2 in Reference [22] (see also the Theorem A.3 in
Appendix A) to prove that the spectra of these two matrices are also close.
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Proposition 2.3
Under Assumptions 1, for every 
¿0 there exists an M in Np such that for each P̂Â∈CN(
)
and N¿M; there are at least N − 2

∑p−1
k = 0 �k(N=Nk) eigenvalues �j of P̂Â such that

|�j − 1|6
 logN: The constant ] in Np depends only on the geometrical parameters of the
underlying domain and 
.

Proof
From Proposition 1.1-(2), we have that C2N¿0 for large enough N. Now Â is a principal sub-

matrix of C2N (i.e. Â= �L
T
CN �L for some �L) and therefore it is also positive. Therefore Â

1=2

and Â
−1=2

are well de�ned and we can construct the symmetric matrix, T, Â
1=2
(P̂Â)Â

−1=2
=

Â
1=2

P̂Â
1=2
. Since P̂Â and T are similar, their spectra are the same. Also, since C2N and C−1

2N

are uniformly bounded, the matrices Â and Â
−1
are also uniformly bounded. This, in turn

implies that Â
1=2
and Â

−1=2
are uniformly bounded.

Let 
̃¿0. From Proposition 2.2, there exists an M∈Np and matrix D̂ whose rank is at
most 2

∑p−1
k = 0 �k(N=Nk) such that

‖P̂Â − (I − D̂)‖6
̃ for all N¿M

If we de�ne �E, Â
1=2
(I − D̂)Â

−1=2
, then ‖T − �E‖6‖Â1=2‖‖Â−1=2‖
̃.

In Theorem A.3, if we set X =T and E= �E − T , then we have ‖C‖6‖E‖ and ‖D‖6‖E‖.
Also, note that �j=1 and j=0 for all but 2

∑p−1
k = 0 �k(N=Nk) values of j. Therefore,

|�j − 1|6 ‖E‖2 + ‖E‖2(log2N+ 0:038)6
(
1 +

p−1∑
k = 0

log2(Nk) + 0:038

)
‖Â1=2‖‖Â−(1=2)‖
̃

6 c̃
̃︸︷︷︸
, 


logN

for these values of j and c̃ is a su�ciently large constant. Since, the spectrum of P̂Â and T
are the same and 
¿0 can be chosen arbitrarily, we have proved the proposition.

Remark
A bound on the error at the kth iteration of a conjugate gradient method (and therefore the pro-
posed algorithm) for a system that has Nout eigenvalues outside the interval (1−
; 1+
) is 
2ke0
where e0 is the error at the �rst step [11, pp. 246–251]. This further implies that the number
of iterations to achieve a desired accuracy of � is Nout + (log �= log 
). For e.g. a system with

=10−8 and desired accuracy of 10−16 would require just two iterations in excess of Nout. We
note from this proposition that there are at most 2

∑p−1
k = 0 �k (N=Nk)=O(N1−(1=p)) eigenvalues

which are not clustered around 1 and since each iteration takes O(N logN) operations, the
PCG with the proposed preconditioner takes at most O(N1−(1=p)N logN)=O(N2−(1=p) logN)
operations. It can be shown that the clustering properties of the spectra of the preconditioned
matrices (shown in the previous section) guarantee a substantial reduction in the number
of iterations of the PCG. It should also be emphasized that unlike the one-level systems in
Reference [9], here the number of iterations is not independent of the matrix size AN.
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Remark
It should be observed that we assumed ‘smoothness’ condition on the generating function
f (
∑
k2+2�|ak|2) to prove the above clustering result. If we relax this condition, i.e. if we

assume only absolute summability, then we can show that the sequence of eigenvalues {�j}
of P̂Â and the constant sequence {1} are equally distributed (see Reference [23] for the
de�nition). This result follows from Proposition 1.2 and Theorems 2.1 from Reference [24]
and 3.1 from Reference [23]. However, we cannot guarantee that the sequences are strongly
equally distributed and therefore cannot guarantee the clustering results proven here.

3. SIMULATION RESULTS

Typically p-level LRES, Âx= b are large. Since the unknown vector, x represents a �eld on
a p-level domain, its length is in the order of Np where N is the number of points used
to discretize each dimension. For instance, in a two level LRE system de�ned on a domain
embedded in a rectangle represented by a 256× 256 grid, has the length of x in O(2562), and
therefore the corresponding coe�cient matrix is in O(2562 × 2562). The application of the
PCG with the proposed preconditioner has two advantages: �rst, it reduces the computational
expense by exploiting the structure of Â; and, secondly it computes the solution without
explicitly forming the large coe�cient matrices.
In the following simulations, we present some two-level LRES of di�erent sizes, and with

di�erent kernels and underlying domains. B and X represent the given and the unknown
�elds corresponding to the vectors b and x, respectively. In Figure 5(A), the kernel, A is
generated by the two-sequence {(i2 + j2 + 1)−3=2}. Here the Â is a 800× 800 matrix and the
associated two-level Toeplitz matrix is 1600× 1600. The underlying domain is shown in (a).
In (b) and (c), we compare the clustering of the spectra of the preconditioned matrix (P̂Â)
and the non-preconditioned matrix Â. In (b), we plot the number of eigenvalues of the pre-
conditioned matrix, P̂Â, in a ball of radius r centred at 1 vs the radius, r. We observe that
a majority (≈ 600 out of 800) of the eigenvalues are clustered around 1 (within a radius
of 10−4). This clustering of the eigenvalues is exploited by the PCG and the rapid conver-
gence of the PCG can be observed in (d). In fact, the solution within a tolerance of 10−14 is
achieved in just 12 iterations while the error is much larger (10−3) in 12 iterations when the
proposed preconditioner is not used. These trends persist as the size of the LRES is increased
(by making �ner grids to describe the domain) and the corresponding results are shown in
Table I. In Figure 6, the LRES with the same kernel as in Figure 5 but with di�erent ge-
ometries have been presented. In plot (A), the underlying domain which is represented by
7128 points (the size of the corresponding coe�cient matrix is 7128× 7128) is shown in (a),
the given (B) and the unknown (X ) �elds in (b) and (c), respectively, and the comparison
of convergence rates of the preconditioned and non-preconditioned cases in (d). Here we see
that the preconditioner reduces the number of iterations by a large amount for a given residual
error. Similar results are observed in plot (B), in which the underlying domain is represented
by 26 532 points.
In Figure 7(A), we simulate a image restoration example where the problem is to determine

the original image from a blurred image. The two images are related through an integral
equation where the kernel is called the blurring function. The domain of reconstruction, the
blurring function and the distorted image are shown in (a)–(c) In (d), the reconstructed
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Figure 5. (a) The underlying domain of the LRE system; (b) plot of the number of eigenvalues
(of P̂Â) within a ball around 1 versus the radius of the ball; (c) clustering of eigenvalues of P̂Â
compared to that of Â; and (d) comparison of the convergence rates of PCG between the preconditioned

and non-preconditioned cases. s represents the size of the coe�cient matrix.

image is presented. We see that there are only two peaks in the distorted image while the
reconstruction of the original image has eight peaks. In (e), we compare the convergence
rates of the PCG with and without the proposed preconditioner. Once again, we see that the
preconditioner greatly enhances the performance of the algorithm.
In Figure 7(B), we use our preconditioner to solve an LRE system with a circular un-

derlying domain which is not covered in our analysis because our analysis is restricted to
rectangular subdomains described in Section 2.2. This example represents the crack opening
displacement of a penny shaped crack subjected to a constant pressure. The simulations show
that the performance is greatly improved by using the proposed preconditioner. The under-
lying geometry, the given and solution �elds are shown in (a)–(c). In (d) we compare the
diagonal preconditioner (it is formed by taking the reciprocals of the diagonal elements of Â)
with ours and �nd that the error goes below 10−3 in about 30 iterations of the ‘diagonal’
algorithm while it takes seven steps with ours.
In Figure 5(B), we simulate an LRE system using the two-sequence {(ij+1)−1}. Note that

the corresponding series is not even convergent, but still the algorithm works satisfactorily. The
fact that these algorithms continue to perform well even beyond the limitations of our analysis
demonstrates their robustness. In Table I, we present the computation times in solving the
LRES presented in this section. For each geometry, the computation times have been recorded
for di�erent grid sizes (and therefore di�erent matrix sizes). The clustering, convergence, and
robustness properties were found to persist in many other simulations (which we do not
present here) that we did by changing the kernels, domain geometries and matrix sizes. In
this paper, the analytical results concerning the clustering of the preconditioned matrices are
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Table I. This table compares the CPU time and the no. of iterations to solve the LRES presented in
Section 3 for di�erent grid sizes N and coe�cient matrices of size s.

aij =(i2 + j2 + 1)−3=2

geom. (Figure 5(A))
tol. = 2:2× 10−16

N=40× 40;
s= 800

w/prec.-w/o prec.

N=80× 80;
s= 3200

w/prec.-w/o prec.

N=160× 160;
s = 12 800

w/prec.-w/o prec.
No. of iterations
CPU time

16 66
2:9 s 8:0 s

16 75
19:8 s 62:3 s

15 80
211:3 s 753:2 s

aij =(i2 + j2 + 1)−3=2

geom. (Figure 6(A))
tol. = 2:2× 10−16

N=64× 64;
s= 1782

w/prec.-w/o prec.

N=128× 128;
s= 7128

w/prec.-w/o prec.

N=256× 256;
s= 28512

w/prec.-w/o prec.
No. of iterations
CPU time

16 68
9 s 25:6 s

16 75
100:5 s 303:3 s

16 80
25:4 min 119:4 min

aij =(i2 + j2 + 1)−3=2

geom. (Figure 6(B))
tol. = 2:2× 10−16

N=64× 64;
s= 1656

w/prec.-w/o prec.

N=128× 128;
s= 6622

w/prec.-w/o prec.

N=256× 256;
s= 26488

w/prec.-w/o prec.
No. of iterations
CPU time

15 70
10:1 s 31:3 s

16 73
95:7 s 288:9 s

15 76
24:12 min 81:8 min

aij = e−(i2+j2)=104)

geom. (Figure 7(A))
tol. = 10−6

N=32× 32;
s= 896

w/prec.-w/o prec.

N=64× 64;
s= 3456

w/prec.-w/o prec.

N=128× 128;
s= 13 824

w/prec.-w/o prec.
No. of iterations
CPU time

25 890
4:1 s 105:5 s

17 3024
14:6 s 30:3 min

8 2105
86:8 s 4:1 h

aij =(ij + 1)−1

geom. (Figure 5(B))
tol. = 2:2× 10−16

N=40× 40;
s= 800

w/prec.-w/o prec.

N=80× 80;
s= 3200

w/prec.-w/o prec.

N=160× 160;
s= 12 800

w/prec.-w/o prec.
No. of iterations
CPU time

45 436
9:7 s 62:3 s

44 643
54:3 s 8:7 min

43 876
10:0 min 2:3 h

The simulations were done in MATLAB on a 512 Mb RAM/1 GHz PC.

presented for a speci�c class of generating functions; however, the simulations show that
the algorithm converges quickly for various generating functions that are not limited to the
assumptions made in our analysis.

4. CONCLUSIONS

In this paper we have introduced and analysed preconditioners (P̂) in PCG for the e�cient
solution of p-level LRES, Âx= b. The elements of the preconditioners are shown to approxi-
mate the Fourier coe�cients of the reciprocal of the generating function associated with
the p-level LRE system. Under fairly mild assumptions on the generating function, f(�),
or equivalently, on the generating sequence {aN}, these properties are exploited in order to
prove clustering of the eigenvalues of the matrices P̂Â. Also, these systems are shown to
be subsystems of p-level Toeplitz systems, ANx= b. For p-level LRES, the PCG converges
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Figure 6. (a) The underlying domain of the LRE system; (b) the given �eld in the integral equation;
(c) the solution �eld; and (d) comparison of the convergence rates of PCG between the preconditioned

(triangles) and non-preconditioned (circles) cases.

Figure 7. (A)(a) the underlying domain; (b) the blurring function (hn1n2 = e
−(n21+n22)=10

4
); (c) the distorted

two-sequence; (d) the reconstructed two-sequence; and (e) comparison of the convergence rates of PCG
between the preconditioned and non-preconditioned cases. (B) (a) the underlying domain of the LRE
system; (b) the given �eld in the integral equation; (c) the solution �eld; and (d) comparison of the
convergence rates of PCG between the preconditioned (triangles) and diagonal preconditioner (circles)

cases. s represents the size of the coe�cient matrix.

to a speci�ed tolerance in O(N2−1=p logN) operations where N is the size of AN. To study
the preconditioner, P̂, many simulations of two-level LRES with di�erent kernels, sizes, and
domains have been presented. Simulation results corroborate the theoretical �ndings regarding
clustering of the spectra of the preconditioned matrices and the associated convergence rates.
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In particular, the majority of the eigenvalues of P̂Â fall in the vicinity of 1. In addition, the
simulations demonstrate that the algorithm is robust in that it still yields signi�cant clustering
even for two-level LRE matrices derived from sequences or domains which did not satisfy
the restrictions imposed by the hypotheses of the propositions presented. This indicates that
theoretical results established in this paper might be proved under more relaxed conditions.

APPENDIX A

A.1. Proof of
∑
k2+2�a2k¡∞ ⇒∑k2+2�	2k¡∞ for some �¿0

Lemma A.1
If f(�)=

∑
akeik� is real and such that 0¡�6f(�)6c for all �∈Tp and

∑
k2+2�a2k¡∞

(with �¿max{0; p
4 − 1

2}) then g, 1
f =
∑

	keik� is such that
∑
k2+2�	2k¡∞ for some �¿0.

To prove this, we �rst state two lemmas from Reference [25, Lemmas A1 and A4,
pp. 301–304]:

Theorem A.1
Let F ∈C1(R;R) and G ∈ C1(R;R+) such that

|F ′(�x) + (1− �)y|6(�)(G(x) +G(y)); x; y∈R; 06�61

where (·)∈L1(0; 1). Then we have for 0¡s¡1:

‖DsF(�)‖r6c1(‖G(�)‖ �q‖Ds�‖p); 1=r=1=p+ 1= �q (D=(−�)1=2)
p; r ∈ (1;∞); �q ∈ (1;∞]; where c depends on ; s; p; �q; r. (� denotes a generic function on Rm;
in this paper we apply this lemma only to those � for which the existence of Ds� is obvious.)

Theorem A.2
Let s¿0. Then

‖Ds(�1�2)‖r6c2(‖Ds�1‖p1‖�2‖q1 + ‖�1‖q2‖Ds�2‖p2)

where

1
r
=
1
p1
+
1
q1
=
1
p2
+
1
q2

; p1; p2 ∈ (1;∞) and q1; q2 ∈ (1;∞]

Now we prove Lemma A.1 using these lemmas. Let

H (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
x
; �6x6c

1
2c

; x¿2c

2
�
; x6

�
2

and H be de�ned on the intervals (�=2; �) and (c; 2c) such that H ′′(x) is monotonic in (�=2; �)
and (c; 2c). Let F(x),H ′(x); (�), 4c3(maxx∈(�=2;�)∪(c;2c) |H ′(x)| + 1) and G(x), 2=x3 on
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the interval (�; c) and smoothly extended over the whole real line to satisfy the conditions
of Lemma A.1. Then we have ∈L1(0; 1) and |F ′(�x+ (1− �)y)|6(G(x)+G(y)); x; y∈R
since ∣∣∣∣ 2

(�x + (1− �)y)3

∣∣∣∣6 2
x3
+
2
y3

is true for all x; y∈ (�; c).
Let � be such that 2� − �¿(p=2) − 1. Now ‖D1+�H (f)‖2 = ‖D�(H ′(f)f′)‖2 =

‖D�(F(f)f′)‖2 and using Theorem A.2 we have

‖D1+�H (f)‖26c2(‖D�F(f)‖p1‖f′‖q1 + ‖F(f)‖∞‖D�f′‖2) (A1)

where (1=p1) + (1=q1)= 1
2 . The term, ‖D�F(f)‖p1 , on the right-hand side can be estimated

from Theorem A.1 as ‖D�F(f)‖p16c1‖G(f)‖∞‖D�f‖p1 and substituting this in (A1) we
have

‖D1+�H (f)‖26c2(c1‖G(f)‖∞‖D�f‖p1‖f′‖q1 + ‖F(f)‖∞‖D1+�f‖2) (A2)

From theory of Sobolev spaces we have ‖D1�‖r16c3‖D2�‖r2 for some c3¿0 if (1=r1) −
(1=p)¿(1=r2)− (2=p) where domain of � is Tp. Since 2� − �¿(p=2)− 1, we can choose
p1 and q1 such that

1
p1
+
1
q1
=
1
2
;

1
p1

− �
p
¿
1
2

− 1 + �
p

and
1
q1

− 1
p
¿
1
2

− 1 + �
p

which implies (A2) can be rewritten as

‖D1+�H (f)‖26 c2(c1c23‖G(f)‖∞‖D1+�f‖2‖D1+�f‖2 + ‖F(f)‖∞‖D1+�f‖2)

6 c2(c1c23‖G(f)‖∞‖D1+�f‖22 + ‖F(f)‖∞‖D1+�f‖2) (A3)

Therefore ‖D1+�f‖2¡∞ ⇒ ‖D1+�H (f)‖2¡∞. Therefore ‖D1+�f‖2¡∞ ⇒ ‖D1+�g‖2¡∞
which is equivalent to

∑
k2+2�a2k¡∞ ⇒ ∑k2+2�	2k¡∞.

A.2. Lemmas on norms of matrices

Lemma A.2
Let T be a �nite or in�nite dimensional matrix and Tk ; 16k64 be its subblocks such that

T =

(
T1 T2

T3 T4

)

then

1. ‖Tk‖6‖T‖, 16k64.
2. ‖T‖6‖T1‖+ ‖T2‖+ ‖T3‖+ ‖T4‖.

The proof follows directly from the de�nitions.
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Lemma A.3
If {�k} with �k = �−k is a sequence of real numbers such that

∑∞
k =−∞ |�k |¡∞, and H and T

are, respectively, in�nite dimensional Hankel and Toeplitz matrices given by

H =

⎛
⎜⎜⎜⎝

�1 �2 : : :

�2 . . . . . .

... . . . . . .

⎞
⎟⎟⎟⎠ ; T =

⎛
⎜⎜⎜⎝

�1 �2 · · ·
�2 �1 : : :

...
. . . . . .

⎞
⎟⎟⎟⎠

then,

1. ‖H‖6∑∞
1 |�k |.

2. ‖T‖6∑∞
−∞ |�k |.

3. If HN and TN are, respectively, N ×N symmetric Hankel ([HN ]ij= �i+j) and Toeplitz
([TN ]ij= �|i−j|) matrices, then ‖HN‖62∑N

1 |�k | and ‖TN‖6∑N
−N |�k |.

Lemma A.4
Let T be a p× q block matrix given by

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 · · · T1n

T21 · · · · · · T2n

... · · · · · · ...

Tm1 · · · · · · Tmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; then ‖T‖6

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

‖T11‖ ‖T12‖ · · · ‖T1n‖
‖T21‖ · · · · · · ‖T2n‖
... · · · · · · ...

‖Tm1‖ · · · · · · ‖Tmn‖

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥
, ‖T̃‖

Note that by using Lemma A.3 and repeatedly applying this lemma, we can show that
the norm of a p-block Toeplitz matrix T with the generating sequence, {tn}, is given by∑∞

n=−∞ |tn|.

A.3. Theorem 2 in Reference [22]

Theorem A.3
Let X be a Hermitian matrix in cn × n with eigenvalues arranged in ascending order �16�2
6 · · ·6�n. Let E be an arbitrary n× n matrix. Let {�j + ij}, 16j6n be the eigenvalues of
X +E such that �16�26 · · ·6�n. Let E=C+ iD where C=(E+E∗)=2 and iD=(E−E∗)=2.
Then

1. |�j − �j|6‖C‖2 + ‖D‖2(log2 n+ 0:038); |j|6‖D‖:
2.
∑

2j6‖D‖2F and
√∑

(�j − �j)26‖C‖F +
√

‖D‖2F −∑2j .

APPENDIX B: p-LEVEL TOEPLITZ SYSTEMS

Here, we show clustering results (with our preconditioner) for a special class of LRE ma-
trices, the case of Toeplitz matrices. The one-level Toeplitz systems has been analysed and
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clustering results have also been shown in Reference [17]. Similar preconditioners have been
proposed to solve band Toeplitz matrices [15] and BTTB systems (two-block Toeplitz matri-
ces) [14]. We still present this case, because our analysis of these systems is di�erent from
that given in Reference [17], and the results used in this section are used in dealing with
LRES. It should be noted that in this case, the sets AN are singletons and the coe�cient
matrix is the Toeplitz matrix itself (Â=A), and therefore the corresponding preconditioner,
P̂=P.

B.1. The structural properties of PA

In this section, we study some properties of the matrix product, PA, which will later be used
to establish that its spectrum clusters around 1. First, we introduce some notation to describe
this structure.
As mentioned earlier, we exploit the fact that the p-block Toeplitz matrices can be

‘embedded’ in p-block circulant matrices (the structure of p-block matrix has been described
in Section 1 and notation). A block in the (k − 1)th level of a p-block circulant matrix has
the structure,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T0 · · · TNk−1 TNk · · · T1
...

. . . . . . . . . . . .
...

TNk−1
. . . T0

. . . . . . TNk

TNk

. . . . . . T0
. . . TNk−1

...
. . . . . . . . . . . .

...

T1 · · · · · · TNk−1 · · · T0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix can be partitioned into four submatrices as shown by the solid lines. Each of
these submatrices is a Toeplitz matrix. The two diagonal submatrices are identical and in
these submatrices, the index of the subblocks (Tj) increases as one moves away from the
main diagonal. We call Toeplitz matrices having this structure to be of type-R. On the other
hand, in the counter-diagonal submatrices the index of the subblocks (Tj) decreases as one
moves away from the main diagonal. We call Toeplitz matrices having this structure to be
of type-L; The matrices having the same structure as the second or the fourth quadrant of a
symmetric circulant matrix are of type-R and those having the either the structure of the �rst
or the third quadrants of a symmetric circulant matrix is of type-L.
Let C� and Ca be p-block circulant matrices constructed from the sequences {�k}Nk=−(N−1)

and {ak}Nk=−(N−1) respectively. We construct the matrix product PA from these circulant
matrices which is shown in the following steps:
1. We choose the extracting matrices, L1T = [0 I ] and L̃1T = [I 0], where 0 and I are
(2N=2)× (2N=2) matrices. Note that LT1C

�L1 is of type-R and LT1C
�L̃1 is of type-L. Also,

C�Ca= I (from Proposition 1.1-(3)) implies that LT1C
�CaL1 = I . Since L1LT1 + L̃1L̃1T = I ,
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we have

LT1C
�L̃1L̃1TCaL1︸ ︷︷ ︸
, E1

+LT1C
�L1︸ ︷︷ ︸

, P1

LT1C
aL1︸ ︷︷ ︸

, A1

= I (B1)

2. In the same manner for 26k6p, if we choose (2N=2k)× (2N=2k−1) extracting matrices,

LTk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(0 I) 0 0 0 0

0 0 (0 I) 0 0 · · ·
0 0 0 0 (0 I)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and L̃
T
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(I 0) 0 0 0 0

0 0 (I 0) 0 0 · · ·
0 0 0 0 (I 0)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and starting from Equation (B1) we have the following recursion relation:

Ek + PkAk = I

where

Ek = LTk E
k−1Lk + LTk P

k−1L̃k L̃
T
k A

k−1Lk

Pk = LTk P
k−1Lk and Ak =LTk A

k−1Lk

for 26k6p. Note that from our construction of circulant matrices in relation to the cor-
responding Toeplitz matrices, the matrix Pp=P and Ap=A and therefore the product
PpAp=PA. Therefore, we have that

PA= I − Ep (B2)

where Ep is an N×N p-block matrix and using the above recursion relationships, we have

Ep=
p∑

j= 1

LTp · · ·LTj · · ·LT1C�L1 · · ·Lj−1L̃j︸ ︷︷ ︸
, ��

j

L̃
T
j L

T
j−1 · · ·LT1CaL1 · · ·Lj︸ ︷︷ ︸

, �a
j

· · ·Lp (B3)

where ��
j and �

a
j are p-block matrices whose (j−1)th level blocks are of type-L and all the

blocks of other levels are of type-R.
It is easier to analyse the p-block matrices which have zeroth level of type-L than the

matrices that have zeroth level of type-R. Now, we show that there exist permutation matrices,
Rj; 16j6p such that RTj �

a
jRj and RTj �

�
jRj are matrices whose zero-level blocks are of type-L.

We �rst consider an N ×N p-block matrix, T whose (k)th-level blocks are of type-L while
all the other level blocks are of type-R. Note that this matrix has the same structure as �a

k . We
are analysing T just for the sake of convenience in notation. Let V be a (k − 1)-level block.
Then all the entries in V have the form tj0j1···jk−2xx···x where the �xed sequence j0; j1; : : : ; jk−2
speci�es the �xed block, V . In the same way any entry in the kth-level subblock of V is of
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the form tj0j1···jk−1xx···x. Now, we show how a permutation of columns of V gives a matrix, Ṽ ,
whose kth-level subblocks have entries that are of the form tj0j1···jk−2xjk x···x. If we de�ne the
permutation matrix, R̃ by

R̃=
(
INk−1 ⊗ ek+10 INk−1 ⊗ ek+11 · · · INk−1 ⊗ ek+1Nk−1

)
where ek+1j ; 06j6Nk−1 are de�ned in the Notation section; then Ṽ = R̃

T
V R̃ is a matrix whose

kth-level subblocks have entries of the form tj0j1···jk−2xjk x···x. Also Ṽ has the dimensional struc-
ture of Nk ×Nk−1 × · · · ×Np−1 as opposed to the structure of Nk−1 ×Nk × · · · ×Np−1 of V . If
we apply such permutations to all (k−1)th-level blocks of T to obtain a new matrix, T̃ , then T̃
is a p-block matrix with dimensional structure N0 ×N1 × · · · ×Nk−2 ×Nk ×Nk−1 × · · · ×Np−1
whose (k−1)th-level blocks are of type-L. Thus by doing permutations on rows and columns
of T , we have moved the type-L structure from kth-level to (k − 1)th-level. Thus by recur-
sively applying this procedure, we can obtain a permutation matrix, R, such that RTTR is a
matrix which is of type-L. Now we present an example of a three-block matrix, in which
the second-level blocks are of type-L and we construct the permutation matrix that convert
it into a three-block matrix which is of type-L.

Example
T is an N×N three-block matrix with second-level blocks of type-L and N , N0×N1×N2=
3× 4× 3; i.e.

T =

⎛
⎜⎜⎝

T0x0x1 T1x0x1 T2x0x1

T1x0x1 T0x0x1 T1x0x1

T2x0x1 T1x0x1 T0x0x1

⎞
⎟⎟⎠

where

Tj0x0x1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Tj00x Tj01x Tj02x Tj03x

Tj01x Tj00x Tj01x Tj02x

Tj02x Tj01x Tj00x Tj01x

Tj03x Tj02x Tj01x Tj00x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Tj0j1x=

⎛
⎜⎜⎜⎝

tj0j12 tj0j11 tj0j10

tj0j11 tj0j12 tj0j11

tj0j10 tj0j11 tj0j12

⎞
⎟⎟⎟⎠

Now, if R0 = (IN1 ⊗ e30 IN1 ⊗ e31 IN1 ⊗ e32); then

RT0Tj0x0x1R0 =

⎛
⎜⎜⎜⎝

Tj0x2 Tj0x1 Tj0x0

Tj0x1 Tj0x2 Tj0x1

Tj0x0 Tj0x1 Tj0x2

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
, Tj0x1x0

; where Tj0xj2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

tj00j2 tj01j2 tj02j2 tj03j2

tj01j2 tj00j2 tj01j2 tj02j2

tj02j2 tj01j2 tj00j2 tj01j2

tj02j2 tj02j2 tj01j2 tj00j2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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for 06j6N − 1. Therefore if R1 = IN0 ⊗ R0, then

T̃,RT1TR1 =

⎛
⎜⎜⎝

T0x1x0 T1x1x0 T2x1x0

T1x1x0 T0x1x0 T1x1x0

T2x1x0 T1x1x0 T0x1x0

⎞
⎟⎟⎠

Note that the one-level blocks in T̃ are of type-L and other blocks are of type-R. Also its
dimension, Ñ, Ñ 0 × Ñ 1 × Ñ 2 =N0 ×N2 ×N1. If we choose R̃0 =

(
IÑ 0

⊗ ẽ20 IÑ 0
⊗ ẽ21 IÑ 0

⊗ ẽ22
)
,

then

T̂ , R̃
T
0 T̃ R̃0 =

⎛
⎜⎜⎝

Tx0x12 Tx0x11 Tx0x10

Tx0x11 Tx0x12 Tx0x11

Tx0x10 Tx0x11 Tx0x12

⎞
⎟⎟⎠

Note that T̂ is of type-L and its dimension N̂=N2 ×N0 ×N1. Also, since T̂ = R̃
T
0R

T
1TR1R̃0

and the product of permutation matrices is also a permutation matrix, we have a permutation
matrix, R , R1R̃0 such that T̂ =RTTR.

So we have shown that there exist permutation matrices, Rj, such that Ha
j ,RTj �

a
jRj and

H�
j ,RTj �

�
jRj are matrices of type-L. Since, the transpose of every permutation matrix is

its inverse [26, pp. 25–26], we also have the relations, �a
j =RjHa

j R
T
j and �

�
j =RjH

�
j R

T
j . We

rewrite Equations (B2) and (B3) in terms of the type-L matrices, Ha
j and H�

j , as

I − PA=
p∑

j= 1
LTp · · ·Lj+1(RjH

�
j H

a
j R

T
j )Lj+1 · · ·Lp (B4)

As the product, PA, has been written in terms of type-L matrices, we study their structure.
We decompose a type-L matrix, H given by

H,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HN · · · HM+1 HM · · · H1

...
. . . . . . . . . . . .

...

HM+1
. . . HN

. . . . . . HM

HM
. . . . . . . . . . . . HM+1

...
. . . . . . . . . . . .

...

H1 · · · HM HM+1 · · · HN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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into the following sum:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

HM · · · H1

. . .
...

HM

0 0 0

HM

...
. . .

H1 · · · HM

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
,�M

H

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

HN · · · HM+1 0 · · · 0

...
. . . . . . . . . . . .

...

HM+1
. . . HN

. . . . . . 0

0
. . . . . . . . . . . . HM+1

...
. . . . . . . . . . . .

...

0 · · · 0 HM+1 · · · HN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, EM

H

Note that �M
H is a good approximation of H if ‖EM

H ‖ is small. To compute ‖EM
H ‖, we observe

that

EM
H J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 HM+1 · · · HN

... . . . . . . . . . . . .
...

0 . . . . . . . . . . . . HM+1

HM+1 . . . . . . . . . . . . 0

... . . . . . . . . . . . .
...

HN · · · HM+1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
, E

where J is a counter diagonal identity matrix. Since J 2 = I , we have ‖EM
H ‖62‖E‖ and from

Lemma B.3-(3), we have the following lemma.
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Lemma B.1
If H is a type-L matrix, then H can be written as H =�M

H + EM
H , where �

M
H and EM

H have
the structure as de�ned above and ‖EM

H ‖= ‖H −�M
H ‖62∑N

k =M+1 ‖Hk‖:
After determining this structure of type-L, we present the following proposition which states
that the matrix product, PA can be approximated by a block diagonal matrix with a large
zero-block.

Proposition B.1
Under Assumptions 1, there exists an M in Np and a matrix D whose rank is at most
2
∑p−1

j= 0Mj(N=Nj) and for which ‖I − PNAN − DN‖6
 for all N¿M.

Proof
Let 
̃¿0. From Proposition 1.2, there exists an M such that

∑N
k=−(N−1) |	k − �Nk |6
̃ for all

N¿M; and,
∑∞

kj =Mj

∑∞
k\kj =−∞ |ak|6
̃ and

∑∞
kj =Mj

∑∞
k\kj =−∞ |	k|6
̃ for all 06j6p − 1.

Now Ha
j is a type-L matrix and therefore can be written as Ha

j =�
a
j + Ea

j (using Lemma
B.1), where �a

j , �M0
Ha

j
and Ea

j =EM0
Ha

j
. Similarly, H	

j =�
	
j + E	

j , where H	
j is of the same

structure as Ha
j but is formed from the sequence, {	k}. For each j, we have

‖H�
j H

a
j −�	

j�
a
j︸ ︷︷ ︸

, Dj

‖6 ‖H�
j − H	

j ‖‖Ha
j ‖+ ‖(�	

j + E	
j )(�

a
j + Ea

j )−�	
j�

a
j‖

6 ‖H�
j − H	

j ‖‖Ha
j ‖+ ‖�a

j‖‖E	
j‖+ ‖Ea

j ‖‖H	
j ‖

Note that Dj is a block diagonal matrix with only two non-zero one-level blocks. Now
(H�

j − H	
j )J (J is counter diagonal block identity matrix) is a block Hankel matrix and

using Lemmas A.2 and A.3, we have ‖H�
j −H	

j ‖6
∑N

−(N−1) |	k−�Nk |; and using Lemmas A.2
and A.4, we have ‖Ha

j ‖; ‖�a
j‖6
∑

k |ak |= c and ‖H	
j ‖6
∑

k |	k |6c0. With these estimates and
by using Proposition 1.2 and Lemma B.1, we can rewrite the above equation as

‖H�
j H

a
j − Dj‖6 c

N∑
−(N−1)

|	k − �Nk |+ 2c
∞∑

kj =Mj+1

∞∑
k\kj =−∞

|	k|

+2c0
∞∑

kj =Mj+1

∞∑
k\kj =−∞

|ak|6(3c+ 2c0)
̃

Therefore,

‖I − PNAN −
p∑

j= 1
LTp · · ·Lj+1RTj DjRjLj+1 · · ·Lp︸ ︷︷ ︸

, D

‖

6

∥∥∥∥∥
p∑

j= 1
LTp · · ·Lj+1RTj

(
H�

j H
a
j − Dj

)
RjLj+1 · · ·Lp

∥∥∥∥∥
6(3c+ 2c0)p
̃ , 
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Therefore, we have ‖I − PNAN − D‖6
 for all N¿M, where D is a matrix with at most
2
∑p−1

j= 0Mj(N=Nj) non-zero eigenvalues.

In Proposition B.1, we have shown that the product I − PNAN can be approximated by a
rank de�cient matrix DN. The following proposition establishes the clustering of the spectra
of preconditioned Toeplitz matrices and can be proved in the same way as Proposition 2.3.

Proposition B.2
Under Assumptions 1, there exists an M in Np such that there are N − 2∑p−1

k = 0Mk(N=Nk)
eigenvalues �j of PNAN such that |�j − 1|6
 logN for all N¿M.
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