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Abstract

We present a method that extends the flexibility matrix method for multilayer elasticity problems to include problems with very thin
layers. This methed is particularly important for solving problems in which one or a number of very thin layers are juxtaposed with
very thick layers. The standard flexibility matrix method suffers from round-off errors and poor scaling of the flexibility equations
which occur when onc of the layers in the multilayered medium becomes much smaller than the others. The method proposed in this
paper makes use of power series expansions of the various components of the flexibility matrix in order to arrive at a system of
equations that is appropriately scaled. The effectivencss of the scaled flexibility matrix method is demonstrated on a number of test
problems. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The solution of boundary value problems in layered elastic materials is important in a number of ap-
plications of the theory of elasticity. For example, it is important to determine the stresses around un-
derground excavations in rock which comprises distinct layers due to the sedimentary deposition of
materials over time. Another example includes the analysis of the effect of layering in natural or man-made
deposits on foundations and pavements. A third important example, which motivates the work in this
paper, involves modeling the hydraulic fracturing process in the oil and gas recovery industry. In the hy-
draulic fracturing process, a fracture is forced to propagate through a layered reservoir by means of a fluid
which is injected under high pressure at a well-bore. A complete model of this process involves the solution
of the elasto-hydrodynamic equations, which couple the fluid flow equations expressing the conservation of
mass to the elasticity equations expressing a balance of forces between the fluid pressure and the elastic
response of the rockmass adjacent to the fracture. Poro-elastic effects, which are important in reservoir
simulations, occur on a much longer time scale than the hydraulic fracturing process and can be ignored.
Local fluid leak-off into the reservoir, however, is typically accounted for by means of loss terms in the fluid
equations.

A crucial component in the hydraulic fracturing simulation process is the ability to model the elastic
response of a pressurized crack which may intersect a number of layers. It is not unusual for the elastic
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moduli in these layers to differ by at least an order of magnitude and for the thickness of the layers to
change from 0.2 to 200-1000 m. In order to be able to model such problems in an efficient manner, we have
developed the scaled flexibility matrix method described in this paper.

The method we describe can be used to determine the appropriate Green’s function for a multilayered
elastic material which comprises a number of layers with different material moduli, each layer containing
uniform properties, which are bonded together at interfaces that are all parallel (see Fig. 1). The Green’s
function can then be used to determine the kernel functions for a boundary integral equation that can be
used to solve boundary value problems for cavities or cracks that exist within the layered elastic material.

In order to determine the Green’s function, we will apply the Fourier transform (FT) in one (in 2D) or
two (in 3D) directions parallel to the layers in order to reduce the system of partial differential equations to
a system of coupled ordinary differential equations. The general solution of the homogeneous ordinary
differential equations for a given layer can be determined since any given layer is uniform and therefore has
constant coefficients. The general solution in each layer can then be expressed in terms of a small number (4
in 2D and 6 in 3D) free constants, which we shall refer to in this paper as spectral coefficients. The ap-
propriate the Green’s function can then be constructed by stitching together the solutions within each of the
layers by applying the conditions that the stresses and displacements are continuous across the layers, while
the source term for Green’s function can be derived by specifying the appropriate jump conditions across
the pseudo-interface at the horizon at which the desired source falls. In order to obtain the spatial form of
Green’s function, the FTs are inverted. For 3D problems it is perhaps more convenient to use the Hankel
transform (or an expansion in terms of Hansen potentials). The method we describe will apply equally to a
formulation in terms of Fourier or Hankel transforms, but for the clarity of exposition and to allow the
possibility of presenting the method for both 2D and 3D problems within the same framework, we will
restrict our discussion to the FT formulation. The notation we use in this paper will follow that presented
by Wardle [20].

The FT method described above for the construction of the Green’s functions was essentially pio-
neered by Sneddon [18]. Thompson [19] introduced the first systematic approach to layered materials.
The method described above leads naturally to the so-called stiffness matrix method (see [20]), which
leads to a system of algebraic equations for the spectral coefficients. The expression for the stiffness
matrix will involve terms of the form &4 and e *» where k is the wavenumber and Ay is the distance
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Fig. 1. Geometry and labeling of a horizontally layered body.
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from the source point to the layer interface. If the layers are even moderately thick, then the terms e
that need to be evaluated in order to calculate the terms in the stiffness matrix become excessively
large.

Gilbert and Backus [5] introduced the so-called propagator matrix method which was developed further
in the geophysical literature (see for example [6,16,17]). In order to deal with the problem of excessively
large exponentials for large kd products (where k is the wavenumber and d is the layer thickness) a special
rescaling of the propagator matrix is necessary (see [14]). A variant of this approach, which is known as the
transfer matrix method, has also been considered (see [10,11,13]) for the solution of the systems of chain-
like equations associated with layered media. Maier and Novati [11] have reported serious ill-conditioning
problems associated with this method when the ratio of the layer thickness d to the mesh size /4 becomes
large. This is analogous to the problems with large kd products associated with the propagator matrix
method.

A third method known as the flexibility matrix method was developed by Buffler [1-3] and has been
developed further by a number of authors (see for example [9]). A variant of this technique, called the
successive stiffness method, was introduced by Maier and Novati [12] in the context of the solution of
the boundary element equations of layered structures to remedy the above-mentioned ill-conditioning
problems associated with the transfer matrix method. The flexibility matrix method has the distinct
advantage over the previous two methods in that it can deal with extremely thick layers and large
wavenumbers k — both of which manifest themselves in large products of the form kd. One drawback
of this method, however, is that it cannot treat extremely thin layers and small wavenumbers — which
manifest themselves in extremely small products of the form kd (see [9] for a discussion and analysis of
this drawback). This latter situation of extremely small kd products will typically arise when the pack
of layers being considered contains a combination of very thin layers and very thick layers in the same
system. Effectively this situation is equivalent to solving a coupled system of ODEs in which the length
scales of the problem are very different. Such a system of ODEs is referred to as a stiff system, which
is well known to be difficult to solve numerically, owing to the very different length scales in the
problem.

In this paper we describe the scaled flexibility matrix method that is useful for solving boundary value
problems in layered elastic materials in which there are very thin layers and very thick layers in the same
problem. A satisfactory solution to such problems using a Fourier technique involves flexibility matrix
components for very small kd products that result from the layers with very small thicknesses d as well as
very small wavenumbers k which are needed to capture the influence of the very thick layers. The technique
involves using power series expansions to express the terms of the flexibility matrices for the layers in which
the product kd is very small. The dominant singular terms in the power series expansions are extracted and
factored out leaving only terms which are regular. All the remaining terms of the singular flexibility ma-
trices are rescaled using these dominant terms in the power series expansion, which yields a well-condi-
tioned system of equations. The technique we describe can be used to solve problems involving layers that
are 10 times thinner than can be treated by means of the classic flexibility matrix method. Although the
method is quite general, we apply it here to multilayered problems containing cracks which are oriented at
90° to the layer interfaces.

In Section 2 we summarize the governing equations and describe the use of the FT for boundary value
problems in layered materials. In Section 3 we briefly review the classic stiffness matrix method, the
propagator matrix method, and derive the flexibility matrix method. In Section 4 we provide the details of
the scaled flexibility matrix method, including the power series expansions and the rescaled flexibility
equations. In Section 5 we provide some numerical evidence of the performance of the method. The first
problem we consider involves a layered material with thin layers in which there are no very thick layers so
that the solution using the traditional flexibility matrix method and the solution using the rescaled flexibility
matrix method can be compared to the solution obtained using the classic stiffness matrix method. The
stiffness matrix method can be used to give a good reference solution to this problem because there are no
very thick layers or large wavenumbers being used in the comparison. In the second illustrative example, we
use the rescaled flexibility matrix method to solve a pressurized crack problem in which there is a very thin
and much stiffer layer that is sandwiched between a moderately thick and a very thick layer. In Section 6 we
provide some concluding remarks.
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2. Governing equations and solution by the FT
2.1. The equilibrium equations for a layered elastic medium

Consider a linear elastic material that occupies a region in 3D space and which is in a state of equi-
librium. In this case the stresses o;; and the strains €; = (u;; + u;;), which are defined in terms of the
displacement gradients u;; = Ou;/Qx; at any point within the body, are related by

Jij = ;Lekkéf]‘ —+ 2G€ij7 (21)

where /1 and G are Lamé’s constants that can be expressed in terms of Young’s modulus E and Poisson’s
ratio v of the material by the formulae

Ev E
;L:— C = ———
Grwi—2 4 =305

It is convenient to introduce the constants a, b, and f that are defined by: « = 1+ 2G, b = A, and f = 2G.
We assume that the elastic medium is in equilibrium so that the stresses satisfy the equilibrium equations

O-ij‘j +ﬁ = 07 (22)

where f; are the applied body forces.

It is also useful in this context, in which the layer properties do not change in the x and z directions but
do vary in the y direction (see Fig. 1), to rewrite the system Egs. (2.1) and (2.2) in the form of a system in
which the y derivatives have been separated from the x and z derivatives:

0,7 =T +F, (2.3)
where T represents the vector of stresses and displacements defined by

T=[o, 0y 0p U, U U],
the body force vector is given by

F=[~f, ~f ~f 0 0 0],

and . is the differential operator, involving only x and z derivatives, defined by

0 -3 -0. 0 0 0 1
b2_g? b?—ab
—%ax 0 0 0 ( )arx_éazz <<a) /5)6)‘2
b2 —ab b —d?
oo| 000 (e b, 29
o000 ~20, — a0
L 0 0 /; _az O O .

We assume that the elastic body is piecewise homogeneous and that the body can be divided into N
layers in which the moduli can be different (see Fig. 1). Depending on the problem being considered, the
pack of N layers can either extend to oo in both directions or there can be a free surface on the top of the
pack of layers which rests on an elastic half-space (as shown in Fig. 1). In this paper we assume the latter
situation. We assign numbers to the layers starting from layer 1 for the bottom half-space and ending with
layer number N for the top layer adjacent to the free surface. These layer indices are represented by the
boxed sequence of numbers on the left-hand side of Fig. 1. The layer interfaces are numbered in a similar
way and the sequence of interface indices for this problem are shown on the extreme left-hand side of Fig. 1.
Observe that the interface at the top of a layer has the same index as the layer itself. The thicknesses of the
layers, d;, which may all be distinct, are also shown in the figure. Similarly, the symbols E; and v; are used to
denote the elastic moduli of the ith layer. We introduce a Cartesian coordinate system Oxyz in which the x
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and z axes are aligned with the horizontal layers and in which the y coordinates are measured upwards from
the interface between the pack of layers and the bottom half-space (see Fig. 1).

Point displacement or force discontinuities can be introduced into the N-layer elastic medium by
specifying appropriate jump conditions in the stress and displacement fields across a horizontal layer
having the same y coordinate as the desired source point. This is achieved by introducing a pseudo-
interface, which is represented by the dashed line through layer 4 in Fig. 1. This process divides layer 4
into two layers for the purpose of this source computation and increases the number of layers by one.
For the purpose of the computation the layers are renumbered using the same procedure as before and
the layer numbers and interface indices are shown on the right-hand side of Fig. 1. The symbol s will be
reserved for the sth layer immediately below the pseudo ‘“‘source” interface. In the algorithm that is
developed in this paper, it is necessary to be able to deal with multiple sources. To avoid having to re-
sort all the layer properties from the configuration on the left of the figure to that on the right of the
figure, a permutation vector is used to enable one to access the appropriate material properties (whose
indices are shown on the left-hand side of the figure) while running through the indices which include the
pseudo-source layer.

2.2. The FT solution

There exist reports in the literature on the application of the FT to singular solutions for elastic media
[18] and to layered isotropic [1,2,7,16], and even layered transversely isotropic media [8,14,17,20]. The FT is
the fundamental device that we will use in this paper to exploit the horizontal layering of the elastic medium
being considered. The fact that the material properties do not vary in the x and z directions implies that the
FT can be applied to the system of partial differential Egs. (2.1) and (2.2) to reduce them to a system of
ordinary differential equations in the independent variable y for each of the stress and displacement
components in each of the layers (see Appendix A for the definition of the FT used in this paper). Inter-
preting the spatial wavenumber as a parameter, it is possible to obtain the general solution to the system of
ordinary differential equations in each of the layers which involves six arbitrary constants that need to be
determined for each layer. The stresses and displacements in the whole pack of N layers are obtained by
setting up and solving a system of algebraic equations for the undetermined constants that express the
appropriate conditions of continuity of tractions and displacements across the layer interfaces as well as the
appropriate jump conditions across the pseudo-interface representing the source. Once these constants have
been determined, the FTs of the stress and displacement fields are known and the spatial stress and dis-
placement fields can be obtained by applying the inverse FT.

2.2.1. Reduction of the layer PDEs to a system of ODEs
By taking the FT of the equilibrium equations (2.2) in the absence of body forces as well as the stress—
strain relations (2.1), eliminating the stresses from the resulting system of equations, introducing the change
of variables (see [20]):
2l s
u, = —i(nu, — mu.)/k,
where k=+m?+n?, and making use of the relations i(a+b)=1+G=>b+(f/2) and
1(a—b) = G = f/2, we obtain the following system of ordinary differential equations for the FT of the

2
displacement components in a typical layer:

au”Jr (aer) u. ——( - b)k*u, =0,
1 1
3 (a—b)u! — 3 (a + b)ku), — ak’u; = 0, (2.6)

A// k2a’ =0.
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Alternatively by taking the FT of the system of equations (2.3) we obtain

0,7 =T +F, (2.7)
where
0 —k 0 0 0 0
b 0 0 @2 o
. Lo 0 —2% 0 0
0 0 0 0 0 Lk
0 0 0 0 2.0

where the elements of 7 and F have been arranged as follows:

P N N

and

F = [7?);3 *}\;7 0,0, 7?[3 0}T7

where
T, = —i(mo,, +no,.)/k,
T, = —i(no,, —ma,.)/k. (2.9)

We observe that unknowns involving &,,, 7,, u, and u, (the s-subsystem) are completely decoupled from
the unknowns involving 7, and u, (the ¢-subsystem). The s-subsystem is sufficient to determine boundary
value problems for 2D plane strain, while the autonomous 7-subsystem is the only additional part that
needs to be added to the plane strain equations in order to determine boundary value problems in 3D. A
similar decoupling of the spectral ODEs also occurs if the Hankel transformation is applied to the layered
elasticity problem (see for example [6,16]).

2.2.2. Exact solution to the layer ODEs and spectral coefficients

Considering the wavenumber k as a parameter, we can now determine the homogeneous solution to the
system of ODEs (2.6) (see [20]), which can be expressed in terms of solutions to the s-subsystem and the z-
subsystem as follows:

-G 2

T=[d/k #/k @ @] and T,=[2/k @'

s

Ay=1[41 4, 4 1‘14}T and 4, = [4s A6}T
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The constants /; in (2.10) are defined as follows:

2+3G 2G? 2G(A+2G)
Lh=—— = ls =————F7— 2.11
2 /l + G ) 4 )v + Ga 5 )» + G ( )
The following identities between the above constants are useful:
Jh=1Is+1l, f=Is—I (2.12)

It is important to note that the spectral coefficients required to define the primary variables can be
expressed entirely in terms of the single wavenumber parameter k = v/m? + n2. This property can be ex-
ploited to reduce the FT inversion problem from one which involves sampling the integrand at points
throughout the (m,n) plane to what amounts to a 1D sampling of the wavenumber parameter k. We
observe that the system of equations (2.6) for a typical layer remains invariant if a new length scale Y = y/D
is introduced while a new wavenumber variable K = kD is defined. This invariance manifests itself in the
layer solution (2.10) in that the independent variable y is always multiplied by the wavenumber k in the final
solution.

The unknown coefficients 4;(k) depend on the parameter k and we will refer to them as the spectral
coefficients throughout this paper. It will be seen that the spectral coefficients provide a useful represen-
tation of the solution as they separate the exponentially decaying part of the solution from the exponen-
tially growing part of the solution. Once the spectral coefficients in any one layer are known, it is then
possible using (2.10) to determine the stresses and displacements at any desired point within that layer.
Other representations of the solution that arise, depending on the technique used to solve the system of
algebraic equations, involve the displacements and stresses at the interfaces between layers.

In order to model vertical fractures that run perpendicular to the layers, it is necessary to have an ex-
pression for the stress normal to the fracture surface. In the coordinate systems defined in Fig. 1 it is
necessary to determine the stress component o.., which can be defined in terms of the spectral coefficients as
follows:

kG.. = fi*die™ + (—len* — Lim* + fi*ky)Are™ — fmndse™
— fitAze” + (—lgn® — Iym® — fiky)A4e® — fmndge®, (2.13)
where we have defined the new constants

2G(2/.+ 3G)
l e — Z
6 I+ G and [y

26
I+ G

Once the values of the spectral coefficients 4;(k) in each layer have been determined (this will be dealt
with in the following section) and the FT of the displacements u;(k) and stresses o,;(k) within each layer
have been determined, then the displacements and stresses within each layer can be determined by applying
formula (A.2) for the inversion of the FT.

3. Methods to solve the layer ODEs

In this section we describe three methods that can be used to determine the solution to the coupled
system of algebraic equations that need to be solved in order to determine the spectral coefficients 4;(k) or
equivalently the FTs of the displacements and stresses on the layer interfaces. These methods have been
described in the literature [3,5,9,20] and will only be summarized here for the sake of completeness. We will
be exploiting various aspects of all three methods of solution so it will be necessary to introduce them in a
uniform notation and to briefly discuss their relative advantages and disadvantages.

All the methods that we discuss rely on a fairly simple idea that is common to all techniques for solving
problems for layered elastic media. We first establish the equations that determine the stiffness and com-
pliance properties of each of the layers in terms of the degrees of freedom of the model. For example the
degrees of freedom for a finite element, finite difference, or boundary element model will be unknown nodal
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displacements at the mesh points of the numerical model. For the spectral methods that we use in this
paper, the degrees of freedom in the model are represented by the unknown constants, which we call
spectral coefficients, that are parameterized by the wavenumber k. Once we have established equations for
the stresses and displacements within each of the layers in terms of the internal degrees of freedom, we bond
all the layers together at their common interfaces by imposing conditions of continuity in displacements
and tractions across the interfaces. Discontinuous sources (such as force discontinuities or displacement
discontinuities) can be represented by introducing the appropriate jump conditions across pseudo-inter-
faces introduced for this purpose. Finally, the whole mechanical problem is completed into a well-posed
system of equations by introducing the appropriate conditions at the boundaries of the pack of layers, e.g.,
specified tractions, specified displacements, or a complementary combination of tractions and displace-
ments.

3.1. The stiffness matrix method

The first of the three methods we describe in this section involves setting up a system of algebraic
equations that express the continuity or jumps in displacements and stresses across layer interfaces. This
method, described by Wardle [20], essentially involves using (2.10) to set up a system of equations for the
jump conditions across the various interfaces in the layered medium. Two materials that are bonded are
represented in these equations by tractions and displacements that are continuous across their shared in-
terface, while a source with the desired properties can be represented by the appropriate jump conditions
across an interface. If the source is not actually located at an interface between two materials, then a
pseudo-interface is introduced at the desired y coordinate and appropriate jump conditions are prescribed
across such an interface.

Consider the normal and shear components of the stresses and displacements from (2.10) for the /th
layer, which we can rewrite in the following form:

Ejy/k —fle™™ (I} — flky)e™  fle® (I} + flky)e" 0 0 Al (k)
Tk —fle® (5= flky)e™™  —fle”  —(I5+ flhy)e® 0 0 | | 45(k)
al | _ | e kye ™™ e kye" 0 0 Al (k) (3.1)
al | e (ky = L)e™™ = —(ky+15)e" 0 0 | | 44(k) '
7!k 0 0 0 0 Lok Lok || Al(k)
u! 0 0 0 0 et e | L Ag(k)

Here the superscripts / indicate that the material constants lj., the spectral coefficients Aj.(k), and the FTs of
the stresses and displacements are located in the /th layer. We can express (3.1) in the following compact
forms:

T!(k,y) = Z\(k,y)4,(k) and T/(k,y) = Z/(k,y)4;(k), (3.2)
where

s s

T(ky) = [ah/k Tk al @1, Tky) =2k @

Ak) = [4] (k) A5(k) ALk) A4R)]T,  ALK) = [45(k) AR,

s

and Z!(k,y) and Z!(k,y) from (2.10) represent the s and ¢ submatrices evident in (3.1).

We observe that for very thick layers some of the y; will be very large so that even for relatively moderate
values of k, the system matrix in (3.1) will become poorly conditioned due to the exponentially large and
exponentially small terms that appear simultaneously in the matrix. For this reason, the stiffness matrix
approach is not widely used in the computations of such layered spectra.

3.2. The propagator matrix method

In this section we briefly describe the propagator matrix method introduced by Gilbert and Backus [5].
Consider the stresses and displacements 7!(k,y) and T'(k,y) at any point y within the /th layer of the
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layered medium, which can be expressed in terms of the /th layer spectral coefficients according to (3.2). It is
possible, by inverting the s-stiffness matrix, to rewrite the spectral coefficients in terms of the stress and
displacement vector 7! (k,y) as follows:

Aj (k) (hy = 1) —kye (I = ['hy)e  (=li+ [Thy)e ] [0, /k

Aw|_ 1| s e e —fer || 2k -
Al (k) 2L | (B +ky)e™  kye™ (I + flhy)e™ (I3 + fThy)e™ u, :
Al (k) —e b —e b —fle b —fle™h ul

s

Similarly for the z-subsystem we obtain the following expression for the spectral coefficients in terms of
the stress—displacement vector:

][ SRl a9

These equations can be rewritten in the more compact form:
Al(k) = Z\(k,y) "' T/ (k,y) and 4{(k) = Z/(k,y) "' T/ (k,»). (3-5)

If we combine (3.2) and (3.5) evaluated, respectively, at y; (the coordinate of the interface at the top of
the /th layer) and y,_; (the coordinate of the interface at the bottom of the /th layer), then eliminating the
A' (k) we obtain the following relationship between the stresses and displacements at the bottom and at the
top of the /th layer:

7' (k1) = 2 () {2/ (i)™ T (i) } (3.6)
= [Z/teZ' tesyi) | T i) (3.7)
= PO, y1-1)T' (ki) (3.8)

This procedure can be followed for both the s- and 7-subsystems. From (3.5) we observe that the expression
in the curly brackets in (3.6) represents the spectral coefficient 4’(k) that has been eliminated. The ex-
pression in the square brackets in (3.7) represents the propagator matrix P(y;, y,—;) that transfers the stresses
and displacements from the bottom interface of the /th layer to the top interface of the /th layer. The explicit
expression for the propagator matrix is most efficiently derived by choosing the coordinate system to co-
incide with the bottom interface of the /th layer so that y,_; = 0 and y; = d,. In this case P(y;,y;_1) for the
s-subsystem can be written in the form:

Py =Py =d,y-1=0)
Isch — fkdsh  —lush — fkdeh  f*(sh— kdch) —f*kdsh

1 | =lash+ fkdch Isch+ fkdsh | kdsh f2(sh + kdch)
25| lsh—kdch  —kdsh Isch — fkdsh  lysh — fkdch
kdsh lrsh + kdch lysh + fkdch — Isch + fkdsh
P, P
_ [ 11 12} . (3.9)
Py Pnl,

Here for the sake of brevity, the superscripts for identifying the /th layer have been suppressed, and the
symbols si = sinh(kd;) and ch = cosh(kd;) have been introduced. The propagator P(y;, ;1) for the ¢-
subsystem can be written in the form
ch  Lsh
— _ —0) = 2
Py =Py=d,y1=0)= [%sh ch }

In order to illustrate how the propagator matrix method can be used, assume that in our N-layer
problem the displacements at the bottom interface (interface number 1 in Fig. 1) of a pack of layers are



5944 A.P. Peirce, E. Siebrits | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5935-5956

known and that the top interface (interface number N + 1 using the right-hand side numbering scheme in
Fig. 1) is stress free. Assume that the source can be represented by the jump Ab, in the tractions and
displacements across the sth interface, i.e.,

T:Jrl = T'Hl(kays) = Ts(kvys) + Abé

We also note that we can apply (3.8) recursively starting at the top layer in the following way:

TJC]LI =7V (kayN-H)

_ N+1
- PN+1,N TN
= PyanTy since T is continuous

N
= PyvanPun-a1Ty_,

N
H P;*nLl«,)‘TSS+1
=5

N

= HPr+l,r(T§ +Abs) (310)
N v

= HPr+I,rT11+HPr+1,rAbS (311)
r=1 r=s

= Pyi1a T} + Pyi1 b, (3.12)

Now since Ab, is known, Eq. (3.11) can be used to write a single system of four equations in the two
unknown stress components (a system of two equations in the one unknown stress component) at the
bottom layer and the two unknown displacement components (the single unknown displacement compo-
nent) at the free surface in the case of the s-subsystem (in the case of the 7-subsystem). This assumes that the
products Zy.;; and 2y, indicated in (3.12) have been evaluated to determine the operators that are
applied to 7] and Ab;. Once the stresses and displacements are known in the bottom layer, it is possible to
determine the stresses and displacements in any other layer by applying the appropriate product of
propagator matrices.

One of the major drawbacks of the propagator matrix method is encountered in the presence of very
thick layers or large wavenumbers k — either of which lead to large products of the form 4d. In this case the
successive application of the matrices that involve exponentially large terms leads to operators #y.; and
P11 that become unbounded when they are evaluated directly. However, the result of the application of
the operators Zy.;; and Zy.,, namely 7, lo’jll, should be bounded. This results from the cancellation of the
exponentially growing and decaying terms in the sequence of component operators, which can lead to
numerical cancellation. Various authors (see for example [14]) have proposed schemes which involve scaling
out the exponentially growing and decaying terms explicitly so that they can be canceled analytically thus
avoiding the undesirable numerical cancellation. However, the re-scaled propagator matrices still suffer
from ill-conditioning problems. Indeed, a number of papers (see for example [9-11]) report serious ill-
conditioning for the propagator matrix method if more than five layers of moderate thickness are used. We
shall, therefore, not pursue the propagator matrix method as a computational device, but will utilize it in
the theoretical developments that follow.

3.3. The flexibility matrix method

The flexibility matrix method was developed by Buffler [1-3] and has been developed further by a
number of authors (see for example [9,10]). The flexibility matrix method has the distinct advantage over
the previous two methods outlined in this section in that it can deal with extremely thick layers and large
wavenumbers k — both of which manifest themselves in large products of the form kd. One drawback of this
method is that it cannot treat extremely thin layers and small wavenumbers — which manifest themselves in
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extremely small products of the form kd. This latter situation of extremely small kd products will typically
arise when the pack of layers being considered contains a combination of very thin layers and very thick
layers in the same system.

3.3.1. The flexibility matrix

A convenient starting point for the flexibility matrix method is the expression for the propagator matrix
given in (3.9). Rather than determining the relationship between the stresses and displacements (as rep-
resented by the vectors T = [/, /k 7!/k u! ul]" for the s-subsystem, and T =[%!/k @!]" for the
t-subsystem) at the top and the bottom of the /-th layer, the strategy in this case, is to separate the stresses
and displacements and to represent the displacements in terms of the stresses (or vice versa) at the top and
the bottom of the layers. To formulate this technique it is useful to separate the combined stress—
displacement vectors 7T into stress components, which we represent by the symbol p, and displacement
components which we represent by the symbol u. In the case of the s-subsystem we have the following
decomposition:

Bk
T, = T‘a/ . [5 } for the s-subsystem,
i,

where p and u are the stress and displacement vectors defined by

_ | ow/k _ %
ps—[a/k} and us_[as}.

While for the z-subsystem we have the following decomposition:

T, = [Ti/k] = [p] for the #-subsystem,
U, u
where in this case p and u are the stress and displacement components defined by: p = 7,/k and u = u,.

In what follows we will, for the sake of brevity, not use the “hats” to denote the fact that u and p are the
FTs of the displacements and stresses. In addition to avoid confusion, we will not introduce notation to
distinguish between the s- and z-subsystems explicitly, since their flexibility equations have precisely the
same form but with different flexibility matrices in each case. Using this notation Eq. (3.8) can be rewritten
in the following form:

/ / /
p| Dyl | Pu Pn Dp
)=o) = (3 2] ] a3

t

Here the index / refers to the layer number while the subscripts 7 and b refer to the quantities defined at
the top and bottom of the layer. Eq. (3.13) can be used to express the displacements in terms of stresses
using the flexibility matrix R’ as follows:

1 I 1 1
ul _[R, sz] {Pt} (3.14)
Li] [Ré, Ry [ Loy ]’
where the flexibility submatrices are determined by: R, = PnP;', R, = P,y — PuoP,'Py, R,, = P!, and
R!, = —Pp,'Py;. The explicit expressions for these flexibility submatrices for the s-subsystem are as follows:

1 [ —Is(th + kd.se?)  —(lyh* + flPd*se?) (3.15)

“T D [ —(Lyth? + fRdPse?)  —Is(th — kd se?)
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1 I5(th + kd .se?) —(Lyth* + fK*d*se*)
Ry = — , (3.16)
D | —(I4th* + fK*d’se*)  [s(th — kd .se?)
—(th+kd —k.d.th.
sz = Z_S |: ( - )Se " :| ) (317)
D | k.d.thse —(th — kd)se
th+ kd —k.d.th.
L= {( +kd)se se } (3.18)
D | kd.thse (th—kd)se

where, for the sake of brevity the superscript / identifying the layer number has been omitted, we have used
the notation th = tanh(kd), and se = sech(kd), and D = f?[(1 + k*d*)se* — 1]. The explicit terms for the
flexibility coefficients for the 7-subsystem (for the ¢-system the R, Ry, . . . are numbers and not matrices) are
as follows:

2
R, = ]7 coth(kd),

2
Ry, = —7 COth(kd),

2
Ry = J—,cosech(kd),

Ry = —;Cosech(kd).

It is also possible to express the tractions in terms of the displacements by taking the inverse of the
flexibility matrix defined in (3.14).

3.3.2. Second-order difference equations for tractions

If we assume that the ith interface (see Fig. 2) is fully bonded then the jump in the stresses Ap' = pi™! — pi
or the displacements Au’ = u}"! — u! is 0. If there are prescribed jump conditions they can be expressed in
the following form:

P =P A = A G19)

Now using the conditions (3.19) in (3.14) we obtain the following equations for the displacements either
side of the ith interface that lies at the top of the ith layer:

@ = Rp|+ Ryp, = Ry + Ry(p ' + Ap™), (3.20)
O w =R R =R+ R (o + AP, (3.21)

Subtracting (3.20) from (3.21) and using the jump condition for the displacements given in (3.19) we obtain

i+1
®
® .

i
®

i—1
®

Fig. 2. Flexibility matrix sample points.
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Au =R+ (R —R)p — Ryp T+ RTAD — R AP (3.22)
Since the quantities Au’, Ap’, and Ap™™! are specified in a typical problem, separating the known from the
unknown quantities, we can rewrite (3.22) in the form of a set of vector recurrence relations or difference
equations for the tractions p; at the top of three successive layers (these points are marked by the ® symbol
in Fig. 2)

B"p;'+l +C'p! —|—A[pf1 =4, (3.23)

where B' = Ri}!, C'= (Ri)' —R!), A"= —R,, and 4" = Au' — R}'Ap' + R\, Ap'~'.

Once the traction vectors p! at the top of each of the layers have been determined, the traction vectors
below each of the layers can be readily determined from (3.19). An efficient recursive procedure to solve the
block tri-diagonal system (3.23) can be obtained by using a block LU decomposition (see [9]). The flexibility
relation (3.14) can be used to determine the displacements on either side of each of the interfaces.

4. The rescaled flexibility equations for thin layers

For very thin layers or small wavenumbers, the parameter z = kd < 1, and for the s-subsystem the
coefficients in the flexibility matrices R/, R, R, , and R}, can be as large as O(z) while for the z-sub-
system the coefficients can be as large as O(z™!). In this case, the expressions for the flexibility matrices
given in (3.15)—(3.18) are not suitable for determining the appropriate flexibility matrices because the de-
nominator in these equations involves a term O(z*) while the largest numerator coefficient involves terms of
the size O(z). Taking products of this form can cause poor cancellation effects. The strategy we adopt in
this section is to derive a new set of scaled difference equations for very thin layers that are equivalent to the
ones they replace but which have substantially improved conditioning. The key idea in this process is to
expand the terms in the flexibility matrices in power series that are valid for small z. We then identify the
dominant terms in these matrices, whose coefficients are now expressed as power series, and determine the
inverse of the lowest order matrix, whose largest coefficient is O(z). We then rescale all the equations for
that particular interface by multiplying them by this lowest order inverse matrix to obtain an equation that
is much better conditioned. Only the interfaces involving very thin layer products z need to be rescaled in
this way, while the remaining equations which may deal with very thick layers for example, can be eval-
uated using the expressions given in (3.15)—(3.18).

In establishing this procedure, we identify four possible types of thin layer interactions. The first class
involves the situation in which the layer below the interface is thinner than the layer above the interface.
There are two possible subcases. The first in which the lower layer is much thinner than the upper layer — to
the extent that a power series expansion in the lower layer is appropriate, whereas a power series expansion
in the upper layer is not valid. The second subclass involves the case in which the bottom layer is thinner,
but the top layer is also thin enough for a power series expansion of its flexibility matrices to be necessary.
The second class involves the situation in which the layer above the interface is thinner than the layer below
the interface. This also divides into two subcases as did the first class.

The starting point for all the cases that follow is the difference equation for the ith layer which we express
in the following form:

Ry 4+ (R — Rpi — Ryp ' = A’ — R} Ap' + Ry, Ap™ = A", (4.1)

Class A: Lower layer is thinner. Let the lower layer be assigned the index i and let d; be its thickness. The
upper layer then has the index i + 1 and its thickness is represented by d;,;, while the interface between the
two layers has the index i (see Fig. 2). Let z; = kd;, z;,, = kd;,,, and let z7 be the threshold below which the
power series expansion defined below in (4.2) is valid, and below which the expressions given in (3.15)—
(3.18) may give poor results. The magnitude of zy will depend on the number of terms that have been
maintained in the power series expansion as well as the precision required.

Case 1. d, < di;y and z; < zp < zi4.
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In this case the terms R!, and R!, for the s-subsystem are going to involve some coefficients that blow up
like z;3. We therefore expand each of the coefficients in these two flexibility matrices in powers of z;:

6+§zz+%z4+“' 32+(%—£)z3+--'
2+ (G0 + - 22 +E4+
5

-3
i l5Z

R, = 7 (4.2)

Here we have, for the sake of brevity, omitted the indices on z, £, and /s that indicate that they apply to the
ith layer.
We now identify the leading order term in (4.2):

po_ =716 3z
“T 2 |3z 27

and determine its inverse

(R — /? Fﬁ —22} ' (4.3)

T |2 22

Now if we represent by R!, the higher-order terms that remain after the leading order term R has been
subtracted off then we can rewrite (4.2) in the form (only retaining terms that are larger than O(z%))
i i0\—1 pi
= Rt?(l + (Rt?) Rtt)

4 1+ D2 104 0.0 04 (223 4...
=R§?{ DT s~ ) . (4.4)

15
2
0——ffz—lz3—~-- 1—(%—%)22—%24—%“-
For the other flexibility matrix R!, we have the following power series expansion:

i i0 i
R, =R, +R,

o sz 682454 Bz b —
Ry =

12 _32_%234_... -t —

which when multiplied by (R;'?)f1 yields

Ol _]_%224’_%244'_... Z_|_11_OZ3_...
(Rtt) Rtb|: Z_SLOZS_“, _1_%22_,'_71_224_’__” : (4'5)
The appropriate rescaled equation in this case is
B c A
T T 1 0y—1 pit1 A Lo T 0y i
(RO Ry A+ {ROTR (4 (RS R) bl + — (RO R = (RO A (4.6)

We observe that the problematic terms R/, and R/, of the unscaled equations (4.1) are now reduced to
coefficient matrices that are O(1) or smaller. Multiplication by (R®)™" has the effect of making the re-
maining product terms smaller so that for very small z the rescaled equations (4.6) are much better con-
ditioned. The rescaled forcing term on the right-hand side of (4.6), which we have represented symbolically
as (R©)' A’ also has a singular term of the form (R) 'R, Ap'"~! for which the power series expansion (4.5)
of the matrix denoted by 4’ (4.6) should be used.

For the ¢-subsystem the flexibility coefficients R, and R, only blow up as O(z7!) so rescaling is not as
critical as it was in the case of the s-subsystem. In this case corresponding expansions of the flexibility
coefficients are:



A.P. Peirce, E. Siebrits | Comput. Methods Appl. Mech. Engrg. 190 (2001) 5935-5956 5949

i0\—1 pi i0\—1 pi 1 1

(Rt?) lRtt = (1 + (Rt?) lRtt) = {1 +§ZZ - EZ4 + o }7 (47)
o1 1 7

(RY) 'R}, = {1 57 +%Z4 - }, (4.8)

where (R}) = 7z~' and no expansion of the terms (R®)"'Ri*! and (R®)™'Ri*" in (4.6) is necessary.

Case 2.d, < di,; < 1 and z; <z, < z7.

In this case the coefficient matrices R}, and R/, for the s-subsystem involve some coefficients that blow up
like z3, while Ri}! and Ri! involve some coefﬁc1ents that blow up like z} . In this case let di .y = di(1 +¢€)
o) that

zivp =zi(l +¢€)

We expand the terms R and R};' simultaneously and extract the lowest order term R of the matrix R/, to
yield

i i i i0\—1 pi i0\—1 i
Rb+b—1 - Rtt = Rt?{(Rt?) Rb+b—1 - (I =+ (Rt?) Rtt)} (4'9)

The power series expansion of (7 + (R’O) R!) is given by (4.4) in which the symbol z has been replaced by
z;. The other remaining term (R?)~ Rﬁl in (4 9) has the following power series expansion:

. 1 1
[R’O Rgl] :y[ 7 =342z (=7 =3+ 5(1+6)2) — 570, (77 + 13 + }
a ’ 5257
« 2
{Rlo R;};I} [2Z:+1 2+¢€)+ Ts Z, (44 e—50) + },
(4.10)
, 1246¢ 2 2
i0 i+1 . < _
|: R Rbb i|21 / |: Ziv] + 521+1(6+ 3e 5(1 + ) ) 525 t+l(61 + 136) :|7
A 1 1
10 i+1
(RR] = { 7—de— 22, (134 de — 152) — 2! (43 4+ 4e) + }
where
g )’ -3 A
)= s(14+¢€) 7, O‘_li+1‘
L(f+1) 5

The series expansion for (R?) 'R}, is given in (4.5), while the power series expansion for (R)'Ri*! is as
follows:

1 1
10 i+1
[0y RG] = [7+3e—|—10 2494 36) — oozt (259 4 716) + ]
|
{Rro Rz+1}12 {Zl+13+e) EZL(I—e)—-..’
(4.11)
12—6c 1 1
10 i+1 —le—0e 1
|:R R i|21 |: Zis1 SZI+1(7+6) 2100 1+l(212+716> :|,
1
10 i+1 _ 5
[R IR Lz { 5= 26— 357 (120 + 12600 2,251 + 38¢) + ]

The scaled equations in this case are the same as those given in (4.6), but in this case the terms (R)~ R;;l
and (R?)'RI*! are replaced by their power series expansions given in (4.10) and (4.11), respectively. By
contrast, in case Al it was sufficient to evaluate the matrices R}j,;l and R! using (3.15)~(3.18), which are
then multiplied by the low-order inverse (R’O) which is given in (4.3).
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For the 7-subsystem the flexibility coefficients R\ and R, blow up as O(z; ') while the flexibility coeffi-
cients Rj;' and R' blow up as O(z;}). We perform a similar combined expansion of the flexibility coef-
ficients and extract the leading order term of the expansion for R’ to obtain the scaling factor R? = %z; h
The expansions for (R) 'R}, and (R?)"'R, are the same as those given in (4.7) and (4.8). The expansions
for the remaining coefficients in this case are:

i0N—1 pi+l __ fi 1 1 4
DRE =g 1 g+

0y~ pitl _ /! 1 7 4
R = g {6 g

where (R)) = 7z
Class B: Upper layer is thinner. For this class we repeat the process described above but with the roles of i
and i + 1 reversed.

5. Numerical results
5.1. Performance of the rescaled flexibility technique

In this subsection we illustrate the performance of the rescaled equation approach for very small kd
values. In order to be able to check the solution, we choose an example that has only moderately thick
layers (d values) and achieve small kd products by evaluating the spectral coefficients for small wave-
numbers k. In this problem, the spectral coefficients calculated using the unscaled equations and the scaled
equations can be compared to those that have been calculated using the stiffness matrix method. We
consider the four layer 2D problem shown in Fig. 3.

We evaluate the spectral coefficients for a 1 m vertical displacement discontinuity (DD) element (see [4])
using the unscaled flexibility matrix method, the scaled flexibility matrix method, and the stiffness matrix
method. In Fig. 4 we plot the maximum errors in the spectral coefficients over all of the layers due to the
rescaled and unscaled flexibility equations. The errors are determined by subtracting the spectral coeffi-
cients using the unscaled and rescaled flexibility equations from those obtained using the stiffness matrix
method, which will be more accurate for this particular class of problem due to the small wavenumbers k .
The rescaled spectral coefficients are more accurate for 0 < £ < 0.08 after which the unscaled equations are

Free Surface

f

dg=1m E4=2 GPa, v4=0.1

(=]

[e]

d3=2m| E3:5 GPa, V3=0.4 Yy

[2]

d=1m Ey=1 GPa, vo =0.2
. 0] T
Half-space E), =3 GPa, v/=03

(=]

Fig. 3. Geometry for rescaled test problem.
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Error using rescaled equations (solid) vs traditional flexibility method (dashed
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Fig. 4. Error in spectral coefficients for rescaled and unscaled flexibility matrices.

more accurate, i.e., for 0.08 < k. The spectral coefficients calculated using the rescaled equations are less
accurate for wavenumbers in the range 0.08 < & because the rescaled equations rely on power series ex-
pansions in the parameter kd, which are truncated assuming that kd is small. The truncation error in this
case starts to become larger than the round-off error and increases for larger values of kd. We observe also
that the error for the spectral coefficient for the rescaled equations in the region 0 < k£ < 0.08 oscillates
randomly indicating that the error is due to round-off. It is interesting to note that the errors in the spectral
coefficients calculated using the unscaled equations show a randomness over the whole range of the k values
shown in Fig. 4 because the errors are due to round-off. This is even true for very small wavenumbers in
which the errors become unacceptably large due to the round-off errors caused by cancellation when the
formulae (3.15)—(3.18) are used.

5.2. A penny-shaped crack intersecting a very thin layer and a thick layer

In this example we consider a penny-shaped crack with a radius of 1 m to be centered at the coordinates
(0,2.1) in the 3D layered material shown in Fig. 5. We note that for clarity of presentation, the layer
thicknesses have not been drawn to-scale in the figure but have been indicated in the figure. A to-scale
representation of the crack is shown in Fig. 6. A constant pressure of 1 MPa is applied to the crack surfaces.
This geometry has been chosen so that the thin 0.2 m layer is sandwiched between a 2 m layer and a much
thicker 200 m layer. To resolve this mixture of length scales would require that kd products as small as
0.5 x 1073 need to be evaluated for the thinnest of the layers, while the kd products for the thicker layers
can be relatively large. This precludes the use of the stiffness matrix method and the propagator matrix
method. The rescaled flexibility matrix method easily handles this large range of length scales within the
same framework.

We solved the crack problem using two different meshes. The coarser mesh uses square piecewise
constant DDs of size 0.2 m as shown in Fig. 6. The boundaries of the crack are modeled accurately using a
fixed Eulerian mesh and a specialized truncation error correction (see [15]). In the case of the second finer
mesh, we subdivide each of the coarser cells into four cells.
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Free Surface
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Fig. 5. Geometry for thin layer and thick layer test problem.

L T T T T T T L T
4.—
3.5 .
3 / _
/ N oom
25F b
E 0.2m

051 .

0 1 1 1 1 1 1 1 1
2 -15 -1 0.5 0 05 1 15 2
x (m)

Fig. 6. The coarse discretization used to model the penny-shaped crack straddling a thin layer.

In Fig. 7 we plot the width profiles obtained using the two different discretizations. We observe that there
is considerable pinching due to the effect of the very stiff and very thin layer. We also observe that there is
close agreement between the two sets of results obtained using the two different discretizations.
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Fig. 7. Width profile along the line x = 0 for the coarse and the fine discretizations of the crack.
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Fig. 8. Width profile for the penny-shaped crack problem obtained using the fine mesh.

In Fig. 8 we provide a 3D surface plot of the width profile that was obtained using the finer mesh. The
pinching of the width profile due to the thin stiff layer can be clearly seen. This plot emphasizes the im-
portance of having the ability to model very thin layers particularly if the elastic moduli of these thin layers
are much larger than the neighboring layers. For the coarse mesh, the total solution process involving 95
piecewise constant DD elements took 8.8 s on a 200 MHz Pentium processor. For the fine mesh, the total
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solution process involving 332 piecewise constant DD elements took 27.4 s on a 200 MHz Pentium pro-
CEessor.

6. Conclusions

In this paper we have introduced the rescaled flexibility matrix method that can be used to solve the
algebraic equations for a layered medium when there are very different length scales active in the problem.
None of the traditional formulations of the systems of algebraic equations for layered elastic media, i.e., the
stiffness matrix method, the propagator matrix method, or flexibility matrix method, is suited to solving
layer problems in which there are very big differences in the length scales of the problem. The stiffness
matrix method and the propagator matrix method are both suitable for solving problems in which there are
not too many relatively thin layers so that the total extent of the layered elastic medium is limited. This is
due to the large exponential terms of the kd products that need to be evaluated if the vertical dimension of
the pack of layers becomes large. In contrast the flexibility matrix method is able to deal with large kd
products but the equations become ill-conditioned and susceptible to round-off errors if the problem in-
volves kd products that are very small. This situation can arise when there is a big range of length scales in
the problem, such as when a very thin layer is next to a very thick layer.

In the rescaled flexibility matrix method described in this paper, power series expansions are used to
identify the most singular terms in the standard flexibility matrices. Using these singular terms all the
equations that are susceptible to round-off errors are rescaled by pre-inverting the singular submatrices
analytically and using power series expansions to evaluate the regular terms that remain. Only those
equations that are susceptible to round-off errors need to be dealt with using the rescaled approach, while
the remaining equations, that may be associated with very thick layers, need not be rescaled and can be
treated by using the standard formulae for evaluating the flexibility submatrices. Thus by separating the
different length scales and constructing the flexibility matrices using expressions appropriate for the length
scales involved, we are able to solve boundary value problems with a large range of length scales. The
technique we describe can be used to solve problems involving layers that are 10 times thinner than can be
treated by means of the standard flexibility matrix method.

We have provided two numerical examples demonstrating the performance of the rescaled flexibility
method. The first example demonstrates the accuracy of the rescaled flexibility matrix approach when
applied to a problem in which the layers have thicknesses d = O(1) but for which a small range of
wavenumbers 0 < k£ < 0.2 close to 0 are considered in order to achieve small kd products. Because only a
small number of moderately thick layers are used in this test problem and only small wavenumbers are
considered, it is possible to obtain an accurate reference solution using the stiffness matrix method, which is
expected to give an accurate result in this regime. This example makes it possible to compare the spectral
coefficients calculated using the traditional flexibility matrix method with those calculated using the re-
scaled flexibility matrix method. The rescaled flexibility matrix method was shown to produce results that
were typically 3 and up to 5 orders of magnitude more accurate than the standard flexibility matrix method
for kd products that were less than 0.08. The level of the pointwise error was typically 10~ and never larger
than 10~7 for this range of kd values. For kd products that are larger than 0.08, the rescaled flexibility
method gave poor results because the truncation error in the power series expansions for the rescaled
flexibility matrix method became too large. However, for kd > 0.08 the standard flexibility matrix method
is able to provide a solution with an error that was smaller than 10~8. Thus, making use of rescaled flex-
ibility matrices in conjunction with the standard flexibility matrix method, it is possible to obtain a unified
algorithm that can solve boundary value problems with many different length scales.

In the second example the rescaled flexibility matrix method is used to solve a problem in which there is a
very thin layer 0.2 m thick, sandwiched between a moderate layer 2 m thick and a very thick 200 m layer. A
penny-shaped crack of 1 m radius was centered on the very thin layer in such a way that it intersected the
two neighboring layers. To capture the far-field behavior of the problem, the rescaled flexibility matrix
method was used to determine the spectral coefficients for the problem. Two distinct discretizations for this
problem were used and both solutions showed good agreement. This example also clearly demonstrates the
dramatic effect the inclusion of very thin layers can have.
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We have thus provided a detailed description of the rescaled flexibility matrix method and have dem-
onstrated that it provides a very useful procedure to solve boundary value problems for layered elastic
materials in which there are many different length scales active in the problem.
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Appendix A. Definition of the Fourier transform

Let g(x,z) € L'(R*) then we define the double Fourier transform (FT) of g(x,z) to be

g(m,n) :/ / &g (x, z) dxdz (A.1)

and the corresponding inversion formula is
1 o) o0 ) R
gx,z) =—= / / e ™) e (m, n) dmdn. (A.2)
(27'[) —o0 J—x

The FT of the derivative of a function may be readily established by using the definition and integrating
by parts to obtain:

6xg@2) =/ / )3, g(x, z)dxdz = —img(m, n). (A.3)

Thus taking a derivative with respect to x (respectively, z) in the spatial domain is reduced in the
wavenumber domain to multiplication by the wavenumber m (respectively, n). This is used to reduce the
system of PDEs governing the stress and displacement fields to a system of ODEs that are parameterized by
the wavenumbers m and 7.
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