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Introduction
There is growing evidence of intermittent numerical instabilities in boundary
integral elastodynamic models (Andrews, 1994; Mack, 1991; Siebrits, 1992). We
have used the term “intermittent instabilities” because of the way in which the
instabilities appear and disappear as the time step is changed. As an example of
this type of instability, consider a fixed spatial discretization of a given
elastodynamic problem, and allow the time step to change. The time domain
boundary element model can be unstable for a certain time step and become stable
if the time step is increased. If the time step is increased further, then the boundary
element model may become unstable again. In addition, these instabilities may
occur for certain problems and not for others depending on the specific geometry
of the problem, i.e. the particular combination of spatial modes that are active in
the problem. This intermittent instability is clearly unacceptable, as one cannot
provide coherent guidelines about the appropriate choice of meshing parameters.
In this article, we will restrict ourselves to the space-time formulation of the
boundary element equations. We briefly outline the various boundary element
formulations. We show how the indirect boundary element methods can be
obtained from the direct boundary element formulation. We also outline the
various temporal and spatial discretization procedures as well as a strategy for
time marching the resulting system of algebraic equations. In order to illustrate
the nature of the instabilities and how pervasive they are, we provide examples
of instabilities for the direct formulation, and both the fictitious stress and
displacement discontinuity indirect formulations.
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We outline the practical implementation of various time stepping schemes in
boundary element algorithms. In particular we discuss the implementation of
schemes which assume that the unknown field is constant in time — which is
suitable for the direct and fictitious stress methods. Numerical results are given for
the constant in time schemes for which different collocation points are used and
their stability properties are contrasted. Next we detail the practical
implementation of two new time stepping schemes for linear fields in time, namely
the e-scheme and the half-step scheme. The enhanced stability characteristics of
these new schemes are clearly demonstrated by comparing them with standard
time stepping schemes commonly used in boundary element algorithms.

Boundary element formulations

Boundary integral formulations

The direct boundary element method is well documented (Kobayashi, 1985) and
the derivation will not be repeated here. The direct boundary element method
equations are obtained by combining the dynamic reciprocal theorem of Betti-
Rayleigh (Love, 1944) with the appropriate fundamental solutions (Eringen and
Suhubi, 1975). In the absence of body forces and given zero initial conditions,
the direct boundary element equations are given by

U, (é,t) = I[U,-k(;c,t;g‘,O) *1(x.0)- Tik,-(J_c,t;é,O)n, * u,-(J_c,f)]dS(J_f) )

where U, = T,,‘7 are the fundamental displacements and stresses, respectively,
duetoa umt impulsive load, and “*” is the time convolution operator (Eringen
and Suhubi, 1975).

The indirect boundary element methods (i.e. the fictitious stress method and
the displacement discontinuity method) can be obtained from the direct
boundary element method by adding an interior to an exterior domain problem
(Loken, 1992; Siebrits, 1992; Tian, 1990). By subtracting the equations for the
interior region from those for the exterior region, an equation similar to (1) is
obtained in which the tractions {; and displacements #; are replaced by the
Jumps in traction and dlsplacement across the boundary between the two
regions. By requiring that the displacement jumps are zero across the interface,
we obtain the fictitious stress method. The displacements and stresses for the
fictitious stress method are given by

u(x.0) = [U,(x.1:60)* F(£.1)as(é)
o) = [T,(5.:50)* A5t nas(g)

where F; = £t - ¢ are the traction jumps across the fictitious stress surface S.

Slmllarly, By requiring that the tractions are continuous across the interface,
we obtain the displacement discontinuity method. The displacement and stress
equations for the displacement discontinuity method are given by

)



u(x.0)= [T, (xt:£0), * D(&0)as(8)

oul) = [Su(ars50)* D(0)as() ®

where D; = u* — u; are the displacement jumps across the displacement
discontinuity surface S, and Sk,ij is given by

S .=-Aﬂ:"”5 +y(ﬂ+&J @
M o, Z T A
where A and yu are the Lame constants, and d,; is the Dirac delta function.

Discretization of boundary integrals

The boundary integrals in the above equations contain two types of integrals,
viz. time and space. The time integrals (embodied in the time convolution
operator) are discretized into time steps, with a particular functional variation
over each time step (e.g. constant, linear).

The spatial boundaries are also discretized into elements. Each element is
assumed to have certain geometric properties (e.g. straight or curved elements)
and the functional variation over each element is assumed to be of a particular
order (e.g., constant, linear, quadratic).

The temporal integrals can all be performed analytically, and this is well
documented (Loken, 1992; Mack, 1991; Siebrits, 1992; Tian, 1990). The spatial
integrations are often determined numerically (Banerjee, et al., 1987) especially
in the case of higher order geometrical and functional variations over each
element. In the case where each element is assumed to be straight (or flat), these
integrals can also be determined analytically (Loken, 1992; Mack, 1991; Siebrits,
1992; Tian, 1990).

There are restrictions governing the choice of functional variation in space
and time. For example, in the displacement discontinuity method, a piecewise
constant functional variation in time (in two and three dimensions) is not
possible because it leads to singular integrated stress expressions (Loken, 1992;
Mack, 1991; Siebrits, 1992). Hence, a minimum requirement of the displacement
discontinuity method is a linear variation within each time step, with continuity
between time steps. Furthermore, stability conditions govern which orders of
time and space functional variations are permissible (Peirce and Siebrits, 1995).

Temporal integrations

Assuming a piecewise linear time variation for the approximating function,
denoted by £{?), the integrations can be performed for the special case f{f) = t/A¢,
and then generalized by combining three such staggered functions to obtain a
“hat” function, from which the piecewise linear time variation can be
constructed. Hence,
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T, T, T,

f(t)=H(t - tH)f— 2H(r —t,,)-—“—+ H(t-1t,,) 2’;' )
where £, = kAt and 7, = ¢ - ¢,. The above approach is possible because of the
lmeanty of the bounc{ element method (so that the principle of superposition
applies), and because of the time translation property of all the fundamental
solutions. Combining a hat function at each time step results in a piecewise
linear temporal variation (Loken, 1992; Mack, 1991; Siebrits, 1992; Tian, 1990).
Piecewise constant time elements can be constructed in a similar way, by
combining three sets of Heaviside functions appropriately. Higher order in time
variations can also be constructed, but are not covered here.

Spatial integrations

In the two-dimensional case, if we assume that the elements are straight line
segments, then analytical integrations are possible, for functional variations
that are constant, linear or quadratic along the element. This has been fully
covered elsewhere (Siebrits, 1992; Tian, 1990) and will not be repeated here. In
the three-dimensional case, if we assume that each element is flat, then
analytical integrations are once again possible (Loken, 1992; Mack, 1991).
Alternatively, numerical integration procedures can be used. Care must be
taken, especially in the displacement discontinuity element method, to avoid
numerical problems with singularities at element edges because of the
hypersingularity of the fundamental solutions of this method. In fact, the
hypersingular nature of the displacement discontinuity method stress
equations precludes the use of numerical integration schemes. Furthermore,
element integrations must be causal (i.e. partial integrations are performed for
those portions of the elements that fall within the causal space-time “light
cone”) in order to ensure accurate influence coefficient calculations.

Numerical implementation

The discretization of the time and space integrals in any of the time domain
direct or indirect boundary element methods ultimately leads to a system of
time marching algebralc equations of the form

b,=C,F,+ Zgz ©

= vector of unknown boundary tractions and/or displacements, or
fictitious stresses, or displacement discontinuities

= influence coefficient matrix
= boundary displacement and/or traction vector
m = current time step number.

Introduction of (5) into (6) results in a time stepping algorithm used in most
current boundary element schemes with linear in time functional variations,



which we term the standard or Trapezoidal scheme, whose time basis functions
are depicted in Figure 11.

The matrices C are fully populated in general. It is clear that the unknown
quantities F at the current time step m are obtained via a convolution between
the known coefficients and known quantities from all previous times (in the two-
dimensional case).

Algorithm (6) can be explicit (o dlagonal) or implicit (C, not diagonal),
dependmg on the type of dlscretlzatlon that is used. If the functlonal variation
is constant across an element, then the algorithm can be made exp11c1t by
choosing a small enough time step, given by Q1 =¢,At/Ax < 0.5, where Ax is the
element size. In other words, the system is exp11c1t if the compressional wave
front travels less than half an element length in one time step. Of course, this
presupposes that neighbouring elements are not at acute angles to each other,
or closer than half an element length. In such cases, the time step restriction is
more severe. If the functional variation over each element is variable, then the
algorithm will always be implicit, because collocation points within each
element ensure that cross-coupling occurs regardless of the size of the time step,
and hence matrix ( is never diagonal.

The stability of the algorithm is not guaranteed if the time step is chosen
such that the scheme becomes implicit. This has to be tested, and will be shown
later to depend on the functional variations across time and space elements and
the geometric distribution of elements.

Evidence of instabilities

Mack (1991) and Siebrits (1992) have both noted numerical instabilities in their
three-dimensional (3D) and two-dimensional (TWOQ4D) displacement
discontinuity codes, respectively. 3D uses linear in time and constant in space
functional variation on flat rectangular elements. TWO4D uses linear in time,
and either constant in space (“constant/linear” scheme) or linear in space
(“linear/linear” scheme) functional variations on straight-line elements. Tian
(1990) and Loken (1975) have both also noted numerical instabilities in their
two-(IBEM2) and three-dimensional (3DFS) fictitious stress codes, respectively.
3DFS uses linear in time and constant in space functional variations on flat
rectangular elements. IBEM2 uses constant or linear in time and constant in
space functional variations on straight elements. Tian’s (1990) direct boundary
element code (DBEM2), which uses linear in time and quadratic in space
functional variations, also exhibits numerical instabilities.

The above codes all use analytical integrations in time and space. A more
recently published direct boundary element code, QUADPLET, (Dominguez,
1993) which uses quadratic spatial and linear temporal elements, and numerical
integrations for the spatial integrals, also goes unstable. For example, a cavity,
where the circumference is loaded suddenly by a normal traction
axisymmetrically (Selberg, 1951), is clearly unstable by 2,000 time steps, as
shown in Figure 1. In this problem, 16 elements have been used around the cavity
boundary, and @1 = 0.3. The choice of loading configuration can be designed to
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Figure 1.

Selberg's suddenly
pressurized cavity
problem which exhibits
instabilities
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QUADPET: Selberg, Q/L, Q1 = 0.3, nt = 2000



ensure that the instability becomes physically evident sooner rather than later. If
the cavity is loaded on half of the circumference, then the instability emerges by
300 time steps, as shown in Figure 2, although this is a shear component of
displacement (in the previous example, only the radial displacement is non-zero).

There are also other independent references made to unstable boundary
element methods in the literature (Andrews, 1994; Koller et al., 1992). Koller ¢f al.
(1992) developed a boundary integral method to model antiplane automatic
dynamic crack growth. Their method produces spurious numerical “oscillations”
which increase with time, and they claim that these oscillations occur with
respect to the spatial domain, and not the time domain. This they confirm by
implementing a static version of the traction boundary integrals using the same
spatial discretization (viz. collocation at midpoints of elements) and note that the
same kinds of oscillations arise. We shall see later that the numerical instabilities
in boundary element methods are a coupled spatial and temporal phenomenon.
Koller et al. (1992) also claim to eliminate their oscillations by reformulating the
original problem as a penalized least-squares problem, using a stabilizing
functional in the sense of Tikhonov and Arsenin (1977). They claim that the
numerical oscillations disappear by making appropriate choices of the weighting
factors, but do not validate this by numerical example or analytical study.

Andrews (1994) modelled mixed-mode shear slip with a boundary integral
approach, where the spatial convolutions were performed in the Fourier
domain. He also notes the presence of “oscillations” which grow worse with
time, and comes to the (sad) conclusion that he would use finite difference
methods if he were to redo his work.

Numerical instabilities do not necessarily disappear if the time step is
reduced — they are intermittent in nature, and problem dependent. The simplest
TWO4D problem that illustrates this is an antiplane strain constant/linear two
element problem, where the elements are located opposite each other, # = 2Ax
apart, as shown in Figure 3. Table | highlights the intermittent nature of the
numerical instability that is observed in this case. In Table I, Q2 = ¢,At/Ax. The
loading pattern does not determine whether an instability will occur However,
it does affect how soon it will manifest itself. The intermittent nature of the
instabilities can be traced directly to cases where wave fronts intersect elements.
This will be covered in more detail later in this section. Depending on the
particular combination of time step, spatial step and problem geometry,
numerical oscillations can: grow exponentially as a classical numerical
mstablllty, grow non- exponentially as a resonant instability; beat, with
successive beats growing, decaying or remaining unchanged, or merely
oscillate with a decrease in amplitude or an unchanging amplitude. In other
words, it is possible to generate almost any type of oscillation imaginable.

There are numerous ways of delaying the onset of visible numerical
instabilities. For example, averaging techniques from time step to time step, and
even repetitive averaging techniques, have been used (Manolis, e? al., 1986).
Repetitive averaging is not desirable because incorrect solution paths can be
followed. The use of double precision for the kernel generation and summation
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Figure 2.

Cavity problem, with
loading over half of
circumference, which
exhibits instabilities
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QUADPLET: Cavity, QL, Q1 = 0.3, nt = 300
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routines delays the onset of numerical instabilities. Normalization of the
influence coefficients is also beneficial.

The reader might question the necessity of worrying about numerical
instabilities at all, especially as they normally appear at later times. However,
instabilities can emerge very quickly for problems where the influence
coefficient matrix structure is such that the matrices are poorly conditioned (e.g.
closely parallel rows of elements). In these cases, the instabilities swamp the
transient behaviour at early times. (Closely parallel rows of elements are also
difficult to solve with static boundary element codes. In fact, in the two-
dimensional elastostatic displacement discontinuity method, with constant
functional variation over each element, if any two elements are parallel and
exactly half an element length apart, then the problem is unsolvable because the
source and receiver influences are identical, resulting in a singular coefficient
matrix. In elastodynamics, this problem goes unstable very quickly)

In the dynamic displacement discontinuity method, even a single row of
elements can go unstable. For example, in the constant/linear plane strain
version of TWO4D, a single straight line of 20 elements, with Q1 = 0.5, is
unstable by 500 time steps. In two dimensions, a Rayleigh wave propagating
along a free surface does not decay with distance from the source (Graff, 1975)
Thus, element to element influences along a mathematical crack construction,
such as provided by the displacement discontinuity method, contain a
component that does not decay with distance. We will see later that the spatial

QR 0.10 0.20 0.30 040 050 0.60 0.70 0.80
Stable? no no yes no yes yes no yes
Q2 0.90 1.00 1.10 1.20 1.30 134 140 150
Stable? yes yes yes yes no yes yes

yes
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Evidence of intermittent
instability in antiplane
strain TWO4D with
standard time stepping
scheme
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Figure 4.

Antiplane strain Hook
problem geometry
which exhibits
numerical instabilities

decay rate of influences plays an important role in the stability properties of
boundary element (Peirce and Siebrits, 1995).

A problem which has been investigated intensively by the authors, is the so-
called “Hook” problem, involving two rows of displacement discontinuity
elements with prescribed tractions as boundary conditions. Figure 4 depicts the
geometry and loading. Incidentally, this particular problem was the very first
problem ever run with TWO4D, and has become a testbed for alternative
strategies to cope with numerical instabilities. The problem is somewhat ill-
conditioned because of the acute angle between the two rows of elements.
Depending on the choice of @1 (or @2 in antiplane strain), this problem may or
may not go unstable. This applies to both the constant/linear and linear/linear
versions of TWO4D. Figure 5 shows a typical unstable result obtained from the
constant/linear antiplane strain version of TWO4D with @2 = 0.7, where the
displacement discontinuity history of element 21 (in the corner of the hook) is
plotted. The smooth line through the unstable result is the equivalent solution
obtained using a novel scheme developed by the authors. This scheme, which is
termed the Half-step scheme, is described in a later section. Figure 6 is a plot of
the light cones at the first few time steps, for elements 19 and 20. It is clear from

{93,97,34.20)

@15 ©[@

(0.0)

p = 2700 kg/m® o/® 28
E=70GPa B
v =02 ' {90.48,-5.65)

A 25 MPa

Loading Ogz @t



Slip Ds at element 21 (m)
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----- Half step
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—0.15
-0.2_' [ =T T I T ' - .
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time (s)

TWO4D: Hook, antipl C/L, stand + half step, Q1 = 0.7, nt = 61/122

the figure that the shear wave front from element 19 just chops element 21 at the
second time step (shown as a dashed line). We will see later that the influence
coefficients (or stress wave fronts) orthogonal to a source element are the
largest, and are most likely to cause numerical instabilities. Figure 7 shows the
same diagram, but for the case @2 = 0.67. Notice that in this case, the light cone
at the second time step between elements 19 and 21 just misses element 21. This
run turns out to be stable.

It can be shown (Peirce and Siebrits, 1995) that, in the case of wave fronts
intersecting neighbouring elements, the stability of the problem is dominated
by the relative magnitude of the effect that the source element has on itself and
the effect that it has on its neighbour. Due to diffraction of the pulse caused by
a change in the spatial variation of the forcing function, it is possible for the
stress effect remote from the source element to be larger than the effect that the
element has on itself. This positive feedback between the two elements results
in the instability.

Implementation of time stepping schemes

Constant ime variation schemes

There are three constant in time schemes, that can be applied to the direct and
fictitious stress methods, viz. Backward Euler, Midpoint and Forward Euler
schemes. Recall that constant in time functional variations cannot be applied to
the displacement discontinuity method because of the hypersingular nature of
the kernels. However, these schemes can be implemented in the fictitious stress
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Figure 5.
Displacement
discontinuity history of
element 21 for antiplane
strain Hook problem
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Figure 6.
Light cones for Hook
problem with Q2 = 0.07
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Hook problem light cones for Q2 = 0.7

and direct boundary element methods. In the Forward Euler time stepping
scheme, the influence coefficients are collocated at the start of each time step, as
shown in Figure 8.

In the Backward Euler time stepping scheme, collocation is performed at the
end of each time step, as shown in Figure 9. In the Midpoint scheme, the
influence coefficients are collocated at the midpoint of each time step, as shown
in Figure 10. The Backward Euler scheme implementation is summarized
below in the pertinent bit of FORTRAN-77 pseudo code:

MAIN

DO100K =1,NTIM !time loop

DO2001=1,NEQU !receiver loop
DO 200 =1,NEQU !source loop
CALL COEFF (1, J,K)
200 CONTINUE

100 CONTINUE

CALL SOLVE

END



20 T T |
80 85 90 95

Hook problem light cones for Q2 = 0.67

Forward Euler scheme
f(t) A

At 2At 3at 4At

Key
o = Collocation point

SUBROUTINE COEFF (1, J, K)
DELT = QI*DELX/CI

TIME = K*DELT
CLLK)=...

RETURN

100
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Figure 7.
Light cones for Hook
problem with Q2 = 0.67

Figure 8.
Basis functions for the
Forward Euler scheme
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Basis functions for the
Backward Euler scheme Key ] )
e = Collocation point

) 4 Midpoint scheme
Figure 10. At 24t 3at aa t
Basis functions for the K
Midpoint Euler scheme ey

e = Collocation point

Trapezoidal/standard linear basis functions

f(t) 4

|

Figure 11.

Basis functions for the
Trapezoidal/Standard
linear scheme -

At 2At 3at 4At t
¢ — scheme

Figure 12. |
Basis functions for the L,
e-scheme At 24t 3at 4m\;t

where QI = dimensionless factor cAf/Ax, i = 1 if plane strain, or 2 if antiplane
strain. In order to change this scheme into a Midpoint scheme, we simply
rewrite the above coefficient module as:

SUBROUTINE COEFF (1, ], K)

DELT = QI*DELX/CI



4 Half-step
At 24t 3Al 3iat
4 Full-step
{ 1 | | 1
At 24t 3At ant t
TIME = K*DELT-0.5*DELT
CLJLK=...
RETURN
The coefficient module of the Forward Euler scheme is given by:
SUBROUTINE COEFF (1, J, K)

DELT = QI*DELX/CI

Normalized tangential stress (sigt/p)
1.4~

1.2-

1]
0.8
0.6
0.44
0.2

0-

0.2

-0.4- | T T i I )
0 5 10 15 20 25
Normalized time (c1*t/R)

TWOFSD: Selberg, Midpt C/C and Standard C/L, Q1 = 0.6, nt = 200
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Figure 13.
Basis functions for the
Half-step scheme

Figure 14.
Comparison between
Midpoint constant in
time and Trapezoidal

linear in time schemes
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TIME = K*DELT-DELT
CQ,J, K) =
RETURN

The Midpoint scheme is more accurate and more stable than the Backward or
Forward Euler schemes. Figure 14 shows the tangential stresses calculated in
the Selberg problem by a Trapezoidal linear in time versus a Midpoint constant
in time fictitious stress formulation. The results are almost identical. The
constant in time Backward and Forward Euler schemes give less accurate
results, as shown in Figure 15. The Midpoint scheme does go unstable
eventually, as shown in Figure 16.

e-scheme

It can be shown (Peirce and Siebrits, 1995) that stability is enhanced by dewsmg
a time stepping scheme that places more welght on the last unknown £, in (6),

or equivalently, on the self-effect terms in C,. This can be achieved by
integrating the function f{{) in (5) over the time interval (0, mA¢ + €Af) instead of
the usual (0, mAf). This has the net effect of improving the stability of the time
stepping algorithm, but does introduce a slight shift in the results, which
increases with increasing . For ¢ = 1, significant errors are observed, whereas
for & = 0, the errors are small. Unfortunately, stability improves with increasing
g, and hence, with an accompanied loss in accuracy. Figure 12 depicts the time
basis functions for this scheme.

The e-scheme is trivial to implement in any time domain boundary element
scheme. Assuming that the code is structured in a modular fashion, the changes
amount to two lines of coding. The following abbreviated code summarizes the
implementation of the Trapezoidal time marching algorithm:

SUBROUTINE COEFF (1, J, K)

DELT = QI*DELX/CI

TIME = K*DELT

ClLJK)=

RETURN

The e-scheme is identical to the Trapezoidal one, except that, in module COEFF,
we make the following changes:

SUBROUTINE COEFF (, ], K)

DELT = QI*DELX/CI

TIME = (K+EPS)*DELT

C(J,K) =

RETURN

where EPS is a small factor by which the region of integration in time (i.e. total
time of integration) is adjusted. Notice that, if EPS = 0.0, then we recover the
Trapezoidal time stepping scheme. Figure 12 shows the changes to the
temporal hat functions made by the introduction of the e-scheme compared
with the Trapezoidal scheme. Computer run times and storage are unaffected
by the introduction of the &-scheme.
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Figure 17.
Standard versus
e-scheme results for
Hook problem

In order to demonstrate the e-scheme, we consider the plane strain version of
the Hook problem (as depicted in Figure 4 for the antiplane strain case). Figure
17 shows results from both the Trapezoidal and e-schemes, for the case £ = 0.1.
The e-scheme has improved stability characteristics, but not to a significant
extent.

Half-step scheme
An alternative scheme to the e-scheme is the so-called “Half-step” scheme,
which was devised (Peirce and Siebrits, 1995) to increase the size of the
self-effect without a loss in accuracy. This was achieved by ensuring that
the scheme was consistent, viz. all basis functions should add up to unity.
The solution is advanced in a sequence of two half-steps, each of magnitude
At/2 while the convolution, which forms the major part of the computational
burden, is performed using steps of magnitude At. Figure 13 shows the basis
functions associated with the first half-step and the second half-step, or so-
called full-step.

The Half-step scheme requires significant modifications to the normal time
marching algorithm (6). The new algorithm is given by

-1 2“  —— 4 T T T | T —
0 002 004 006 0.08 0.1 0.12 0.16 0.18
Time (s)

TWO4Dv2: C/L plane strain Hook: eps = 0.0 and 0.1



m-}

Boundary

—o—Zm-l + z Cz,,, 1= = b2m— element
discretizations
f S/
C Fopp+C Fppy + Zcm 2o ok =bam
where “h” and “6” imply half- and full-steps, respectively. Figure 13 depicts the 687
shapes of the hat functions needed to calculate the influence coefficients at each
time step for the new scheme.
The Trapezoidal time stepping algorithm (Figure 11) is summarized in the
antiplane strain case (for simplicity only) in Appendix 1. The Half-step
algorithm is summarized in Appendix 2 (please note that the authors make no
claims as to the elegance of the code).
Time stepping scheme  Number of steps Run time Q1 Stable?
Trapezoidal 150 6.2 min 06 yes
300 20.9 min 06 no
75 2.1 min 12 no Table II.
150 3.3 min 1.2 yes Run times for Trapezoidal
300 9.9 min 06 yes versus Half step scheme
ux (m)
x10-3
]
2_
0_
24 %
-4
_6—
-8 Key
—— (m=150)
T /2 (m = 300)
-12— 1 T l T T T T T 1 Figure 18.
o 001 002 003 004 005 0.06 007 0.08 0.09 Standard and Half-step
Time (s) results for Hook
problem

TWOA4D: standard (m = 150), half step (m = 300) schemes
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Figure 19.

Standard, Half-step, and
ABAQUS/EXPLICIT
results for Hook
problem

Because the time step for each half-step in the new algorithm (7) is taken as half
the time step used in the old algorithm (6), twice as many time steps are needed
to advance the solution by the same amount of time. The number of coefficient
matrices that are required in the new algorithm is twice that required by the old

algorithm. However, the number of calculations that are required does not’

increase accordingly, because of the structure of the new algorithm. The largest
share of CPU time is taken up by the calculation of the convolution histories at
each time step, and this operation is only slightly slower in the new scheme than
in the old scheme (even though there are twice the number of steps). Computer
run times increase by about 50 per cent, but accuracy and stability are
substantially improved. However, because of the increased accuracy of the new
scheme, it is possible to use larger time steps. This implies that the new scheme
is competitive with the old one (e.g. compare the run times of the two 150 time
step runs in Table II). Table II and Figure 18 compare the two schemes in terms
of CPU time and accuracy, respectively. Results are shown for the 28 element
plane strain constant/linear Hook problem, run on a Pentium 66MHz machine.
Figure 19 shows the two schemes plotted against results from the
ABAQUS/EXPLICIT (HKS, 1994) finite element code. The Half-step scheme is
clearly more accurate than the Trapezoidal scheme.

Figure 20 shows the Hook results obtained from the linear/linear plane strain
version of TWO4D with @1 = 0.6, and a numerical instability is evident by 500
time steps. A stability analysis predicts two poles(Peirce and Siebrits, 1995).
Figure 21 shows the Half-step results to 3,000 time steps and there is no sign of
an instability.
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The Half-step scheme was also implemented in the fictitious stress method,
tested on the Selberg problem, and was found to show no improvement in the
accuracy or stability properties of this method over the Trapezoidal time
stepping scheme. The reason for this becomes clear if we consider that the
response of the constant in space fictitious stress element to a triangular time
impulse is a diffracted perturbation to the input pulse itself (Peirce and Siebrits,
1995). In other words, the stress self-effect kernels in the fictitious stress method
are of order O(1). However, in the displacement discontinuity method, the stress
self-effects are of order O(1/A¢) and the response is thus a sequence of step
pulses whose magnitudes are determined by the gradients of the triangular
input pulses (Peirce and Siebrits, 1995). Because the leading pulse of the Half-
step scheme has double the gradient of the subsequent pulses (due to a time
step half that of the Trapezoidal scheme), when it is applied to the displacement
discontinuity method, the self effect is double that of the subsequent response
pulses. This results in enhanced stability characteristics. However, when the
Half-step scheme is applied to the fictitious stress method, the magnitude of the
self effect is the same as it is for the Trapezoidal scheme. Therefore the Half-
step scheme will not enhance the stability of the fictitious stress method.
Implementation of the Half-step scheme in the direct boundary element
method shows a significant improvement in the accuracy and stability properties
of this method for traction boundary value problems but not for displacement
boundary value problems (Birgisson et al., 1997). This can be explained in the
following way. Recall that, in the two-dimensional direct boundary element and
fictitious stress methods the integrated stress and displacement self effect kernels
are of the orders O(1) and O(A?), respectively. In the two-dimensional
displacement discontinuity method, the stress and displacement self effect
kernels are of the orders O(1/Af) and O(1), respectively. In light of the above
discussion on the application of the Half-step scheme to the fictitious stress
method, we can see that the use of the Half-step scheme in the direct boundary
element method will only be beneficial for traction boundary value problems
because, even though the magnitude of the self effect is not enhanced by the
smaller time step, the displacement kernel is reduced. This has the same effect as
increasing the traction self effect kernel because the displacement self effect
kernel is divided by the traction kernel during solution. In a displacement
boundary value problem, a more stable time stepping scheme could be one in
which a double-step scheme is used, i.e. the opposite of the Half-step scheme!

Other schemes

There are numerous other schemes that have been attempted, some of which
will only be briefly mentioned here, because none of them are found to be as
satisfactory as the Half-step scheme. For example, the Half-step scheme can be
extended into a quarter-step scheme. Such a scheme has an even larger self
effect than that for the Half-step scheme, which is beneficial for stability.
However, it is found that the quarter-step scheme does not eliminate all
numerical instabilities in TWO4D, besides requiring more time steps, storage



and being even more complicated to implement than the Half-step scheme, and
is therefore rejected.

Various adaptations of the self effect can be postulated. For example, the first
time ramp at the first time step can be changed into a quadratic ramp (Peirce
and Siebrits, 1995). The benefit of such a time variation is that the self effect is
larger, which is better for stability. However, this scheme follows an incorrect
solution path because of an inconsistency between the leading quadratic
influence and the trailing linear ones in the history terms, and is therefore
rejected immediately. The use of quadratic Lagrange basis functions in a mixed
quadratic and linear scheme results in a self effect that is smaller than some of
the subsequent pulses. We can therefore expect such a scheme to be unstable.

Another time stepping scheme considered by the authors used Hermite cubic
basis functions. Analysis shows (Peirce and Siebrits, 1995) that for this set of
basis functions the self effect is very small, and this scheme can thus be
discarded immediately. Analysis of a model problem shows that lower order
time schemes are much better for stability (as opposed to accuracy) purposes
than higher order ones (Peirce and Siebrits, 1995).

Conclusions

Amid the growing evidence of numerical instabilities in boundary element
elastodynamic models, there has been little theoretical investigation of the
causes of these instabilities and the possible strategies for remediation. We have
provided evidence of the instabilities in a number of different formulations of
the boundary element method.

To focus on the causes of these instabilities, we identified a simple example
involving two parallel displacement discontinuity elements which rapidly
exhibit numerical instabilities. We further expanded on the causes of
instabilities with reference to the displacement discontinuity method.

We outlined the practical implementation of various time stepping schemes
in boundary element algorithms. We discussed the implementation of schemes
which assume that the unknown field is constant in time, which is suitable for
the direct and fictitious stress indirect methods. We provided numerical results
for the constant in time schemes for which different collocation points were
used and we contrasted their stability.

We detailed the practical implementation of two new time stepping schemes
for linear in time fields, namely the e-scheme and the Half-step scheme. The
enhanced stability characteristics of these new schemes were clearly
demonstrated by comparing them with the standard or Trapezoidal time
stepping schemes commonly used in boundary element algorithms. The
enhanced stability characteristics of the new schemes were explained in terms
of their modified influence characteristics.

Implementation of the Half-step scheme into the direct and indirect boundary
element methods will allow boundary element users to attack far more
challenging problems than before. We hope that researchers will find a
complete cure to the problem of numerical instabilities in dynamic boundary
element methods, so that these methods can be used to their full potential.

Boundary
element
discretizations

691




EC
14,6

692

References

Andrews, DJ. (1994), “Dynamic growth of mixed-mode shear cracks, Bull. Seism. Soc. Am., Vol.
84, pp. 1184-98.

Banerjee, PK., Ahmad, S. and Manolis, G.D. (1987), “Advanced elastodynamic analysis”, in
Beskos (Ed.), Boundary Element Methods in Mechanics, pp. 258-84.

Birgisson, B., Peirce, A.P. and Siebrits, E. (1997), “Elastodynamic direct boundary element
methods with enhanced numerical stability properties”, Int. [ Num. Meth. Engrg..

Dominguez, J. (1993), Boundary Elements in Dynamics, Computational Mechanics Publications,
Southampton.

Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics: Volume II Linear Theory, Academic Press,
New York, NY.

Graff, K.F. (1975), Wave Motion in Elastic Solids, Clarendon Press, Oxford.

Hiblbil;t, (ll(arlsson, and Sorensen, Inc. (HKS) (1994), ABAQUS/EXPLICIT version 5.3-1, Rhode

sland.

Kobayashi, S. (1985), “Fundamentals of boundary integral equation methods in elastodynamics”,
in Brebbia (Ed.), Topics in Boundary Element Research, Vol 2: Time-dependent and vibration
broblems, Springer-Verlag, New York, NY, pp. 1-54.

Koller, M.G., Bonnet, B, and Madariaga, R. (1992), “Modelling of dynamical crack propagation
using time-domain boundary integrals”, Wave Motion, Vol. 16, pp. 339-66.

Loken, M.C. (1992), A Three-Dimensional Boundary Element Method for Linear Elastodynamics,
Ph.D. Thesis, University of Minnesota, USA.

Love, A.E. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York, NY.

Mack, M.G. (1991), A Three-Dimensional Boundary Element Method for Elastodynamics, PhD.
Thesis, University of Minnesota, USA.

Manolis, G.D, Ahmad, S. and Banerjee, PK. (1986), “Boundary element method implementation
for three-dimensional transient elastodynamics”, in Banerjee and Watson (Eds), Developments
tn Boundary Element Methods-4, Elsevier, New York, NY, pp. 29-65.

Peirce, A.P. and Siebrits, E. (1995), The Stability Properties of Time Domain Elastodynamic
Boundary Element Methods, Internal Note RES/95, CSIR Mining Technology, Johannesburg,
p. 108.

Selberg, H.L. (1951), “Transient compression waves from spherical and cylindrical cavities”, Arkiv
Jor Fysik, Vol. 5 No. 7, pp. 97-108.

Siebrits, E. (1992), Two-Dimensional Time Domain Elastodynamic Displacement Discontinuity
Method with Mining Applications, PhD thesis, University of Minnesota, USA.

Tian, Y. (1990), Boundary Element Method in Elastodynamics, PhD thesis, University of
Minnesota, USA.

Tikhonov, AN. and Arsenin, Y.Y. (1977), Solutions to Ill-posed Problems, Winston-Wiley, New
York, NY.

Appendix 1. Standard time stepping scheme
In the antiplane strain case, the standard time stepping scheme can be summarized as
MAIN
PARAMETER (NEQU = 100, NTIM = 1000)
DIMENSION CINEQU, NEQU), P(NTIM, NEQU)
DO 100K =1, NTIM ! time loop to precalculate influence coefficients
DO 200I=1,NEQU ! receiver loop
DT = QI*DELX/CI !time step size
DO 200) =1,NEQU ! source loop
SYZ3 =00 !initialize dummies
SYZ2=00



SYZ0=00

CALL COEFF(, ], K, SYZ) 3 coefficient calls to build hat function

SYZ3=SXZ
CALL COEFF(, )}, K-1,SY%)
SYZ2=8YZ
CALL COEFF(, },K-2,SYZ)
SYZ0=SYZ
C1J) = SYZ3-2.0*SYZ2 + SYZ0 !accumulate hat function
200 CONTINUE
WRITE(unit = 20) C ! store influences for this time step
100 CONTINUE
REWIND{unit = 10) !rewind file
DO400M =1, NTIM !step through all time
READ(unit = 10)B !retrieve known boundary conditions from file
IFM .EQ. 1) GOTOQ 410 !skip history loops if first time step
REWIND{unit = 20) !rewind influences file
READ{unit = 20)C !read first time step influences
DOS0OK =2, M !accumulate causal history effects
READ(unit = 20)C !retrieve influences from file
DO 6001 =1,NEQU !receiver loop
DO 600 ] =1, NEQU !source loop
B =B() - C{I, *PM-K+1, ) ! vector of knowns
600 CONTINUE
500 CONTINUE
410 REWIND({unit = 20)
READ(unit = 20)C ! retrieve influence matrix for first time step
CALL SOLVE(, P,C) !solve equations
400 CONTINUE
WRITE(unit = 40)P ! solution to file
END

Appendix 2, Half-step time stepping scheme

In the antiplane strain case, the Half-step algorithm can be summarized as (please note that the

authors make no claims as to the elegance of the code, but it does work!)
MAIN
PARAMETER (NEQU = 100, NTIM = 2000)
DIMENSION CINEQU, NEQU), PINTIM, NEQU), CHALF(NEQU, NEQU)
DO 100K =1,NTIM ! time loop to precalculate influence coefficients
DO2001=1,NEQU ! receiver loop
DT = QI*DELX/CI/2.0 ! time step size = half of full step size
DO 200J =1, NEQU ! source loop
SYZ3=0.0 !initialize dummies
SYZ2=00
SYZ0=00
SYZ3A =00
SYZ2A =00
SYZ0A =00

TEST = AMOD(FLOAT(K), 2.0) ! check for half (odd) or full (even) step

IF(TEST .EQ. 0.0)THEN
IF(K .EQ. 2THEN
CALL COEFF(, ], K-1,5YZ)
SYZ3A =SYZ
CHALF(, J) = SYZ3A
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EC CALL COEFF(, J, K, SYZ)
146 SYZ3=SYZ
g CALL COEFF(, ], K-1,5Y2)
SYZ2=SYZ
C{, ) =SYZ3-2.0*SYZ2
ELSE IFK .EQ. 4)THEN
CALL COEFF(, J. K. SYZ)
694 SYZ3=SYZ
CALL COEFF(L, J, K-2,SYZ)
SYZ2=SYZ
CALL COEFF(, ], K-3, SYZ)
SYZ0=SYZ
C(, J) = 0.5*SYZ3 - 1.5*SYZ2 + SYZ0
ELSE
CALL COEFF(l, ], K, SYZ)
SYZ3=SYZ
CALL COEFF(, ), K-2,SYZ)
SYZ2=SYZ
CALL COEFF(, }, K-4, SYZ)
SYZ0=SYZ
C{L, ) =05*SYZ3 - SYZ2 + 0.5*SYZ0
ENDIF
ELSE
IFK .EQ. ) THEN
CALL COEFF(, ), K, SYZ)
SYZ3A=SYZ
CHALF(,]) =SYZ3A
ELSE IF(K .EQ. 3)THEN
CALL COEFF(, ], K,SYZ)
SYZ3A =SYZ
CALL COEFF{, ], K-2,SYZ)
SYZ2A =SYZ
CHALF(, J) = 0.5*SYZ3A - 1.5*SYZ2A
ELSE
CALL COEFF({, J, K, SYZ)
SYZ3A =SYZ
CALL COEFF(, J, K-2,5YZ)
SYZ2A =5YZ
CALL COEFF(l, ], K4,5YZ)
SYZ0A =SYZ
CHALF(, J) = 0.5*SYZ3A - SYZ2A + 0.5*SYZ0A
ENDIF
ENDIF
200 CONTINUE
IF(TEST .EQ. 0.0)THEN !store appropriate odd and even influences
IF(K EQ. 22WRITE(unit = 20)CHALF
WRITE(unit = 20)C
ELSE
WRITE(unit = 30)CHALF
ENDIF
100 CONTINUE
REWIND(unit = 10) ! rewind boundary conditions file
DO400M =1, NTIM !step through all time
TEST = AMOD(FLOAT(M), 2.0)




READ(unit = 10)B ! retrieve known boundary conditions from file Boundary

IF(M .EQ. 1) GOTO 410 ! skip history loops if first time step 1 t
REWIND(unit = 20) !rewind files . elemen
REWIND(unit = 30) discretizations

READ{unit = 20)C !read first time steps
READ(unit = 30)CHALF
MDUM =M
IF(TEST .NE. 0.00MDUM = M-1 695
DO 500K =2 MDUM, 2 !accumulate history effects in DOUBLE steps
IF(TEST .EQ. 0.0)THEN
READ(unit = 20)C
ELSE
READ(unit = 30)CHALF
ENDIF
DO 6001 =1, NEQU !receiver loop
DO600] =1, NEQU !source loop
IF(TEST .EQ.0.0)THEN ! build vector of knowns
IF(K .EQ. 2THEN
B(D) = B[ - C{, )*PM-K+1, )
ELSE

B(D) = B - C{, )*PM-K+2, )
ENDIF

ELSE
B(I) = B(I) - CHALF(, )*PM-K+1,])
ENDIF
600 CONTINUE
500 CONTINUE
410 IF(TEST .EQ. 0.0)THEN ! retrieve influences for first step
REWIND(unit = 20)
READ{unit = 20)C
ELSE
REWIND{unit = 30)
READ(unit = 30)C
ENDIF
CALL SOLVE(B, P, C) !solve equations
400 CONTINUE
WRITE(unit = 40)P ! solution to file
END
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