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Most hydraulic fracturing simulators use a single value for Young’s modulus and Poisson’s
ratio, obtained by averaging elastic properties across the layers of the layered reservoir that are
hydraulically fractured. Some simulators use various approximate techniques (e.g. References
[1; 2]) to account for the layered nature of the reservoir. The most rigorous approach [3]
currently used in the industry deals with multiple layered materials in an approximate manner
by ‘stacking up’ a series of fully bonded single interface analytical solutions together. This
approach (and other less accurate ones) can lead to signi�cant errors in fracture width predic-
tion in cases where elastic properties vary from one layer to the next. Errors are compounded
by greater modulus contrasts, and by thinner layers.
In this paper, we present a multi-layered elastic model which provides highly accurate

fracture width and stress predictions in a layered reservoir environment. We allow any number
of parallel layers, with all layer interfaces restricted to being fully bonded. Layer thicknesses
can range from 0.2 to 1000 m, i.e. over three orders of magnitude (scaling would also allow
us to also study very thin layered materials, for example, such as are found in electronic
components). Very thick and very thin layers can be located adjacent to each other. Layers can
be assigned elastic properties that di�er by more than an order of magnitude. The fracture plane
can intersect any number of layer interfaces but is currently restricted to lie orthogonal to them;
however, the method is quite general and will allow for the introduction of multiple inclined
fractures. We neglect all �uid coupling e�ects because in this paper we deal exclusively with
the multi-layer elasticity scheme.
The multi-layer elasticity scheme uses a FT-based approach, documented separately in

References [4; 5], to generate a set of numerical Green’s functions on a �xed parent mesh that
spans the entire region of interest. Essential Green’s function data are stored in memory, and
embedded in a 3D DD method to allow solution of the fracture width pro�le given any set of
applied traction loads that can vary on an element by element basis. Equation solution is per-
formed iteratively using a highly e�cient iterative solver. By prescribing appropriate boundary
conditions in Fourier space, the problem domain may be made in�nite or semi-in�nite with
a traction-free half-space surface.
In Section 2, we describe the planar 3D fracture geometry in a layered material. We outline

the FT procedure which is used to construct the multi-layer Green’s function in Section 3.
In Section 4, we discuss discretization details and the assemblage of the in�uence coe�cient
matrix, followed by the equation solution procedure in Section 5. In Section 6, we discuss
the method employed to track the moving fracture boundary, and the growth criterion used
is summarized in Section 7. Section 8 describes three veri�cation problems involving a par-
tially loaded penny crack in a homogeneous material, a penny crack in a three-layer system,
and a penny crack located near the interface of a two-material composite. In Section 9, we
present results of a complex fracture growth simulation that demonstrates the generality of this
approach in solving planar fracture growth problems in layered materials. Conclusions are
drawn in Section 10.

2. PROBLEM DESCRIPTION

Figure 1 schematically depicts a typical problem of interest to us. A multi-layered elastic
material, with all layer interfaces parallel and fully bonded, contains a planar fracture, in
this case shown symmetric about x=0. The top layer ends at a traction-free surface, and the
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Figure 1. Multi-layered elastic material containing planar 3D fracture.

bottom layer is assumed to be of in�nite thickness. The fracture plane is oriented at 90◦ to the
layer interfaces, which means that all shear DDs on the fracture surface are zero. The normal
tractions on the fracture surface are the known boundary conditions, and the fracture width
is unknown. We will use the DD method [6], which is a boundary integral method designed
to solve crack problems, to solve for the fracture width given a known fracture pressure.

3. BOUNDARY INTEGRAL EQUATION FOR A PLANAR CRACK
IN A LAYERED MEDIUM

In this section, we describe the boundary integral equation that determines the width w of a
planar crack which is associated with a prescribed normal pressure p applied to the bounding
surfaces of the crack. Here the width w is de�ned to be the DD between the two surfaces
which represent the crack. For a vertical crack subjected to a normal pressure, the boundary
integral equation can be written in the form

p(x; y)=
∫
A
C(x; y; �; �)w(�; �) d� d� (1)

where A is the region occupied by the planar fracture and C(x; y; �; �) is the layer Green’s
function, which represents the horizontal stress �zz=p at the point (x; y) due to a unit point
normal DD Dz=w located at the point (�; �): Since we only need to track one stress compo-
nent �zz and one DD component Dz for this problem, we choose, for notational convenience,
to represent these by the symbols p and w, respectively. In the following subsections we will
outline the FT procedure which is used to construct the layer Green’s function in an e�cient
and accurate fashion.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:691–717
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3.1. Governing equations

Consider a linear elastic material that occupies a region in 3D space and which is in a state
of equilibrium. In this case the stresses �ij and the strains �ij= 1

2(ui; j+uj; i), which are de�ned
in terms of the displacement gradients ui; j= @ui=@xj at any point within the body, are related
by

�ij= ��kk�ij + 2G�ij (2)

where � and G are Lam�e’s constants that can be expressed in terms of the Young’s modulus
E and Poisson’s ratio � of the material by the formulae: �=E�=[(1 + �)(1 − 2�)] and G=
E=[2(1 + �)]. It is convenient to introduce the constants a; b; and f that are de�ned by:
a= �+ 2G; b= � and f=2G:
We assume that the elastic medium is in equilibrium so that the stresses satisfy the equi-

librium equations

�ij; j + fi=0 (3)

where fi are the applied body forces.
It is also useful in this context, in which the layer properties do not change in the x and z

(measured out of the page) directions but do vary in the y direction (see Figure 1), to rewrite
the system equations (2) and (3) in the form of a system in which the y derivatives have
been separated from the x and z derivatives:

@yT =AT + F (4)

where T represents the vector of stresses and displacements de�ned by

T =[ �yy �xy �yz uy ux uz ]T

the body force vector is given by F =[−fy − fx − fz 0 0 0]T; and A is the di�erential
operator involving only x and z derivatives that is de�ned by

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −@x −@z 0 0 0

−b
a
@x 0 0 0

(b2 − a2)
a

@xx − f2 @zz
(
(b2 − ab)

a
− f
2

)
@xz

−b
a
@z 0 0 0

(
(b2 − ab)

a
− f
2

)
@xz

(b2 − a2)
a

@zz − f2 @xx
1
a

0 0 0 −b
a
@x −b

a
@z

0
2
f

0 −@x 0 0

0 0
2
f

−@z 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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3.2. Reduction of layer partial di�erential equations to ordinary di�erential equations
using the FT

In this section, we make use of the FT pair de�ned by

ĝ(m; n) =
∫ ∞

−∞

∫ ∞

−∞
ei(mx+nz)g(x; z) dx dz (6)

g(x; z) =
1

(2	)2

∫ ∞

−∞

∫ ∞

−∞
e−i(mx+nz)ĝ(m; n) dm dn (7)

to reduce the governing system of partial di�erential equations into a system of layer ordinary
di�erential equations.
By taking the FT of the operator equations (5), and introducing the change of variables

(see Reference [7]):

ûs = −i(mûx + nûz)=k
ût = −i(nûx −mûz)=k

(8)

and


̂s = −i(m�̂xy + n�̂yz)=k

̂t = −i(n�̂xy −m�̂yz)=k

(9)

we obtain

@yT̂ = ÂT̂ + F̂ (10)

where

Â=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −k 0 0 0 0

b
a
k 0 0

(a2 − b2)
a

k2 0 0

1
a

0 0 −b
a
k 0 0

0
2
f

k 0 0 0

0 0 0 0 0
f
2
k

0 0 0 0
2
f

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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where k=(m2 + n2)1=2 and the elements of T̂ and F̂ have been arranged as follows:

T̂ =[�̂yy; 
̂s; ûy; ûs; 
̂t ; ût]T

and F̂ =[−f̂y;−f̂s; 0; 0;−f̂t ; 0]T.
We observe that unknowns involving �̂yy; 
̂s; ûy and ûs (the s-sub-system) are completely

decoupled from the unknowns involving 
̂t and ût (the t-sub-system). The s-sub-system is
su�cient to determine boundary value problems for 2D plane strain, while the autonomous
t-sub-system is the only additional part that needs to be added to the plane strain equations
in order to determine boundary value problems in 3D. A similar decoupling of the spectral
ordinary di�erential equations also occurs if the Hankel transformation is applied to the layered
elasticity problem (see, for example, References [8; 9]).

3.3. Exact solution to the layer ordinary di�erential equations and spectral coe�cients

Considering the wavenumber k as a parameter, we can now determine the homogeneous
solution to the system of ordinary di�erential equations (10) (see Reference [7]), which can
be expressed in terms of solutions to the s-sub-system and the t-sub-system as follows:[

Ts

Tt

]
=

[
Zs 0

0 Zt

][
As

At

]
(12)

where

Ts = [�̂lyy=k 
̂ls=k ûly ûls]
T and Tt =[
̂lt =k ûlt ]

T

As = [ A1 A2 A3 A4]T and At =[ A5 A6 ]T

and

Zs=

⎡
⎢⎢⎢⎢⎢⎣

−fe−ky (l4 − fky)e−ky feky (l4 + fky)eky

−fe−ky (l5 − fky)e−ky −feky −(l5 + fky)eky

e−ky kye−ky eky kyeky

e−ky (ky − l2)e−ky −eky −(ky + l2)eky

⎤
⎥⎥⎥⎥⎥⎦ (13)

and

Zt =

⎡
⎢⎣−

f
2
e−ky

f
2
eky

e−ky eky

⎤
⎥⎦ (14)

The constants lj in (12) are de�ned as follows:

l2 =
�+ 3G
�+G

; l4 =
2G2

�+G
; l5 =

2G(�+ 2G)
�+G

(15)

It is important to note that the spectral coe�cients required to de�ne the primary variables
can be expressed entirely in terms of the single wavenumber parameter k=

√
m2 + n2: This

property is a result of the invariance of the solution to rotations about the y-axis and can be
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exploited to reduce the FT inversion problem from one which involves sampling the integrand
at points throughout the (m; n) plane to what amounts to a 1D sampling of the wavenumber
parameter k: From such rotationally invariant solutions we would not expect to be able to
construct special solutions such as that for a vertical DD Dz, which is highly directional
and certainly does not share the same rotational invariance: However, we will see later in
this section that the solution for a point vertical DD can be expressed in terms of a linear
combination of three separate stress–traction discontinuities each of which are rotationally
invariant. The coe�cients of these three elemental stress–traction discontinuities are functions
of the directional wavenumbers m and n, which build in the required directional dependence
of the solutions.
The unknown coe�cients Aj(k) depend on the parameter k and we will refer to them as

the spectral coe�cients throughout this paper. It will be seen that the spectral coe�cients
provide a useful representation of the solution as they separate the exponentially decaying
part of the solution from the exponentially growing part of the solution. Once the spectral
coe�cients in any one layer are known, then using (12) it is possible to determine the stresses
and displacements at any desired point within that layer.
The spectral coe�cients Aj(k) are determined by solving a system of algebraic equations

for each wavenumber k. The algebraic equations are obtained by requiring that the tractions
and displacements are continuous across each of the interfaces in the layer, de�ning boundary
values for the problem, and prescribing the appropriate sources which represent a point DD. A
normal point vertical DD with a displacement jump �u in the z direction can be represented
by stress–traction discontinuities of the following form (see Reference [9]):

[T̂ (ys)]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�u(b2 − a2)
a

�ub
a

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
m2

(m2 + n2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�u(a− b)
0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

mn
(m2 + n2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

�u(a− b)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

The stress–traction discontinuities [T̂ (ys)] can thus be decomposed into a linear combination
of three discontinuity vectors, each of which is independent of the directional wavenumbers
m and n. Thus it is possible to solve for the spectral coe�cients for each of these discontinuity
vectors for all the required wavenumbers k: These spectral coe�cients are invariant to rotations
about the vertical y-axis. The directional dependence required to construct the in�uences due
to a vertical DD are therefore encapsulated in the above coe�cients, which depend on the
directional wave numbers m and n.
In order to model vertical fractures that run perpendicular to the layers, it is necessary to

have an expression for the stress normal to the fracture surface. In the co-ordinate systems
de�ned in Figure 3 it is necessary to determine the stress component �̂zz, which can be de�ned

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:691–717



698 E. SIEBRITS AND A. P. PEIRCE

in terms of the spectral coe�cients as follows:

k�̂zz =fn2A1e−ky + (−l6n2 − l7m2 + fn2ky)A2e−ky − fmnA5e−ky

−fn2A3eky + (−l6n2 − l7m2 − fn2ky)A4eky − fmnA6eky (17)

where we have de�ned the new constants l6 = 2G(2�+ 3G)=(�+G) and l7 = 2�G=(�+G).
Once the values of the spectral coe�cients Aj(k) in each layer have been determined (this

will be dealt with in more detail in the next section) and the FT of the displacements ûi(k) and
stresses �̂ij(k) within each layer have been determined, then the displacements and stresses
within each layer can be determined by applying formula (7) for the inversion of the FT.

3.4. Solution of the algebraic equations using the �exibility matrix method

In this section we describe the technique that is used to determine the spectral coe�cients
Alj (k) which de�ne the solution to a given boundary value problem. We �rst establish the
equations that determine the sti�ness properties of each of the layers in terms of the degrees of
freedom of the model. For the spectral methods that we use in this paper, the degrees of free-
dom in the model are represented by the unknown spectral coe�cients, that are parameterized
by the wavenumber k. Once we have established equations for the stresses and displacements
within each of the layers in terms of the internal degrees of freedom, we stitch all the lay-
ers involved in the problem together at their common interfaces by imposing conditions of
continuity in displacements and tractions across the interfaces. Discontinuous sources (such
as force discontinuities or displacement discontinuities) can be represented by introducing the
appropriate jump conditions across pseudo-interfaces introduced for this purpose. Finally, the
whole mechanical problem is completed into a well-posed system of equations by introduc-
ing the appropriate conditions at the boundaries of the pack of layers, e.g. speci�ed tractions,
speci�ed displacements, or a complementary combination of tractions and displacements. From
Equations (12)–(14), we observe that for very thick layers or large wavenumbers constructing
the system of layer equations directly from the solution (12) will lead to over�ow problems.
The scheme we use is based on the �exibility matrix method (see References [10–14]), which
we describe below.
Rather than determining the spectral coe�cients Alj (k) directly, the spectral coe�cients are

eliminated and the solutions for the displacements [us]= [ûy ûs]T at the top and bottom of a
layer are expressed in terms of the solution for the stresses [p]= [�̂yy=k 
̂s=k]T at the top and
bottom of the layers. In what follows we will, for the sake of brevity, not use the hats to
denote the fact that u and p are in fact the FTs of the displacements and stresses. (Note that
we only give the details here for the s-sub-system while those for the t-sub-system can be
obtained by following a similar sequence of steps).
In what follows the index l refers to the layer number while the subscripts t and b refer

to the quantities de�ned at the top and bottom of the layer. Equations (12) can be used to
express the displacements in terms of stresses using the �exibility matrix Rl as follows:

[
ult

ulb

]
=

[
Rltt R

l
tb

Rlbt R
l
bb

][
plt

plb

]
(18)
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Figure 2. Flexibility matrix sample points. Figure 3. A vertical DD in the middle layer
of three bonded elastic layers.

where the �exibility sub-matrices for the s-sub-system are as follows:

Rtt =
1
D

[ −l5(th + kd se2) −(l4th2 + fk2d2se2)
−(l4th2 + fk2d2se2) −l5(th − kd se2)

]
(19)

Rbb =
1
D

[
l5(th + kd se2) −(l4th2 + fk2d2se2)

−(l4th2 + fk2d2se2) l5(th − kd se2)

]
(20)

Rbt =
l5
D

[−(th + kd)se −k d th se
k d th se −(th − kd)se

]
(21)

Rtb =
l5
D

[
(th + kd)se −k d th se
k d th se (th − kd)se

]
(22)

where, for the sake of brevity the superscript l identifying the layer number has been omitted,
we have used the notation th = tanh(kd), and se= sech(kd); and D=f2[(1 + k2d2)se2 − 1]:
If we assume that the ith interface (see Figure 2) is fully bonded then the jump in the

stresses �pi=pi+1b −pit or the displacements �ui= ui+1b − uit are zero. If there are prescribed
jump conditions they can be expressed in the following form:

pi+1b =pit +�pi; ui+1b = uit +�ui (23)

Using conditions (23) in (18) we obtain the following equations for the displacements
either side of the ith interface that lies at the top of the ith layer:

⊗ : uit =Rittpit + Ritbpib=Rittpit + Ritb(pi−1t +�pi−1) (24)

� : ui+1b =Ri+1bt p
i+1
t + Ri+1bb p

i+1
b =Ri+1bt p

i+1
t + Ri+1bb (p

i
t +�pi) (25)

Subtracting (24) from (25) and using the jump condition for the displacements given in
(23) we obtain

�ui=Ri+1bt p
i+1
t + (Ri+1bb − Ritt)pit − Ritbpi−1t + Ri+1bb �p

i − Ritb�pi−1 (26)
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Since the quantities �ui; �pi, and �pi−1 are speci�ed in a typical problem, separating
the known from the unknown quantities, we can re-write (26) in the form of a set of vector
recurrence relations or di�erence equations for the tractions pt at the top of three successive
layers (these points are marked by the ⊗ symbol in Figure 2):

Bipi+1t + Cipit + A
ipi−1t =�i (27)

where Bi=Ri+1bt ; C
i=(Ri+1bb − Ritt); Ai= − Ritb; and �i=�ui − Ri+1bb �pi + Ritb�pi−1. Once

the traction vectors pit at the tops of each of the layers have been determined, the traction
vectors below each of the layers can be readily determined from (23). An e�cient recursive
procedure to solve the block tri-diagonal system (27) and be obtained by using a block LU
decomposition (see Reference [13]). The �exibility relation (18) can be used to determine the
displacements on either side of each of the interfaces. The desired spectral coe�cients with
reference to any given co-ordinate system can be determined using (12).
Because the �exibility matrix approach involves tanh and sech functions, which are bounded

as kd→∞, the �exibility matrix method is well suited to treating problems for which the
products kd are large. However, as kd→ 0 certain coe�cients in the �exibility matrices Rtt
and Rbb have an asymptotic behaviour which is O((kd)−3). A re�nement of the �exibility
matrix method, which makes use of asymptotic rescaling to enable it to deal with both very
small and very large wavenumbers, is given in Reference [5].

3.5. The high wavenumber limit—the uniform asymptotic solution

In the case of a layered material with multiple layers it is not possible to obtain a simple
closed-form solution for the spectral coe�cients and therefore for the stresses and displace-
ments due to a DD for example. Indeed, for a problem that has three layers and two interfaces
or more, the analytic solutions will involve an in�nite series of image DDs that are required
to impose the appropriate boundary conditions on the interfaces, which is cumbersome for
numerical computations. Thus, for a more complex problem, one inevitably has to resort to a
numerical solution of the system of algebraic equations for the spectral coe�cients and then
a numerical inversion. This numerical inversion process, as we will see later in this paper,
is essentially equivalent to inverting a Hankel transform. The numerical inversion process
is complicated by the presence of highly singular sources in the problem that increase the
high-frequency content of the spectral coe�cients. Indeed, the only feasible way to obtain
any sort of numerical inversion in the presence of a concentrated DD, is to �rst subtract o�
the singular DD coe�cients for a DD in an in�nite medium and to then invert the remain-
ing low frequency components using numerical integration (see, for example, Reference [7]).
However, for problems in which the DD comes very close to an interface, which occurs when
modelling a crack touching or intersecting an interface, the asymptotic solution in the limit
k→∞ provided by a DD in an in�nite medium no longer removes all the high frequency
components that prove to be troublesome for numerical integration. If the DD is a small
but �nite distance from the interface, then eventually as k→∞; the spectral coe�cients will
tend to the in�nite space values. However, if the source DD is really close to the interface,
the actual spectral coe�cients will di�er signi�cantly from the in�nite space DD solution
for wavenumbers up to k=O(h−1), where h is the distance between the source DD and the
interface. For this reason we make use of the analytic spectral coe�cients for a vertical DD
which is in one of two bonded half-planes that can have di�erent material properties. This is
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the appropriate asymptotic limit for a source DD that is situated close to an interface. It al-
lows us to signi�cantly reduce the range of wavenumbers that need to be calculated—in some
cases by two orders of magnitude. But perhaps more importantly it substantially reduces the
high-frequency content of the spatial in�uences that need to be integrated numerically in order
to obtain an integrated Green’s function—this becomes particularly important when trying to
arrive at Green’s functions for elements that come into contact with the interface between
two materials.
For this purpose we make use of special solutions which are the exact spectral coe�cients

for vertical DDs in one of two bonded half-planes. However, the typical situation will involve
a DD element that �nds itself sandwiched between two interfaces. These interfaces separate
the layer, in which the DD element falls, from the outside world. The ‘outside world’ might
comprise two or more distinct layers. Thus, the next step in �nding useful asymptotic solu-
tions would be to determine the solution for a DD element that falls in the middle layer of
three elastic layers, i.e. within a layer that is sandwiched between two bonded elastic half-
planes. As mentioned earlier, the solution to this problem will involve an in�nite series of
image DDs that are distributed about an in�nite periodic sequence of image interfaces that
are located further and further away from the source as the terms of the series progress.
These image DDs will result in features that alter the spectral coe�cients that decay at a
rate of e−2kH ; where H is the distance from the image to the original source DD. Thus, the
e�ects of the remote DD will die very rapidly, leaving spectral coe�cients whose behaviour
is dominated by the source and the nearest images. In this section, we outline the construction
of the uniformly valid leading order asymptotic approximation to the spectral coe�cients for
the three-layer problem. These asymptotic spectral coe�cients are then used to eliminate the
high wavenumber components from the spectral coe�cients. Since only the remaining low
wavenumber components need to be inverted, this procedure signi�cantly reduces the compu-
tational cost of numerical inversion and integrated kernel evaluation. This uniform asymptotic
solution makes it possible to e�ciently determine the e�ect of a single DD element that
touches two interfaces simultaneously.
Consider a three layer elastic medium comprising two half-planes that are bonded to a �nite

strip with the moduli and spectral coe�cients de�ned as shown in Figure 3. If the vertical
DD falls in the region where hL�hU , the three-layer solution will tend for large k values to
the solution for a vertical DD in the upper part of two bonded half-planes, while if the DD
falls in the region where hL�hU , the three-layer solution will tend for large k values to the
solution for a vertical DD in the lower part of two bonded half-planes. If on the other hand,
the DD is not much closer to one interface than the other so that hL∼ hU , then as k→∞
the ultimate asymptotic solution is the solution for a vertical DD in an in�nite medium to
which both the upper and lower solutions tend. Thus, we have a typical situation that occurs
in asymptotic analysis (see, for example, Reference [15]), in which two di�erent asymptotic
solutions are valid in di�erent regions but they are both valid in a �nite overlap region that
they both share. In this case, it is possible to obtain an asymptotic approximation that is
uniformly valid over the three regions by superimposing the two asymptotic solutions and
subtracting the solution in the match region

Al;�j (k) k→∞∼ Al;Uj (k) + Al;Lj (k)− Al;∞j (k) (28)

where Al;�j (k) is used to represent the uniformly valid asymptotic solution, Al;Uj (k) represents
the corresponding bonded half-plane spectral coe�cient in which the interface is above the
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source DD, Al;Lj (k) represents the corresponding bonded half-plane spectral coe�cient in which
the interface is below the source DD, and Al;∞j (k) represents the spectral coe�cient for a
point vertical DD in an in�nite medium with material properties �2 and G2 for the middle
layer. Complete details of this uniform asymptotic solution are given in Reference [4].

3.6. Inversion of the FT

In this section, we discuss the process of inversion of the FTs of the in�uences. In order
to make it possible to use the spectral method to determine the spatial in�uences of the
singular case in which a crack intersects the interface between two layers, it is necessary to
�rst subtract o� the uniform asymptotic spectral coe�cients Al;�j (k) (discussed in the previous
sub-section) for a vertical DD in the middle layer of a three-layer elastic medium from the
numerical spectral coe�cients Alj (k) determined using the techniques described in Section 3.4,
i.e.

Al;Lj (k)=Alj (k)− Al;�j (k) (29)

Since Alj (k)
k→∞−→ Al;�j (k), it follows that Al;Lj (k) k→∞−→ 0. If the uniform asymptotic approxi-

mation closely mimics the true solution, then Al;Lj (k) will only be non-zero for relatively
low-frequencies. Thus after peeling o� the asymptotic solution, the remaining spectral coef-
�cients Al;Lj (k) that need to be inverted contain only relatively low-frequency components.
As a result, it is possible to invert the low-frequency spectra Al;Lj (k) very e�ciently us-
ing numerical integration. The high-frequency components, that are associated with the uni-
form asymptotic solution Al;�j (k), are numerically intractable. However, these uniform spectral
coe�cients can be can inverted analytically to yield approximate spatial stress and displace-
ment components due to a point vertical DD in a three-layer material (see Reference [4]).
The point kernels must be multiplied by the appropriate basis functions to obtain the desired

elemental DD in�uences. In this paper, we shall only consider the case of piecewise constant
basis functions, but any of the standard DD discretizations can be obtained for multi-layered
media using the spectral method by implementing the appropriate choice of basis functions.
In order to complete the process, the low-frequency components also need to be integrated
against the appropriate basis functions. Since we do not have an explicit expression for the
low-frequency spectral components that have been inverted numerically, it is not possible
to obtain an analytic expression for the integrated low-frequency components. The spatial
functions associated with these low-frequency spectra are smooth functions since they only
involve low-frequency Fourier modes all of which are smoothly varying functions in space. It
is therefore possible to integrate the contribution of these low-frequency spectral components
very accurately with a low-order Gauss integration scheme in order to determine a set of
integrated in�uence coe�cients.
Finally, in order to obtain the stress components in the lth layer of a multilayered elastic

medium due to a vertical DD in one of the layers, we superimpose the low-frequency stress
components �l;Lij that are associated with the spectral coe�cients Al;Lj (k), and the singular
stress components �l;�ij due to the uniform asymptotic spectral coe�cients Al;�j (k), i.e.

�lij=�
l;L
ij + �l;�ij
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Figure 4. Polar co-ordinates for the FT inversion.

A similar procedure can be followed to obtain the displacement components due to a vertical
DD in a multi-layered elastic medium, i.e.

uli = u
l;L
i + ul; �i

3.6.1. Reduction to Hankel transforms. Applying the inverse FT de�ned in (7) to �̂zz we
obtain

�zz(x; z)=
1

(2	)2

∫ ∞

−∞

∫ ∞

−∞
e−i(mx+nz)�̂zz(m; n) dm dn (30)

We now express the integration variables m and n in (30) in terms of polar co-ordinates
(k; �) in which m = k sin � and n = k cos �. We also express x and z in terms of the polar
co-ordinates (r; ) so that x = r sin and z = r cos (see Figure 4).
In terms of these new variables

mx + nz = kr cos(�− )
so that (30) can be written in the form

�zz(r sin; r cos) =
1

(2	)2

∫ ∞

0

∫ 	

−	
e−ikr cos(�−)�̂zz(k sin �; k cos �) d�k dk (31)

By introducing the notation

Kpq(k; r; ) =
1
2	

∫ 	

−	
e−ikr cos(�−) cosp � sinq � d� (32)

we can write the terms in �̂zz(k sin �; k cos �) as a linear combination of integrals of the
following form:

Ispq =
1
2	

∫ ∞

0
e−kyAj(k)k sKpq dk (33)
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Making use of the identity (see Reference [16])

Jn(�) =
1
2	

∫ 	

−	
e−in�ei� sin � d� (34)

where Jn is the nth-order Bessel function, it is possible to represent the integrals Kpq in the
form

Kpq =
p+q∑
j=0

( j∑
i=0
�i
( z
r

)2i)
J2j(kr) (35)

Thus by making use of (31)–(35) it is possible to invert �̂zz by evaluating Hankel transforms
of the form

Hn(r; y) =
∫ ∞

0
h(k; r; y)Jn(kr) dk

for which there exist e�cient algorithms (see, for example, Reference [17]). The process is
made even more e�cient by the fact that only the low frequency components �̂l;Lzz need to
be inverted, because all the high-frequency components have been accounted for by means of
the uniform asymptotic solution for a three-layer material.

4. ASSEMBLING THE INFLUENCE MATRIX

The procedure described above can be used to determine the in�uence coe�cients of any
shape of DD element that we may use to tessellate a planar fracture as well as any choice of
shape function. However, the algorithm we propose makes use of a rectangular Eulerian grid
that is �xed in space. In addition, we assume a constant DD variation over each element. The
rectangular element shape allows us to employ analytical integrations (see Section 3), which
are considerably more e�cient than numerical integrations.
Typically the set of all possible in�uence coe�cients are pre-calculated before the fracture

propagation process begins. We observe that due to the horizontal translational invariance of
the problem, only the in�uence of a single sending element for each horizontal row of elements
on all the possible elements in the mesh needs to be stored. This is depicted schematically in
Figure 5, where the in�uence between a source element and a receiver de�ned by either dashed
arrow is identical to that de�ned by the solid arrow. These stress in�uences are determined
by adding the integrated uniform stress components �l;�zz and the integrated low-frequency
stress components �l;Lzz at receiving points located at the centres of the receiving elements.
Exploiting this invariance property leads to a substantial reduction in the memory requirements
as well as the computational cost of calculating the in�uence coe�cients.
As the fracture evolves through the pre-de�ned rectangular grid, more elements are activated

and their in�uences are assembled into an in�uence matrix which de�nes the elasticity matrix
for the current growth step. Assembling all possible send–receive pairs of in�uences and
storing them in a matrix C; we obtain the following discrete form

J∑
j=1
Cijwj = pi (36)
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Figure 5. Shift property of layer-parallel elasticity
matrix in�uences.

Figure 6. Partially fractured element schematic,
showing three sub-elements on a parent tip element.

of the crack integral equation (1), where J is the total number of active elements, wj is the
unknown width (DD) value within the crack at the centre of the jth element, and pi is the
prescribed pressure within the crack at the centre of the ith element.
A regular mesh has an advantage over a moving mesh in that ‘book-keeping’ becomes

much easier to administer. In addition, interpolation errors that arise in the moving mesh case
due to re-meshing are avoided. Such errors can accumulate with each growth step. The �xed
mesh approach allows us to pre-calculate, for a given layered problem, all elastic in�uences.
We can then extract in an ‘on-the-�y’ fashion the in�uences from the parent set that are
required for the current fracture extent at the current growth step.
Interfaces will, in general, not align with the element edges of the regular mesh. We thus

allow any row of parent elements to be sub-divided into rectangular sub-elements (to within
a speci�ed tolerance) so that interfaces exactly match sub-element edges. This is depicted in
Figure 6, where a tip element is cut by two interfaces into three sub-elements. The elastic
solution is obtained using the sub-element mesh, whereas tracking of the fracture front (see
Section 6) is performed on the regular parent mesh. This sub-division of elements ensures
that we obtain an accurate elastic response.
A major potential drawback of a regular mesh approach is that the fracture tip is not

captured accurately. We employ special ‘partially fractured’ elements along the fracture tip to
ensure that an accurate width pro�le is obtained. The self-e�ect in�uence coe�cients, Cii, of
each tip element i contain special correction factors that ensure that an accurate solution is
obtained using the piecewise constant elements. This is summarized in References [18; 19].
We have extended this work, based on square elements, to rectangular elements. The correction
factors ensure that the width solution, obtained from the constant DD elements, is comparable
to linear elements without incurring any extra computational overhead.

5. SOLUTION OF ELASTICITY EQUATIONS

The elasticity equations are most e�ciently solved by means of an iterative solver. We use
an L1D iterative solver [20] that is e�cient for this type of problem involving full matrices
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with diagonal dominance. For example, on a 200MHz PC, a L1D scheme will solve a 64×64
or 4096 element system in 152s, using 15 iterations. A direct solver requires 139min of CPU
time (55 times slower).
As noted in Section 4, the algorithm has been structured to make use of the translational

invariance property so that only the essential in�uence coe�cients are stored, allowing large
problems to be solved very e�ciently. A 4096 element system would normally require 134MB
of storage just for the in�uence matrix (assuming that double precision is used). Our algorithm
requires only about 2 MB of storage for the same sized problem.

6. FRACTURE FRONT-TRACKING PROCEDURE

The logic required to keep track of the fracture front location is complicated. Special care
must be taken to ensure that ‘close shave’ situations, that arise when the front is in close
proximity to an element corner and=or edge, are handled correctly; that large or small fracture
growth jumps relative to the element size are handled correctly; that merging fronts (from
the same fracture or from separate fractures) are handled correctly; and that front segment
connectivity is tracked correctly. However, because the major part of the front-tracking logic
only needs to track along the tip elements, this process is e�cient. A typical CPU update time
for a 50× 50 parent mesh is around 1–5 s on a 200 MHz PC, depending on the complexity
of the fracture front. A 100× 100 parent mesh typically requires about 15 s of CPU time per
crack growth update. Most of the CPU time for larger problems is used to check that a closed
contour has been obtained for each fracture front, and is not expended in the front-tracking
process. Unfortunately, every single element in the parent mesh is currently used to perform
this check, which uses the property that the sum of the angles from an interior reference point
(i.e. element centre) to all the vertices of a polygon (i.e. fracture front) equals 2	.
The fracture geometry is stored in the form of a vector, containing numbers with values

0; 1; 2; 3; 4; 5, or 6, depending on the local geometry of the fracture front. Recall that all
elements are rectangular in shape, so a mesh can be set up as shown in Figure 7, where ‘0’
indicates a solid (unfractured) element, and all other numbers indicate fractured elements. In
order to de�ne the fracture surface in Figure 7, ‘2’ indicates a straight edge, ‘3’ indicates
an obtuse-angled corner, ‘4’ indicates an acute-angled corner, the combination ‘5’ and ‘6’
indicates a ‘peninsula’-type con�guration, and ‘1’ indicates a fractured interior element.
The fracture front is automatically assigned on an element by element basis, as shown in

Figure 8. In this �gure, the mined element corners are indicated by the ‘+’ symbols, and
the fracture front segments are the solid lines connected by small squares and diamonds at
all element cut points. An element cut point is simply the location where the fracture front
segment cuts the current element—there are always two cut points assigned per tip element.
In Figure 9, we schematically illustrate the front advance procedure in the front-tracking

algorithm. The dashed arrows are the growth vectors from the previous growth step. In order
to represent the advanced fracture front on the rectangular mesh, the arrowheads are joined
together by straight dashed lines. The locations where the dashed lines cut element edges are
termed cut points. All cut points are then joined together to form new fracture front segments.
The new growth vectors, indicated by the solid arrows, are assumed to originate from the
centre of each front segment (one per element). The logic will only allow one growth vector
per element, one growth segment per element, and two cut points per element. Notice that
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Figure 7. Initial fracture pattern in ‘binary’
form as used by simulator.

Figure 8. Initial fracture front pattern, showing cut
points, front segments, and fractured elements.

Figure 9. Front-tracking control layout.

this type of growth logic introduces a natural smoothing of the fracture front because of the
combination of dashed pseudo and solid actual fronts that are generated as part of the process.
Whenever the fracture front is concave, multiple growth vectors may enter a new element.

If this situation occurs, we delete all but one of the multiple growth vectors. Whenever the
fracture front is convex, or if large growth increments are allowed, we can generate situations
where potential new tip elements do not contain growth vectors. In these cases, extra front
segments are added as needed so that each tip element will contain a front segment, so that
the front is unbroken.
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Whenever high curvature exists along the front, situations may arise where only one side
of a potential tip element is cut by the dashed lines. Since this situation would imply that
we are trying to resolve features at the sub-mesh level, these ‘peninsula’-type situations
are not allowed to occur, and the associated growth vectors are deleted. The neighbours
of each deleted growth vector are joined up instead to form a smoother front. Deletion of
these ‘peninsula’-type situations is consistent with the mesh resolution. The front will auto-
matically adjust during the next growth increment, in accordance with the fracture growth
calculations, should a peninsula that has a resolution of more than one element in size
persist.
At all times, connectivity must be maintained along the front. All front segment nodes are

made aware of their neighbours via a connectivity array. The algorithm performs automatic
internal checks to ensure that connectivity is always maintained. This type of front control
is quite general. It is possible to grow any number of separate multiple fronts. In addition,
there is logic that allows di�erent parts of the same front or separate fronts to merge once
they intersect each other. The key to controlling such a system is local autonomy. Each front
segment only cares about its neighbor on each side, and is also aware of any potential clash
with other approaching fronts.

7. FRACTURE GROWTH CONTROL

The mechanism of fracture growth depends on the characteristics of the material in which
the fracture is being propagated. In the case of hydraulic fracture propagation, the host rock
may o�er little or no resistance to the fracture propagation process. In such cases, frac-
ture growth is dominated by the growth of the expanding �uid front, and the host rock
can be assumed to have zero toughness. In this paper, we do not treat this situation. At
the other extreme, the fracture toughness is large enough so that it dominates the frac-
ture growth process and viscous e�ects are negligible. We could also consider the case
where a combination of rock toughness and viscous behaviour determines the rate of fracture
growth.
In the absence of �uid �ow, the fracture growth criterion is simple to encode. Our algorithm

is general enough to incorporate any fracture growth rule. We use the approach of Mastrojannis
et al. [21], where the normal growth increment for front propagation of a planar fracture is
dictated by the local stress intensity strength as

�L=�Lmax

(
KI − KIc
Kmax
I − KIc

)�
for KI¿KIc

�L=0 for KI¡KIc

(37)

where, according to Reference [21], � is a material-dependent constant, Kmax
I is the maximum

stress intensity computed before fracture growth along the front and KIc is the rock toughness.
In this work, we choose �=1 (we view � as a numerical parameter), and assume �Lmax to be
a user-de�ned constant. In the absence of �uid �ow coupling, the growth rate is unimportant.
Typically, we choose a maximum growth increment �Lmax along the front of the order of
the element size. The simulator can also handle growth increments larger or smaller than the
element size.
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Figure 10. Nine-noded patch used to sample width for stress intensity calculation.

The stress intensity KI is calculated at a �nite number of points along the fracture front. This
is accomplished using a local nine-noded patch of fracture widths, as depicted in Figure 10.
The elements containing small squares constitute the current nine-noded patch. The arrowhead
indicates the centre of the current fracture front segment, where we wish to calculate a
stress intensity factor. The arrow base, indicated by the small circle, indicates the position at
which an averaged width value is determined, based on bi-quadratic interpolation from the
surrounding nine elements in the patch. The length of the arrow is the distance r behind the
fracture front at which the width value is computed, according to the standard plane strain
formula

KI = lim
r→ 0

Gw
2(1− �)

√
	
2r

(38)

where w is the width, G the local shear modulus and � the Poisson’s ratio. In the application
of (38), we sample the width at two points, r0 and r1 to obtain discrete widths w0 and
w1, along the same normal arm from the current fracture tip location, and apply a two-term
asymptotic expansion of form

w r→0= c0r1=2 + c1r3=2 +O(r5=2) (39)

The leading term

c0 =

(
w0r

3=2
1 − w1r3=20

r1=20 r3=21 − r1=21 r3=20

)

is used in (38) to obtain an accurate value of stress intensity given by

KI =
Gc0

2(1− �)

√
	
2

(40)

The distances r0 and r1 are user-de�ned, but a value of r0 = z�x, and r1 = r0+�x where �x
is the element length and z=2–5, generally yields accurate results. In the case of rectangular
elements of size �x by �y, we allow r0 to vary with direction as

r0 = z(�x cos2 �+�y sin2 �)

where � is the angle between the local search radius r0 and the x-axis.
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Figure 11. Width pro�le along radius of partially
loaded penny crack.

Figure 12. Geometry of penny crack spanning
three elastic layers.

8. VERIFICATION OF ALGORITHM

8.1. Partially loaded penny crack

In order to test the accuracy of the basic algorithm and the ability of the mesh to handle
a curved boundary, we model a partially loaded penny crack which has a known analytical
solution. Figure 11 shows the width pro�le along the radius of the partially loaded penny
crack of radius R, obtained using the algorithm. In this problem, the central section is loaded
over radius 0¡r¡a, where a=R=2, by a constant pressure p. The analytical width solution
is given by [22] as

w(r) =
4(1− �)Rp

	G

⎛
⎝√1− (r=R)2 + a

R
E(’1; r=a)−

√
R2 − a2
R2 − r2

⎞
⎠ if r6a

w(r) =
4(1− �)Rp

	G

⎛
⎜⎜⎜⎝
√
1− (r=R)2 + r

R
E(’2; a=r)−√

R2 − r2
R2 − a2 −

r2 − a2
rR

F(’2; a=r)

⎞
⎟⎟⎟⎠ if r¿a (41)

where G is the shear modulus, � is Poisson’s ratio, F(•; •) and E(•; •) are the incomplete
elliptic integrals [23] of the �rst and second kind, respectively, and

’1 = arcsin

√
R2 − a2
R2 − r2

’2 = arcsin

√
R2 − r2
R2 − a2
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Figure 13. Normalized width vs radial distance for three layer case.

The penny crack was modelled using 1324 elements, with all tip elements partially fractured
so as to match the penny crack perimeter in a piecewise linear fashion. The total CPU time
was 18 s on a 200 MHz Pentium PC, using a 48× 48 parent mesh encapsulating the penny
crack. The numerical results (MLAYER3D) are clearly very accurate.

8.2. Fully loaded penny crack in three-layer material

A penny crack of radius c straddling three layers is shown in Figure 12. The outer layers
are sti�er than the inner layer by a factor �, and the penny crack is loaded under constant
pressure p. Our width results along the y-axis compare very well with those of Lin and Keer
[24] (obtained from their paper by digitization), as shown in Figure 13. Each problem was
solved in 41 s using a 200 MHz Pentium PC, based on a 30× 30 parent mesh encapsulating
the crack.

8.3. Stress intensity calculations along front perimeter

Kuo and Keer [25] have published results for stress intensity factors along the perimeter of
a penny crack located orthogonal to the interface of a two-material composite, as shown in
Figure 14. The penny crack is loaded by a constant pressure, p, and the elastic properties are
de�ned by a constant Poisson’s ratio of �1 = �2 = 0:3 and a ratio between the shear moduli,
given by �=G2=G1. Figure 15 shows a comparison between our results and those obtained
by Kuo and Keer (extracted from their paper by digitization) for various choices of �. Their
results match our’s except for a small constant vertical shift. However, we know that the
exact stress intensity factor for the uniform material case (�=1) is given by [25]

KI
p
√
	c

=
2
	
� 0:6366 (42)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:691–717



712 E. SIEBRITS AND A. P. PEIRCE

Figure 14. Geometry of a penny crack located near the interface of a two-material composite.

Figure 15. Stress intensity factors around the perimeter of a penny crack located near the interface
of a two-material composite.

This value of 0.6366 matches our result almost exactly, where we have employed a parent
mesh of 96× 96 elements.
The e�ect of reducing the search radius in the asymptotic stress intensity computation is

shown in Figure 16. Here, we have used a 48× 48 parent mesh to encapsulate the penny crack
in a homogeneous material (i.e. �=1). Scatter in the numerical results increases as the search
radius is decreased because the nine-noded patch starts to include collocation points outside
the crack. The use of an interpolation scheme which discounts the spurious contributions
from outside the crack would reduce these errors considerably. In addition, the tip elements
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Figure 16. E�ect of reducing search radius on accuracy of asymptotic stress intensity computation.

Figure 17. Fracture fronts obtained when three
separate fractures combine into a single one.

Figure 18. 3D surface plot of half-width on frac-
ture surface at 20th growth step.

do exhibit larger errors than the interior ones, which contributes to the errors in the stress
intensity calculation determined by the smaller search radii.

9. GENERAL APPLICATION OF MULTI-LAYER SCHEME

9.1. Multiple interacting fracture growth under uniform conditions

As an e�ective demonstration of the front-tracking logic, we show in Figure 17 the fracture
pattern at various growth steps, based on three starting fractures in a homogeneous material
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Table I. Multi-layer case properties.

Layer j Layer thick, dj (m) yj top of layer j E (GPa) � �v (MPa) KIc (MPa)

10 1000 1161 20 0.3 0.1 0.2
9 100 161 10 0.2 0.2 0.1
8 20 61 50 0.1 0.5 0.5
7 3 41 20 0.4 0.4 0.2
6 2 38 10 0.2 0.2 0.1
5 20 36 40 0.1 0.1 0.4
4 5 16 30 0.3 0.1 0.3
3 1 11 20 0.2 0.1 0.2
2 10 10 70 0.1 0.1 0.7
1 1000 0 30 0.1 0.1 0.3

(E=10 GPa; �=0:1). Each fracture is kept at the same constant pressure of p=1 MPa
throughout, and the element size is 1m squared. Zero toughness and zero con�ning stress are
assumed to act on the fracture. This example shows a number of features of the algorithm.
First, it demonstrates the ability of the algorithm to cope with multiple convex- and concave-
shaped fractures. Second, it demonstrates the ability of the front-tracking logic to cope with
two separate fronts merging, as well as two sections of the same front merging. Third, it
demonstrates the ability of the logic to cope with islands that vanish after a number of
growth steps. Fourth, it demonstrates that the fracture grows into a more circular front shape
at later growth steps, which is the expected �nal con�guration based on energy conservation
principles. Figure 17 shows the fracture fronts superimposed on each other from growth steps
0–5, 10, 15 and 20 (where the 0th step is the starter geometry). Figure 18 is a 3D surface
plot of fracture half-width over the entire fracture surface at the 20th growth step. The total
CPU time for all 20 growth steps was 793 s on a 200 MHz Pentium PC, using a 100× 100
parent mesh.

9.2. Multi-layer multiple interacting fracture growth

In this sub-section, we repeat the same experiment of Section 9.1, but assume that a planar
fracture propagates in a layered material. Table I summarizes layer properties for the same
three starter fractures as used in Section 9.1. Higher layer numbers are located at shallower
depths. Layer interfaces are denoted by variable yj, thicknesses by dj, con�ning stresses by
�v and toughnesses by KIc. Our parent mesh extends over the vertical range 0¡y¡100 m.
The thick top layer (see Table I) is added to avoid free surface e�ects (which the simulator
automatically models) at the top of the stack of layers.
Figure 19 shows the front locations at growth steps 0–5, 10, 15, 20, as before. The in�u-

ence of the di�erent elastic layers is clearly evident on the growth pattern. Figure 20 shows
a 3D surface plot of the fracture half-width at the 20th growth step. Again, the e�ect of
modulus variation is clearly evident in the result. The three starter fractures are located in
the high modulus=toughness region 49m¡y¡60m. Downward vertical growth is restricted at
y=36 m by layer j=5 which has higher toughness. Upward vertical growth is initially
restricted into the low modulus layer j=9 because the drop in elastic modulus produces a
drop in stress intensity as the fracture moves across the interface. This layer also has lower
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Figure 19. Fracture fronts obtained when three
separate fractures combine into a single one in a

layered material.

Figure 20. 3D surface plot of half-width on frac-
ture surface at 20th growth step.

Figure 21. 3D surface plot of half-width
on fracture surface at 20th growth step for

E(j=9)=50 GPa.

Figure 22. Fracture tip approaching an interface.

toughness, so we might expect more front advance into the lower toughness region, but there
is a delicate interaction between toughness and modulus. Layer j=9 exhibits greater frac-
ture width due to its lower modulus. The overall extent of fracture growth is less in the
multi-layered case, because toughness reduces the growth potential as compared to the con-
trol problem of Section 9.1. Figure 21 shows the fracture half-width for the case where all
data remains the same, except that we increase the Young’s modulus in layer j=9 to 50GPa.
Fracture growth into this layer is now promoted, but the maximum width in this layer is
reduced. The total CPU time for all 20 growth steps, including generation of the multilayer
in�uence coe�cients, was 1021 s on a 200MHz Pentium PC, using a 100× 100 parent mesh.
Whether or not fracture growth is favoured in the low or high modulus=toughness regions

can be explained by examination of (38). Assume that a fracture approaches an interface
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that separates two layers with higher (Eh) and lower (Es) Young’s moduli, as shown in
Figure 22. We assume, for argument’s sake, that the materials have the same toughness. As
the fracture approaches the interface, its width pro�le near the tip remains approximately
unchanged, because it is partly governed by the bulk of the fracture. When the tip is located
in the material with higher modulus it will thus experience higher stress intensity due to (38),
and will thus fracture more easily. As the fracture crosses into the lower modulus region,
fracture growth becomes more restricted because stress intensity has dropped (for the same
approximate fracture width). Once the fracture enters the lower modulus material, it will,
however, start to experience more fracture width, as shown in Figure 20.
Note that our model ignores all e�ects related to potential branching, etc., of the fracture

front as it approaches and intersects a material interface. Such e�ects can be signi�cant (e.g.
Reference [26]), but are not dealt with in our current simpli�ed model.

10. CONCLUSIONS

We have described a planar 3D fracture growth algorithm, capable of modelling the growth
of a planar fracture in an elastic multi-layer material. The fracture growth algorithm uses a
DD approach, with numerical Green’s functions for layered materials generated using a FT
method. The numerical scheme is based on a �xed mesh consisting of rectangular elements.
A front-tracking algorithm is used to trace the fracture tip in a piecewise linear fashion. Special
tip elements are employed that allow an element to be partially fractured. This ensures that
accurate widths and stresses are obtained even though piecewise constant rectangular elements
are used in the discretization process. Veri�cation and general examples were presented that
demonstrate that the numerical scheme is both accurate and e�cient.
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