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ABSTRACT: We present a method for the efficient and accurate modeling of planar three-dimensional (3D)
hydraulic fracture growth in laminated reservoirs. We verify the scheme against available numerical and ana-
lytical results. We also demonstrate the effect of layering on both the shape and extent of a planar fracture that

crosses a number of elastic layers.

1 INTRODUCTION

Since the 1960s, there have been many theoretical
and experimental investigations into the effects of
elastic layering on the growth of hydraulic fractures
(e.g., [1-15]). Numerical models have been devel-
oped to model the effects of layering, but most have
been at best partially successful in this respect (e.g.,
[24, 25, 26]). Such schemes are prone to significant
numerical errors under certain conditions, such as
when thin layers (relative to the fracture dimensions)
are present in the model. The main issue at stake is
the complexity in deriving a complete mathematical
and numerical description of the effects of layers.

In this paper, we describe an algorithm to nu-
merically couple the elasticity and fluid flow rela-
tions that describe the growth of a hydraulic fracture
in a laminated reservoir. The elastic model used to
describe the layering is highly accurate and efficient.
We show the results of three verification problems
to test the accuracy of the model. Finally, we show
an example that demonstrates the effect that changes
in elastic properties have on both the fracture width
and extent of hydraulic fracture growth.

2 MODEL DESCRIPTION

We make the following assumptions. The reservoir
host rock is linear elastic. All layers are assumed to
be parallel to each other, as depicted schematically
in Fig. 1. Each layer is defined by a unique Young’s
modulus and Poisson’s ratio. Each layer may, in
general, be associated with unique lateral confining

stress, rock toughness, and leakoff properties. All in-
terfaces between successive layers are assumed to be
fully bonded. No interfacial slip or delamination is
allowed between layers. Layer thicknesses can be
varied from 0.2 m to over 250 m. A single plane, as-
sumed to lie orthogonal to the layer interfaces, con-
tains the hydraulic fracture. The hydraulic fracture is
forced to remain planar during growth, and can in-
tersect any number of layers.
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Fig. 1: Schematic representation of layered reservoir and sym-
metric (about x = 0) hydraulic fracture

3 GOVERNING EQUATIONS

There are essentially three unknowns in the hydrau-
lic fracturing problem - fracture width, fluid pres-
sure, and fracture front location. This combination



of unknowns assumes that we have imposed a time
step on the system. We can thus iterate on the frac-
ture front at marker points along the perimeter, using
tip velocity data, until convergence is achieved.

An alternative approach, that we have adopted, is
to iterate on the time step. This combination as-
sumes that we have a predefined fracture front at the
start of the current time step, obtained by incre-
mental growth from data at the end of the previous
time step. This approach is also computationally less
intensive than the former.

In either case, we require three sets of equations to
solve the problem. These equations are the elasticity
and fluid flow equations, and an integral equation
equating the volume of injected fluid with the vol-
ume of fluid stored in the fracture plus the volume
that has leaked off into the reservoir.

We use a 3D displacement discontinuity method
[19] to describe the elastic response of the layered
rock mass to the growing fluid-filled hydraulic frac-
ture. Because we currently impose the restriction
that the fracture plane is orthogonal to the layering,
we require no shear terms in the equations. A full
derivation of the equations is given in [16-17], and
will not be repeated here. We can write the final set
of algebraic equations as

Cw=p-o, ¢))

where

w = fracture width
p = fluid pressure

o .= confining stress

C = influence coefficient matrix

and the elastic influence matrix, C, is a function of
the fracture geometry, the elastic properties of each
layer, and the layer thicknesses.

The fluid flow process in the fracture is assumed
to behave Poiseuille-like, and is described by the
following two-dimensional (2D) continuity equation
(for Newtonian fluids):
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and

v, = Carter leak-off velocity

v, = source velocity

t = current time

1heg = time at which current point started leak-off
C, = Carter leakoff coefficient

Q = current injection rate

= fluid viscosity

In the aforegoing, no mention has been made of
the material toughness of each layer. In our current
formulation, we assume zero toughness in each
layer.

4 DISCRETIZED EQUATIONS

As noted in Section 3, we employ a displacement
discontinuity method to describe the elastic response
of the laminated reservoir due to the injected fluid-
filled hydraulic fracture. The fluid flow equations
are discretized using a finite difference scheme. In
this section, we first describe the meshing strategy
before elaborating on some details of the discretiza-
tion of the elasticity and fluid flow equations.

4.1 Meshing strategy

The meshing strategy is important, as it dictates the
entire development of the numerical model. There
are two basic options. The first option is to use tri-
angular elements (e.g., Delaunay triangulation). This
allows us to match the fracture front with the nu-
merical mesh in a natural manner. However, triangu-
lation requires periodic re-meshing after a number of
growth steps. In the case of multiple materials, the
cost of regenerating the elastic influence coefficient
matrix is expensive. In addition, re-meshing is prone
to interpolation errors,

The other option, which we have selected, is to
use a regular mesh of rectangular elements. This has
the advantage of allowing us to calculate all influ-



ence coefficients once at the start of the simulation.
At each growth step, we simply extract the relevant
influences required for all active elements. In addi-
tion, no coefficient regeneration is required should
we, for example, wish to perform another simulation
with different layer toughness, confining stresses,
leakoff, or injection schedule.

We employ a Fourier-based boundary integral ap-
proach to solve the elasticity equations, designed in
such a way that we never need to discretize the layer
interfaces. This significantly reduces the problem
size, and allows us to obtain very accurate fracture
widths in a layered material using a very efficient
algorithm.

However, a regular mesh poses a unique set of
problems at the fracture front. To avoid a binary-like
fracture front, we require sophisticated numerical
procedures to account for fracture tip elements that
are “partially fractured,” as will be explained later.

We choose to discretize the fracture plane into a
parent mesh of rectangular elements, as shown in
Fig. 2. Layer interfaces will not, in general, match
up exactly with element edges. We thus allow ele-
ment subdivision so as to enforce an exact match
with layer interfaces (Fig. 3). In the case of a close
shave with an interface (e.g., sub-divided element
less than % of parent element size), we slightly ad-
just the interface elevation to match the element
edge exactly. Element sub-division is necessary in
order to retain fracture width accuracy in the pres-
ence of interfaces. Width errors due to mismatched
interface positions can be surprisingly large (> 15
%) if sub-division is not used, because the elastic
layers influence each other locally. An altemative
approach would be to introduce an “averaged” elas-
tic modulus into each element cut by an interface;
however it is the authors’ experience that this can
result in unacceptably large errors in fracture width.

The rectangular parent mesh is binary in nature.
However, the fracture front is assumed to be piece-
wise linear, and can intersect a tip element in a non-
binary manner, as shown in Fig. 3. We employ spe-
cial “edge-correction” adjustments to the elasticity
influence coefficient matrix [21] to account for these
situations. This allows us to obtain an accurate width
result near the fracture tip even though we are em-
ploying a binary mesh system. This is demonstrated
later in some test problems. The fluid flow equations
also take into account the fracture front locations
(see Section 4.3).
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Fig. 2: Schematic representation of vertical oriented parent
mesh (solid lines) containing two fractures, and two horizontal
interfaces (dashed lines)
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Fig. 3: Partially fractured tip element
4.2 Elasticity

The final set of algebraic equations (1) for elasticity
can be written as:

N
;Cijwj =Pi‘(°'c)v i=LN )]

where we have assumed that there are N active ele-
ments on the fracture surface at the current time
step. In (7), we have assumed a constant variation of
displacement discontinuity over each rectangular
element, with collocation performed at the center of
each element [19].

The influence matrix C contains a complete de-
scription of the layered elastic rock mass, including
a free surface (if desired). The derivation of C for a
layered elastic medium is summarized in [16-17].
Generation of the complete multi-layered elastic in-
fluence coefficient matrix for a parent mesh of 64 by



64 elements typically takes less than 1 minute of
CPU time on a 450 MHz PC machine.

4.3 Fluid flow

The 2D fluid flow in the planar fracture is modeled
using a finite difference scheme. Discretization of
(2) leads to the following standard system of equa-
tions
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The notation used above differentiates between ele-
ment centers (upper case S, etc.) for the pressure
collocation positions in (10) versus element edges
(lower case s, etc.) for the effective permeability co-
efficients in (11).

As mentioned earlier, the finite difference stiff-
nesses (11, 12) can be adjusted at each fracture tip
element so as to track the actual fracture front. This
is accomplished by adjusting the west, east, south,

4
and/or north arm lengths of each tip molecule to
exactly match the local fracture front [27]. This en-
sures that the finite difference result retains second
order accuracy.

5 BOUNDARY CONDITIONS FOR COUPLED
PROBLEM

The boundary conditions at the fracture front are
important to define, as they completely control the
shape of the fracture and the fracture pressure
behavior. The boundary condition for the fluid equa-
tion in the coupled problem is that the flux is zero at
the tip (in the absence of fluid lag [28]):

q,, =0 (13)

The flux boundary condition, because it involves
pressure gradients, implies a non-unique solution.
However, global mass balance ensures that we can
find a unique set of fluid pressures to satisfy all sets
of equations.

The flux boundary condition is very difficult to
implement on a 2D finite difference mesh containing
molecules with adjustable arm lengths along the
fracture perimeter [27]. Therefore, we have chosen
to implement a (much simpler) fluid pressure
boundary condition at the fracture tip. Even though
this is a rather artificial choice of boundary condi-
tion, we nevertheless obtain accurate results (see
Section 8). We are curmrently in the process of im-
plementing the more rigorous flux boundary condi-
tion into the simulator.

6 FRACTURE GROWTH CONTROL

The fracture front advance from one time step to the
next is controlled by the magnitude of fluid velocity
near the fracture tip. The growth increment of any
point along the fracture front is simply the product
of the local normal component of fluid velocity and
the current time step.

We use a marker method to track the fracture
front explicitly, as depicted schematically in Fig. 4.
The dashed arrows are the growth vectors from the
previous growth step. The arrowheads are then
joined together by straight dashed lines. The loca-
tions where the dashed lines cut element edges are
termed cut points. All cut points are then joined to-
gether to form new fracture front segments. The new
growth vectors, indicated by the solid arrows, are
then assumed to originate from the center of each
front segment (one per element). The logic will only
allow one growth vector per element, one growth



segment per element, and two cut points per ele-
ment. Notice that this type of growth logic intro-
duces a natural smoothing of the fracture front be-
cause of the combination of dashed pseudo and solid
actual fronts that are generated as part of the proc-
ess.

Whenever the fracture front is concave, multiple
growth vectors may enter a new element. If this
situation occurs, we delete all but one of the multiple
growth vectors. Whenever the fracture front is con-
vex, or if large growth increments are allowed, we
can generate situations where potential new tip ele-
ments do not contain growth vectors. In these cases,
extra front segments are added as needed so that
each tip element will contain a front segment, so that
the front is unbroken.

Whenever high curvature exists along the front,
situations may arise where only one side of a poten-
tial tip element is cut by the dashed lines. These
situations are not allowed to occur, and the associ-
ated growth vectors are deleted. The neighbors of
each deleted growth vector are joined up instead to
form a smoother front. Deletion of these peninsula-
type situations does not cause any artificial control
on the front. The front will automatically adjust dur-
ing the next growth increment according to the frac-
ture growth calculations.

At all times, connectivity must be maintained
along the front. All front segment nodes are made
aware of their neighbors via a connectivity array.
The algorithm performs internal checks to ensure
that connectivity is always maintained. This type of
front control is quite general. It is possible to grow
any number of separate multiple fronts. In addition,
there is logic that allows different parts of the same
front or separate fronts to merge once they intersect
each other. The key to controlling such a system is
local autonomy. Each front segment only cares
about its neighbor on each side, and is also aware of
any potential clash with another incoming front.

solid
region T !

\
N
PR——t

M=%

fractured
region

Fig. 4: Schematic of fracture front marker system

In order to demonstrate the complexity allowed
by the front-tracking algorithm, we show a compos-
ite of a number of growth steps in Fig. 5 for an ini-
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tial planar three-fracture system that merges into
a single pseudo-radial fracture after a number of
growth steps. In this simulation, we have assumed
that the elastic fractures are driven by the same pre-
scribed constant pressure in each element (i.e., no
fluid behavior has been added to the system), under
zero toughness and zero confinement conditions.
The input parameters used were E = 10 GPa, v =
0.1, and applied pressure p = 10 MPa. The example
demonstrates the ability of the front-tracking algo-
rithm to cope with merging fronts, disappearing is-
lands, and concave sections. The total CPU time for
this problem was 7.2 min. on a 450 MHz PC ma-
chine, and based on a 100 by 100 parent mesh.

e w00
Fig. 5: Fracture fronts at growth steps 0-5, 10, 15, 20, for initial
three-fracture system.

7 ELASTICITY-FLUID COUPLING

The elasticity and fluid flow equations are coupled
together numerically in an iterative algorithm. In our
scheme, there are three sets of unknowns to solve
for, viz., the fracture width and fluid pressure on
each element, and the time step. There are many
ways to couple the elasticity and fluid flow equa-
tions together. We present two approaches here.

7.1 Picard Coupling

The simplest coupling approach is to use a Picard it-
erative strategy on width and pressure, with an up-
dated time step calculated at each global iteration
based on preservation of volume balance. Picard it-
eration can be unreliable, however, and is very sen-
sitive to a narrow range of under-relaxation parame-
ters of 0.2 < o < 0.3 typically. Iteration counts can
also be high (10 to 100) depending on the problem
being solved and the choice of conversion toler-
ances, although each iteration is quick. In addition,
later iterations are faster than earlier ones given an



efficient iterative solver for the elasticity and fluid
flow equation systems. Picard coupling can be
summarized as follows:

Update time step and current time for this
iteration IT, using global mass balance

v

Given latest width prediction, sotve 2D fluid
flow system for total fluid pressure prr.1n2

Apply Picard update to fluid pressure
Prr = Cprran + (1-00pmr.

v

Given latest fluid pressure prediction, solve
clasticity system for fracture width w1

y

Apply Picard update to width
wir = 0wrr.ga + (1-00Wm.y

v

Next global iteration [T+1

7.2 Damped Quasi-Newton Coupling

We favor a damped quasi-Newton scheme, where
we simultaneously iterate on width, pressure, and
the time step. Iteration counts of 6 to 10 global itera-
tions are typically achieved. Damping is used to en-
sure that initial guesses do not stray too far from the
desired solution, so as to avoid divergence of the so-
lution. This damping procedure is complicated, and
will not be described here.

We will present the Newton derivation in one-
dimensional (1D) form, for simplicity. The relevant
planar 3D equations are given in Appendix B. We
will also assume zero leakoff and constant injection
rate for simplicity. Recall the elasticity (1), fluid
flow (2), and global volume balance equations (the
latter follows directly from (2) by integration),
which we can write as

Cw=p-o, (14)
Mt = (Dw)p) +K (15)
er, =(t,, +ANQ (16)

?
where (o) =d(e)/dx, K is the injection source (or
sink) term, ¢,,, = — A, t is the current time, V7 is a

vector of integration weights defined by the frac-
tured areas of each element, and superscript T is the

transpose. Note that, at all times, we maintain
exact volume balance by the use of (16).

Let (#, B,Ar) be the final (converged) state, and
let (w, p,At) be the initial state at the first iteration.
Thus we have

(W=w+6w,p=p+dp,Af = At +3t). (17)

Linearization of (14-16) at the final state, after ma-

nipulation, gives the following 3 by 3 block system
of Newton residual equations:
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and (¢) indicates that A and B operate on épand

ow, respectively. The discretized forms of (19) and
(20) are summarized in Appendix A.

The above 3 by 3 block system (18) can be col-
lapsed into a 2 by 2 block system by eliminating the
time step equation from the system to obtain
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where Aw = (w, —w,_,,) . After solution of the 2 by
2 system (22), we can extract the time correction
from

&=(VTdw-r)/Q (23)
The 2 by 2 block form (22) with supplemental calcu-
lation (23) is identical to, but better conditioned
than, the 3 by 3 block system (18). At first glance, it

appears that the 2 by 2 system is less efficient than
the 3 by 3 system in terms of storage because the

dyadic product AwV fills the lower left block of the
Jacobian (in the 3 by 3 system the corresponding
Jacobian block is sparse and penta-diagonal). How-
ever, we can avoid this increased storage by first

performing the operation Aw(V 7 &) . The bracketed

operation is a dot product. The remaining task is a
scalar multiplication. The implication is that the
lower left matrix block can be reduced to a sparse
penta-diagonal form, with significant storage sav-
ings.

7.3 Start-up solution for coupled algorithm

The coupled algorithm requires a start-up solution in
order to iterate successfully. We use the following
scheme. For a point source, we employ a starter
fracture of 5 by 5 elements. Initial guesses for frac-
ture width and pressure are obtained by invoking the
exact radial solution [20]. Thereafter, at all later time
steps, we simply use the maximum fluid pressure
from the previous time step as the starting guess on
all elements, and find an initial width profile that
matches this assumption. In the case of a line source
(such as will occur along a perforated wellbore), we
employ a corrected version of the exact solution for
a KGD-type fracture [23] instead of the exact radial
one.

8 TEST PROBLEMS

8.1 Static partially loaded radial fracture in
homogeneous material

Sneddon [22] provides an exact solution of fracture
width as a function of radius for the case of a par-
tially loaded penny crack in a homogeneous mate-
rial. The exact width, w, is given by

2
w(r)=i;(1_TV)”ch-r26—Jl—a’/cz) (24

where

p = applied fracture pressure over radius r<a
¢ = fracture radius
r = current radius

In our test problem, we choose the centrally loaded
region to be defined by a = ¢/2. We used a parent
mesh of 24 by 24 square elements to describe the en-
tire fracture. Fig. 6 shows the exact and numerical
(*C3D’) results. The match is excellent, even close
to the fracture tip. This problem demonstrates that
our numerical scheme provides highly accurate frac-
ture width results even though we are modeling a
curved fracture shape using a coarse binary parent
mesh.
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Fig. 6: Width profile along radius of partially loaded penny
fracture

8.2 Static radial fracture in three-layer material

Lin and Keer [18] have published a set of results for
a static radial fracture spanning three elastic layers,
as shown in Fig. 7. The Young’s modulus of the
middle layer is assumed to be E, and the bounding
layers have Young’s moduli of nE, where = 2, 4,
or 10. Fig. 8 shows the normalized fracture width as
a function of distance along the y axis for both the
Lin and Keer results and our’s (‘MLAYER3D’). The
match is excellent, and demonstrates the ability of
our numerical scheme to deal with abrupt changes in
layer elastic properties.
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Fig. 7: Geometry of penny fracture spanning three elastic lay-
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Fig. 8: Normalized width vs. radial distance for threc-layer
case

8.3 Fully coupled radial fracture in homogeneous
material

An exact solution for a fluid-driven radial fracture
propagating in a homogeneous elastic material is
available [20]. The input properties used were E =5
GPa, v=0.2, Ax=Ay=5m, Q = 2.5x102 m*/s, and
p = 0.2 Pass. Fig. 9 shows the fracture width as a
function of fracture radius at the 19% growth step
(when ¢t = 92 min.) for the exact (‘UMN’) and nu-
merical (‘C3D’) cases. Fig. 10 shows the fluid net
pressure versus radius. Fig. 11 shows the average
fracture tip growth rate as a function of current frac-
ture tip radius compared with the exact solution. In
all cases, the match is very good, especially consid-
ering that no special attention has been given to the
asymptotic behavior [20] near the fracture tip. The
total CPU time was 9.4 min on a 450 MHz PC ma-
chine, and based on a 64 by 64 parent mesh.

Radial frac ISTEP = 19
1.0E<R
8.0E-03
E
g 60803/ « G3D: Nowton
3 ——UMN
o 4.0E03 4
&
2,0E-03 -
0.0E+00
0 25 6 75 100 125
y(m)
Fig. 9: Width vs. radius at 19" time step
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Fig. 10: Net pressure vs. radius at 19" time step
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Fig. 11: Average fracture tip velocity vs. fracture tip radius

9 FULLY COUPLED FRACTURE GROWTH IN
A MULTI-LAYERED MATERIAL

Table 1 defines the layer properties and thicknesses
of a multi-layered reservoir. We grow a hydraulic
fracture, starting at the source location shown in Fig
12, under a constant injection rate of Q = 0.01 m%s.
Fluid viscosity is taken to be 1 Pa.s, and the element
size is fixed at Ax = Ay = | m. The confining stresses



and rock toughness in each layer are assumed to be
zero in this hypothetical example.

Layer Layer top E(GPa) | v
Thickness (m) clevation y
(m)

600 640 66 0.25
10 40 22(=E) | 025
10 30 22 0.25
20 20 4.4 0.25
1,000 0 44 0.25

Table 1: Layer properties for multi-layer problem

Fig. 12 shows the fracture surface at the 28th time
step (when ¢ = 7.1 min.). The fracture clearly favors
growth into the material with lowest Young's
modulus. The upper barrier zone with high Young's
modulus prevents uncontrolled height growth. Fig.
13 shows an oblique view of the fracture half-width
over the fracture surface, and we can see how the
layering dramatically affects the fracture width pro-
file.

It is important to note that no confining stress was
included in this simulation - all width changes across
interfaces are purely a function of changes in elastic
properties. The use of a pseudo 3D model (that uses
a single averaged Young’s modulus and Poisson’s
ratio for all layers) would result in a radial fracture
shape with elliptical width profile. We see that a cor-
rect description of the elastic properties of the lay-
ered reservoir has a significant influence on both the
fracture width and fracture extent. The total CPU
time for this problem was 31 min. on a 450 MHz PC
machine, using a 64 by 64 parent mesh.

Fig. 12: Fracture shape at 28 th time step R

10 CONCLUSIONS

‘We have presented a fully coupled method for mod-

eling the propagation of planar 3D hydraulic frac-
tures in laminated reservoirs. The algorithm uses a
Fourier-based displacement discontinuity method to
generate the layer-dependent influence coefficient
matrix. All layers are assumed to be fully bonded
together. The fluid flow equations are solved using a
standard finite difference scheme. The equations are
coupled together using a damped quasi-Newton
scheme. The fracture front is advanced, based on the
fluid velocities near the fracture tip. The front posi-
tion is carefully tracked in relation to the parent
mesh so as to obtain a smooth front profile despite
the use of a binary mesh.

We have demonstrated the accuracy of the
scheme, by comparing with available numerical and
analytical results. We have also shown that the hy-
draulic fracture width profile and growth direction is
strongly dependent on the elastic properties in each
layer. The model serves as a useful tool for the de-
sign of hydraulic fractures in laminated reservoirs.
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APPENDIX A: Discretization of A and B operator
matrices in 1D case

In 1D, the A and B operators can be discretized as
follows. Following the notation of Fig. A.1, the cur-
rent element, with collocation point C, has length
(M + h)2.

<4—h, —Peh >
w C E

Fig. A.1: 1D coupled model discretization

The neighboring elements have collocation points W
and E. Discretization of Bdéw gives
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we obtain
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Similarly the term Adp becomes

11
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APPENDIX B: 3D forms for A and B matrices

In the planar 3D case, the block system of equations
has the identical form to the 1D result, except that
each component takes on its 3D form. In 3D, the op-
erator matrices A and B become

4= pedE)+ 2 o6r2)

(B.1)

B‘EE(D” (-)) (D( oy (.)] B2)

The planar 3D forms of the discretized A and B
operators can be extrapolated from the 1D formulae,
and are given by
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