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Initiation of shape instabilities of free boundaries
in planar Cauchy—Stefan problems
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The linearized shape stability of melting and solidifying fronts with surface tension is discussed
in this paper by using asymptotic analysis. We show that the melting problem is always linearly
stable regardless of the presence of surface tension, and that the solidification problem is
linearly unstable without surface tension, but with surface tension it is linearly stable for those
modes whose wave numbers lic outside a certain finite interval determined by the parameters
of the problem. We also show that if the perturbed initial data is zero in the vicinity of the front,
but otherwise quite general, it does not affect the stability. The present results complement
those in Chadam & Ortoleva [4] which are only valid asymptotically for large time or
equivalently for slow-moving interfaces. The theoretical results are verified numerically.

1 Introduction

There has been considerable interest in the shape instabilities of moving free boundary
problems which arise as models of physically important phenomena. In this note we study
the criteria for the onset of instabilities of a planar solidification solution of the l-phase
Stefan problem with surface tension (see equations (1)-(5) in §2). This may be considered
as a simplified mathematical model of the solidification of a pure alloy neglecting
temperature effects (see Mullins & Sekerka [1J and Langer [2] for a discussion of this class
of models). Morphological instabilities of this sort are generally called Mullins—Sekerka
instabilities after their initial study [1] of a quasi-stationary version (diffusion equation
replaced by Laplace’s equation which is compatible with slow-moving fronts) of the present
model. The stability of melting fronts has been treated by Turland & Peckover [3] in the
context of a 2-phase version of this model. Chadam & Ortoleva [4]) obtained results for
the present model in qualitative agreement with those obtained for the quasi-stationary
version (see [2] for a recent summary) for slow-moving solidification fronts and with
Turland & Peckover’s 2-phase version for melting fronts. In the present work we generalize
those of Chadam & Ortoleva [4] to solidification fronts moving with arbitrary velocity.
This work, as does [4), studies the stability of shape perturbations of x/2 4/ similarity
planar solutions with the front positioned at « v/¢. It has been shown in [5], and by Ricci
& Xie [6] with a more complete analysis, that the above similarity solution is the global
attractor of all planar solutions with the same Stefan number (ku,, in the notation of
equations (1)—(5) in §2), if ku, < 1. That is, if ku, < 1, any planar solution with the
interface initially at R(0), arbitrary, and with sufficiently regular data (u,, —u,(x) and
x(u, — 1,(x)) belonging to L'(R(0), c0)) evolves with its interface always within a finite
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distance of the « \/1 interface of the similarity solution selected by the desiderata ku,, [5, 6).
It is for this reason that we use the x/2 /1 similarity solutions as the base planar solutions
about which the linearized stability is performed. It should be noted that for ku, > 1 these
similarity solutions are not available, and indeed, the model in equations (1)-(5) of §2
breaks down in that it admits planar solutions for which the velocity of the front blows up
in finite time [5). Travelling wave solutions to this problem are only available at the critical
value ku, =1 (corresponding to a = oo in the similarity solution) with the velocity
depending on the rate at which the initial data approaches u_ [6, 8]. As such, these
travelling wave solutions are inappropriate as the planar solutions on which to base the
stability analysis. On the other hand, the use of the time-dependent similarity solutions
leads to more complicated differential equations for the amplitudes of the perturbations in
that they have variable coefficients. As a result, the analysis must be carried out at some
fixed time T with the front at the position « v/ 7. As one might expect, the stability criterion
which is derived in this paper does not depend on the position of the front but rather has
the 7 dependence enter through the velocity of the front, V' =a/2+/T. This work
generalizes that in [4), which required that T co, or equivalently, if R = a 4/ Tis to remain
finite, that « and hence V' =a/2 vT-0.

For time-dependent stability problems of this sort, it has been observed [7] that the
growth of a perturbation at a particular time can depend quite dramatically on the initial
behaviour of the concentration field in the vicinity of the front. In this study we are
specifically attempting to preclude this situation by considering instabilities that are
autonomously selected by geometric interactions. We therefore restrict our study to the
situation in which the planar front is evolving with the concentration field having reached
the planar equilibrium value in the vicinity of the front. Analytically, we impose a strong
version of this condition, demanding that the perturbed concentration field be identically
zero in some interval ahead of the front. We show that for perturbations of this sort which,
away from the front, can be quite general, the instability is determined by the autonomous
geometric selection of instabilities and not the particular form of the initial concentration
perturbation.

In §2 we introduce the model] problem and derive a boundary integral equation for the
amplitude function governing the linearized shape stability, which involves a complicated
double integral. We then derive a set of coupled integral and integro-differential equations
which are equivalent to the former but which only involve single integrals. In §3 we derive
the asymptotic estimates of the solutions of the integral equations. These estimates are then
used to derive the asymptotic behaviour of the amplitude of the shape perturbations in §4.
Physical interpretation of these theoretical results are also given in §4. The results of § 3 and
4 are computationally intensive, and are presented in theorem-proof form for precision and
to facilitate the flow of rather long arguments. The proofs are not rigorous (i.e. errors are
not controlled), but serve to indicate the location of the arguments. The numerical
verification of the results is outlined in §5. A summary is given in §6.
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2 Model problem and integral equation formulation

The simplified non-dimensional form of the model [4] is

%=m¢Qm0>w>n M
u=vyK, on Qx,0N=0,1>T, ()
Vu-¥Q =-k7Q, on Qx,)=0,:>T, 3
u(x,T) = uy(x), in Q(x,T) = Q\x)>0, 4)
u(x,)—>u,, as |x|-o0,t2T, %)

where u is the concentration of the melt, O(x, £) = 0 is the solid-melt interface with the solid
occupying Q(x,7) <0, K= (2IVOPF) ' IVOIEAQ-L1V(IVQI*) VO] is the mean curvature of
the interface, and & > 0 is a constant. The equilibrium concentration in (2) has been taken
to be zero by a change of variable. In addition, T > 0 is the initial time, xe R?, re([T, o),
v 2 0 and u_,, the ambient concentration, are constants. When y = 0, problem (1)-(5) is a
standard Stefan problem. With y &0 a higher concentration - the Gibbs-Thomson
relation - is required on the boundary to maintain a more curved configuration.

While there is always a difficulty with mass loss in one-phase problems with surface
tension and constant &, the above model problem might be considered a reasonable
approximation in the almost-planar context of current interest. A more general version for
which mass is conserved has k™! in equation (3) replaced by p —u (interface), where p is the
density of the solid and the concentration at the interface, u (interface) = yX from equation
(2) [1]. Since at the onset of instability the interface is almost planar (i.e. X small) so that
p > vK and hence k™' = (p—yK) =~ p a constant. In addition, since we are interested in
solidification fronts with arbitrary velocities, the diffusion equation is used for the
concentration field in equation (1) rather than the quasi-stationary version [1] using the
Laplace equation. This latter is only compatible with fronts moving very slowly so that the
external concentration field can be maintained at steady-state.

With Q(x, ) = x— R(¢) the planar version of problem (1)-(5) is

u u

5 =5 5> R, t>T, (6)
u=0, on x=R(,t>T, 7

ou e
i k'R(f), on x=R@),t>T, (8)
u(x, T) = uy(x), x> R(T), ®
ux,t)>u,, as x->+o,tzT. (10)

Clapeyron & Lamé [9] found a similarity solution of (6)-(10)

P

1,(x, 1) = —(a/k)e*" f e dy+u,, an

/247t

R()=avi (12)

15 EIM'4
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where a satisfies the equation
2 ® 2
ae "’J eV dy =ku,. a3
2/2

Clearly, the signs of « and u,, are the same. Here a < 0 corresponds to the melting problem,
and a > 0 corresponds to the solidification problem. We assume that « =+ 0 in this paper.

It has been shown that the similarity solution is asymptotically stable in the class of
planar solutions in [5], and with a more complete analysis in [6]. More precisely, with some
technical conditions on the initial data 1,(x), the difference between the similarity solution
(11)-(13) and any planar solution with the same k&, u__ is finite for all time. Thus, studying
the shape stability of any planar solution reduces to studying the shape stability of the
corresponding similarity solution (11)-(13). As mentioned above, the asymptotic shape
stability (T, t - co) has already been studied in [4]. This corresponds to slow-moving fronts,
since if the initiation position R (T)=a+/T is to remain finite, then « and hence the
velocity of the front V' = R,,( T) = a/2 4/ T must tend to zero. Here we will discuss the shape
stability for arbitrary, finite, initial time 7. This represents a essential difference from the
results of [4] in that it provides information about the initiation of instabilities at finite times
with finite velocities.

Considering non-planar perturbations, we write

u(x,p, 1) = u(x, ) +eu(x,y, 1)+ O(c°), (14)
x=R(y,0) = R()+€R(y, 1)+ O(?). (15)

Substituting (14) and (15) into (1}(5), we obtain the following equations for the
perturbations u(x, y, ) and R(y,1)

aa—‘; =Au, x> R, 1>T, (16)
_ du, v R _
U= OTR—EE’?, on X = Rp(l),t > T, (‘7)
cu [ OR u, -
= k TR R, on x=R,(1,t>T, (18)
u(x,y,T) = &(x,p), x> R(T), (19)
u(x,y,1)=0, as x->ow,t2T. (20)

Making the change of variables

ou v
q=u+?:R+-2-RW (21)
and letting
qix, . 1) = wix, )e" e, (22)

R(y,0) = flne', (23)
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(I/] > 0), we obtain

%" a"’+[_/t:)+12j(:)]( O "1) ‘=0, x>R,1>T, (24)
w=0, on x=R/(),1>T, 25)

a—: =k'fi)e™, on x=R()>T, (26)

w(x,T) = x(x), x> R(T), 27

wix, :)ﬁ—%’zﬂoe"‘, as x->+0,t2T. (28)

IfE(x, £ 1,7) = 1/2 v/[n(t—7)]) e-=-9"3¢-71 depotes the fundamental solution of the heat
equation, using the divergence theorem and taking into account the double layer
discontinuity of the heat potential, we obtain:

“”[R (), 1] = f

€O

XOE [R(:),g,rndguj'drf {[a""(g n-Y ]

Ry(T)

x [An)+ 2D e™ EJR (1,6 1, 1]}— J' ew SZ[RA. TV ELR (1), R (1), t,7]d7.  (29)

Following Rubinstein [10) and Chadam & Ortoleva [4], this equation can be decoupled into
the following integro-differential equation

A0 = ke +k f ‘ D) +EAD)e ' x [P(1, 7) + T4, 7)) dr, (30)

where the kernels P, I" and the inhomogenous term f are found to satisfy

P(tT) = 2 j Qe ¢, 1) ELLR (0,5, 1,71 € ~2 f Plu, 1) ELR(0), Ry 1, i), (B1)

[ (7)

nn=-yl 2J E[R,(1),&,1,7]dE-2 f I, 1) E[R D, R}, 1. ), (32)

Ryn 1

I(n) = 2J XE)E[R,(1),£,1, T)dE —ZJ1 K1) E[R(0), R (7),1,7]dT. (33)
Ry(T)

Examining the linearized shape stability is equivalent to discussing the asymptotic
behaviour of the amplitude f{r) as 1— T 0*. In [4], the asymptotic behaviour of f{1) was
examined for 7,7+ co. It was pointed out that the results agreed with those derived by
Ockendon [11] using different methods but left open the possibility that other instabilities
might occur at short times. The present analysis generalizes that of [4, 11), and agrees with
it when T— co (equivalently «—0).

3 Asymptotic estimates of P(1,7), I'(1,7) and I(r)

From (30) we have T<7<1¢ so t—7->0* if +—T-0" If we find the asymptotic
behaviour of P(1,7) and I(¢,7) as t—7--0* and that of I(¢) as t— T—0*, then we can use

them to derive the asymptotic behaviour of f{r) as t—T—0* by (30).
15-2
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Lemma 1 Let

80,7 = e, )+ 5 | g )“/ VE e gy (34)
\/ (t—py
c, .
If i, 1) ~ i+ Co+O((t—7)), as t—1->0%, (35)
(t—7)
C +
then g, 1) ~ i )% +Co+C -; 3 \/ M), as 1—1->0% (36)

Proof Equation (34) suggests an iteration formula

8. AWVIZVE) 2ot (02 0;840,7) = 0). 37)

gn+l(’ T)‘—h(’ T)+ ('_ )g

2\/

From (35) we have

C
8t = hit,7) ~ 3 L C+0((1—7), as t—1->0%.

-
Then
gz(ta'r) (— )1+C +0((’— )’)
(VI=VE)  dgmer
RV e v SO
(Vi—+vn) _.L‘x(;;,;e.t_dﬂ
2\/11 5 ([ /t)’
+0(J‘(ﬂ T)%(\/'_\/ﬂ) _i"%nfﬁd/l) as t—1->0".
’ (’—'/‘)i
Now

J‘(ﬂ\/t— V) ‘ﬁﬁ:‘:ﬁfﬁdp~ —+0((t—-7), as 1—7->0%,

-r)t(t ,u)f 2yr
(\/t—\/'") 'z‘“';:‘f)‘d‘u (’\_/T)! as t—r—0%

. ( —I‘)’
fw T)z(\/t_\/’u)e‘ATJc:_‘i 'd/t ﬂ(t T) as t—1->0%
(t—p) Vi
These expansions imply that
C. C
1) ~——+ q).;.ﬂi.; o(t—7%), as 1—7->0". (38)
V(t—1) 4vr

From (37) and (38) we have
g(t,7) ~ RHS of (38), t—71->0".
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Then g.(t,7) ~ RHS of (38), t—7—0*(n 2= 2).
Therefore g(t,7) ~ RHS of (38), t—7-0" O

Lemma 2 Let P(1,7) be defined by (31). Then it satisfies

o a?

Pt ~5p V@ v—1) 8kt

+0((r—7)), as (—7->0% 39

Proof Let
sy = [ @yi-petiEt-tog

- X% 4
€0

= | y@eoedr
X\T

where ¢ = t—17, and

WO = (e vi-pet,

_ (xvt—g)?®
¢y =——7—

(i) x <0.
Since ¢'(§) = Ya v 1—§) < 0 for e[ v/7, ), it follows that
Pla v7) = max{gpf)|£efa 7, 00)}

By Laplace’s method [12], only the immediate neighbourhood of £ = & /7 contributes to
the full asymptotic expansion of the integral J(¢,7). Let

B=a(vi—y7) ~2°‘—\;T, as e—0". (40)
Then
2y (1)
)~ f YOOk g
= I ’ Yla V(1) +s)erevmiaids
= e%-'-’-if'r{m[O(e)— 1]s+[0(e)—%]s"+0(s“)}e'§ds
~ -2e-’v’(z-f)+%(:—1)%+0((:—7)=), as 1—7>0%.  (41)
(i) @ > 0.
Clearly, ’
sy = [ pgendg- [ pgeonae @)

Since ¢’(§) > 0 for £€(0,a v/7], it follows that
¢l v'7) = max{g()| £€[0,a v/ 7]}
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By Laplace’s method, only the immediate neighbourhood of £ = « v/7 contributes to the
full asymptotic expansion of the second integral of the RHS of (42). Thus

[Mwoeers~ [T yoeona

0 Xy ()-8

&
= J‘ V(xv1T—35) erlavin-al d¢
(1]
"’23_,72(’ T)+L(7'3+e( —T)§+0((l——'r)2), as 1—71->0% (43)
We have

L

J- !/f(g) estdie dg =at J glf(a \/(’)_‘») evlav Oned
Q

0

1+4
~ V’I Ylav(0)s) eFlav@nre qo

442 * 'oc
a’t ) g 2t 2 _a¥t e
~—eT | xte " dx+0 e " dx
27 - -

_2a V(me s

e =7+ 0(t—7)), as 1—7->0% (44)
From (42), (43) and (44) we get
J(1,7) ~ —2c"Tz(l—r)+M( —7)i+0((1—7)), as 1—7->0". (45)
From (41) and (45) we have
[+

Ist term of RHS of (31) ~ + O((t—7H), as 1—7-0% (46)

2k v/ (D) —7) i
By (31), (46) and Lemma 1, we have

a

P~ o Vv @OU—1) 8k

+0((z —7)%), as t—71-0' [

Lemma 3 Let I\t,7) be defined by (32). Then it satisfies

yl* oyl?
D~ = V= 8vr

+0((1—7)%), as (—7->0". 47)

Proof Considering the first term on the RHS of (32), we have

4\«"(ﬂ)(t—7)3.[m(avm De “ 2\/(77)(t—1)ge

=—+—g£_.+ ((l—'r)!) t—7—0*
2 Vv (”)(t T) (48)
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From (32), (48) and Lemma 1, we get

yi® ayl?

i)~ TIvmu—1% 8vr

+0((1=7), 1—7>0*. O

Lemma 4 Let K1) be defined by (33). Assume either (1) y(x) = 0; or (2) for some m = 0,
XECT[b, ), x™(b) # 0, y'(b) =0(i=0,1,...,m—1;form = 1), here b > a /T such that
x(x) =0 for xe[a\/T,b), and x(x) - C as x -+ © (see (28)). Then

K0y~ o((t—=T) te ), as 1—T—0", (49)
where A = (a \/(T)—b)/2.

Proof (1) y(x) = 0. In this case equation (33) reduces to a homogeneous Volterra integral
equation of the second kind, which has a unique continuous solution

H=0. (50)
(2) x(x) not =0.
Equation (33) suggests
- _ 1 ” _pe- gt
AOE 2\/(”)(,_T)§er(g)(a V-He it ag
+3 f LY et @3 0540 =0, 61
va (1—7)
Casel.m=0
m——— et
5L,(0) IV )(’ T),[ xE(av(@)=§e d¢

1
T 2y/(m-T)

- = ,;’((tb) T)%e_ﬁ(a\«m-o) e—%-?ﬁ
ﬂ —

-1

~ Ci(t=T) re"ﬂ b>ayvT as —T-0%

J XE) (@ v T—Ee nTavM=d x e ““f‘Lf‘Ldg

where C, = %e"“" VYD and A = (a v/ (T)—5)/2. From (51) we have
v

L{0) ~ Clt—T)te vt (t—Thie-@m

C,a
4./(HA
(=T) e @, as (—T—0".
Then 1,(9) ~ 1,(¢) as t—T—-0" (n = 2), hence

Ky~ Ct—T)tewn, .as (—T—>0". (52)
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Case 2. mz 1
Integrating by parts, we can get

(_ l)(m+l)2m

(53)

M= me-m " L flavede %
where
=9 L df 1 1 dx(g)] ]]
F(a \ t,§) dg{[a\’/(l)_gldgl:[a\/([)—g].”[[a \/(l)—-gl dg veo I
lete=t—T
1o~ uem*f Flooy/ T, e~ wirtov - o- extfitlyg
V& ] »
SO Gl emi / @y (T)-b) -0l TIot”
V) v"(T)—b) tFavT,b)e T e
(i—T)" e ®m, as (—T-0%
where C,=(-h" 27x"™(b) e TETaV (T)-b)

V(m)(a vV(T)=b)"
In addition,
f r— T)""*(\:: \)/'T) e W emdr~ C—T) e @, as
—-T)

where C;= %!/)—;_
From (51) and (54) we get
L0~ 1), as (—T->0",
So L)~ L), as t— T-0'(n2=2),
then )~ C—T)™te®n, as 1—T—0".

From (50), (52) and (55), we conclude that (49) is true. O

4 Stability analysis

—T->0% (54

(55)

In this section we use the results obtained in the last section to derive the asymptotic
behaviour of f{1) as t— T — 0*, which we use to examine the linearized stability of the planar

solution with respect to non-planar perturbations.

Theorem 1 If |/| > 0, T > 0, fe C'[T, 1), AT) % 0, and x(x) satisfy the hypothesis of Lemma

4, then f(1) has the following asymptotic behaviour:

A = AT)exp (325" (\;LT—ku) (- T)%), for 0<t—T<l. (56)
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Proof From (30) and the first terms of (39) and (47), we have

A ki e ™ +k(H(D—-H (), 0<t-T<1, (57)
where
H{(1) = J.’ F7)G(t,1)dr, (i=1,2),
T
A7) = fir)+I*f(7),
G\(t,7) = D, e [/ [r(t = 7)),
Gyt,7) = D,e™ ™ [/ (1—7),
=%
e 2k \/ m ’
_
R RVZ S
Note that H,(#) are convergent improper integrals.
Let
m=min{Fs)|T<s< 1},
M=max{F(s)|T<s< 1.
Then mf GunNdr<H(<EM f G(,7)dr, i=12
T T

Clearly, the G(z,7) do not change sign on 7e(T,7). Without loss of generality, assume
[5G, 7)dr > 0(i = 1,2). So

m< H{n <M, i=1,2.
G(t,7)dr
L.
Define g, such that
H(n= ,u,'r G(t.ndr, i=12 (58)
T

Since Fe([T,1], by the Intermediate Value Theorem, there exist 7{€[T,¢] such that
F(r}¥) = p(i = 1,2). From the assumption AT) #+ 0, equation (30) and lemma 4, we can
get () + 0 when 0 <¢—=T < 1. So F(r})—F(1) < K1) as 1—7¥ > 0% i.e. F(7}) ~ () as
t—1f->0"(i=12).

Hence, (58) becomes

H{~ m)J1 G(t,7)dr, i=,2.

Furthermore, (57) becomes

A0 = kK e""+kF(t)[ f

T

Gl(r,r)dr—f Gz(t,-r)d'r], 0<t-T<l. (59)
Vi
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Since J.’ G,(t,7)dr ~ E(t— T)é, as (—-T->0
7T \// T

and f Gy(t,T)dr ~2D,(1=T), as 1=T-0",
T

(59) becomes

A = kK e T + 2k AN+ 1P AN (%—De)(t— TR 0<i-T<l.

) =~ exp ([2k12 (\%‘T— D.,) J(: —T) dr])

g U kl(fye T e farhnae-mhargy Consl]

wenls(3-2)o-]

X [kc“"'fl(l)d!+Const], 0<t-T<k1. (60)

Hence

By Lemma 4, we know

) = o((i—T) Fe ™) = o((t=T) ), as (—T—0"
So f I0di=o((t—T)), as (—T-0" (61)

If t = T, we get Const = f{T) % 0. Thus (60) becomes

2
§.00) zj(T)exp( 2’, (—?‘——‘}'klz)(’—n;), 0<i—T<1. O
3va\vT

Using Theorem 1 we now investigate shape stability in the following physical situations:
(1) Melting problem (« < 0).
Since vy 2 0, k > 0, it follows that
2

X kI?
3 \/n(\/T vki ) <0.

Thus the melting problem is linearly stable regardless of the presence of surface tension
effects.

(2) Solidification problem (a > 0).
From (56) we see that every mode of the solidification problem is linearly unstable without
surface tension (y = 0).
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The solidification problem with surface tension (y > 0) is linearly stable for those modes

which satisfy
o
> ) )

Thus, to get a stable solidification problem with surface tension for a given mode /, the
velocity of the free boundary should satisfy
d o kyt?
V—d—;RP(f)ll_,,'—m< =5 (63)

This is precisely the same formula that was obtained by Ockendon [11] using a travelling
wave base state in the singular case that ku_,, = 1, and that Chadam & Ortoleva [4] obtained
when T— o0, or equivalently, « and V =a/2 1/ T-0.

Finally, from (60) and (61) we have shown the following result which says that the onset
of shape instabilities arises autonomously through geometric interactions if one eliminates
perturbations in the concentration profile near the boundary.

Theorem 2 Under the hypothesis of Theorem 1, equation (30} is equivalent to
(3
Ay = kj D)+ A e V2 [P(t, 7) + T(1, 7)) dr (64)
T

in the limit t — T— 0%, i.e. the effect of the initial data y(x) is subdominant to the term on the
right hand side of (56).

(Note that the special solution f{r) = 0 is excluded by the assumption AT) % 0.)

5 Numerical verification

To verify our theoretical results numerically, we have developed a boundary integral
numerical technique whose details can be found in a separate paper [13]). Here we only
sketch the idea and present the numerical results.

Instead of using (24)—(28) to verify (56), we apply the integro-differential and integral
equations (30)~(33). By theorem 2 we know that only (30)-(32) are dominant equations. So
if we can verify (39) and (47) numerically from (31) and (32), and verify (56) from (64), then
our theoretical results have been verified numerically.

Since there is a singularity at 1 =7 in (39) and (47), we cannot verify (39) and (47)
directly. Fortunately, we can remove the singularity by multiplying (39) and (47) by (1 —7)%.
Thus verification of (39) and (47) is reduced to establishing that

P(t,7) = (1—-7) P(1,7)

a a? ) 3 +
~m—m(!—1)’+0((l-—1)3), 1—7>0% (65)
and u,n) = w-ntre,
o o=, —r0r, (66)

2v/nm 87
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Table 1| T_MAX =0.1001, X_MAX = 1.0, T_NUM = 500, X_NUM = 4000, T = 0.1,
k=05 8=0.5
! num_~P(1, T) asy_P(1, T) (asy-num)/asy

1.00000000¢ — 01
1.00000200¢ —01
1.00000400¢ — 01
1.00000600¢ — 01
1.00000800c —01
1.00001000e —01
1.00099200¢ —01
1.00099400¢ — 01
1.00099600c¢ — 01
1.00099800¢ — 01
1.00100000¢—01

1.54416513c +00
1.54332398¢ + 00
1.54298239¢ + 00
1.54271934c 4+ 00
1.542494 59¢ + 00
1.54229528¢ 400
1.524096 14¢ + 00
1.52407447e + 00
1.52405282e 400
1.524031 19e 400
1.524009 58e + 00

1.54416513c¢+00
1.54332761c+00
1.54298071c+00
1.54271451e +00
1.54249010c¢ + 00
1.54229239%¢ + 00
1.52551279¢+ 00
1.52549400¢ + 00
1.52547523e+00
1.52545647¢+00
1.52543773¢+00

0.00000000¢ + 00
2.35496432c¢—-06

—1.09318866¢ —06
—3.12864539% - 06
—2.91249390c—06
—1.87345205¢ - 06

9.28640216¢—04
9.30536252¢—-04
9.32432274e - 04
9.34328283e—04
9.36224279e—-04

From (31) and (32) we see that P(¢,7) and (1, 7) satisfy

ou

Pt = 2(1—1)*J 2w EDER. £, 1.7)dE

~20-0} [ 2D R0 R0, (6D
=)

and f(:,r)=-y12(:-r)%r E(R(1),E,t, ) dE
—2(t— )J'r (’_‘ ’))% E(R(0, R, (), 1, 1) dp. (68)

Fixing 7 = T, we discretize (67) and (68) by using Gauss quadrature and the trapezoidal
rule. We then get the numerical formulas
P(T)—FP(P—D,F", — )9

I(n=FI(F, T, .. r )

where B(1) = P(t,,7), T (1) = [(1,,7), t, = T+iAt, A1 2 0, i
FP and FI are omitted here,

The numerical results and asymptotic results agree well and get closer as t— 70",
which is what is expected because the asymptotic results become more accurate as
t—T-0" We give some of the numerical results in Tables | and 2 to demonstrate this
observation.

We now proceed to verify numerically that equation (64) gives the asymptotic estimate
of f{r) implied in equation (56) for 0 < — T < 1, when the asymptotic estimates of P(t,7)
and /¢, 7) given in lemmas 2 and 3 are used. By lemmas 2 and 3 and equation (64), we have

~ 2 ~t3¢-1 D1 D
’t’“"frm"”ﬂ’)]e ( ’[\/(1)(: o~ R

2 0. The concrete expressions of

]dr, 0<t—T<l. (69
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Table 2 T_MAX = 0.1001, T_ZNUM =500, T=0.1, /= 0.5, r = 0.5, $= 0.5

‘ num_/{1,T) asy_f(, T) (asy-num)/asy
1.00000000c—01  —3.52618490c—02  —3.52618490¢—02 0.00000000 + 00
1.00000200e—01  —3.52811274¢—02  —3.5280974le—02  —d4.34618825¢—06
1.00000400c—01  —3.5289116le—02  —3.52888059%—02  —6.23897475¢—06
1.00000600c—01  —3.5295314lc—02  —3.52949746e—02  —9.61879969¢—06
1.000008006—01  —3.530049366—02  —3.53000992c—02  —1.11723135¢—05
1000010006 —01  —3.53050385c—02  —3.53046140c—02  —1.20253274c—05
1.00099200c—01  —3.56897537%c—02  —3.56877852c—02  —5.51590920c—05
1.00099400e—01  —3.56901856c—02  —3.56882143¢—02  —5.52376423c—05
1.00099600e—01  —3.56906172c—02  —3.56886430c—02  —5.53161773¢—05
1.00099800c—01  —3.56910483c—02  —3.56890713¢—02  —5.53946970¢c—05
1.00100000c—01  —3.56914790c—02  —3.56894992c—02  —5.54732012c—05

0.65

oaf T

0.3?).1 012 014 016 018 02 022 024 026 028 03

t

FiGURE 1. Solidification problem with surface tension. « = 0.865503 > 0; RHS of (62) = 3.308753;
—— = asymptotic solution; ——- = numerical solution. k =s=r=10.5, T=0.1, {T) =0.5.

Discretizing equation (69) using the trapezoidal rule and using asymptotic analysis, we
obtain

ST=FFLS ™Y (70)

where /™ = f{t,.), t,, = T+mAt, At > 0, m 2 0. The expression of FF is omitted here.
We use the asymptotic solution (56) and numerical formula (70) to obtain figures 1-3.

Figure 1 demonstrates that the solidification problem with surface tension is linearly stable

for modes satisfying the relation (62) since the corresponding curve is decreasing for ¢ near
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FiGure 2. Solidification problem without surface tension. a = 0.865503 > 0; —— = asymptotic
solution; ——~ = numerical solution. k = s=0.5, r = 0.0, T= 0.1, AT) = 0.5.
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FIGURE 3. Melting problem. « = 0.865503 > 0; —— = asymptotic solution; ——— = numerical
solution. k=5=0.5,r=0.0, T=0.1, A7) = 0.5.

the initial time 7, and is linearly unstable for those modes not satisfying (62), since the
corresponding curve is increasing for ¢ near T, Figure 2 verifies that every mode of the
solidification problem is linearly unstable without surface tension since all the curves are
increasing for ¢ near T. Figure 3 demonstrates that the melting problem is always linearly
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FIGURE 4. Errors for figures 1-3.

stable. Figure 4 demonstrates that the asymptotic solution (56) and numerical solution
given by (70) agree with each other well when r—T is very small.

6 Summary

The linearized shape stability of the planar solution of a time dependent version of Mullins
& Sekerka’s [1] model with respect to non-planar perturbations has been discussed. The
linearized asymptotic stability was given in [4], i.e. for 7— o0, or equivalently, for fronts
with velocity /2 \/ T -~ 0. Here we examine the linearized stability for T < o0, i.e. for fronts
with arbitrary velocities.

Using asymptotic analysis, the linearized integral equation for the amplitude of the shape
perturbation is used to find a stability condition involving the parameters of the problem.
Specifically, the e'” mode is stable if

> Jla)- I

which is precisely Chadam & Ortoleva’s [4] result derived for T— oo (i.e. 2 —0) and that
of Ockendon [l 1] derived in the singular case ku_, = 1 using travelling waves as base planar
states.

We have also shown that the effect of the initial data in studying the linearized shape
stability of the problem is subdominant provided that the perturbation of the concentration
field in the vicinity of the front can be neglected.

By using the trapezoidal rule, Gauss quadrature and asymptotic analysis, we develop a
numerical scheme to compute the amplitude of the perturbation, f{1), defined by (30) for
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¢t near 7. Our numerical and theoretical results agree for ¢ near the initial time 7~ the region
for which they were designed.
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