Math 257/316 Assignment 5
Due Monday October 26th in class

SOLUTIONS

Problem 1: Sketch the odd, even, and full periodic extensions on [3L; 3L] of
(a) e®, with L =1

(b) 4 — 2%, with L =2

(©) g(x)z{ bz, r<0  ihr—1.

/2, x>0"
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Figure 1: Problem 1la; odd, even, and full periodic extensions of e* with L =1
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Figure 2: Problem 1b; odd, even, and full periodic extensions of 4 — 22 with L = 2
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Figure 3: Problem 1a; odd, even, and full periodic extensions of g(x) with L =1

Problem 2: Chemical diffusion through a thin layer is governed by the equation

2
o _ | 9*C
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where C(x,t) is the concentration in moles/cm?, the diffusivity & is a positive constant with units cm?/sec,
and L > 0 is a consumption rate with units sec™!. Assume boundary conditions are

C(0,t) = C(a,t) =0, t >0,
and the initial concentration is given by
C(z,0) = f(z), 0<z<a.

(a) Use the method of separation of variables to solve for the concentration C(x,t).
(b) What happens to the concentration as ¢t — co?

(c) What is the concentration C(z,t) if the initial condition is C(x,0) = cos(mz/a)?
Hint: It may be useful to know that

.. 0, if nis odd
/ sin(nmx/a) cos(nma/a) dx = { 2an if mis even
0

m(n2—-1)’

SOLUTION:
(a) Use the method of separation of variables to solve for the concentration C(z,t).

We use separation of variables. Let C(z,t) = X (z)T(t). Then C; = kCy, — LC becomes X (z)T"(t) =
EX"(x)T(t) — LX (x)T(t). We divide both sides by kX ()T (t) and re-arrange to obtain:

1T X" L
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where X, A are constant. We could use either (1 or 2) to get the solution. Since using (2) is more straight-
forward, that’s what we’ll use.



What happens to the boundary conditions under the separation of variables?
0=C(0,t) = X(0)T(t) = X (0) = 0 (since T'(t) won't be 0 for allt)

0=C(a,t) = X(a)T(t) = X(a) = 0 (since T'(t) won’t be 0 for allt)
So we have X (0) = X(2) = 0. Can the initial condition tell us anything at this stage?

f(@) = C(e,0) = X(2)T(t) = T(t) = f(2)/X (2)?7?

No, it can’t. The trick worked on the boundary conditions b/c they were homogeneous (= 0). We’ll actually
use the initial condition at the end to solve for constants.
Let’s start with the T-equation from (2):

T'(t) = (\k — L)T'(t).
Solving, we notice that this is a separable equation

T T
o= (k= L)T = = = (\k — L)dt

Integrating both sides,
dT (Ak—L)t
- = (Me— L)dt = In(T) = (M — L)t + B=T(t) = Be ,

taking the exponential of both sides. B is an arbitrary constant.
Next we deal with the X-equation in (2) with conditions X (0) = X (a) = 0 derived from the boundary
conditions

X" = AX
X(0) = X(a) = 0.

This is an eigenvalue problem. There are 3 cases to consider: A >0, A =0, and A < 0.

We begin with the A > 0: set A = y2 > 0. Then X" (x) — u?X(z) = 0. Use the substitution X (z) = e"®
to get the characteristic equation 72 — p? = 0, which has roots r = £u.Thus X (z) = C1et® + Coe™#*. We
now use the boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0= By +By=0
X(a) = 0 = Bje®™ 4 Be " =0.

Solving simultaneously we find B; = By = 0. (The first equation gives Bs = —Bj, plugging into the first
equation gives Bie** —Bie7? =0= B, (62“ — 6_2“) =0, and this means that B; = 0 because e?* — e~ 2"is
only zero at p = 0, which it isn’t here - u?> = A\ > 0). Thus we have recovered the trivial solution (aka zero
solution). Therefore for A > 0 we have no eigenvalues or eigenfunctions.

Next we consider the A = 0 case (we could consider it jointly with the A < 0 or A\ > 0 cases, if we'’re very
careful, but for the purposes of a systematic approach we won’t here). Then X" = 0 = X(z) = Dz + E.
Applying boundary conditions, 0 = X(0) = F = E =0; 0= X(a) = Da = D = 0. Thus we have recovered
the trivial solution (aka zero solution). Therefore for A = 0 we have no eigenvalues or eigenfunctions.

Finally we look at the A < 0 case. Set A = —u? < 0. Then X”(z) + u?X(z) = 0. Use the substitution
X (z) = €’ to get the characteristic equation r2 4+ p? = 0, which has roots r = +iu. Thus X (z) = Bye'* +
Boe ™ or X (z) = By sin(ux) + By cos(pa) (for more details on solving this ode, see your textbook, section
3.3). We now use the boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0 = Bisin(0)+ Bacos(0) =0 = By =0
X(2) = 0 = Bjsin(ap) =0.



Since sin(#) has roots at § = nw, n = 1,2,3,..., the second condition tells us that ap = nm or p = nn/a,

n=1,2,3,... Thus we have our eigenfunctions an eigenvalues for A < 0O:
N, = (nﬂ')?
a
Xn(z) = sin(nma/a).

Now we re-assemble. Recall C(z,t) = X (2)T'(t). Therefore

a?

Cou(2,) = Xn(2)Th(t) = sin (?) exp {— <"2”2 k+ L) t}

forn =1,2,3,... are each solutions to the pde. The pde is linear so we can use the principle of superposition,
and sum them to make up a general solution:

oo 22
C(z,t) = ansin (?) exp {— (na;r k+ L) t} )
n=1

where the b,, are constants.
We solve for the b, using the initial condition. That is, C(x,0) = f(x) so

o0
nwx
Shn ()
f(x) Z nsin (=),
n=1
which is a Fourier sine series. We exploit, orthogonality of the sines, that is,

[ (2 s (5 = {% P

where L = a to solve for the individual b,,:

by, = 2 /Oa f(x)sin (@> dx

4 a

since L = a. And that’s it! We don’t know f(x) (yet), so we’re done. The concentration C(x,t) is

> 2.2 5 ra
)= Sy (5 o[- (1) ] vt [ s ()
(b) What happens to the concentration as ¢t — co?

Well,
2,2
lim exp {— (n 72r k—i—L) t} =0.
t—o00 Qa

Therefore, as t — oo, the concentration C(z,t) — 0. Which makes sense! The equation describes the
diffusion of a chemical through a thin layer. Eventually, it all diffuses through, so the concentration goes to
Z€ro.
(¢) What is the concentration C(z,t) if the initial condition is C(z,0) = cos(rz/a)?

We use the initial condition to find b,,.

by, = z/oa f(z)sin (?) dzx = (21/: cos (%E) sin (?) dx.

We are given a hint, that

/“ . /nTT T 0, if nis odd
sin (—) cos (—) dr =< oan i 1 s
0 a a Tneyy i nis even



Then
2 (% /nmx T 0, if nis odd
b, =— [ sin (—) cos (—) de = 4n i ni
a 0 a a 7'r(’n271)7 1I N 1S even
Therefore in the sum we only have the even terms. The odd-indexed coeflicients bo;p 1 =0, m =0,1,2,...;
the even-indexed coefficients are, for m =1,2,3,...

4(2m) 8m

bom = ((2m)2—1) w(dm?—1)

Thus the concentration C(x,t) is:
22
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C(z,t) =

3| oo

Problem 3: Find the Fourier Sine series of period 27 of the following function. Sketch the graph of the
function to which the series converges (sketch at least three periods).

1, 0<z<n/2
f(x):{o, 7r/2x§x§7r

SOLUTION:

Remember, the Fourier sine series of a function gives the odd periodic extension. That is, the function
over [0, L] is considered to be HALF of an odd function of which we want to take a periodic extension. The
period of the odd periodic extension, of the Fourier sine series, is 2L. Here, L = 7 - which means that, when
we calculate the Fourier sine series, it is automatically of period 27!

We are asked to find a Fourier sine series of a function over [0,7] (L = 7). The Fourier sine series is

defined as - .
flx) = an sin (?) where b,, = %/0 f(z)sin (?) dzx.
n=1

Since here L = m, our series will take the form

f(z) = i by, sin (nx) where b, = z/oﬂ f(z)sin (nz) dz.

n=1

All that’s left to calculate are the coefficients b,,.

bn

i/oﬂ f(x)sin(nx) dz
9 /2

i 2 [" sin(nz) dr

;/O (1)bm(m)dx+w/ﬂ/2(0)b (nz) d
/2
N

e 2 ()

This needs to be further dissected. First note that for n odd, cos(nw/2) = 0. So let’s counsider the odd
(n=2m—1,m=1,2,3,...) and even indices (n = 2m, m = 1,2,3,...) separately. That is,

_ 2 l—l cos(nx)

s n

flz) = Z by, sin(nx) = Z bam—1sin((2m — 1)x) + Z bam sin(2ma).

m=1 m=1



Where

1T (2m — 1)r’

m mim

and by, — % {1 ~ cos (2”2”” = L~ cos (mm)] = bam = ——[1 — (~1)™].

We can further simplify:

by — 0, m even
am 2/mm, m odd

So again, consider odd and even indices separately,

Z bam sin(2ma) = Z ba(2p) Sin(2(2p)z —1—2 ba(2p—1) sin(2(2p—1)x Z bay sin(4pz —1—2 bap—a sin((4dp—2)z),

m=1 p=1 p=1 p=1 p=1

where by, =0 and byp—o =2/(2p — 1)7.
All together now, not writing in the zero terms,

Z bam—1sin((2m — 1)x) + Z bap—osin((4dp — 2)x)

m=1 p=1
Fe =23 (@m0 + 23 sin(2(2p - D)
= — SIn - — S11L - .
T 7rm212m—1b m T 7rp:12p—lb D T

This is sufficient. For the purposes of aesthetics only, let’s change all the indices back to n
2 oo 2 o0
z § (2n—1)z) + = E
"2 sm n 7r

n:l
and collect like terms, to obtain:

Sln (2n —1)x)

(sin((2n — 1)x) + sin(2(2n — 1)x)) .

2 e}

X

Finally we are asked to sketch the graph of the function to which the series converges - the odd periodic
extension of f(x). See Fig.4.
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Figure 4: Three periods of the function the Fourier sine series of f(z) converges to (aka the odd periodic
extension of f(z)).
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