
Math 257/316 Assignment 5
Due Monday October 26th in class

SOLUTIONS

Problem 1: Sketch the odd, even, and full periodic extensions on [3L; 3L] of

(a) ex, with L = 1

(b) 4− x2, with L = 2

(c) g(x) =
{

1 + x, x < 0
x/2, x ≥ 0 , with L = 1.

SOLUTION:

Figure 1: Problem 1a; odd, even, and full periodic extensions of ex with L = 1

Figure 2: Problem 1b; odd, even, and full periodic extensions of 4− x2 with L = 2
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Figure 3: Problem 1a; odd, even, and full periodic extensions of g(x) with L = 1
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Problem 2: Chemical di�usion through a thin layer is governed by the equation

∂C

∂t
= k

∂2C

∂x2
− LC

where C(x, t) is the concentration in moles/cm3, the di�usivity k is a positive constant with units cm2/sec,
and L > 0 is a consumption rate with units sec−1. Assume boundary conditions are

C(0, t) = C(a, t) = 0, t > 0,

and the initial concentration is given by

C(x, 0) = f(x), 0 < x < a.

(a) Use the method of separation of variables to solve for the concentration C(x, t).

(b) What happens to the concentration as t→∞?

(c) What is the concentration C(x, t) if the initial condition is C(x, 0) = cos(πx/a)?

Hint: It may be useful to know that

ˆ a

0

sin(nπx/a) cos(πx/a) dx =
{

0, if n is odd
2an

π(n2−1) , if n is even

SOLUTION:
(a) Use the method of separation of variables to solve for the concentration C(x, t).

We use separation of variables. Let C(x, t) = X(x)T (t). Then Ct = kCxx − LC becomes X(x)T ′(t) =
kX ′′(x)T (t)− LX(x)T (t). We divide both sides by kX(x)T (t) and re-arrange to obtain:

1
k

T ′

T
=
X ′′

X
− L

k
= λ̃, (1)

or
1
k

T ′

T
+
L

k
=
X ′′

X
= λ, (2)

where λ̃, λ are constant. We could use either (1 or 2) to get the solution. Since using (2) is more straight-
forward, that's what we'll use.
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What happens to the boundary conditions under the separation of variables?

0 = C(0, t) = X(0)T (t)⇒ X(0) = 0 (sinceT (t) won′t be 0 for allt)

0 = C(a, t) = X(a)T (t)⇒ X(a) = 0 (sinceT (t) won′t be 0 for allt)

So we have X(0) = X(2) = 0. Can the initial condition tell us anything at this stage?

f(x) = C(x, 0) = X(x)T (t)⇒ T (t) = f(x)/X(x)???

No, it can't. The trick worked on the boundary conditions b/c they were homogeneous (= 0). We'll actually
use the initial condition at the end to solve for constants.

Let's start with the T -equation from (2):

T ′(t) = (λk − L)T (t).

Solving, we notice that this is a separable equation

dT

dt
= (λk − L)T ⇒ dT

T
= (λk − L)dt.

Integrating both sides,

ˆ
dT

T
=
ˆ

(λk − L)dt⇒ ln(T ) = (λk − L)t+B ⇒ T (t) = Be(λk−L)t,

taking the exponential of both sides. B is an arbitrary constant.
Next we deal with the X-equation in (2) with conditions X(0) = X(a) = 0 derived from the boundary

conditions

X ′′ = λX

X(0) = X(a) = 0.

This is an eigenvalue problem. There are 3 cases to consider: λ > 0, λ = 0, and λ < 0.
We begin with the λ > 0: set λ = µ2 > 0. Then X ′′(x)− µ2X(x) = 0. Use the substitution X(x) = erx

to get the characteristic equation r2 − µ2 = 0, which has roots r = ±µ.Thus X(x) = C1e
µx + C2e

−µx. We
now use the boundary conditions to �nd constants such that the conditions are satis�ed:

X(0) = 0 ⇒ B1 +B2 = 0
X(a) = 0 ⇒ B1e

aµ +B2e
−aµ = 0.

Solving simultaneously we �nd B1 = B2 = 0. (The �rst equation gives B2 = −B1, plugging into the �rst
equation gives B1e

2µ−B1e
−2µ = 0⇒ B1(e2µ− e−2µ) = 0, and this means that B1 = 0 because e2µ− e−2µis

only zero at µ = 0, which it isn't here - µ2 = λ > 0). Thus we have recovered the trivial solution (aka zero
solution). Therefore for λ > 0 we have no eigenvalues or eigenfunctions.

Next we consider the λ = 0 case (we could consider it jointly with the λ < 0 or λ > 0 cases, if we're very
careful, but for the purposes of a systematic approach we won't here). Then X ′′ = 0 ⇒ X(x) = Dx + E.
Applying boundary conditions, 0 = X(0) = E ⇒ E = 0; 0 = X(a) = Da⇒ D = 0. Thus we have recovered
the trivial solution (aka zero solution). Therefore for λ = 0 we have no eigenvalues or eigenfunctions.

Finally we look at the λ < 0 case. Set λ = −µ2 < 0. Then X ′′(x) + µ2X(x) = 0. Use the substitution
X(x) = erx to get the characteristic equation r2 + µ2 = 0, which has roots r = ±iµ.Thus X(x) = B̃1e

iµx +
B̃2e

−iµx or X(x) = B1 sin(µx) +B2 cos(µx) (for more details on solving this ode, see your textbook, section
3.3). We now use the boundary conditions to �nd constants such that the conditions are satis�ed:

X(0) = 0 ⇒ B1 sin(0) +B2 cos(0) = 0 ⇒ B2 = 0
X(2) = 0 ⇒ B1 sin(aµ) = 0.
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Since sin(θ) has roots at θ = nπ, n = 1, 2, 3, . . . , the second condition tells us that aµ = nπ or µ = nπ/a,
n = 1, 2, 3, . . . Thus we have our eigenfunctions an eigenvalues for λ < 0:

λn = −
(nπ
a

)2

Xn(x) = sin(nπx/a).

Now we re-assemble. Recall C(x, t) = X(x)T (t). Therefore

Cn(x, t) = Xn(x)Tn(t) = sin
(nπx

a

)
exp

[
−
(
n2π2

a2
k + L

)
t

]
for n = 1, 2, 3, . . . are each solutions to the pde. The pde is linear so we can use the principle of superposition,
and sum them to make up a general solution:

C(x, t) =
∞∑
n=1

bn sin
(nπx

a

)
exp

[
−
(
n2π2

a2
k + L

)
t

]
,

where the bn are constants.
We solve for the bn using the initial condition. That is, C(x, 0) = f(x) so

f(x) =
∞∑
n=1

bn sin
(nπx

a

)
,

which is a Fourier sine series. We exploit orthogonality of the sines, that is,

ˆ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0, m 6= n

L/2, m = n

where L = a to solve for the individual bn:

bn =
2
a

ˆ a

0

f(x) sin
(nπx

a

)
dx

since L = a. And that's it! We don't know f(x) (yet), so we're done. The concentration C(x, t) is

C(x, t) =
∞∑
n=1

bn sin
(nπx

a

)
exp

[
−
(
n2π2

a2
k + L

)
t

]
, with bn =

2
a

ˆ a

0

f(x) sin
(nπx

a

)
dx.

(b) What happens to the concentration as t→∞?
Well,

lim
t→∞

exp
[
−
(
n2π2

a2
k + L

)
t

]
= 0.

Therefore, as t → ∞, the concentration C(x, t) → 0. Which makes sense! The equation describes the
di�usion of a chemical through a thin layer. Eventually, it all di�uses through, so the concentration goes to
zero.
(c) What is the concentration C(x, t) if the initial condition is C(x, 0) = cos(πx/a)?

We use the initial condition to �nd bn.

bn =
2
a

ˆ a

0

f(x) sin
(nπx

a

)
dx =

2
a

ˆ a

0

cos
(πx
a

)
sin
(nπx

a

)
dx.

We are given a hint, that

ˆ a

0

sin
(nπx

a

)
cos
(πx
a

)
dx =

{
0, if n is odd

2an
π(n2−1) , if n is even
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Then

bn =
2
a

ˆ a

0

sin
(nπx

a

)
cos
(πx
a

)
dx =

{
0, if n is odd

4n
π(n2−1) , if n is even

Therefore in the sum we only have the even terms. The odd-indexed coe�cients b2m+1 = 0, m = 0, 1, 2, . . . ;
the even-indexed coe�cients are, for m = 1, 2, 3, . . .

b2m =
4(2m)

π((2m)2 − 1)
=

8m
π(4m2 − 1)

.

Thus the concentration C(x, t) is:

C(x, t) =
8
π

∞∑
m=1

m

4m2 − 1
sin
(

2mπx
a

)
exp

[
−
(

4m2π2

a2
k + L

)
t

]
.
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Problem 3: Find the Fourier Sine series of period 2π of the following function. Sketch the graph of the
function to which the series converges (sketch at least three periods).

f(x) =
{

1, 0 ≤ x ≤ π/2
0, π/2 ≤ x ≤ π

SOLUTION:
Remember, the Fourier sine series of a function gives the odd periodic extension. That is, the function

over [0, L] is considered to be HALF of an odd function of which we want to take a periodic extension. The
period of the odd periodic extension, of the Fourier sine series, is 2L. Here, L = π - which means that, when
we calculate the Fourier sine series, it is automatically of period 2π!

We are asked to �nd a Fourier sine series of a function over [0, π] (L = π). The Fourier sine series is
de�ned as

f(x) =
∞∑
n=1

bn sin
(nπx
L

)
where bn =

2
L

ˆ L

0

f(x) sin
(nπx
L

)
dx.

Since here L = π, our series will take the form

f(x) =
∞∑
n=1

bn sin (nx) where bn =
2
L

ˆ π

0

f(x) sin (nx) dx.

All that's left to calculate are the coe�cients bn.

bn =
2
π

ˆ π

0

f(x) sin(nx) dx

=
2
π

ˆ π/2

0

(1) sin(nx) dx+
2
π

ˆ π

π/2

(0) sin(nx) dx

=
2
π

[
− 1
n

cos(nx)
∣∣∣∣π/2
0

]

bn =
2
nπ

[
1− cos

(nπ
2

)]
.

This needs to be further dissected. First note that for n odd, cos(nπ/2) = 0. So let's consider the odd
(n = 2m− 1, m = 1, 2, 3, . . . ) and even indices (n = 2m, m = 1, 2, 3, . . . ) separately. That is,

f(x) =
∞∑
n=1

bn sin(nx) =
∞∑
m=1

b2m−1 sin((2m− 1)x) +
∞∑
m=1

b2m sin(2mx).
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Where

b2m−1 =
2

(2m− 1)π
,

and b2m =
2

2mπ

[
1− cos

(
2mπ

2

)]
=

1
mπ

[1− cos (mπ)]⇒ b2m =
1
mπ

[1− (−1)m] .

We can further simplify:

b2m =

{
0, m even
2/mπ, m odd

So again, consider odd and even indices separately,

∞∑
m=1

b2m sin(2mx) =
∞∑
p=1

b2(2p) sin(2(2p)x)+
∞∑
p=1

b2(2p−1) sin(2(2p−1)x) =
∞∑
p=1

b4p sin(4px)+
∞∑
p=1

b4p−2 sin((4p−2)x),

where b4p = 0 and b4p−2 = 2/(2p− 1)π.
All together now, not writing in the zero terms,

f(x) =
∞∑
m=1

b2m−1 sin((2m− 1)x) +
∞∑
p=1

b4p−2 sin((4p− 2)x)

f(x) =
2
π

∞∑
m=1

1
2m− 1

sin((2m− 1)x) +
2
π

∞∑
p=1

1
2p− 1

sin(2(2p− 1)x).

This is su�cient. For the purposes of aesthetics only, let's change all the indices back to n

f(x) =
2
π

∞∑
n=1

1
2n− 1

sin((2n− 1)x) +
2
π

∞∑
n=1

1
2n− 1

sin(2(2n− 1)x)

and collect like terms, to obtain:

f(x) =
2
π

∞∑
n=1

1
2n− 1

(sin((2n− 1)x) + sin(2(2n− 1)x)) .

Finally we are asked to sketch the graph of the function to which the series converges - the odd periodic
extension of f(x). See Fig.4.
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Figure 4: Three periods of the function the Fourier sine series of f(x) converges to (aka the odd periodic
extension of f(x)).
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