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Boundary integral methods (see Crouch and Starfield, 1990) are perhaps the most efficient
methods for modeling crack problems in homogeneous elastic media. Unfortunately, unlike
other methods such as the finite element method, extension to layered materials is not trivial.
For bodies that involve just two materials it is possible to obtain closed form solutions for two
bonded uniform materials (see Crouch and Starfield, 1990). However, for problems with mul-
tiple materials (each of which is uniform), it is necessary to discretize the layer interfaces and
to bond the materials within the layers by imposing continuity conditions. This discretization
process severely restricts the size of problem that can be solved accurately. Material layering
can be modeled trivially using the finite element method, but crack modeling requires that
specialized crack elements and mesh refinement be used close to the crack tip. The method
we describe, will exploit the layered structure of the rock mass to determine the appropriate
numerical Green’s function for a multilayered elastic material which comprises a number
of layers with different material moduli which are bonded together at interfaces that are all
parallel (see Figure 1). The Green’s function can then be used to determine the kernel functions
for a boundary integral equation that can be used to solve boundary value problems for cavities
or cracks that exist within the layered elastic material. Although the method is quite general,
in this paper we restrict our discussion to multilayered problems containing cracks that are
perpendicular to the layer interfaces.

In order to determine the Green’s function, we will apply the FT in one (in 2D) or two
(in 3D) directions parallel to the layers in order to reduce the system of partial differential
equations to a system of coupled ordinary differential equations. Implicit in the use of the FT is
the assumption that we are only looking for solutions whose displacements and stresses decay
to zero at infinity. The general solution of the homogeneous ordinary differential equations for
a given layer can be determined since any given layer is uniform and therefore has constant
coefficients. The general solution in each layer can be expressed in terms of a small number (4
in 2D and 6 in 3D) free constants, which we shall refer to in this paper as spectral coefficients.
The appropriate Green’s function can then be constructed by stitching together the solutions
within each of the layers by applying the conditions that the stresses and displacements are
continuous across the layers, while the source term for the Green’s function can be derived
by specifying the appropriate jump conditions across the pseudo interface at the horizon at
which the desired source falls. In order to obtain the spatial form of the Green’s function, the
FTs are inverted. Using this FT technique, it is possible to determine the Green’s function
for two bonded half-spaces with different moduli. However, it is not possible to obtain a
closed form solution for more than three layers without resorting to an infinite series of image
sources (see, for example, Wallace, 1984). The method we describe in this paper is useful
for determining numerical Green’s functions in an efficient manner. For 3D problems it is
perhaps more convenient to use the Hankel transform (or an expansion in terms of Hansen
potentials – see Singh, 1970 or Kennet, 1983). The method we describe will apply equally to
a formulation in terms of Fourier and Hankel transforms, but for clarity of expostion and to
allow the possibility of presenting the method for both 2D and 3D problems within the same
framework, we will restrict our discussion to the FT formulation.

The FT method described above for the construction of Green’s functions was essentially
pioneered by Sneddon (1995). Thompson (1950) introduced the first systematic approach to
layered materials. The method described above leads naturally to the so-called stiffness matrix
method (see Wardle, 1980), which leads to a system of algebraic equations for the spectral
coefficients. A number of formulations of the algebraic equations for layered elastic materials
have been developed. Gilbert and Backus (1996) introduced the so-called propagator matrix
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method, while Buffler (1961, 1962, 1971) introduced the flexibility matrix method. Many
authors (see, for example, Singh, 1970; Wardle, 1980) have dealt with the construction of
singular solutions in the frequency domain such as those for an isolated displacement dis-
continuity (DD) within a layered material that is not close to an interface. The idea is to first
subtract off the singular, high wavenumber components, which would correspond to a DD in
an infinite elastic medium with the same material properties as those of the elastic layer in
which the DD actually falls. Having removed these high frequency components, it is possible
to invert the FTs to obtain the residual stress components which need to be added to the infinite
space DD in order to take account of the effect of the layering. This process of inversion and
integration into discrete elements for the low wavenumber components is typically achieved
by numerical integration. However, if the source DD is close to an interface between two of the
layers, then the infinite space DD solution only becomes a reasonably good approximation to
the singular DD in the layered material for wave numbers k = O(1/h) where h is the distance
between the DD and the interface. Thus as the DD approaches the interface, i.e., as h → 0, the
numerical task of inverting and integrating the residual Fourier coefficients that have signifi-
cant components for wavenumbers as high as k = O(1/h) becomes very costly. In this paper
we present UASs (in 2D and 3D) that can be used to subtract off the singular components
for a point DD that can come arbitrarily close to an interface. These solutions are based on
the FT solutions for two pairs of bonded half-planes that are superimposed to construct the
leading order asymptotic solution to the problem of a DD in the middle layer of a three layer
material. The asymptotic solution is uniformly valid for any location of the DD within the
middle layer. Once the singular components due to the UASs have been subtracted off, the
residual Fourier coefficients that need to be inverted and integrated numerically only involve
very low wavenumbers. Not only do the UASs make it possible to model a problem in which
a DD can actually touch an interface, but they also significantly reduce the computational cost
because lower order integration and substantially less wavenumber sample points need to be
used.

In Section 2 we summarize the governing equations and define the layer geometry. In
Section 3 we describe the FT technique to reduce the elastic partial differential equatons to
systems of ordinary differential equations. In Section 4 we detail the construction of the 2D
and 3D UASs in the wavenumber domain. In Section 5 we describe the process of inversion
of the 2D and 3D UASs from the wavenumber domain into the spatial domain. In Section 6
we briefly describe the process used to set up the discretized model for a crack in a layered
elastic medium. In Section 7 we provide some numerical results to illustrate the accuracy
and efficiency of the method based on the UASs. In Section 8 we provide some concluding
remarks and discuss some of the applications of this method.

2. Governing equations and layer geometry

2.1. AN ELASTIC MATERIAL IN 3D

Consider a linear elastic material that occupies a region in 3D space and which is in a state of
equilibrium. In this case the stresses σij and the strains εij = 1

2 (ui,j + uj,i), which are defined
in terms of the displacement gradients ui,j = ∂ui/∂xj , at any point within the body are related
by:

σij = λεkkδij + 2Gεij , (2.1)
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where λ and G are Lamé’s constants that can be expressed in terms of the Young’s modulus
E and Poisson’s ratio ν of the material by the formulae: λ = Eν/[(1 + ν)(1 − 2ν)] and
G = E/[2(1 + ν)]. It is convenient to introduce the constants a, b, and f that are defined by:
a = λ + 2G, b = λ, and f = 2G.

We assume that the elastic medium is in equilibrium so that the stresses satisfy the equilib-
rium equations

σij,j + fi = 0 , (2.2)

where fi are the applied body forces.
It is also useful in this context, in which the layer properties do not change in the x and z

directions but do vary in the y direction (see Figure 1), to rewrite the system equations (2.1)
and (2.2) in the form of a system in which the x and z derivatives have been separated from
the y derivatives:

∂yT = AT + F, (2.3)

where T represents the vector of stresses and displacements defined by

T = [σyy, σxy, σyz, uy, ux, uz]T ,

the body force vector is given by F = [−fy,−fx,−fz, 0, 0, 0]T , and A is the differential
operator involving only x and z derivatives that is defined by:

A =
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. (2.4)

2.2. GEOMETRY OF THE LAYERED ELASTIC MATERIAL

In this section we introduce the geometry and labeling convention that we will assume for the
elastic medium throughout this paper.

We assume that the body is divided into N layers in which the moduli can be different
(see Figure 1). Depending on the problem being considered, the pack of N layers can either
extend to ∞ in both directions or there can be a free surface on the top of the pack of layers,
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Figure 1. Geometry and labeling of a horizontally layered body.

which rest on an elastic half-space (as is shown in Figure 1). We assign numbers to the layers
starting from layer 1 for the bottom half-space and ending with layer number N for the top
layer adjacent to the free surface. These layer indices are represented by the boxed sequence
of numbers on the left side of Figure 1. The layer interfaces are numbered in a similar way
and the sequence of interface indices for this problem are shown on the extreme left hand side
of Figure 1. Observe that the interface at the top of a layer has the same index as the layer
itself. The thicknesses of the layers di , which may all be distinct, are also shown in the figure.
Similarly, the symbols Ei and νi are used to denote the elastic moduli of the i th layer. We
introduce a Cartesian coordinate system Oxyz in which the x and z axes are aligned with
the horizontal layers and in which the y coordinate is measured upwards from the interface
between the pack of layers and the bottom half-space (see Figure 1).

Point displacement or force discontinuities can be introduced into the N-layer elastic
medium by specifying appropriate jump conditions in the stress and displacement fields across
a horizontal layer having the same y coordinate as the desired source point. This is achieved
by introducing a pseudo interface, which is represented by the dashed line through layer
4 in Figure 1. This process divides layer 4 into two layers for the purposes of this source
computation and increases the number of layers by one. For the purpose of the computation
the layers are renumbered using the same procedure as before and the layer numbers and
interface indices are shown on the right hand side of Figure 1. The symbol s will be reserved
for the s th layer immediately below the pseudo ‘source’ interface.

3. FT solution of the layer equations

There is a vast literature on the application of the FT to singular solutions for elastic media
(Sneddon, 1995) and to layered isotropic (Buffler, 1961, 1962; Singh, 1970; Lin, 1989), and
even layered transversely isotropic media (Wardle, 1980; Singh, 1986; Lin, 1989; Pan, 1997).
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The FT is the fundamental device that we will use in this paper to exploit the horizontal
layering of the elastic medium being considered. The fact that the material properties do not
vary in the x and z directions implies that the FT can be applied to the system of partial differ-
ential equations (2.1) and (2.2) to reduce them to a system of ordinary differential equations
in the independent variable y for each of the stress and displacement components in each of
the layers (see Appendix A for the definition of the FT used in this paper). Regarding the
spatial wavenumber as a parameter, it is possible to obtain the general solution to the system
of ordinary differential equations in each of the layers, which in 3D involves six arbitrary
constants that need to be determined for each layer.

3.1. REDUCTION OF THE LAYER PDES TO A SYSTEM OF ODES

By taking the FT of the system of equations (2.3) we obtain:

∂yT̂ = ÂT̂ + F̂ , (3.1)

where Â is defined to be:

Â =
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(3.2)

and k = (m2 + n2)
1
2 and the elements of T̂ and F̂ have been arranged as follows

T̂ = [σ̂yy, τ̂s , ûy, ûs , τ̂t , ût ]T and F̂ = [−f̂y,−f̂s, 0, 0,−f̂t , 0]T .

Here we have followed Wardle (1980) by defining the displacement and stress components of
T̂ to be:

ûs = −i(mûx + nûz)/k, ût = −i(nûx − mûz)/k (3.3)

and

τ̂s = −i(mσ̂xy + nσ̂yz)/k, τ̂t = −i(nσ̂xy − mσ̂yz)/k . (3.4)
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We observe that unknowns involving σ̂yy , τ̂s , ûy and ûs (the s subsystem) are completely de-
coupled from the unknown involving τ̂t and ût (the t subsystem). The s subsystem is sufficient
to determine boundary value problems for 2D plane strain, while the autonomous t subsystem
is the only additional part that needs to be added to the plane strain equations in order to
determine boundary value problems in 3D. We notice that by setting either m = 0 (or n = 0)
we obtain the corresponding plane strain equations with the out of plane direction being the
x (respectively the z) direction. A similar decoupling of the spectral ODEs also occurs if the
Hankel transformation is applied to the layered elasticity problem (see, for example, Singh,
1970; Kennet, 1983).

3.2. EXACT SOLUTION TO THE LAYER ODES AND SPECTRAL COEFFICIENTS

Considering the wavenumber k as a parameter, we can now determine the solution to the
system of ODEs (3.1), which can be expressed in terms of the solutions for the s-subsystem
and the t-subsystem as follows (see Wardle, 1980):[
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The constants lj in (3.5) are defined as follows:

l2 = λ + 3G

λ + G
, l4 = 2G2

λ + G
, l5 = 2G(λ + 2G)

λ + G
(3.6)

and the following relationships between the above constants are useful:

f l2 = l5 + l4, f = l5 − l4. (3.7)

It is important to note that the spectral coefficients, required to define the primary variables,
can be expressed entirely in terms of the single wavenumber parameter k = √

m2 + n2. This
property can be exploited to reduce the FT inversion problem from one which involves sam-
pling the integrand at points throughout the (m, n) plane to what amounts to a 1D sampling
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of the wavenumber parameter k. The unknown coefficients Aj(k) in (3.5) depend on the
parameter k, and we will refer to them as the spectral coefficients throughout this paper. Once
the spectral coefficients in any one layer are known, it is then possible using (3.5) to determine
the stresses and displacements at any desired point within that layer.

It can be shown (Kennet, 1983) that a normal point vertical DD located at ys with a dis-
placement jump 	u in the z direction can be represented by traction discontinuities across the
plane y = ys of the following form:
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. (3.8)

The first forcing vector on the right-hand side of (3.8) is precisely the same one that appears
in plane strain problems and only acts on the s-system and we will refer to the solutions
obtained using this forcing as the Ps solution. The second forcing vector is in the form of
a forcing on the s-subsystem and we will refer to this as the ancillary s solution which we
will denote by the As solution. The third vector is in the form of a forcing on the t-subsystem
and we refer to this ancillary solution as the At solution. Because the dependence on m and
n can be factored out of each of these forcing vectors, we can determine the solution for
the forcing vectors without the factors involving m and n, and then we can multiply these
solutions by the appropriate functions of m and n in order to get the required solution for any
given wavenumber pair (m, n).

In order to model vertical fractures that run perpendicular to the layers, it is necessary to
derive an expression for the stress normal to the fracture surface. In the coordinate systems
defined in Figure 1 it is necessary to determine the stress component σ̂zz, which can be defined
in terms of the spectral coefficients as follows:
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−ky + (−l6n

2 − l7m
2 + f n2ky)A2e

−ky − f mnA5e
−ky− (3.9)
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where we have defined the new constants l6 = 2G(2λ+3G)/(λ+G) and l7 = 2λG/(λ+G).

3.2.1. Inversion of the FTs
Once the values of the spectral coefficients Aj(k) in each layer have been determined and the
FT of the displacements ûi(k) and stresses σ̂ij (k) within each layer have been determined,
then the displacements and stresses within each layer can be determined by applying formula
(A.2) for the inversion of the FT. We will discuss the process of inverting the double FT by
converting the double integral into polar coordinates and expressing the double integrals in
terms of a single Hankel transform using an integral representation of the Bessel function.

3.2.2. Asymptotic behavior of spectra and the effect on spatial solutions
For a layer in which y is positive, we observe from (3.5) that in order for the stresses and
displacements to remain finite, the spectral coefficients A3(k) and A4(k) must tend to zero
as k → ∞ more rapidly than eky . For large y (i.e., in the far-field limit) the behavior of the
solution is determined by the value of the spectral coefficients as k → 0, while the near field
y → 0 behavior will be determined by the values of the spectral coefficients Aj(k) as k → ∞.

3.3. THE NUMERICAL PROCEDURE TO SOLVE BOUNDARY VALUE PROBLEMS

Three different methods have been developed to solve the system of algebraic equations for
the spectral coefficients Aj(k), namely the stiffness matrix method (see Wardle, 1980; Buffler,
1971), the propagator matrix method (see Gilbert, 1966), and the flexibility matrix method
(see Buffler, 1971 or Linkov, 1991 and for a more recent improvement Peirce, 2001), that can
be used to determine the solution to the coupled system of algebraic equations that needs to
be solved in order to determine the spectral coefficients Aj(k).

All these methods rely on a fairly simple idea that is common to all techniques for solving
problems in layered elastic media. We first establish the equations that determine the stiffness
properties of each of the layers in terms of the degrees of freedom of the model. For example,
the degrees of freedom for a finite element, finite difference, or boundary element model
will be the unknown nodal displacements at the mesh points of the numerical model. For the
spectral methods that we use in this paper, the degrees of freedom in the model are represented
by the unknown constants, which we call spectral coefficients, that are parameterized by the
wavenumber k. Once we have established equations for the stresses and displacements within
each of the layers in terms of the internal degrees of freedom, we stitch all the layers involved
in the problem together at their common interfaces by imposing conditions of continuity
in displacements and tractions across the interfaces. Discontinuous sources (such as force
discontinuities or DDs) can be represented by introducing the appropriate jump conditions
across pseudo-interfaces introduced for this purpose. Finally, the whole mechanical problem
is completed into a well-posed system of algebraic equations by introducing the appropri-
ate conditions at the boundaries of the pack of layers, e.g., specified tractions, specified
displacements, or a complementary combination of tractions and displacements.

4. UASs in the wavenumber domain

In the case of a layered material with multiple layers it is not possible to obtain a simple closed-
form solution for the spectral coefficients and therefore for the stresses and displacements due
to a DD for example. Indeed, for a problem that has three or more layers and two or more
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Figure 2. A vertical DD in the middle layer of three bonded elastic layers.

interfaces, the analytic solutions will involve an infinite series of image DDs that are required
to impose the appropriate boundary conditions on the interfaces. Thus for a more complex
problem, one inevitably has to resort to a numerical solution of the system of algebraic equa-
tions for the spectral coefficients and then a numerical inversion. This numerical inversion
process, as we will see later in this paper, is essentially equivalent to inverting a Hankel trans-
form. The situation is exacerbated by the presence of highly singular sources in the problem
that tend to increase the high frequency content of the spectral coefficients. Indeed, the only
feasible way to obtain any sort of numerical inversion in the presence of a concentrated DD,
is to first subtract off the singular DD coefficients for a DD in an infinite medium and to then
invert the remaining low frequency components using numerical integration (see, for example,
Wardle, 1980). However, for problems in which the DD comes very close to an interface,
which occurs when modeling a crack touching or intersecting an interface, the asymptotic
solution in the limit k → ∞ provided by a DD in an infinite medium no longer removes all
the high frequency components that prove to be troublesome for numerical integration. If the
DD is a small but finite distance from the interface, then eventually as k → ∞, the spectral
coefficients will tend to the infinite space values. However, if the source DD is really close
to the interface, the actual spectral coefficients will be significantly different from the infinite
space DD solution for wavenumbers up to k = O(h−1), where h is the distance between the
source DD and the interface. For this reason we derive a uniform asymptotic approximation
to the solution for a vertical DD which is in the middle layer of a three layer medium. This
asymptotic approximation, which is valid for large k, allows us to significantly reduce the
range of wavenumbers that need to be calculated – in some cases by two orders of magnitude.
But perhaps more importantly it substantially reduces the high frequency content of the spatial
influences that need to be integrated numerically in order to obtain an integrated Green’s
function – this becomes particularly important when trying to arrive at Green’s functions for
elements that come into contact with the interface between two materials.

4.1. UAS FOR THREE ELASTIC LAYERS

A typical situation encountered when modeling a crack which intersects a number of layers
will involve a DD element that finds itself sandwiched between two interfaces. These inter-
faces separate the layer, in which the DD element falls, from the ‘outside world’. The outside
world might comprise two or more distinct layers. The first step in finding useful asymptotic
solutions would be to determine the solution for a DD element that falls in the middle layer
of three elastic layers, i.e., within a layer that is sandwiched between two bonded elastic half-
planes. As mentioned earlier, the solution to this problem will involve an infinite series of
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image DDs that are distributed about an infinite periodic sequence of image interfaces that
are located further and further away from the source as the terms of the series progress (see,
for example, Wallace, 1984). These image DDs will result in features that alter the spectral
coefficients that decay on a length scale e−2kH , where H is the distance from the image to the
original source DD. Thus the effects of the remote DD will die very rapidly, leaving spectral
coefficients whose behavior is dominated by the source and the nearest images. In this section
we use the exact solutions for two bonded half-planes to derive the uniformly valid leading
order asymptotic approximation to the spectral coefficients for the three layer problem. These
asymptotic spectral coefficients can be used to eliminate the high wavenumber components
from the spectral coefficients. Since only the remaining low wavenumber components need to
be inverted, this procedure significantly reduces the computational cost of numerical inversion
and integrated kernel evaluation. In the performance tests presented below we will see that the
UAS makes it possible to efficiently determine the effect of a single DD element that touches
two interfaces simultaneously.

Consider a three layer elastic medium comprising two half-planes that are bonded to a finite
strip with the moduli and spectral coefficients defined as shown in Figure 2. If the vertical DD
falls in the region where hL � hU , the three layer solution will tend, for large k values, to the
solution for a vertical DD in the upper part of two bonded half-planes, while if the DD falls in
the region where hL � hU , the three layer solution will tend, for large k values, to the solution
for a vertical DD in the lower part of two bonded half-planes. If on the other hand, the DD is
not much closer to one interface than the other so that hL ∼ hU , then as k → ∞ the ultimate
asymptotic solution is the solution for a vertical DD in an infinite medium to which both the
upper and lower solutions tend. Thus we have a typical situation that occurs in asymptotic
analysis (see, for example, Bender, 1978), in which two different asymptotic solutions are
valid in different regions but they are both valid in a finite overlap region that they both share.
In this case it is possible to obtain an asymptotic approximation that is uniformly valid over
the three regions by superimposing the two asymptotic solutions and subtracting the solution
in the match region:

A
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l,U
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j (k) , (4.1)
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G2 = G3 so that the upper interface in Figure 2 ceases to have physical significance), and
A

l,∞
j (k) represents the spectral coefficient for a point vertical DD in an infinite medium with

material properties λ2 for the middle layer.
The unknown asymptotic spectral coefficients A

l,P sμ

j (k) that are calculated by substituting

the expressions for A
l,P sU
j (k), Al,P sL

j (k), and A
l,P s∞
j (k) into (4.1) are given as follows:



216 Anthony P. Peirce and Eduard Siebrits

A
3,P sμ

1 = gPL
1 (k) + gPU

0 (k) , A
3,P sμ

2 = gPL
2 (k) + cU

0 ,

A
2,P sμ

1 = gPL
1 (k) − c3 , A

2,P sμ

2 = gPL
2 (k) + c4 ,

A
2,P sμ

3 = gPU
1 (k) , A

2,P sμ

4 = gPU
2 (k) ,

A
1,P sμ

1 = gPL
1 (k) , A

1,P sμ

2 = gPL
2 (k) ,

A
1,P sμ

3 = gPU
1 (k) + c3 , A

1,P sμ

4 = gPU
2 (k) + c4 ,

A
0,P sμ

3 = gPU
1 (k) + gL

0 (k) , A
0,P sμ

4 = gPU
2 (k) + cL

0 .

(4.2)

Here

gPL
0 (k) = gP

0 (k; εL, δL, ρ, hL) , gPU
0 (k) = −gP

0 (k; εU, δU , ρ, hU) ,

gPL
1 (k) = gP

1 (k; εL, δL, ρ, hL) , gPU
1 (k) = −gP

1 (k; εU, δU , ρ, hU) ,

gPL
2 (k) = gP

2 (k; εL, δL, ρ, hL) , gPU
2 (k) = gP

2 (k; εU , δU , ρ, hU) ,

and where functions gP
j (k; ε, δ, ρ, h) are defined as follows:

gP
0 (k; ε, δ, ρ, h) = {α0

0 + α0
1 · (kh)} , (4.3)

gP
1 (k; ε, δ, ρ, h) = {α1

0 + α1
1 · (kh) + α1

2 · (kh)2}e−2kh , (4.4)

gP
2 (k; ε, δ, ρ, h) = {α2

0 + α2
1 · (kh)}e−2kh , (4.5)

and the constants αi
j and cj are defined as follows:

α0
0 = − 3ε(1 − ε) + (δ + 3ε)ρ + (1 + ε)δρ2

(3ε + ε2 + (1 + ε)ρδ)(1 + 3ε + (1 + ε)ρ)
,

α0
1 = 2ε{(1 − ε) + (1 − δ)ρ}

(3ε + ε2 + (1 + ε)ρδ)(1 + 3ε + (1 + ε)ρ)
,

α1
0 = −12ε(1−ε)+(15ε−16ε2−3ε3+4δ)ρ+(3ε−4ε2−ε3−3ε2δ+5δ)ρ2+(1−ε2)δρ3

2(2 + ρ)(3ε + ε2 + (1 + ε)ρδ)(1 + 3ε + (1 + ε)ρ)
,

α1
1 = − (1 − ε)(1 + ρ)ρ

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
,

α1
2 = (1 − ε)(1 + ρ)2

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
, (4.6)

α2
0 = −3

2

(1 − ε)(1 + ρ)2

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
,

α2
1 = (1 − ε)(1 + ρ)2

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
,

c0 = − (ε + δρ)

(3ε + ε2 + (1 + ε)ρδ)
,



Accurate modeling of cracks in layered elastic media 217

c3 = − ρ

2(2 + ρ)
,

c4 = − 1 + ρ

2(2 + ρ)
.

The constants εL, δL, εU , δU , and ρ are defined as follows:

εL = G1

G2
δL = λ1

λ2
εU = G3

G2
, δU = λ3

λ2
, ρ = λ2

G2
.

The uniform asymptotic spectral coefficients A
l,Asμ
j (k) that are calculated by substituting

A
l,AsU
j (k), AAsL

j (k), and A
l,As∞
j (k) into (4.1) are given as follows:

A
3,Asμ

1 = gAL
1 (k) + gAU

0 (k) , A
3,Asμ

2 = gAL
2 (k) − cU

0 ,

A
2,Asμ

1 = gAL
1 (k) , A

2,Asμ

2 = gAL
2 (k) − c4 ,

A
2,Asμ

3 = gAU
1 (k) , A

2,Asμ

4 = gAU
2 (k) ,

A
1,Asμ

1 = gAL
1 (k) , A

1,Asμ

2 = gAL
2 (k) ,

A
1,Asμ

3 = gAU
1 (k) , A

1,Asμ

4 = gAU
2 (k) − c4 ,

A
0,Asμ

3 = gAU
1 (k) + gAL

0 (k) , A
0,Asμ

4 = gAU
2 (k) − cL

0 ,

(4.7)

where

gAL
0 (k) = gA

0 (k; εL, δL, ρ, hL) , gAU
0 (k) = −gA

0 (k; εU , δU , ρ, hU) ,

gAL
1 (k) = gA

1 (k; εL, δL, ρ, hL) , gAU
1 (k) = −gA

1 (k; εU , δU , ρ, hU) ,

gAL
2 (k) = gA

2 (k; εL, δL, ρ, hL) , gAU
2 (k) = gA

2 (k; εU , δU , ρ, hU) ,

where the functions gA
j (k; ε, δ, ρ, h) are defined as follows:

gA
0 (k; ε, δ, ρ, h) = {β0

0 + β0
1 · (kh)} , (4.8)

gA
1 (k; ε, δ, ρ, h) = {β1

0 + β1
2 · (kh)}e−2kh , (4.9)

gA
2 (k; ε, δ, ρ, h) = {β2

0 + β2
1 · (kh)}e−2kh , (4.10)

and the constants cj were defined in (4.6) and the βi
j are defined as follows:

β0
0 = 3ε(1 − ε) + (δ − ε2)ρ

(3ε + ε2 + (1 + ε)δρ)(1 + 3ε + (1 + ε)ρ)
,

β0
1 = 2ε{(ε − 1) + (δ − 1)ρ}

(3ε + ε2 + (1 + ε)δ)(1 + 3ε + (1 + ε)ρ)
,

β1
0 = −(3ε2 − 3ε + (ε2 − δ)ρ)

(3ε + ε2 + (1 + ε)δρ)(1 + 3ε + (1 + ε)ρ)
,
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β1
2 = (ε − 1)(1 + ρ)2

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
, (4.11)

β2
0 = (1 − ε)(1 + ρ)(3 + ρ)

2(2 + ρ)(1 + 3ε + (1 + ε)ρ)
,

β2
1 = (ε − 1)(1 + ρ)2

(2 + ρ)(1 + 3ε + (1 + ε)ρ)
.

The uniform asymptotic spectral coefficients A
l,Atμ

j (k) that are calculated by substituting
Al,AtUj (k), Al,AtLj (k), and Al,At∞j (k) into (4.1) are given as follows:

A
3,Atμ

5 = −{γ L
1 e−2khL + γ U

0 } , A
3,Atμ

6 = 0 ,

A
2,Atμ

5 = −{γ L
1 e−2khL + 1} , A

2,Atμ

6 = −γ U
1 e−2khU ,

A
1,Atμ

5 = −γ L
1 e−2khL , A

1,Atμ

6 = −{γ U
1 e−2khU + 1} ,

A
0,Atμ

5 = 0 , A
0,Atμ

6 = −{γ U
0 + γ L

1 e−2khU } ,

(4.12)

where γ0 = 2/(1+ ε) and γ1 = (1− ε)/(1+ ε) and γ L
0 , γ L

1 and γ U
0 , γ U

1 are obtained by using
the values of εL and εU respectively.

5. Inversion of the UAS

In this section we discuss the process of inversion of the FTs of the influences as well as the
construction of integrated kernels. In order to make it possible to use the spectral method to
determine the spatial influences of the singular case in which a crack intersects the interface
between two layers, it is necessary to first subtract off the uniform asymptotic spectral coeffi-
cients A

l,μ

j (k) derived in Section 4.1 from the numerical spectral coefficients Al
j (k). We then

obtain a set of low frequency components Al,L(k) that are used in the numerical inversion
process, i.e.,

A
l,L
j (k) = Al

j (k) − A
l,μ

j (k) . (5.1)

Since Al
j (k)

k→∞−→ A
l,μ

j (k), it follows that A
l,L
j (k)

k→∞−→ 0. If the uniform asymptotic approxi-

mation closely mimics the true solution, then A
l,L
j (k) will only be non-zero for relatively low

frequencies. After subtracting off the asymptotic solution, the remaining spectral coefficients
A

l,L
j (k) that need to be inverted contain only relatively low frequency cmponents. As a result,

it is possible to invert the low frequency spectra A
l,L
j (k) very efficiently using numerical inte-

gration. The high frequency components, that are associated with the UAS A
l,μ

j (k), cannot be
inverted numerically. However, these uniform special coefficients can be inverted analytically
to yield approximate spatial stress and displacement components due to a point vertical DD
in a three layer material.

The point kernels must be multiplied by the appropriate basis functions to obtain the de-
sired elemental DD influences. In this paper we shall only consider the case of piecewise
constant basis functions, but any of the standard DD discretizations can be obtained for
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multilayered media using the spectral method by implementing the appropriate choice of
basis functions. In order to complete the process, the low frequency components also need
to be integrated against the appropriate basis functions. Since we do not have an explicit
expression for the low frequency spectral components that have been inverted numerically, it
is not possible to obtain an analytic expression for the integrated low frequency components.
The spatial functions associated with these low frequency spectra are smooth functions since
they only involve low frequency Fourier modes all of which are smoothly varying functions
in space. It is therefore possible to integrate the contribution of these low frequency spectral
components very accurately with a low order Gauss integration scheme in order to determine
a set of integrated influence coefficients.

If the l-th layer is adjacent to, or contains, the vertical DD then it is necessary to subtract
off the high frequency components before the inversion process. In this case in order to obtain
the stress components, we superimpose the low frequency stress components σ

l,L
j (k) that are

associated with the spectral coefficients A
l,L
j (k), and the singular stress components σ

l,μ

ij due

to the uniform asymptotic spectral coefficients A
l,μ

j (k), i.e.,

σ l
ij = σ

l,L
ij + σ

l,μ

ij .

A similar procedure can be followed to obtain the displacement components due to a vertical
DD in a multilayered elastic medium, i.e.,

ul
i = u

l,L
i + u

l,μ

i .

If the l-th layer is not adjacent to or does not contain the vertical DD then it is not necessary
to subtract off the high frequency components before the inversion process. In this case the
stresses and displacement components can be obtained by direct numerical inversion.

5.1. INVERSION OF THE 2D KERNELS

The FT of the horizontal stress component σ̂ μ
xx due to a point vertical DD of unit strength

located a distance η from the center of the sending element (see Figure C.1) can be expressed
in the form:

σ̂ μ
xx

k
= f A

μ

1 (k)e−ky ′ + (f ky′ − l6)A
μ

2 (k)e−ky ′ − f A
μ

3 (k)eky ′ − (f ky′ + l6)A
μ

4 (k)eky ′
, (5.2)

where the spectral coefficients A
μ

j (k) are those for the uniform asymptotic approximation
defined in (4.2). The detailed coefficients A

μ

j (k) and constants f and l6 vary depending on
which of the four layers, indicated in Figure 2, the receiving point falls in.

The expressions for the spectral coefficients given in (4.2) involve products of powers of k

and exponentials of the form e−|k|Y, where Y is some function of y′ that will be defined below.
As a result the inversion of the point DD influences involves evaluating integrals of the form:

Ip(x′y′) = 1

2π

∫ ∞

−∞
e−kx ′ |k|pe−|k|Ydk

= 1

π

∫ ∞

0
kpe−kY cos(kx′)dk
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= 1

π
L(kp cos(kx′), k,Y) .

Here L(kp cos(kx′), k,Y) represents the Laplace transform of kp cos(kx′) with respect to k

evaluated at the value of the transform variable Y. Depending on the location of the receiving
point and the particular term being considered, the Laplace transform variable Y can take on
the following values Y = |y′|, 2hL + y′, or 2hU − y′, representing terms associated with the
point DD, the lower image of the point DD, and the upper image of the point DD, respectively.

The inversion process for the 3D kernels follows a similar procedure involving Hankel
transforms which is outlined in Appendix B.

6. The numerical procedure to solve crack problems

The pressurized crack problem is conveniently expressed (Crouch and Starfield, 1990) in the
form of an integral equation:∫

R(t)

C(x, y; ξ, η)w(ξ, η, t) dξ dη = p(x, y, t) .

Here w is the unknown width (DD) profile within the crack and p is the prescribed pressure
within the crack.

The given fracture geometry is discretized into elements – line segments in 2D and rec-
tangular elements in 3D. Each of the DD elements of the discretized problem is assumed to
send a set of stress influences to each of the other receiving elements in the mesh. These stress
influences are determined by adding the integrated uniform stress components σ l,μ

zz and the
integrated low frequency stress components σ l,L

zz at receiving points located at the centers of
the receiving elements. Assembling all possible send–receive pairs of influences and storing
them in a matrix C, we obtain the following discrete form of the above crack integral equation:

N∑
n=1

Cmnwn = pm .

In order to represent arbitrary fracture fronts on a rectangular mesh in 3D without incurring
any ‘staircasing’ errors, we make us of the concept of partially fractured tip elements intro-
duced by Ryder and Napier (1985). This technique makes it possible to obtain a width profile
that is as accurate as that obtained by using linear elements, or by using specialized square
root tip elements.

7. Numerical results

In this section we provide some numerical results to illustrate the use of the UAS.

7.1. ASYMPTOTIC SOLUTION FOR A DD CLOSE TO AN INTERFACE

In this subsection we provide some results that demonstrate the performance of the UAS. In
particular we consider the spectral coefficients associated with a square element whose size is
0.1 m and which just touches the bottom interface of a layer that is 0.4 m thick (see Figure 3).
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Figure 3. Geometry for UAS test problem.

We observe that relative positions of the layers and the size of the element are not drawn to
scale in this figure.

In Figure 4 the spectral coefficients A
4,P s
1 (k), A

4,P sμ

1 (k), and A
4,P s∞
1 (k) have all been

plotted for comparison. A
4,P s
1 (k) represents the actual spectral coefficient that is associated

with pseudo-layer 4 that is formed by inserting the false layer to model the source within the
3rd layer shown in Figure 3. A

4,P sμ

1 (k) is the spectral coefficient obtained using the UAS,
and A

4,P s∞
1 (k) is the asymptotic solution that would be obtained if the medium were homo-

geneous having the same material properties as those of the so-called source layer indicated
by the label 3 shown in Figure 3. The spectral coefficient A

4,P s∞
1 (k) is the high frequency

component that is typically subtracted out (see, for example, Pan, 1997; Lin and Keer, 1989;
Wardle, 1980) in order to leave only the low frequency components that can be inverted and
integrated numerically. We observe tht there is a significant difference between the actual
spectral coefficients A

4,P s
1 (k) for this problem and the homogeneous coefficients A

4,P s∞
1 (k)

for all but the very highest wavenumbers k � 102.5. By contrast the actual spectral coefficients
A

4,P s
1 (k) and the spectral coefficients derived from the UAS already show close agreement for

wavenumbers k ≈ 101. Although these two types of spectral coefficients are significantly
different for a large portion of the low wavenumber spectrum shown in Figure 4 (note that
the wavenumbers are plotted using a logarithmic scale), the contributions of the wavenumbers
can be relatively easily integrated because they are associated with components whose spatial
variations do not oscillate widly. In contrast, it would take considerable numerical resources
to accurately integrate wavenumber components that are associated with functions which are
oscillating rapidly in space such as those associated with k � 102. Thus the UAS makes it
possible to evaluate the influence of integrated, touching elements using relatively low order
Gauss integration. Indeed, with the experiments performed, two-point Gauss integration was
found to be sufficient for this purpose.
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Figure 4. A sample spectral coefficient for an element that is touching an interface.

7.2. SOLUTION FOR A SINGLE DD TOUCHING INTERFACES

The first example involves calculating the stress profile for a single vertical DD in a 2D layered
medium comprising four distinct layers (see Figure 5). The DD touches the two interfaces
bounding three of the layers. This problem has been chosen so that it is possible to compare the
stress influences due to a single DD obtained using the UAS procedure described above with
those obtained using a boundary integral program DIGSMM (see Napier, 1998). A problem
of any greater complexity would have exhausted the memory required by DIGSMM to solve
the problem.

In the DIGSMM simulations, the constant strength DD solution in a layered material was
obtained by discretizing the three interfaces between the layers and the free surface using
piecewise linear DD elements. The solution to the DD problem was obtained by requiring that
the displacements and tractions are continuous across the internal layer interfaces, while zero
traction boundary conditions were applied at the free surface. In Figure 6 the spectral solution
based on the UAS is compared with three sets of DIGSMM results, each corresponding to
different discretizations with the available number of elements, by plotting the percentage
differences between the DIGSMM solutions and the spectral solution. In the coarse DIGSMM
mesh, 717 DD elements were used to represent the interfaces, the surface, and the single
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Figure 5. Geometry for problem to test the UAS using a DD that touches two interfaces.

vertical DD element itself. In this case the horizontal interfaces and the free surface were
discretized to a distance of 15 m from the vertical DD, using a graded mesh. The spectral
and DIGSMM solutions show good agreement in this case as can be seen from Figure 6. In
order to assess whether the discrepancy is due to the spectral solution based on the UAS, or
the discretization error in the DIGSMM solution, a second DIGSMM run was performed with
a finer DD mesh. In the fine DD mesh 1,023 DD elements were used to discretize the same
pieces of the interfaces but with a somewhat higher density of DD elements. It can be seen
that the solution for the finer mesh has moved toward that of the spectral solution, particularly
at those points close to the vertical DD edges. In order to determine the effect of the truncation
of the layers in the DIGSMMmodel, another approximate solution was obtained in which the
number of DD elements was increased to 1143 and the length of the discretized interfaces was
extended to 38 m away from the vertical DD. In this case, there was no noticeable difference
between the coarse solution and the extended solution in the benchmark points close to the
vertical DD.

However, as the sample points are moved further from the vertical DD (see Figure 7), the
fine solution and the coarse solution give results that differ noticeably from that of the spectral
solution, while the extended solution shows much closer agreement with the spectral solution.
This is due to the error made in the DIGSMM models when the interface discretization is
terminated at a distance of 15 m from the vertical DD. The extended DIGSMM solution, in
which the cut-off was 38 m, shows a much closer agreement with the spectral solution. The
accuracy of the spectral solution in the far-field regime is dependent on accurate inversion and
integration of the low wavenumber components σ

l,L
ij .

7.3. A VERTICAL CRACK TOUCHING AN INTERFACE

In this example we demonstrate the performance of the UAS by solving a problem in which
a crack just touches an interface in a two layer elastic medium comprising a half-space onto
which a 1 m layer of different modulus is bonded. This simple problem, containing only two
layers, has been chosen to allow comparison with other simulators. The precise geometry and
material properties for the problem are shown in Figure 8.

Two solutions for this problem were generated using ABAQUS (1998), one using 4,000
finite elements (FEs), and the other using 16,000 FEs. The width profiles which are associated
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Figure 6. Percentage differences between FT solution and DIGSMM solutions.

with these solutions are plotted along a portion of the crack in Figure 9 using triangular and cir-
cular symbols respectively. A solution to this problem using 20 piecewise linear DD elements
to model the crack as well as DD elements along the bonded interface and free surface was
generated using DIGSMM (Napier, 1998) and the width profile for this solution is shown in
Figure 9 using a dashed line. A solution using a bonded half-plane solution and 15 piecewise
quadratic elements to model the crack itself as well as quadratic elements distributed along
the free surface was generated using BHP (Selcuk, 1998), and the width profile is shown
in Figure 9 using the square symbols. Finally, we generated two distinct spectral solutions
exploiting the UASs described in this paper. Using MLAYER2D, a 2D spectral solution was
determined involving 20 piecewise constant DD elements to model the crack. These elements
are non-standard because they include special truncation correction terms (Ryder and Napier,
1985), which ensure very accurate width results. The influence functions for these elements
were constructed using the 2D UAS given in Appendix C.2. Using MLAYER3D, a 3D spec-
tral solution was determined involving 160 rectangular piecewise constant DD elements with
truncation error correction. The rectangular elements had a large aspect ratio in order that the
3D model could approximate the 2D plane strain situation. The influence functions for these
rectangular elements were constructed using the 3D UAS described in Appendix C.3.
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Figure 7. Percentage differences between FT solution and DIGSMM solutions for sample points remote from the
DD.

Firstly we note that differences between the results shown in this plot have been empha-
sized by adjusting the ranges of the axes. There is in fact no more than a 0.6% difference
between any of the solutions shown in this plot. We observe that the 4,000 element FE solution
and the 20 element DIGSMM solution are fairly close to one another. When the FE model is
refined to 16,000 elements the solution can be seen to move closer to the spectral solutions

Figure 8. Geometry for problem in which a crack touches an interface.
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Figure 9. Width profiles for the pressurized crack problems using various algorithms.

and that given by the BHP solution. The two spectral solutions show very good agreement
even through one is based on a 3D approximation to plane strain. Given the close agreement
between the spectral solutions and the BHP solution (which is expected to give a very accurate
result for this problem since the bonded half-plane part of the solution has been built into the
solution explicitly) and the direction in which the FE solution moved with mesh refinement, it
follows that the spectral solutions are highly accurate while the FE and DIGSMM models did
not have enough degrees of freedom to give as accurate a result.

7.3.1. Comparison of CPU times
To give an idea of the relative efficiency of the alogrithms used in this problem, in Table 1 we
list the CPU times in seconds for a dedicated 200 MHz Pentium processor. We observe that
the more standard 2D finite element (ABAQUS) and boundary integral (DIGSMM) algorithms
took substantially longer to compute the solutions to this problem in spite of the fact that the
solutions were less accurate than the spectral method. The 2D spectral algorithm MLAYER2D
is clearly highly efficient.

7.4. A CRACK INTERSECTING TWO LAYERS

In this section we compare the numerical results for the case of a crack passing through the
interface between two bonded half planes with some of the semi-analytic results provided
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Table 1. Comparative CPU times for the crack touching an in terface problem

Algorithm Total no. of elts. No. of elts. on crack CPU time

ABAQUS (2D) 4000 40 175 s

DIGSMM (2D) 650 20 piecewise linear elements 147 s

MLAYER2D 20 20 0.17 s

MLAYER3D 160 20 vertical elements 78 s

Figure 10. Geometry for problems in which a crack cuts through an interface.

Figure 11. Crack opening displacement for crack subjected to constant stress p1 and p2.
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Table 2. Stress intensity factors determined using MLAYER2D and those given by Erdogan
and Biricikoglu

MLAYER2D Erdogan and Biricikoglu

b2/b1 KI (b1)/(p1
√

l) KI (b2)/(p2
√

l) KI (b1)/(p1
√

l) KI (b1)/(p2
√

l)

0.05 1.4035 4.2268 1.4067 4.3607

1.00 1.0921 1.1586 1.0931 1.1787

2.00 0.9124 0.9676 0.9129 0.9770

Figure 12. Geometry of a penny shaped crack centered on the interface between two different elastic media.

by Erdogan and Biricikoglu (1973). We consider a crack of length 2l = b1 + b2 to straddle
the interface between two elastic half spaces with moduli: E1 = 107 psi, ν1 = 0.3, and
E2 = 4.45 × 105 psi, ν2 = 0.35. The b1 and b2 portions of the crack are loaded with constant
pressures p1 and p2 respectively. In order to maintain continuity between the layers in a state
of plane strain (Erodgan and Biricikoglu, 1973), p1 and p2 are related by:

1 − ν2
1

E1
p1 = 1 − ν2

2

E2
p2 .

In Figure 11 we plot, for comparison, the normalized crack opening displacements deter-
mined using MLAYER2D and those published in Erdogan and Biricikoglu (1973) (extracted
from their paper by digitization). The normalized crack opening displacement is defined as
wG1/p1. We observe that there is close agreement between the two sets of solutions.

In Table 2 we compare the stress intensity factors determined using MLAYER2D with
those given by Erdogan and Biricikoglu. Erdogan and Biricikoglu (1973) define the stress
intensity factor to be K1(bi) = lim

ri→0

√
2riσxx, where ri = |bi − y|. the stress intensity factors

for the MLAYER2D results were obtained by expanding the width in terms of a two term
asymptotic expansion:

w
r→0∼ c0r

1/2
0 + c1r

3/2 + O(r5/2) (7.1)

and using the coefficient of the leading term to determine KI .
We observe that the stress intensity factors sampled at the tip of the b1 section of the crack

differ by less than 0.1% between the two methods, while the stress intensity factors sampled
at the tip of the b2 section of the crack differ by between 1% and 3%.



Accurate modeling of cracks in layered elastic media 229

Figure 13. Normalized width profile for a penny shaped crack centered on the interface between two layers.

7.5. A PENNY SHAPED CRACK SPANNING TWO BONDED HALF SPACES

Lin and Keer (1989) have published results for the width of a penny shaped crack spanning
a two-layer material (see Figure 3). Poisson’s ratio is assumed to be the same in both layers
while the modulus contrast is given by a factor η as shown in Figure 12 and the penny crack
is subjected to a constant pressure p.

In Figure 13 the normalized crack width Gw/pr is plotted against the normalized distance
y/r along the vertical section through the crack centre. As can be seen there is a close agree-
ment between the MLAYER3D results and those published by Lin and Keer (extracted from
their paper by digitization). The MLAYER3D solution was generated using a parent mesh of
900 elements and required a total CPU time of 43 seconds on a 200 MHz PC.

7.6. A PENNY SHAPED CRACK BELOW THE INTERFACE BETWEEN TWO BONDED HALF

SPACES

Kuo and Keer (1995) have published stress intensity results for a penny shaped crack located
near to the interface between two bonded layers. We consider the case of a penny shaped crack
of radius c which is located a distance h = 1.2c below the interface between the two layers as
shown in Figure 14. The lower and upper layers are assigned elastic moduli E1, ν1 and E2, ν2
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Figure 14. Location of a penny shaped crack just below the interface between two bonded half spaces.

respectively. For the purposes of the comparison, the same Poisson’s ratio ν1 = 0.3 = ν2 is
assigned to both of the layers, the ratio of the corresponding shear moduli of the two layers,
� = G2/G1, is varied, and the penny crack is subjected to a constant pressure p.

In Figure 15 we plot the normalized stress intensity factor KI/(p
√

πc) against the angle
θ as defined in Figure 14. The Kuo and Keer results that have been plotted in Figure 15 have
been extracted from their paper by digitization. They define the stress intensity factor to be
KI(θ) = lim

r→0

√
2πrσzz(r, θ), where r is the distance measured from the tip of the crack (we

note that this definition of the stress intensity factor differs from that used by Erdogan and
Biricikoglu (1973) by a factor of

√
π ). The stress intensity factor for the MLAYER3D results

are determined by sampling the width profile a distance r from the crack tip by making use of
a bi-quadratic interpolation on a local 3 by 3 patch of piecewise constant DD elements, which
are chosen so that the sample point falls within the central element of the patch. Making
use of two such sampled widths, both on the same radial line defined by θ = constant, the
asymptotic expansion (7.1) is then used to determined the stress intensity factor by making
use of the leading order coefficient c0 according to:

KI =
√

π

2

G

2(1 − ν)
c0 ,

where G and ν are the shear modulus and Poisson’s ratio of the layer in which the tip point
falls.

For the case of a homogeneous material, the stress intensity factor for a penny crack (Kuo
and Keer, 1995), loaded by a constant pressure p, is given by:

KI

p
√

πc
= π

2
≈ 0.6366 .

We observe that for the homogeneous case, � = 1, the MLAYER3D results (depicted by
the � symbols without the line) shows a close agreement with the exact solution, which is
represented by the solid horizontal line. The minor fluctuations in the MLAYER3D result is a
consequence of the interpolation errors incurred in the sampling process. We also ntoe that the
Kuo and Keer result is larger than the exact solution by a constant amount of 0.0086, which
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Figure 15. Variation of the normalized stress intensity factor KI/(p
√

πc) along the perimeter of the penny crack
with the angle θ .

represents an error of 1.4% and is probably due to the truncation error of the discretization
procedure that they used to determine their results. We observe that for the cases � 
= 1, the
MLAYER3D results and the Kuo and Keer results show the same trend, except that, as was
the case in the homogeneous situation, the Kuo and Keer result is consistently larger than the
MLAYER3D result by a constant factor. Indeed, if the constant amount of 0.0086 is subtracted
from all the Kuo and Keer results, then their results closely match the MLAYER3D and exact
results.

In Table 3 the MLAYER3D stress intensity factors are presented for various refinements
of the parent mesh, which circumscribes the penny crack region. We observe that for the case
� = 1 the approximate stress intensity approaches the exact value at a rate of O(	x3) as the
size 	x of the square DD elements is refined. There is a similar trend in the stress intensity
factors for the values of � as the mesh is refined. The CPU times quoted are for a 200 MHz
Pentium computer.
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Table 3. MLAYER3D stress intensity fractors for various parent meshes

δ = 90◦ θ = 90◦

N × N 24 × 24 48 × 48 96 × 96 24 × 24 48 × 48 96 × 96

� = 0.25 0.6882 0.6893 0.6898 0.6525 0.6453 0.6438

� = 0.25 0.6454 0.6381 0.6365 0.6455 0.6381 0.6365

� = 0.25 0.6084 0.5927 0.5885 0.6392 0.6313 0.6297

CPU time 47.5 s 197.5 s 1293 s 47.5 s 197.5 s 1293 s

8. Conclusions

In this paper we have presented UASs that make it possible to efficiently model cracks that
touch or intersect interfaces between layered elastic media. When modeling cracks that touch
or intersect interfaces, the source DDs introduce high wavenumber components into the spec-
tral solution to multilayer problems that cannot be treated numerically. The UASs enable one
to subtract out the high wavenumber components from the spectral solution for multiple layer
elastic problems leaving only low wavenumber components that need to be inverted numer-
ically. Since these low wavenumber components are associated with modes whose spatial
variation is moderate, they can be inverted and integrated with low order Gauss integration. In
this paper we have described the process by which the UASs can be constructed for 2D and
3D layered elastic media. The process of analytic integrtion of these singular solutions is also
described.

In this paper we provide numerical evidence that demonstrates that the UAS captures a
substantial portion of the high wavenumber spectrum which reduces the computational burden
of numerical inversion and integration of the spectral solutions. We also provide a number of
numerical examples in which the accuracy and speed of the spectral method is compared with
that of the finite element method and a boundary integral formulation for multiple elastic lay-
ers. The spectral solution was shown to be more accurate compared to the other methods while
using substantially less computer resources in terms of memory and computational time. We
demonstrated that the MLAYER2D crack widths and stress intensity factors compared well
with published results for a line crack that intersects two bonded half planes. We demonstrated
that the MLAYER3D fracture widths and stress intensity factors for a penny shaped crack in
two bonded half spaces show close agreement with results published in the literature.
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Appendix A. Definition of the FT

Let g(x, z) ∈ L1(R2) then we define the double FT of g(x, z) to be
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Figure B1. Polar coordinates for the FT inversion.

ĝ(m, n) =
∫ ∞

−∞

∫ ∞

−∞
ei(mx+nz)g(x, z) dx dz (A.1)

and the corresponding inversion formula is:

g(x, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(mx+nz)ĝ(m, n) dm dn . (A.2)

Appendix B. Inversion of the 3D kernels

We now outline the procedure that is used to invert the double FT by first converting to polar
coordinates in order to rewrite the FT in the form of a Hankel transform. The FT of the
horizontal stress component σ̂zz due to a point vertical DD of unit strength located a distance
η from the center of the sending element (see Figure C1) is of the form:

kσ̂zz = f n2

{
A

Psμ

1 (k) + A
Asμ

1 (k)
m2

k2

}
e−ky ′+

(−l6n
2 − l7m

2 + f n2ky′)
{
A

Psμ

2 (k) + A
Asμ

2 (k)
m2

k2

}
e−ky ′ − f

m2n2

k2
A

Atμ

5 e−ky ′ −

f n2

{
A

Psμ

3 (k) + A
Asμ

3 (k)
m2

k2

}
e−ky ′+ (B.1)

(−l6n
2 − l7m

2 − f n2ky′)
{
A

Psμ

4 (k) + A
Asμ

4 (k)
m2

k2

}
e−ky ′ − f

m2n2

k2
A

Atμ

6 e−ky ′
,

where the spectral coefficients A
μ

j (k) are those for the uniform asymptotic approximation
defined in (4.2), (4.7), and (4.12). The detailed coefficients A

μ

j (k) and constants f , l6, and l7
will vary depending on which of the four layers indicated in Figure 2 the receiving point falls
in.

Applying the inverse FT defined in (A.2) we obtain
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σzz(x, z) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(mx+nz)σ̂zz(m, n) dm dn . (B.2)

We now express the integration variables m and n in (B.2) in terms of polar coordinates
(k, θ) in which m = k sin θ and n = k cos θ . We also express x and z in terms of the polar
coordinates (r, φ) so that x = r sinφ and z = r cos φ (see Figure B1).

In terms of these new variables

mx + nz = kr cos(θ − φ) ,

so that (B.2) can be written in the form:

σzz(r sin φ, r cos φ) = 1

(2π)2

∫ ∞

−∞

∫ π

−π

e−ikr cos(θ−φ)σ̂zz(k sin θ, k cos θ) dθk dk . (B.3)

By introducing the notation:

Kpq(k; r, φ) = 1

2π

∫ π

−π

e−ikr cos(θ−φ) cosp θ sinq θ dθ , (B.4)

we can write the terms in σ̂zz(k sin θ, k cos θ) as a linear combination of integrals of the
following form:

Ispq = 1

2π

∫ ∞

0
e−ky ′

Aj(k)ksKpq dk . (B.5)

Now making use of the indentity (see Olver, 1974):

Jn(ρ) = 1

2π

∫ π

−π

e−inθ eiρ sin θ dθ , (B.6)

where Jn is the n-th order Bessel function, it is possible to represent the integrals Kpq in the
form:

Kpq =
p+q∑
j=0

(
j∑

j=0

bi

(z

r

)2i
)

J2j (kr) . (B.7)

Thus by making use of (B.3–B.7) it is possible to invert σ̂zz by evaluating Hankel trans-
forms of the form:

Hn(r) =
∫ ∞

0
h(k; x, y, r)Jn(kr) dk .

Appendix C. Integrated kernels

C.1. PROCEDURE FOR VERTICAL INTEGRATION

In this appendix we describe the process of determining the approximate spatial stress influ-
ences due to a vertical DD element that lies in the middle layer of a pack of three different
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Figure C1. Set-up for integration of UAS.

materials that have been bonded together such as the pack of layers shown in Figure 2. This
is only an approximate solution as we only invert and integrate the UAS given in Section 4.1,
which accounts for the first two nearest-neighbor image elements, but not the infinite series of
image elements that the full solution would require.

We consider a vertical DD element to be placed in the middle layer of the pack of three
layers (see Figure C1). Since it is the vertical distances (i.e., in the y direction) that are crucial
to the integration process, we only depict the rectangular element in 3D as a straight line
segment. Thus the figure suffices for the 2D as well as the 3D spatial integration process. In
3D this image of a rectangular element would be seen if the element were observed from a
viewpoint located along the x axis. The element is denoted by a thick line, while the element
center is denoted by a solid circle. In the layers above and below the middle layer, we have
shown the two image elements that are located symmetrically with respect to the layer inter-
faces at the top and bottom of the middle layer. For the purposes of setting up the inversion
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and subsequent integration process, consider a point vertical DD to be located a distance η

from center of the element. On this horizon, we have inserted a dashed line, that represents
the pseudo layer that is needed to represent the interface across which we need to apply the
appropriate jump conditions to obtain a point vertical DD. In Figure C.1, the receiving point
is represented by the open circle just below the top interface of the middle layer. The distance
from the point DD to the receiving point is denoted by y′, while the distance from the center of
the vertical DD element is denoted by y = y′ +η. Let hU and hL denote the distance from the
point vertical DD to the upper and lower interfaces of the middle layer respectively, while h0

U

and h0
L represent the distances from the center of the sending element to the upper and lower

interfaces of the middle layer respectively. Let 	yU and 	yL denote the distances between the
receiving point and the upper and lower interfaces of the middle layer respectively. Let yIU

and yIL denote the distances from the centers of the upper and lower image elements to the
receiving point.

The distances defined above are related in the following way:

Lower image distances
	yL = h0

L + y, yIL = 2h0
L + y, y′ = 2	yL − (yIL + η), hL = h0

L + η,

hL = 	yL − y′, hL = (yIL + η) − 	yL, 2hL + y′ = yIL + η .
(C.1)

Upper image distances
	yU = h0

Y − y, yIU = 2h0
U − y, y′ = (yIU − η) − 2	yU, hU = h0

U − η,

hU = 	yU + y′, hU = (yIU − η) − 	yU, 2hU − y′ = yIU − η .
(C.2)

C.2. INTEGRATED 2D KERNELS

Substituting the expressions for the spectral coefficients A
l,μ

j (k) and in turn the expressions
for the functions gU

j (k) and gL
j (k) in terms of the spectral constants αi

j , cL
0 , cU

0 , c3, and c4;
inverting each of the resulting terms of the form kpe−k|y| using (A.2); and integrating the point
DDs over the length 2a of the element, we obtain the following expression for the horizontal
stress σxx(x, y) due to a constant unit vertical DD element:

h0
U < y

σμ
xx = f 3{α1L

0 J̃ L
100 + α1L

1 J̃ L
201 + α1L

2 J̃ L
302 + α0U

0 J100 + α0U
1 J U

201}
− l36{α2L

0 J̃ L
100 + α2L

1 J̃ L
201 + cU

0 J100}
+ f 3{α2L

0 J̃ L
210 + α2L

1 J̃ L
311 + cU

0 J210}
(C.3)

−h0
L < y < h0

U

σμ
xx = f 2{α1L

0 J̃ L
100 + α1L

1 J̃ L
201 + α1L

2 J̃ L
302} + f 2{α2L

0 J̃ L
210 + α2L

1 J̃ L
311}

− l26{α2L
0 J̃ L

100 + α2L
1 J̃ L

201} − f 2{α1U
0 J̃ L

100 + α1U
1 J̃ L

201 + α1U
2 J̃ U

302}
− f 2{α2U

0 J̃ L
210 + α2U

1 J̃ U
311} − l26{α2U

0 J̃ U
100 + α2U

1 J̃ U
201}+

− f 2c3J100 + c4(f
2J210 − l26J100) .

(C.4)
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Figure C2. Integration of point influences over a rectangle.

y < h0
U

σμ
xx = −f 1{α1U

0 J̃ U
100 + α1U

1 J̃ U
201 + α1U

2 J̃ U
302 + α0L

0 J L
100 + α0L

1 J L
201}

− l16{α2U
0 J̃ U

100 + α2U
1 J̃ U

201 + cL
0 J100}

− f 1{α2U
0 J̃ U

210 + α2U
1 J̃ U

311 − cL
0 J210} .

(C.5)

Here the integrals J
U/L

lmn are defined as follows:

J L
pmn =

∫ y+a

y−a

Ip(x′, y′) · (y′)mhn
L dy′

=
∫ y+a

y−a

Ip(x′, y′) · (y′)m(	yL − y′)n dy′ (C.6)

J U
pmn =

∫ y+a

y−a

Ip(x′, y′) · (y′)mhn
U dy′

=
∫ y+a

y−a

Ip(x′, y′) · (y′)m(	yU − y′)n dy′ (C.7)

while the integrals associated with the image elements are defined as follows:

J̃ L
pmn =

∫ y+a

y−a

Ip(x′, 2hL + y′) · (y′)mhn
L dy′

=
∫ a

−a

Ip(x′, yIL + η)[2	yL − (yIL + η)]m[(yIL + η) − 	yL]n dη , (C.8)

J̃ U
pmn =

∫ y+a

y−a

Ip(x′, 2hU − y′) · (y′)mhn
U dy′

=
∫ a

−a

Ip(x′, yIU + η) · [(yIU − η) − 2	yU ]m[(yIU − η) − 	yU ]n dη . (C.9)

Here we have made use of the image distances defined in (C.1) and (C.2).

INTEGRATED 3D KERNELS

To integrate the 3D point DD kernels given in (B.3) over a rectangular element as shown in
Figure C2 the procedure is similar to that used in 2D in which the integrals (C.6)–(C.9) are
replaced by integrals of the form:
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I
pq,U

jls (yIU ) =
∫ x+a

x−a

∫ y+b

y−b

(hU)l(y′)s

{∫ ∞

0
e−k(2hU −y ′)kjKpq(k, x′)dk

}
dx′ dy′ (C.10)

=
∫ x+a

x−a

∫ yIU+b

yIU−b

(y −	yU)l(y −2	yU)s

{∫ ∞

0
e−kykjKpq(k, x′)dk

}
dx′ dy ,

I
pq,L

jls (yIL) =
∫ x+a

x−a

∫ y+b

y−b

(hL)l(y′)s

{∫ ∞

0
e−k(2hL+y ′)kjKpq(k, x′)dk

}
dx′ dy′ (C.11)

=
∫ x+a

x−a

∫ yIL+b

yIL−b

(y −	yL)l(2	yL −y)s

{∫ ∞

0
e−kykjKpq(k, x′)dk

}
dx′ dy ,

I
pq

jls (y) =
∫ x+a

x−a

∫ y+b

y−b

(hU)l(y′)s

{∫ ∞

0
e−k|y ′|kjKpq(k, x′)dk

}
dx′ dy′ , (C.12)

where the image distances defined in (C.1) and (C.2) have been used to simplify the evalu-
ation of the integrals in (C.10)–(C.12). We only consider normal stress components that are
evaluated in the plane of the vertical DD so that z = 0 and r = |x|.
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