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AN ASYMPTOTIC ANALYSIS OF THE MEAN FIRST PASSAGE
TIME FOR NARROW ESCAPE PROBLEMS: PART I:

TWO-DIMENSIONAL DOMAINS∗
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Abstract. The mean first passage time (MFPT) is calculated for a Brownian particle in a
bounded two-dimensional domain that contains N small nonoverlapping absorbing windows on its
boundary. The reciprocal of the MFPT of this narrow escape problem has wide applications in cellular
biology, where it may be used as an effective first-order rate constant to describe, for example, the
nuclear export of messenger RNA molecules through nuclear pores. In the asymptotic limit where
the absorbing patches have small measure, the method of matched asymptotic expansions is used to
calculate the MFPT in an arbitrary two-dimensional domain with a smooth boundary. The theory is
extended to treat the case where the boundary of the domain is piecewise smooth. The asymptotic
results for the MFPT depend on the surface Neumann Green’s function of the corresponding domain
and its associated regular part. The known analytical formulae for the surface Neumann Green’s
function for the unit disk and the unit square provide explicit asymptotic approximations to the
MFPT for these special domains. For an arbitrary two-dimensional domain with a smooth boundary,
the asymptotic MFPT is evaluated by developing a novel boundary integral method to numerically
calculate the required surface Neumann Green’s function.
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1. Introduction. Narrow escape problems have recently gained increasing sci-
entific interest (cf. [1], [9], [10], [17]), especially in biological modeling, since they
arise naturally in the description of Brownian particles that attempt to escape from a
bounded domain through small absorbing windows on an otherwise reflecting bound-
ary. In the biological context, the Brownian particles could be diffusing ions, globular
proteins, or cell-surface receptors. It is then of interest to determine, for example,
the mean time that an ion requires to find an open ion channel located in the cell
membrane or the mean time of a receptor to hit a certain target binding site (cf. [10],
[17]).

The narrow escape problem in a two-dimensional domain is described as the mo-
tion of a Brownian particle confined in a bounded domain Ω ∈ R2 whose boundary
∂Ω = ∂Ωr ∪ ∂Ωa is almost entirely reflecting (∂Ωr), except for small absorbing win-
dows, labeled collectively by ∂Ωa, through which the particle can escape (see Figure 1).
Denoting the trajectory of the Brownian particle by X(t), the mean first passage time
(MFPT) v(x) is defined as the expectation value of the time τ taken for the Brownian
particle to become absorbed somewhere in ∂Ωa starting initially from X(0) = x ∈ Ω,
so that v(x) = E[τ | X(0) = x]. The calculation of v(x) becomes a narrow escape
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problem in the limit when the measure of the absorbing set |∂Ωa| = O(ε) is asymp-
totically small, where 0 < ε � 1 measures the dimensionless radius of an absorbing
window.

It is well known (cf. [10], [15], [16]) that the MFPT v(x) satisfies a Poisson
equation with mixed Dirichlet–Neumann boundary conditions, formulated as

�v = − 1

D
, x ∈ Ω ,(1.1a)

v = 0 , x ∈ ∂Ωa =

N⋃
j=1

∂Ωεj , j = 1, . . . , N ; ∂nv = 0 , x ∈ ∂Ωr ,(1.1b)

where D is the diffusion coefficient associated with the underlying Brownian motion.
In (1.1), the absorbing set consists of N small disjoint absorbing windows ∂Ωεj cen-
tered at xj ∈ ∂Ω (see Figure 1). In our two-dimensional setting, we assume that the
length of each absorbing arc is |∂Ω| = εlj, where lj = O(1). It is further assumed
that the windows are well separated in the sense that |xi − xj | = O(1) for all i �= j.
With respect to a uniform distribution of initial points x ∈ Ω, the average MFPT,
denoted by v̄, is defined by

(1.2) v̄ = χ ≡ 1

|Ω|

∫
Ω

v(x) dx ,

where |Ω| denotes the area of Ω.

Fig. 1. Sketch of a Brownian trajectory in the two-dimensional unit disk with absorbing windows
on the boundary.

Since the MFPT diverges as ε → 0, the calculation of the MFPT v(x), and that
of the average MFPT v̄, constitutes a singular perturbation problem. It is the goal
of this paper to systematically use the method of matched asymptotic expansions to
extend previous results on two-dimensional narrow escape problems in three main
directions: (i) to examine the effect on the MFPT of multiple absorbing windows
on the boundary, (ii) to provide both a two-term and an infinite-order logarithmic
asymptotic expansion for the solution v to (1.1) for arbitrary two-dimensional domains
with a smooth boundary, and (iii) to develop and implement a numerical method
to compute the surface Neumann Green’s function, which is required for evaluating
certain terms in the asymptotic results.
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For a two-dimensional domain with a smooth boundary with one small window
of length O(ε) on its boundary, the analysis in [10] and [18] showed that, for ε → 0,
v(x) has the leading-order expansion

(1.3) v(x) =
|Ω|
πD

[− log ε+O(1)] .

This leading-order result is independent of x and the location of the window on ∂Ω.
A related leading-order asymptotic result for v(x) was obtained in [19] for the case
where an absorbing window is centered at a cusp or corner point of a nonsmooth
boundary, and an explicit two-term result for this case was obtained for a rectangular
domain. The O(1) term in (1.3), which depends on x and on the arrangements of
the absorbing windows on the domain boundary, has been determined previously in
only a few special situations. In particular, for the unit disk with one absorbing
window on the boundary, the O(1) term in (1.3) was calculated explicitly in [18] by
using the Collins method to solve certain dual integral equations. The only previous
work on the interaction effect of multiple absorbing windows was given in [11] for the
case of two absorbing windows on the boundary of the unit disk with either an O(1)
or an O(ε) separation between the windows. For this two-window case, the result
in [11] determined the average MFPT v̄ up to an unspecified O(1) term, which was
fit through Brownian particle numerical simulations.

One specific goal of this paper is to use the method of matched asymptotic ex-
pansions to derive an analytical expression for the O(1) term in (1.3) for an arbitrary
domain with a smooth boundary that has N well-separated absorbing windows on
the boundary. In addition, further terms in the asymptotic expansion of v(x), of
higher order than in (1.3), are obtained by summing a certain infinite-order logarith-
mic expansion. In our analysis, the average MFPT v̄, defined in (1.2), is also readily
calculated. Our asymptotic results for the MFPT involve, in a rather essential way,
the surface Neumann Green’s function for the Laplacian together with the regular
part of this Green’s function. Our asymptotic results for v(x) in an arbitrary domain
are given in Principal Results 2.1 and 2.2 and show clearly the nontrivial interaction
effect of well-separated absorbing windows. We then show how our analysis is very
easily adapted to treat the case where a finite number of nonoverlapping windows
are clustered in an O(ε) neighborhood around some point on the domain boundary.
Specializing to a two-window cluster on the unit disk, our result for this case agrees
with that in [11] and determines analytically the missing O(1) term not given in [11].

In section 3, we implement and illustrate the analytical theory of section 2 for some
specific domains. In subsections 3.1 and 3.2, simple analytical results for v(x) and v̄
are obtained for various arrangements of the small absorbing windows on the boundary
of the unit disk and unit square. For such special domains, the surface Neumann
Green’s function can be determined analytically. For the case of one absorbing window
on the boundary of the unit disk, our results readily reduce to those of [18]. For the
case of N asymptotically small, equally spaced, windows of a common length 2ε on
the boundary of the unit disk, our analysis for the average MFPT yields the explicit
asymptotic result

(1.4) v̄ ∼ 1

DN

[
− log

(
εN

2

)
+

N

8

]
.

Other results for v(x) and v̄ are given in subsections 3.1 and 3.2. In subsection 3.2,
we extend the analysis in section 2 to allow for an absorbing window at a corner of
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the square, representing a nonsmooth point on ∂Ω. Our result for this case agrees
with that derived in [19]. In subsection 3.3, we develop and implement a novel bound-
ary integral numerical scheme to numerically compute the surface Neumann Green’s
function and its regular part for an arbitrary bounded two-dimensional domain with
a smooth boundary. The numerical method is then used to calculate v(x) and v̄ for
an ellipse.

The problem for the MFPT is very closely related to the problem of determining
the principal eigenvalue λ∗ for the Laplacian in a domain where the reflecting bound-
ary is perturbed by N asymptotically small absorbing windows of length O(ε). For a
two-dimensional domain with a smooth boundary, in section 4 we show that

(1.5) v̄ = χ =
1

Dλ∗(ε)
+O

(
|μ|2

)
,

where |μ|2 indicates terms of order O
[
(−1/ log ε)2

]
. The specific order of this error

estimate is a new result. In addition, the method of matched asymptotic expansions
is used to obtain both a two-term and an infinite-order asymptotic result for λ∗ in
powers of O(−1/ log ε). These results for λ∗ in Principal Results 4.1 and 4.2 extend
the leading-order asymptotic theory of [23], where it was shown for the case of one ab-
sorbing window of length 2ε that λ∗ ∼ πμ/|Ω|, where μ = −1/ log(ε/2). Some related
results for this problem, obtained using a different approach, are given in [7]. The
analysis in section 4 is an extension of the work of [22] and [12] for the related prob-
lem of calculating a high-order asymptotic expansion for the principal eigenvalue of
the Laplacian corresponding to a two-dimensional domain with a reflecting boundary
that is punctured by N asymptotically small disks of a common radius ε.

For the case of one small absorbing arc of a fixed length εl1 centered at x1 ∈ ∂Ω,
the results of section 4 show that

(1.6) λ∗ ∼ πμ1

|Ω| − π2μ2
1

|Ω| R(x1;x1) +O(μ3
1) , μ1 ≡ − 1

log[εd1]
, d1 =

l1
4
,

where R(x1;x1) is the regular part of the surface Neumann Green’s function. In
section 4, we seek to determine the location of the center x1 ∈ ∂Ω of the absorbing
arc that minimizes the second term for λ∗ in (1.6) involving R(x1;x1). For a heat
conduction problem, this optimal absorbing arc is the one that minimizes the rate of
heat loss across the domain boundary. Similar eigenvalue optimization problems have
been studied in [8] and [3] as a function of the location of an absorbing boundary
segment and in [12] for the related problem of asymptotically small disks that are
interior to a two-dimensional domain. When Ω is a square it was proved in [3] that, for
one small (but not asymptotically small) absorbing segment, the principal eigenvalue
is minimized when this segment is centered at a corner of the square. Based on the
results of [3] for the square it was conjectured in section 1 of [3] that, for a general
convex domain with a smooth boundary, an optimal absorbing arc must lie in a region
of ∂Ω with large curvature. This conjecture is investigated in section 4 by first deriving
a perturbation result in Principal Result 4.3 for R(x1;x1) for domains that are smooth
perturbations of the unit disk. In Principal Result 4.4 we construct a counterexample
to show that local minima of λ∗ with respect to x1 do not necessarily correspond to
local maxima of the boundary curvature.

Related problems, with biophysical applications, involving the asymptotic calcu-
lation of either steady-state diffusion, Laplacian eigenvalues, or the MFPT, on specific
Riemannian manifolds with a collection of localized traps, include [2] and [20] for the
surface of a long cylinder and [4], [24], [19], and [6] for the surface of a sphere.
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In Part II of this paper [5] we asymptotically calculate the MFPT for narrow
escape from a spherical domain.

2. Narrow escape in two-dimensional domains. We construct the asymp-
totic solution to (1.1) in the limit ε → 0 using the method of matched asymptotic
expansions. The solution in the inner, or local, region near each absorbing arc is
determined and then matched to an outer, or global, solution, valid away from O(ε)
neighborhoods of each arc.

To construct the inner solution near the jth absorbing arc, we write (1.1) in
terms of a local orthogonal coordinate system, where η denotes the distance from ∂Ω
to x ∈ Ω, and s denotes arclength on ∂Ω. In terms of these coordinates, the problem
(1.1a) for v(x) transforms to the following problem for w(η, s):

(2.1) ∂ηηw − κ

1− κη
∂ηw +

1

1− κη
∂s

(
1

1− κη
∂sw

)
= − 1

D
.

Here κ is the curvature of ∂Ω and the center xj ∈ ∂Ω of the jth absorbing arc
transforms to s = sj and η = 0.

Next, we introduce the local variables η̂ = η/ε and ŝ = (s − sj)/ε near the jth
absorbing arc. Then, from (2.1) and (1.1b), we neglect O(ε) terms to obtain the inner
problem

w0η̂η̂ + w0ŝŝ = 0 , 0 < η̂ < ∞ , −∞ < ŝ < ∞ ,(2.2a)

∂η̂w0 = 0 on |ŝ| > lj/2 , η̂ = 0 ; w0 = 0 on |ŝ| < lj/2 , η̂ = 0 .(2.2b)

We specify that w0 has logarithmic growth at infinity, i.e., w0 ∼ Aj log |y| as |y| → ∞,

where Aj is an arbitrary constant and |y| ≡ ε−1|x− xj | =
(
η̂2 + ŝ2

)1/2
. The solution

w0, unique up to the constant Aj , is readily calculated by introducing elliptic cylinder
coordinates in (2.2). It has the far-field behavior

(2.3) w0 ∼ Aj [log |y| − log dj + o(1)] as |y| → ∞ , dj = lj/4 .

From the divergence theorem, Aj = 2π−1
∫ lj/2

0 ∂η̂w0|η̂=0 ds, which gives the flux of w0

across the jth absorbing arc.
In the outer region, the jth absorbing arc shrinks to the point xj ∈ ∂Ω as ε → 0.

With regards to the outer solution, the influence of each absorbing arc is, in effect, de-
termined by a certain singularity behavior at each xj that results from the asymptotic
matching of the outer solution to the far-field behavior (2.3) of the inner solution. In
this way, we obtain that the outer solution for v satisfies

�v = − 1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω\{x1, . . . , xN} ,(2.4a)

v ∼ Aj

μj
+Aj log |x− xj | as x → xj , j = 1, . . . , N ;

μj ≡ − 1

log(εdj)
, dj =

lj
4
.

(2.4b)

Each singularity behavior in (2.4b) specifies both the regular and the singular part of
a Coulomb singularity. As such, it provides one constraint for the determination of a
linear system for the source strengths Aj for j = 1, . . . , N .
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To solve (2.4), we introduce the surface Green’s function G(x;xj) defined as the
unique solution of

�G =
1

|Ω| , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω\{xj} ,(2.5a)

G(x;xj) ∼ − 1

π
log |x− xj |+R(xj ;xj) as x → xj ∈ ∂Ω ,(2.5b) ∫

Ω

G(x;xj) dx = 0 ,(2.5c)

where |Ω| is the area of Ω. Then, the solution to (2.4) is written in terms of G(x;xj)
and an unknown constant χ, denoting the spatial average of v, by

(2.6) v = −π

N∑
i=1

AiG(x;xi) + χ , χ = v̄ ≡ 1

|Ω|

∫
Ω

v dx .

To determine a linear algebraic system for Aj , for j = 1, . . . , N , and for χ, we
expand (2.6) as x → xj and compare it with the required singularity behavior (2.4b).
This yields that
(2.7)

Aj log |x− xj | − πAjRj − π

N∑
i=1
i�=j

AiGji + χ = Aj log |x− xj |+
Aj

μj
, j = 1, . . . , N .

Here Gji ≡ G(xj ;xi), while Rj ≡ R(xj ;xj) is the regular part of G given in (2.5b) at
x = xj . Equation (2.7) yieldsN linear equations for χ and Aj for j = 1, . . . , N . We get

the remaining equation by noting that �v = −π
∑N

i=1 Ai�G = −π|Ω|−1
∑N

i=1 Ai =
−D−1. Thus, the N + 1 constants χ and Aj , for j = 1, . . . , N , satisfy

(2.8)
Aj

μj
+ πAjRj + π

N∑
i=1
i�=j

AiGji = χ , j = 1, . . . , N ;
N∑
i=1

Ai =
|Ω|
Dπ

.

This linear system of N + 1 equations can be written in matrix form as

(2.9) (I + πUG)A = χUe , eTA =
|Ω|
Dπ

.

Here eT ≡ (1, . . . , 1), AT ≡ (A1, . . . , AN ), and I is the N ×N identity matrix, while
the diagonal matrix U and symmetric Green’s function matrix G are defined by

(2.10) U ≡

⎛
⎜⎜⎜⎜⎝

μ1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · μN

⎞
⎟⎟⎟⎟⎠ , G ≡

⎛
⎜⎜⎜⎝

R1 G12 · · · G1N

G21 R2 · · · G2N

...
...

. . .
...

GN1 · · · GN,N−1 RN

⎞
⎟⎟⎟⎠ .

We can then decouple A and χ in (2.9) to obtain the following main result.
Principal Result 2.1. Consider N well-separated absorbing arcs for (1.1) of

length εlj for j = 1, . . . , N centered at xj ∈ ∂Ω. Then, the asymptotic solution to
(1.1) is given in the outer region |x− xj | � O(ε) for j = 1, . . . , N by

(2.11a) v ∼ −π

N∑
i=1

AiG(x;xi) + χ .
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Here G is the surface Green’s function satisfying (2.5), and AT = (A1, . . . , AN ) is the
solution of the linear system

(2.11b)

(
I + πU

(
I − 1

μ̄
EU

)
G
)
A =

|Ω|
DπNμ̄

Ue , E ≡ 1

N
eeT .

In addition, the constant χ, representing the spatial average of v, is determined in
terms of A and μj of (2.4b) by

(2.11c) v̄ ≡ χ =
|Ω|

DπNμ̄
+

π

Nμ̄
eTUGA , μ̄ ≡ 1

N

N∑
j=1

μj .

We first remark that our asymptotic solution to (1.1) in Principal Result 2.1 has
in effect “summed” all of the logarithmic correction terms in the expansion of the
solution, leaving an error that is transcendentally small in ε. Second, the constant χ
in (2.11a), as given in (2.11c), has the immediate interpretation as the MFPT averaged
with respect to an initial uniform distribution of starting points in Ω for the random
walk.

For μj � 1 we can solve (2.11b) and (2.11c) asymptotically by calculating the
approximate inverse of the matrix multiplying A in (2.11b). This yields that

A ∼ |Ω|
NDπμ̄

[
Ue − πUGUe + π

μ̄
UEUGUe

]
+O(|μ|2) ,

χ ∼ |Ω|
NDπμ̄

+
|Ω|

N2Dμ̄2
eTUGUe +O(|μ|) .

Here O(|μ|p) indicates terms that are proportional to μp
j . In this way, we obtain the

following two-term result.
Principal Result 2.2. For ε � 1, a two-term expansion for the solution of

(1.1) is provided by (2.11a), where Aj and χ are given explicitly by

Aj ∼
|Ω|μj

NDπμ̄

(
1− π

N∑
i=1

μiGij +
π

Nμ̄
pw(x1, . . . , xN )

)
+O(|μ|2) ,(2.12a)

v̄ ≡ χ ∼ |Ω|
NDπμ̄

+
|Ω|

N2Dμ̄2
pw(x1, . . . , xN ) +O(|μ|) .(2.12b)

Here pw(x1, . . . , xN ) is the following weighted discrete sum defined in terms of the
entries Gij of the Green’s function matrix of (2.10):

(2.13) pw(x1, . . . , xN ) ≡
N∑
i=1

N∑
j=1

μiμjGij , μj = − 1

log(εdj)
, dj =

lj
4
.

Hence, the average MFPT χ is minimized for an arrangement of arcs that minimize
the discrete sum pw(x1, . . . , xN ).

Consider the case of exactly one absorbing arc with length |∂Ωε1 | = 2ε for which
d = 1/2. Then, (2.11a) and (2.12b) for v(x) and the average MFPT χ, respectively,
reduce to

v(x) ∼ |Ω|
Dπ

[
− log

(ε
2

)
+ π (R(x1;x1)−G(x;x1))

]
,

v̄ = χ ∼ |Ω|
Dπ

[
− log

(ε
2

)
+ πR(x1;x1)

]
.

(2.14)
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Here G(x;x1) is the Green’s function satisfying (2.5) with regular part R(x1;x1).
These results are the generalizations to an arbitrary domain Ω with smooth boundary
∂Ω of the results given in [18] for the case of the unit disk.

Another relevant special case of Principal Result 2.2 is when there are N well-
separated absorbing arcs of a common length εl with the arcs arranged on ∂Ω in such
a way that G is a cyclic matrix. For instance, this situation occurs when there are
exactly two arcs of the same length on the boundary of the unit disk or when N arcs
of a common length are arranged with equidistant spacing on the boundary of the
unit disk. When G is cyclic, then

(2.15) Ge = p

N
e , p ≡ p(x1, . . . , xN ) ≡

N∑
i=1

N∑
j=1

Gij ,

where eT = (1, . . . , 1). For this special case, the exact solution to (2.11b) and (2.11c)
is simply

Aj =
|Ω|

NDπ
, j = 1, . . . , N ;

v̄ ≡ χ =
|Ω|

NDπμ
+

|Ω|
N2D

p(x1, . . . , xN ) , μ =
−1

log[(εl/4)]
.

(2.16)

This result for χ effectively sums all of the logarithmic terms in powers of μ. In
addition, (2.11a) for v becomes

(2.17) v(x) ∼ |Ω|
NDπ

[
− log

(
εl

4

)
+

π

N
p(x1, . . . , xN )− π

N∑
j=1

G(x;xj)

]
.

We remark that the analysis leading to Principal Results 2.1 and 2.2 has assumed
that the absorbing windows on the boundary are well separated in the sense that
|xi − xj | = O(1) for i �= j. Next, we briefly consider the case where there are
Mj nonoverlapping absorbing arcs clustered in an O(ε) ball near some point x∗

j ∈ ∂Ω
for j = 1, . . . , N , where N now denotes the number of clusters and M1+ · · ·+MN = n
is the total number of absorbing windows. To allow for the effect of the clustering
of absorbing windows, we need only replace μj in Principal Results 2.1 and 2.2 with
−1/ log(εdj), where dj is to be determined from the far-field behavior of the following
inner problem:

vηη + vss = 0 , η ≥ 0 , −∞ < s < ∞ ,(2.18a)

v = 0 , η = 0 , s ∈ Sjk ; ∂ηv = 0 , η = 0 , s /∈ Sjk , k = 1, . . . ,Mj ,(2.18b)

v ∼ log |y| − log dj + o(1) as |y| =
(
η2 + s2

)1/2 → ∞ .(2.18c)

Here, for each j = 1, . . . , N , Sjk are a collection of Mj nonoverlapping finite intervals
of lengths ljk for k = 1 . . . ,Mj. Although the constant dj is determined uniquely
by the solution to (2.18), it must, in general, be computed numerically. However,
dj can be determined analytically for the special case of a cluster of exactly two
absorbing windows of a common length lj, with edge separation 2aj, so that Sj1 =
{s | −aj − lj < s < −aj} and Sj2 = {s | aj < s < aj + lj}. For this symmetric two-
window cluster, (2.18) is readily solved analytically by first using symmetry to reduce
the problem to the quarter plane η, s > 0 and then using the simple analytic mapping
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Z = z2, where z = s + iη. This leads to an explicitly solvable half-plane problem
Im(Z) > 0 with one absorbing window. In this way, we obtain for the symmetric
two-window cluster that dj is given explicitly by

(2.19) dj =
lj
2

[
1 +

2aj
lj

]1/2
.

For aj = 0, then dj = lj/2, which corresponds to the value of dj in (2.2) for an
absorbing window of length 2lj .

We conclude that the results in Principal Results 2.1 and 2.2 still hold provided
that whenever we have a two-window cluster of a common length we replace μj =
−1/ log (εlj/4) in those results with μj = −1/ log (εdj), where dj is given in (2.19).
Therefore, Principal Results 2.1 and 2.2 are readily modified to explicitly treat any
combination of well-separated windows and symmetric two-window clusters on the
domain boundary.

Finally, we show that our result for the average MFPT v̄ for a symmetric two-
window cluster makes a smooth transition to the corresponding result for v̄ for the
case of two well-separated windows. For simplicity, we assume that there are exactly
two absorbing windows each of length l on the boundary. Then, from (2.12b), we
obtain that

v̄ ∼ |Ω|
Dπ

[− log(εd1) + πR∗] (a two-window cluster) ,(2.20a)

v̄ ∼ |Ω|
Dπ

[
−1

2
log

(
εl

4

)
+

π

4
(R(x1;x1) +R(x2;x2) + 2G(x1;x2))

]
(two well-separated windows) .

(2.20b)

Here x∗
1 ∈ ∂Ω is the center of the two-window cluster, R∗ ≡ R(x∗

1, x
∗
1) is the regular

part of the Green’s function at x∗
1, and d1 is given in (2.19). In the overlap region

O(ε) � |x2 − x1| � 1, the well-separated result (2.20b) can be simplified using
R11 ≈ R22 ≈ R∗ and G(x1;x2) ∼ −π−1 log |x1 − x2| + R∗. In this same overlap
region, we simplify the cluster result (2.20a) by using d1 ∼ l

2 (2a/l)
1/2 for a/l � 1,

where 2a+ l ≈ |x2−x1|/ε. Since both limiting results lead to the common expression
(2.21)

v̄ ∼ |Ω|
Dπ

[
−1

2
log

(
εl

4

)
− π

2
log |x2 − x1|+ πR∗

]
for O(ε) � |x2 − x1| � O(1) ,

we conclude that there is a smooth transition between the two results in (2.20). As a
remark, for the special case of the unit disk, where the regular part R has the uniform
value R = 1/(8π) (see (3.2)) everywhere on the domain boundary, the results (2.20)
are readily seen to agree asymptotically with the result in equation (29) of [11] and
provide the missing O(1) terms not given in this latter result of [11].

3. Numerical realizations. In subsections 3.1 and 3.2 we apply the results of
section 2 to the unit disk and the unit square, respectively. For these domains, G(x; ξ)
and R(ξ; ξ) can be calculated analytically from (2.5). For other more general domains,
in subsection 3.3 we present and implement a boundary integral numerical method to
numerically calculate G(x; ξ) and R(ξ; ξ). In this section we will assume throughout
that the absorbing windows are well separated in the sense that |xi − xj | = O(1) for
i �= j.
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3.1. The unit disk. Let Ω be the unit disk, Ω ≡ {x || |x| ≤ 1}. When ξ ∈ Ω, so
that the singularity is in the interior of the domain, the Neumann Green’s function
G(x; ξ) with

∫
Ω
G(x; ξ) dx = 0 is well known (see equation (4.3a) of [12]):

(3.1) G(x; ξ) =
1

2π

(
− log |x− ξ| − log

∣∣∣∣x|ξ| − ξ

|ξ|

∣∣∣∣+ 1

2
(|x|2 + |ξ|2)− 3

4

)
.

By letting ξ approach a point on ∂Ω in (3.1), we obtain that the surface Green’s
function solution of (2.5) is

(3.2) G(x; ξ) = − 1

π
log |x− ξ|+ |x|2

4π
− 1

8π
, R(ξ; ξ) =

1

8π
.

We now apply the results of section 2 to the unit disk. We first assume that there
is one absorbing patch of length |∂Ωε1 | = 2ε on ∂Ω. Then, with G and R as given in
(3.2) and using |Ω| = π, (2.14) becomes

v(x) = E [τ | X(0) = x] ∼ 1

D

[
− log ε+ log 2 +

1

4
+ log |x− x1| −

|x|2
4

]
,

χ ∼ 1

D

[
− log ε+ log 2 +

1

8

]
.

(3.3)

The formula for v̄ = χ in (3.3) agrees with that in equation (1.3) of [18]. If we fix
the center of the absorbing arc at x1 = (1, 0) and let x = (ξ, 0) be the initial point
for the random walk, then a simple calculation from (3.3) shows that v is maximized
when ξ = −1, i.e., at the farthest point in Ω to the absorbing arc centered at (1, 0).
In Figure 2(a) we use (3.3) to plot v versus ξ, where x = (ξ, 0). Finally, to compare
our results with those in [18], we let x1 = (1, 0) and take x = (0, 0) and x = (−1, 0)
as two choices for the initial point x for the random walk. Then, (3.3) yields

E [τ | X(0) = (0, 0)] ∼ 1

D

[
− log ε+ log 2 +

1

4

]
,

E [τ | X(0) = (−1, 0)] ∼ 1

D
[− log ε+ 2 log 2] ,

(3.4)

which agree with the results given in equations (1.2) and (1.4) of [18].
Next, we assume that there are exactly two well-separated absorbing arcs on the

boundary of the unit disk, each with length |∂Ωεj | = 2ε. We fix the location of one of
the arcs at x1 = (1, 0) and we let the other arc be centered at some x2 = (cos θ, sin θ),
where 0 < θ < π is a parameter. For this special case the matrix G is cyclic. Therefore,
the average MFPT can be calculated from (2.16) and (3.2). In addition, for an initial
starting point at the origin, i.e., x(0) = 0, then (2.17) with G(0;xj) = −1/(8π)
determines v(0). In this way, we get

(3.5) χ ∼ 1

2D

(
− log ε+

1

4
+

1

2
log 2− 1

2
log (1− cos θ)

)
, v(0) ∼ χ+

1

8D
.

For ε = 0.05, in Figure 2(b) we plot v(0) versus the polar angle θ for the location of
the second absorbing arc. This plot shows that the specific MFPT v(0) is minimized
when the two absorbing arcs are antipodal, as expected intuitively. It also shows
that v(0) varies rather significantly as a function of the relative locations of the two
absorbing arcs.
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5.0

4.0

3.0

2.0

1.0

0.0
1.000.750.500.250.00−0.25−0.50−0.75−1.00

v(ξ)

ξ

(a) One trap: v(ξ)

4.0

3.0

2.0

1.0

0.0
3.02.52.01.51.00.50.0

v(0)

θ

(b) Two traps: v(0)

Fig. 2. Left figure: plot of v given in (3.3) versus the horizontal coordinate x = (ξ, 0) for the
case of one absorbing arc centered at x1 = (1, 0). Right figure: plot of v(0) versus θ given in (3.5)
for the case of two absorbing arcs centered at x1 = (1, 0) and x2 = (cos θ, sin θ). For both figures,
ε = 0.05 and D = 1.

Next, we consider the case of N absorbing arcs centered at x1, . . . , xN on the
boundary of the unit disk having a common length |∂Ωεj | = 2ε for j = 1, . . . , N .
Then, from (3.2) and (2.12b), the average MFPT is

(3.6) v̄ = χ ∼ 1

DN

[
− log

(ε
2

)
+

N

8
− 1

N

N∑
i=1

N∑
j �=i

log |xi − xj |
]
.

The sum in (3.6) is minimized when xj = e2πij/N , for j = 1, . . . , N , are the Nth roots
of unity. For this choice of xj , the Green’s function matrix G is cyclic and the results
in (2.15), (2.16), and (2.17) apply. We obtain G(xi;xj) and R(xj ;xj) from (3.2) and
then calculate p(x1, . . . , xN ) as

p(x1, . . . , xN ) =

N∑
i=1

N∑
j=1

Gij =
N2

8π
− 1

π

N∑
k=1

N∑
j �=k

log |xj − xk|

=
N2

8π
− 1

π

N∑
k=1

log

⎡
⎢⎢⎣

N∏
j=1
j �=k

(
1− e2πi(j−k)/N

)
⎤
⎥⎥⎦ =

1

π

(
N2

8
−N logN

)
,(3.7)

where we have used the simple identity
∏N

j=1
j �=k

(
x − ye2πi(j−k)/N

)
=
∣∣xN−1

(
1 + y

x +

· · ·+
(
y
x

)N−1)∣∣.
Therefore, for the special case xj = e2πij/N for j = 1, . . . , N we obtain from (3.7),

(2.16), and (2.17) that
(3.8)

v(x) ∼ 1

DN

[
− log

(
εN

2

)
+

N

8
− π

N∑
j=1

G(x;xj)

]
, χ ∼ 1

DN

[
− log

(
εN

2

)
+

N

8

]
,

where G(x; ξ) is given in (3.2). Note that χ in (3.8) agrees with (3.3) when N = 1
and (3.5) when N = 2 and θ = π. As remarked following (2.16), the error associated
with the asymptotic result (3.8) is smaller than any power of μ.
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We now show that the result (3.8) for a periodic arrangement of boundary traps
agrees with the corresponding result that can be obtained from the dilute fraction limit
of homogenization theory, whereby the mixed Dirichlet–Neumann boundary condition
on the boundary of the unit disk is replaced by an effective Robin boundary condition,
as was studied in [14]. From equations (2.6) and (4.3) of [14], the homogenized problem
for the MFPT is to find vh(x) satisfying

(3.9a) �vh = − 1

D
, r = |x| ≤ 1 ; ε∂rvh + κvh = 0 , r = 1 ,

where κ is defined in terms of the length fraction σ of traps by (see equation (4.3)
of [14])

(3.9b) κ ≡ −πσ

2

(
log

[
sin

(πσ
2

)])−1

.

The homogenization result vh(0) for the MFPT for escape starting from the center of
the unit disk is readily calculated from (3.9) as

(3.10) vh(0) =
1

D

[
1

4
− ε

πσ
log

(
sin

[πσ
2

])]
.

In contrast, we obtain from (3.8), upon using G(0;xj) = −1/(8π) from (3.2), that

(3.11) v(0) ∼ 1

D

[
1

4
− 1

N
log

(
εN

2

)]
.

Since the trap length fraction on the boundary of the unit disk is σ = 2εN/(2π) =
εN/π, we observe that the dilute fraction limit εN � 1 of the homogenization result
(3.10) agrees with (3.11).

Finally, we illustrate the significant effect on χ resulting from different placements
of the absorbing arcs on the boundary of the unit disk. We consider either three or
four absorbing arcs, each of length 2ε, so that μ = (− log[ε/2])−1. For an arbitrary
arrangement of the centers xj , for j = 1, . . . , N of the arcs, the two-term asymptotic
expansion for the average MFPT χ is given in (3.6), which has an error of O(μ).
When the xj are chosen to be at the roots of unity, the simple result (3.8) for χ holds,
which has an error of O(μk) for any k > 0. Finally, for an arbitrary arrangement
of xj , the asymptotic result for χ that has an error O(μk) for any k > 0 is given in
(2.11c) of Principal Result 2.1. Upon using (3.2) for G(xi;xj) and R, we can readily
show that (2.11b) and (2.11c) reduce to

(3.12) χ ∼ 1

DN

(
− log

(ε
2

)
+

N

8
− 1

N
eTG1 [I − μ (I − E)G1]

−1
e

)
.

Here E = N−1eeT , eT = (1, . . . , 1), I is the N ×N identity matrix, and G1 is defined
as the N×N symmetric matrix with G1jj = 0 for j = 1, . . . , N and G1ij = log |xi−xj |
for i �= j. For N = 3, in Figure 3(a) we compare the two-term asymptotic result (3.6)
with the more accurate result (3.12) as a function of ε for three different placements
of absorbing arcs on the boundary of the unit disk (see the caption of Figure 3(a)).
A similar comparison for N = 4 is made in Figure 3(b). These results show that the
two-term approximation (3.6) is rather accurate for small ε and that the effect on χ
of the locations of the absorbing arcs is rather significant even for rather small values
of ε.
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ε

(a) Three traps: χ versus ε

2.0

1.5

1.0

0.5

0.0
0.300.250.200.150.100.050.00

χ

ε

(b) Four traps: χ versus ε

Fig. 3. Comparison of the two-term result for χ given in (3.6) (dotted curves) with the log-
summed result (3.12) (solid curves) versus ε for D = 1 and for traps on the boundary of the unit
disk. Left figure: N = 3 traps at x1 = eπi/3, x2 = eπi/2, x3 = e2πi/3 (top curves); x1 = eπi/6,
x2 = eπi/2, x3 = e5πi/6 (middle curves); x1 = e−πi/3, x2 = eπi/2, x3 = e4πi/3 (bottom curves).
Right figure: N = 4 traps at x1 = eπi/6, x2 = eπi/3, x3 = e2πi/3, x4 = e5πi/6 (top curves);
x1 = (1, 0), x2 = eπi/3, x3 = e2πi/3, x4 = (−1, 0) (middle curves); x1 = eπi/4, x2 = e3πi/4,
x3 = e5πi/4, x4 = e7πi/4 (bottom curves). When the traps are centered at the roots of unity (bottom
curves in both figures), the results (3.6) and (3.12) are identical.

3.2. The unit square. For the unit square Ω, we must calculate the surface
Green’s function satisfying (2.5) with a singularity ξ ∈ ∂Ω. To do so, we proceed
by first calculating the Neumann Green’s function G(x; ξ) for ξ ∈ Ω and then taking
the limit as ξ approaches a boundary point. The Green’s function with an interior
singularity satisfies
(3.13)

�G =
1

|Ω| − δ(x − ξ) , x ∈ Ω ; ∂nG = 0 , x ∈ ∂Ω ;

∫
Ω

G(x; ξ) dx = 0 .

In this subsection we label x = (x1, x2) as the observation point in Ω ≡ {(x1, x2) |
0 < x1 < 1, 0 < x2 < 1}, while the singular point has coordinates ξ = (ξ1, ξ2).

The function G(x; ξ) can be readily represented in terms of an eigenfunction
expansion. Then, certain infinite series can be summed analytically to extract the
slowly converging part of the series resulting from the logarithmic singularity. In this
way, in equation (4.13) of [13] it was found that

(3.14a) G(x; ξ) = − 1

2π
log |x− ξ|+R(x; ξ) ,

where the regular part R(x; ξ) is given explicitly by

(3.14b) R(x; ξ) = − 1

2π

∞∑
n=0

log (|1− qnz+,+||1− qnz+,−||1− qnz−,+||1− qnζ+,+|)

− 1

2π

∞∑
n=0

log(|1 − qnζ+,−||1− qnζ−,+||1− qnζ−,−|)

− 1

2π
log

|1− z−,−|
|r−,−|

+H(x1, ξ1)−
1

2π

∞∑
n=1

log |1− qnz−,−| .

Here the eight complex constants z±,± and ζ±,± are defined in terms of additional
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complex constants r±,±, ρ±,± by

z±,± ≡ eπr±,± , ζ±,± ≡ eπρ±,± , q ≡ e−2π < 1 ,(3.15a)

r+,± ≡ −|x1 + ξ1|+ i(x2 ± ξ2) , r−,± ≡ −|x1 − ξ1|+ i(x2 ± ξ2) ,(3.15b)

ρ+,± ≡ |x1 + ξ1| − 2 + i(x2 ± ξ2) , ρ−,± ≡ |x1 − ξ1| − 2 + i(x2 ± ξ2) .(3.15c)

In (3.14) and (3.15), |ω| is the modulus of the complex number ω. In (3.14b), H(x1, ξ1)
is defined by

(3.16) H(x1, ξ1) ≡
1

12
[h(x1 − ξ1) + h(x1 + ξ1)] , h(θ) ≡ 2− 6|θ|+ 3θ2 .

Now suppose that the singular point is located on the bottom side of the square
so that ξ = (ξ1, 0) with 0 < ξ1 < 1. Then, the term log |1− z−,+| in (3.14b) also has
a singularity at x = (ξ1, 0) and must be extracted from the sum. In this case, the
explicit solution to (2.5) is obtained by rewriting (3.14) as

(3.17a) G(x; ξ) = − 1

π
log |x− ξ|+R(x; ξ) ,

where the regular part R(x; ξ) is given explicitly by

(3.17b) R(x; ξ) = − 1

2π

∞∑
n=0

log (|1− qnz+,+||1− qnz+,−||1− qnζ+,+|)

− 1

2π

∞∑
n=0

log(|1 − qnζ+,−||1− qnζ−,+||1− qnζ−,−|)

− 1

2π
log

|1− z−,−|
|r−,−|

− 1

2π
log

|1− z−,+|
|r−,+|

+H(x1, ξ1)

− 1

2π

∞∑
n=1

log (|1− qnz−,−||1− qnz−,+|) .

The self-interaction term R(ξ; ξ) is obtained by taking the limit x → ξ in (3.17b).
By using L’Hôpital’s rule to calculate the terms log |1− z−,±|/|r−,±|, we obtain with
q = e−2π that

R(ξ; ξ) = − 1

π

∞∑
n=0

log
[(
1− qne−2ξ1π

) (
1− qne−2π(1−ξ1)

)]

− 2

π

∞∑
n=0

log (1− qn)− log π

π
+

(
ξ1 −

1

2

)2

+
1

12
.

(3.18)

Similarly, G(x; ξ) and R(ξ; ξ) can be found when the singular point is on any of the
other three sides of the square.

We now calculate the MFPT for a few special cases. We first suppose that there
is one absorbing window of length 2ε centered at the midpoint ξ = (0.5, 0) of the
bottom side of the square. We consider initial points for a random walk that are
located on the vertical line x = (0.5, x2), where 0 < x2 < 1. For this configuration,
(2.14) yields

(3.19) v(x) ∼ 1

Dπ

[
− log

(ε
2

)
+ π (R(ξ; ξ)−G(x; ξ))

]
,
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(a) v(0.5, x2) versus x2

2.5

2.0

1.5

1.0
1.00.80.60.40.20.0

v

ξ1

(b) v(0.5, 0.5) versus ξ1

Fig. 4. Left figure: plot of the MFPT v(0.5, x2) on 0 < x2 < 1 given in (3.19) when there
is one trap located at ξ = (0.5, 0.0) at the midpoint of the bottom side of the unit square. Right
figure: plot of the MFPT v(0.5, 0.5), with initial point at the center of the unit square, versus the
x-coordinate of a trap location that slides along the bottom of the square at position ξ = (ξ1, 0) with
0 < ξ1 < 1. For both figures, D = 1, ε = 0.02, and the trap has length 2ε.

where G(x; ξ) and R(ξ; ξ) is given in (3.17) and (3.18), respectively. In Figure 4(a)
we plot v versus x2, where we show that v increases as the initial point tends to the
top boundary of the square, i.e., x2 → 1. Next, suppose that the initial point is at
the center of the unit square, i.e., x = (0.5, 0.5), but that the center ξ = (ξ1, 0) of the
absorbing window slides along the bottom of the unit square with 0 < ξ1 < 1. Upon
using (3.19), in Figure 4(b) we plot v versus ξ1 on 0 < ξ1 < 1, which shows that v is
minimized at ξ1 = 0.5, as expected intuitively.

Next, we suppose that the initial point is at the center x = (0.5, 0.5) of the
unit square but that there are two traps, each of length 2ε, on the boundary of the
square. We fix the center of one of the traps at the midpoint ξ1 = (0.0, 0.5) of the left
boundary, and we let the center ξ2 of the other trap slide along the boundary of the
square in a counterclockwise direction starting from ξ1. From (2.12) and (2.11a), the
MFPT is given asymptotically by

v(x) ∼ 1

2Dπ

[
− log

(ε
2

)
+

π

2
(R(ξ1; ξ1) +R(ξ2, ξ2) + 2G(ξ1; ξ2))

− π (G(x; ξ1) +G(x; ξ2))
]
.

(3.20)

In Figure 5 we plot v(x) versus the distance s along the boundary of the location of
the second trap relative to the first trap. Although the analysis in section 2 leading
to (3.20) is not valid for trap locations that are O(ε) close to the corner points of
the square, we observe in Figure 5 that v has peaks as ξ2 approaches these corner
points, corresponding to s = 0.5, s = 1.5, and s = 2.5. In addition, as seen from
Figure 5, v has a global minimum when ξ2 = (1.0, 0.5) (i.e., s = 2.0), corresponding
to a configuration of two traps that are equally spaced on the boundary of the square.

Finally, we consider the special case with one absorbing window centered at the
corner of the unit square. Since the window is centered at a nonsmooth part of the
boundary, we must modify the analysis for the MFPT in section 2. Choosing ξ = (0, 0)
as the corner point, we first calculate G(x; ξ) from (3.14) as

(3.21a) G(x; ξ) = − 2

π
log |x|+R(x; 0) ,
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s

Fig. 5. Plot of the MFPT v(0.5, 0.5), with initial point at the center of the unit square, when
there are two traps on the boundary of the unit square. The first trap is fixed at ξ1 = (0.0, 0.5) on the
left side of the square, while the second trap starts from ξ1 and then slides around the boundary of
the square in a counterclockwise direction. The plot shows v(0.5, 0.5) as a function of the distance s
along the boundary of the second trap relative to ξ1 for 0 < s < 2.5. When s = 2, then the second
trap is at (1.0, 0.5). At this antipodal point, v(0.5, 0.5) has a global minimum. The local maxima at
s = 0.5, s = 1.5, and s = 2.5 occur when the second trap is close to a corner of the square. We took
ε = 0.02 and D = 1, and each trap has length 2ε.

where the regular part R(x; 0) is given explicitly by

(3.21b) R(x; 0) = − 1

2π

∞∑
n=1

log (|1− qnz+,+||1− qnz+,−||1− qnz−,+||1− qnz−,−|)

− 1

2π

∞∑
n=0

log (|1− qnζ+,+||1− qnζ+,−||1− qnζ−,+||1− qnζ−,−|)

− 1

2π
log

(
|1 − z+,+|
|r+,+|

|1− z+,−|
|r+,−|

|1− z−,+|
|r−,+|

|1− z−,−|
|r−,−|

)
+H(x1, 0) .

Moreover, the self-interaction term R(0; 0) is given by

(3.22) R(0; 0) = − 4

π

∞∑
n=1

log (1− qn)− 2 logπ

π
+

1

3
, q = e−2π .

The analysis in section 2 is easily modified to treat an absorbing arc centered at a
corner of the square. We obtain that
(3.23)

�v = − 1

D
, x ∈ Ω ; ∂nv = 0 , x ∈ ∂Ω\{0} ; v ∼ A1

μ
+A1 log |x| as x → 0 .

Since ∂Ω has a π/2 corner at x = 0, the divergence theorem yields A1 = 2|Ω|/(Dπ),
and hence

(3.24) v = −|Ω|
D

G(x; 0) + χ .

The constant χ is obtained by expanding v as x → 0. We useG(x; 0) ∼ −2π−1 log |x|+
R(0; 0) and then compare the resulting expression with the singularity behavior in
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(3.23). In this way, in place of (2.14), we get
(3.25)

v ∼ 2|Ω|
Dπ

[
− log(εd) +

π

2
(R(0; 0)−G(x; 0))

]
, v̄ ∼ 2|Ω|

Dπ

[
− log(εd) +

π

2
R(0; 0)

]
.

Here |Ω| = π, while R(0; 0) and G(x; 0) are given in (3.22) and (3.21), respectively.
Finally, the constant d in (3.25), inherited from the far-field behavior of the inner
problem, depends on the details of how the absorbing arc of length 2ε is placed near
the corner. If the arc is on only one side so that v = 0 on 0 < x1 < 2ε with x2 = 0,
then d = 1. If v = 0 on the two sides x2 = 0, 0 < x1 < ε, and x1 = 0, 0 < x2 < ε,
then d = 1/4.

By solving certain integral equations asymptotically, a result for v̄ was obtained
in [19] for the unit square when an absorbing arc of length ε is placed on x2 = 0,
0 < x1 < ε, near the corner at the origin. For this configuration, d = 1/2 in (3.25).
Upon approximating R(0; 0) in (3.22) by taking only the first term in the infinite
sum, (3.25) reduces approximately to v̄ ∼ 2D−1

[
log 2 − log(πε) + 2e−2π + π/6

]
, in

agreement with equation (2.8) of [19].

3.3. More general domains: A boundary integral method. For an ar-
bitrary bounded domain with smooth boundary ∂Ω, we now describe a boundary
integral scheme to compute the surface Neumann Green’s function G(x;x0) satisfying

�G(x;x0) =
1

|Ω| , x ∈ Ω , x0 ∈ ∂Ω ,(3.26a)

∂nG(x;x0) = δ(x− x0) , x ∈ ∂Ω ;

∫
Ω

G(x;x0) dx = 0 .(3.26b)

In terms of G(x;x0) we then define the regular part, or self-interaction term, R(x0;x0)
by

(3.26c) lim
x→x0

(
G(x;x0) +

1

π
log |x− x0|

)
= R(x0;x0) .

Requiring only the discretization of the domain boundary, the boundary element
method (BEM) is well suited to numerically solve problems with singular boundary
terms. However, the need to impose the uniqueness condition

∫
Ω
G(x;x0) dx = 0

negates the benefit of the BEM derived from restricting the discretization to the
boundary. Since (3.26) for G without this integral constraint defines G only up to
an arbitrary constant, one approach would be to compute any specific solution for G
and then determine the constant to add to G by an a posteriori area integration.

We choose to adopt an alternative numerical approach, which is based on a regu-
larization of (3.26). To this end, we consider the following reduced wave equation in
which β is taken to be a small parameter and x0 ∈ ∂Ω:

LβGβ(x;x0) ≡ �Gβ(x;x0)− β2Gβ(x;x0) = 0 , x ∈ Ω ;

∂nGβ(x;x0) = δ(x− x0) , x ∈ ∂Ω .
(3.27)

To determine the relationship between (3.26) and (3.27), we expand the solution to
(3.27) for β � 1 as

(3.28) Gβ(x;x0) =
1

β2
G0(x;x0) +G1(x;x0) + β2G2(x;x0) + · · · .
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Substituting (3.28) into (3.27) and collecting powers of β2, we get that G0 is a constant
and that G1 and G2 satisfy

�G1(x;x0) = G0(x;x0) , x ∈ Ω ; ∂nG1(x;x0) = δ(x− x0) , x ∈ ∂Ω ,(3.29a)

�G2(x;x0) = G1(x;x0) , x ∈ Ω ; ∂nG2(x;x0) = 0 , x ∈ ∂Ω .(3.29b)

Upon applying the divergence theorem to (3.29a) we obtain that G0(x;x0) = |Ω|−1.
A similar application of the divergence theorem to (3.29b) shows that G1 must sat-
isfy the solvability condition

∫
Ω
G1(x;x0) dx = 0. Therefore, G1(x;x0) is precisely

the surface Neumann Green’s function satisfying (3.26). Since G0(x;x0) = |Ω|−1 is
known, our strategy is to use Richardson extrapolation in which we solve (3.27) nu-
merically for two distinct values of β � 1 and then eliminate the O

(
β2
)
term to yield

an approximation of G1(x;x0) which is accurate up to O
(
β4
)
terms.

The starting point for the boundary integral equation for (3.27) is the Green’s
identity associated with the operator Lβ in (3.27), given by

∫
Ω (u1Lβu2−u2Lβu1) dx =∫

∂Ω
(u1∂nu2−u2∂nu1) ds. We choose u1 = Gβ(x;x0) and u2 = gβ(x; ξ) ≡ 1

2πK0(β |x−
ξ|) as the free space Green’s function satisfying Lβgβ(x; ξ) = −δ(x − ξ) with ξ ∈ Ω,
where K0(z) is the modified Bessel function of the second kind of order zero. Then,
Green’s identity reduces to

(3.30) Gβ(ξ;x0) +

∫
∂Ω

Gβ(x;x0) ∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|) .

Next, we decompose Gβ(x;x0) into the sum of a singular part and a regular part
Rβ(x;x0) as

(3.31) Gβ(x;x0) = − 1

π
log |x− x0|+Rβ(x;x0) .

Upon substituting (3.31) into (3.30), we obtain the following integral relation for ξ in
the interior of Ω, i.e., ξ ∈ Ω:

Rβ(ξ;x0) +

∫
∂Ω

Rβ(x;x0)∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|)

+
1

π
log |x0 − ξ|+ 1

π

∫
∂Ω

log |x− x0| ∂ngβ(x; ξ) ds(x) .
(3.32)

To derive an integral equation from (3.32) that involves only unknown quantities on
the boundary, we consider the local behavior of the integrals in (3.32) in the limit
as ξ → ∂Ω. Let ξ be located on the smooth boundary ∂Ω and consider the integral∫
∂Ωε(ξ)

f(x)∂ngβ(x; ξ) ds(x). Here ∂Ωε(ξ) represents the boundary ∂Ω of the domain

in which the boundary points in the vicinity of ξ have been deformed to form a semi-
circular arc of radius ε which is centered at ξ and which is such that ξ is incorporated
within the boundary of ∂Ωε(ξ). Under the assumption that f is continuous at ξ, the
contribution to the integral on the semicircular arc can be calculated for ε → 0 as

lim
ε→0

∫ π/2

−π/2

f(ξ1 + ε cos θ, ξ2 + ε sin θ)
β

2π
K ′

0(βε)ε dθ = −1

2
f(ξ1, ξ2) .

Therefore, for boundary points where ξ ∈ ∂Ω, we have

(3.33) lim
ε→0

∫
∂Ωε(ξ)

f(x)∂ngβ(x; ξ) ds(x) = −1

2
f(ξ) +

∫
∂Ω

− f(x)∂ngβ(x; ξ) ds(x) .
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Here
∫
∂Ω
− represents the exclusion of a small symmetric region from the boundary in

the neighborhood of the point ξ upon taking the limit to zero, as is customary in the
definition of Cauchy principal value integrals. Making use of the limiting behavior
(3.33) in (3.32), we obtain the following boundary integral equation for Rβ(ξ;x0):

1

2
Rβ(ξ;x0) +

∫
∂Ω

−Rβ(x;x0)∂ngβ(x; ξ) ds(x) =
1

2π
K0(β |x0 − ξ|)

+
1

2π
log |x0 − ξ|+ 1

π

∫
∂Ω

− log |x− x0|∂ngβ(x; ξ) ds(x) .
(3.34)

For the special case ξ → x0 the first two singular terms on the right-hand side of
(3.34) have the asymptotic behavior

lim
ξ→x0

(
1

2π
K0(β |x0 − ξ|) + 1

2π
log |x0 − ξ|

)

=
1

2π

[
−γ + log

(
2

β

)]
+O

(
|x0 − ξ|2 log |x0 − ξ|

)
,

where γ is Euler’s constant.
Next, we discretize the boundary integral equation (3.34). We approximate the

boundary by N circular arcs, and on each arc we assume a piecewise quadratic rep-
resentation of the unknown function

Rβ(x(t);x0) =

3∑
j=1

Rj(x0)Nj(t) , Nj(t) =

3∏
k=1
k �=j

(t− tk)

(tj − tk)
.

Here t is the standard parameterization of the arc, and Nj(t) are the quadratic La-
grange basis functions associated with the collocation points tj , which are chosen to
be the zeros of the third degree Legendre polynomial. The boundary integral equation
(3.34) then assumes the discrete form

1

2
Rm

k (x0) +
N∑

n=1

3∑
j=1

Rn
j (x0)

∫
∂Ωn

− Nj(t)∂ngβ(x(t), ξk) ds(t) =
1

2π
K0(β |x0 − ξk|)

+
1

2π
log |x0 − ξk|+

1

π

N∑
n=1

∫
∂Ωn

− log |x(t)− x0| ∂ngβ(x(t), ξk) ds(t) .

This dense linear system can be written compactly in index form as

(3.35)
1

2
Rm

k (x0) +

N∑
n=1

3∑
j=1

Kmn
kj Rn

j (x0) = bmk + Lm
k ,

where

Kmn
kj =

⎧⎨
⎩

−aβ
2π

∫ αn

−αn
− Nn

j (t)K1

(
2aβ sin

( |t−tmk |
2

))
sin

( |t−tmk |
2

)
dt , m = n ,

−aβ
2π

∫ αn

−αn
Nn

j (t)
K1(βr

mn
k (t))

rmn
k (t)

(
a− ξ̄mn

1,k cos t− ξ̄mn
2,k sin t

)
dt , m �= n ,

bmk =
1

2π

{
−γ + log 2

β , ξk = x0 ,

K0(β |x0 − ξk|) + log |x0 − ξk| , ξk �= x0 ,
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and K1(z) is the modified Bessel function of the second kind of order one. In addition,

Lm
k = − aβ

2π2

N∑
n=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ αn

−αn
− log

(
2a sin

(
|t|
2

))
K1

(
2aβ sin

( |t−tmk |
2

))
sin

( |t−tmk |
2

)
dt ,

m = n , n = n0 ,∫ αn

−αn
log

(
2a sin

(
|t|
2

))
K1(βr

mn
k (t))

rmn
k (t)

(
a− ξ̄mn

1,k cos t− ξ̄mn
2,k sin t

)
dt ,

m �= n , n = n0 ,∫ αn

−αn
− log (rn0 (t))K1

(
2aβ sin

( |t−tmk |
2

))
sin

( |t−tmk |
2

)
dt ,

m = n , n �= n0 ,∫ αn

−αn
log (rn0 (t))

K1(βr
mn
k (t))

rmn
k (t)

(
a− ξ̄mn

1,k cos t− ξ̄mn
2,k sin t

)
dt ,

m �= n , n �= n0 .

Here a represents the local radius of curvature of the nth element, ξ̄mn
j,k represents

the jth component of the kth collocation point in the mth receiving element relative
to the local coordinate system centered on the nth element, rmn

k (t) represents the
distance between the current integration point t in the nth element and the kth
collocation point in the mth receiving element, rn0 (t) is the distance between the
current integration point t in the nth sending element and the source point x0, and
n0 represents the element number in which the source point x0 is located at the middle
collocation point. The integrals in (3.35) are performed using adaptive Gauss–Konrod
integration.

The numerical solution to the linear system (3.35) yields approximate numerical
values for Rβ(x;x0) for x ∈ ∂Ω and for Rβ(x0;x0). The function Rβ(x;x0) for an
interior point with x ∈ Ω is obtained from (3.32), which then determines Gβ(x;x0)
from (3.31). A Richardson extrapolation applied to (3.28) then determines the surface
Neumann Green’s function G(x;x0). Our final step in our BEM scheme is to use
Richardson extrapolation to extract the regular partR(x0;x0) of the surface Neumann
Green’s function, defined in (3.26c) from the small β expansion

(3.36) Rβ(x0;x0) =
1

|Ω|β2
+R(x0;x0) +O(β2) .

Some numerical results computed from the BEM are given below and in section 4.

The unit disk. In order to establish the convergence rate of the BEM we first
consider the unit disk for which R(x0;x0) = 1/(8π) = 0.039789, as obtained from the
analytical result (3.2). In Table 1 we give numerical BEM results showing that the
convergence rate of our numerical scheme is O

(
N−3

)
.

Table 1

Numerical BEM results approximating the regular part R(x0;x0) = 1/8π of the surface Neu-
mann Green’s function for the unit disk with N boundary elements. The convergence rate of the
numerical scheme is O (

N−3
)
.

Rβ(x0;x0) R(x0; x0)
N β = 0.025 β = 0.0125 Extrapolated value Exact value
32 0.037515 0.039091 0.040666 0.039789
64 0.037243 0.038576 0.039908 0.039789
128 0.037203 0.038501 0.039799 0.039789
256 0.037198 0.038491 0.039783 0.039789
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Fig. 6. Comparison of ρ′(θ) ≡ d
dθ

R(x0(θ), x0(θ)) versus θ/π from the analytical perturbation
result (3.37) (dashed curves) and the numerical BEM results (solid curves) for a near unit disk with
boundary r = 1 + δ cos(2θ) with δ = 0.1 (large amplitude curves) and δ = 0.05 (small amplitude
curves). In the BEM scheme, N = 128 elements were used.

A perturbation of the unit disk. We consider a perturbation of the unit
disk with the boundary defined by r = 1 + δ cos(2θ), where δ > 0 is small. For a
source point at position x0(θ) = (r cos θ, r sin θ) on the boundary, we define the self-
interaction term ρ(θ) by ρ(θ) ≡ R(x0(θ), x0(θ)). From Principal Result 4.3, which is
proved in the appendix, we obtain for δ � 1 that

(3.37) ρ′(θ) ∼ −4δ

π
sin(2θ) +O(δ2) .

In Figure 6 we show a very favorable comparison between the asymptotic result (3.37)
for δ = 0.05 and δ = 0.1 and the corresponding full numerical BEM results for ρ′(θ)
computed with N = 128 elements. In computing ρ′(θ) from the BEM scheme, we
used a not-a-knot cubic spline to perform the numerical differentiation. Figure 6 gives
further supporting evidence that the BEM scheme is able to compute ρ(θ) accurately.

An ellipse. Next, we let Ω be the ellipse with boundary x(θ) = 2 cos θ and
y(θ) = sin θ. By allowing the source point x0(θ) = (cos θ, sin θ) to move around the
boundary, in Figure 7(a) we plot the BEM result for ρ(θ) ≡ R(x0(θ), x0(θ)) versus
θ/π with N = 128 elements. The curvature κ(θ) of the boundary is also shown in
this figure. For this example, the local maxima of ρ(θ) and κ(θ) coincide. Next,
we compute the MFPT for the case of one absorbing window of length 2ε on the
boundary of the ellipse centered at x0(θ). Upon setting |Ω| = 2π in (2.14), and with a
minor change in notation from (2.14), the average MFPT v̄(θ) and the MFPT v(θ;x)
for a starting position x ∈ Ω are given by
(3.38)

v̄(θ) ∼ 2
[
− log

(ε
2

)
+ πρ(θ)

]
; v(θ;x) ∼ 2

[
− log

(ε
2

)
+ π (ρ(θ)−G(x;x0(θ)))

]
.

We define v1(θ) ≡ v(θ;x) for an initial point at the origin x = (0, 0) and v2(θ) = v(θ;x)
for the initial point x = (1, 0). In Figure 7(b) we plot v̄, v1, and v2 versus θ/π when
ε = 0.05. From this figure it is seen that the MFPT depends significantly on both the
location θ of the absorbing window on the boundary of the ellipse and on the chosen
initial point inside the ellipse for the random walk.
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(a) ρ(θ) ≡ R (x(θ);x(θ)) and κ(θ)
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(b) v̄(θ), v1(θ), and v2(θ)

Fig. 7. Left figure: plot of ρ(θ) ≡ R(x0(θ), x0(θ)) (solid curve) versus θ/π and the boundary
curvature κ(θ) (dashed curve) for an elliptical region with boundary x = 2 cos θ, y = sin θ. Right
figure: plot of the average MFPT v̄(θ) versus θ/π (solid curve) together with the MFPTs v1(θ)
(dashed curve) and v2(θ) (dash-dotted curve), as defined in (3.38), for a random walk with initial
starting point x = (0, 0) and x = (1, 0), respectively. The absorbing window of length 2ε with
ε = 0.05 is centered at polar angle θ on ∂Ω.

4. Optimization of the principal eigenvalue. In this section we asymptoti-
cally calculate the principal eigenvalue for

�u+ λu = 0 , x ∈ Ω ,

∫
Ω

u2 dx = 1 ,(4.1a)

∂nu = 0 , x ∈ ∂Ωr ; u = 0 , x ∈ ∂Ωa ≡
N⋃
j=1

∂Ωεj .(4.1b)

Here ∂Ω = ∂Ωr ∪ ∂Ωa is a smooth boundary. We assume that there are N small
well-separated absorbing arcs ∂Ωεj , each with length |∂Ωεj | = εlj � 1, for which
∂Ωεj → xj for j = 1, . . . , N . We let λ(ε) denote the first eigenvalue of (4.1), with
corresponding eigenfunction u(x, ε). Clearly, λ(ε) → 0 as ε → 0 with u → u0 =
|Ω|−1/2.

To calculate λ(ε) for ε � 1 we proceed as in section 2. In the inner region near the
jth absorbing arc, we again obtain (2.2) as the inner problem. The far-field behavior
of the solution to (2.2) is written as

(4.2) w0 ∼ μjBj [log |y| − log dj + o(1)] as |y| → ∞ , dj = lj/4 ,

where y = ε−1(x − xj), μj = −1/ log[εdj ], and Bj is some unknown constant. This
leads to a singularity behavior for the outer solution given by u ∼ Bj+μjBj log |x−xj |
as x → xj for j = 1, . . . , N . In this way, we obtain that λ(ε) = λ∗ +O(ε), where λ∗

and u∗ satisfy

�u∗ + λ∗u∗ = 0 , x ∈ Ω ; ∂nu
∗ = 0 , x ∈ ∂Ω\{x1, . . . , xN} ,(4.3a)

u∗ ∼ Bj + μjBj log |x− xj | as x → xj , j = 1, . . . , N ,(4.3b)
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where μj is defined in (2.4b). The solution to (4.3) is written as

(4.4) u∗ = −π

N∑
i=1

μiBiGh(x;xi) ,

where Gh(x;xj) is the surface Helmholtz Green’s function, which depends on λ∗, and
satisfies

�Gh + λ∗Gh = 0 , x ∈ Ω ; ∂nGh = 0 , x ∈ ∂Ω\{xj} ,(4.5a)

Gh(x;xj) ∼ − 1

π
log |x− xj |+Rh(xj ;xj) as x → xj ∈ ∂Ω .(4.5b)

We then expand (4.4) as x → xj and compare the resulting expression with the
required singularity behavior (4.3b). This yields the following homogeneous linear
system for the Bj for j = 1, . . . , N :

(4.6) Bj + πμjBjRhj + π

N∑
i=1
i�=j

μiBiGhji = 0 , j = 1, . . . , N .

Here we have defined Ghji ≡ Gh(xj ;xi), while Rhj ≡ Rh(xj ;xj) is the regular part of
Gh given in (4.5). Upon writing this system in matrix form, we obtain the following
main result.

Principal Result 4.1. Consider (4.1) for N well-separated absorbing arcs of
length |∂Ωεj | = εlj centered at xj ∈ ∂Ω for j = 1, . . . , N . Then, the principal
eigenvalue λ(ε) of (4.1) satisfies λ(ε) = λ∗ + O(ε), where λ∗ is the smallest root of
the transcendental equation

(4.7) Det (I + πGhU) = 0 .

Here U is the diagonal matrix as given in (2.10), and Gh is the Helmholtz Green’s
function matrix with entries

(4.8) Ghjj = Rh(xj ;xj) , j = 1, . . . , N ; Ghij = Gh(xi;xj) , i �= j ,

which are defined in terms of the solution Gh(x; ξ) and Rh(ξ; ξ) to (4.5). The corre-
sponding outer approximation to the principal eigenfunction is given in (4.4), where
BT ≡ (B1, . . . , BN ) is the eigenvector of (I + πGhU)B = 0.

The transcendental equation (4.7) has in effect summed all of the logarithmic
terms in powers of μj for λ(ε). To explicitly determine the first two terms in the
logarithmic series, we let λ∗ � 1 and obtain from (2.5) and (4.5) that
(4.9)

Gh(x;xj) ∼ − 1

λ∗|Ω| +G(x;xj)+O(λ∗) , Rh(x;xj) ∼ − 1

λ∗|Ω| +R(x;xj)+O(λ∗) .

Upon substituting (4.9) into (4.6), we obtain the approximating matrix eigenvalue
problem
(4.10)

CB ∼ λ∗|Ω|
πN

B , C ≡ (I + πGU)−1
EU , E ≡ 1

N
eeT , eT = (1, . . . , 1) ,
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where G is the matrix in (2.10) involving the Green’s function of (2.5). Since C is a
rank one matrix, then for μj � 1

λ∗|Ω|
πN

∼ Trace
[
(I + πGU)−1 EU

]
∼ Trace (EU)− πTrace [GUEU ]

= μ̄− π

N

N∑
i=1

N∑
j=1

μiμjGij .

The principal eigenfunction is found by substituting (4.9) for Gh into (4.4). We
summarize the result as follows.

Principal Result 4.2. Let λ(ε) be the principal eigenvalue of (4.1) with N
well-separated absorbing arcs. Then, a two-term expansion for λ(ε) is given by

(4.11) λ(ε) ∼ λ∗ ∼ πμ̄N

|Ω| − π2

|Ω|pw(x1, . . . , xN ) +O(|μ|3) ,

where μ̄ ≡ N−1(μ1 + · · ·+μN ), μj = −1/ log[εdj ] with dj = lj/4, and pw(x1, . . . , xN )
is the weighted discrete sum defined in (2.13). The corresponding two-term outer
approximation to the principal eigenfunction is given by

(4.12) u ∼ π

λ∗|Ω|

N∑
i=1

μiBi − π

N∑
i=1

μiBiG(x;xi) +O(|μ|2) ,

where G(x;xi) is the surface Green’s function satisfying (2.5). For the special case
N = 1, then

(4.13) λ(ε) ∼ λ∗ ∼ πμ1

|Ω| − π2μ2
1

|Ω| R(x1;x1) +O(μ3
1) , μ1 ≡ − 1

log[εd1]
, d1 =

l1
4
.

As a special case of the result (4.11) for λ(ε), suppose that Ω is the unit disk
with N identical small absorbing arcs placed symmetrically around the boundary of
the unit disk at the Nth roots of unity, i.e., xj = e2πij/N . Then, with |Ω| = π
and pw(x1, . . . , xN ) = μ2p(x1, . . . , xN ), where p(x1, . . . , xN ) is given in (3.7), (4.11)
becomes

(4.14) λ(ε) ∼ μN − μ2

(
N2

8
−N logN

)
+O(μ3) , μ ≡ −

(
log

[
εl

4

])−1

.

As a further special case of (4.13), suppose that an absorbing arc of length 2ε is
centered at x1 = (ξ1, 0) on the bottom side of the unit square for which R(x1;x1)
is given explicitly from subsection 3.2 by the right-hand side of (3.18). Then, (4.13)
with d = 1/2 and |Ω| = 1 becomes

(4.15) λ(ε) ∼ πμ− π2μ2R(x1;x1) , μ ≡ − 1

log (ε/2)
.

In Figure 8(a) we plot R(x1;x1) showing that it has a minimum when ξ1 is at the
midpoint of a side of the square. In Figure 8(b) we plot (4.15) versus ε for ξ1 = 0.5,
ξ1 = 0.3, and ξ1 = 0.9. The eigenvalue is largest when ξ1 = 0.5.
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(a) R1 ≡ R(x1;x1) with x1 = (ξ1, 0)
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λ

ε

(b) λ(ε)

Fig. 8. Left figure: plot of the regular part R(x1; x1) of the Neumann Green’s function for a
square, as given in (3.18), with the trap centered on the bottom side of the square at x1 = (ξ1, 0).
Right figure: two-term expansion for λ(ε) in (4.15) for ξ1 = 0.5 (top curve), ξ1 = 0.3 (middle
curve), and ξ1 = 0.9 (bottom curve). The eigenvalue is largest when ξ1 = 1/2.

The result (4.15) is not valid near a corner of the square, i.e., when ξ1 = O(ε).
For this case, where the arc is located at a corner of angle π/2, a modification of the
analysis given in subsection 2.3 shows that
(4.16)

λ ∼ πμ

2
−π2μ2

4
R(0; 0) , μ ≡ − 1

log(εd)
, R(0; 0) ≡ − 4

π

∞∑
n=1

log (1−qn)− 2

π
log π+

1

3
,

where q = e−2π. The constant d, inherited from the inner problem, depends on the
details of how the absorbing arc of length 2ε is placed near the corner. If the arc is
on only one side so that u = 0 on 0 < x1 < 2ε with x2 = 0, then d = 1. If u = 0 on
the two sides x2 = 0, 0 < x1 < ε, and x1 = 0, 0 < x2 < ε, then d = 1/4. In any case,
it is clear by comparing (4.15) with (4.16) that λ is minimized when the absorbing
arc is located at a corner of the square.

Next, we show that a few terms in the expansion for λ∗ given in (4.11) of Principal
Result 4.2 can be transformed directly into a few terms in the expansion for χ given
in (2.12b) of Principal Result 2.2, in the sense that

(4.17) v̄ = χ =
1

Dλ∗(ε)
+O

(
|μ|2

)
.

To establish (4.17) we first expand the solution to (1.1) in terms of all of the eigen-
functions uj(x, ε) and λj(ε) for j ≥ 1 of (4.1). In this notation the principal eigenpair
λ1(ε) and u1(x, ε) is given asymptotically in (4.11) and (4.12), respectively. In the
usual way, the eigenfunction expansion representation for v, and consequently v̄ = χ,
is

v =
1

D

[
(u1, 1)u1

λ1 (u1, u1)
+

∞∑
j=2

(uj, 1)uj

λj (uj , uj)

]
,

χ = v̄ =
1

|Ω|D

[
(u1, 1)

2

λ1 (u1, u1)
+

∞∑
j=2

(uj, 1)
2

λj (uj , uj)

]
.

(4.18)

Here (u, v) ≡
∫
Ω
uv dx. For j ≥ 2, we use the divergence theorem to calculate (φj , 1)

over the absorbing windows ∂Ωa as λj(φj , 1) = −
∫
∂Ωa

∂nφj ds, where λj = O(1) as
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ε → 0. Then, introducing the local coordinates η̂ = ε−1η, ŝ = ε−1(s− sj) and noting
that uj = O(|μ|) in the inner region, as shown in (4.2), we estimate for j ≥ 2 that

(uj, 1) = − 1

λj

N∑
j=1

∫
∂Ωj

(
ε−1∂η̂uj

)
εdŝ ∼ 1

λj

N∑
j=1

∫
∂Ωj

O(|μ|) dŝ = O(|μ|) .

Therefore, (4.18) reduces to

(4.19) v =
1

Dλ1

(u1, 1)u1

(u1, u1)
+O(|μ|) , χ = v̄ ∼ 1

|Ω|Dλ1

(u1, 1)
2

(u1, u1)
+O(|μ|2) .

Next, we use (4.12) to calculate

(4.20) (u1, 1) ∼
π

λ∗

N∑
i=1

μiBi , (u1, u1) ∼
π2

(λ∗)2|Ω|

N∑
i=1

N∑
j=1

μiμjBiBj .

Upon substituting (4.20) and (4.12) into (4.19) and then using (4.11) for λ∗, we obtain
that

v ∼ 1

λ∗D
− |Ω|

D

∑N
j=1 μjBjG(x;xj)∑N

j=1 μjBj

+O(|μ|) , χ = v̄ ∼ 1

Dλ∗ +O(|μ|2) ,

v ∼ |Ω|
πμ̄ND

+
|Ω|

Dμ̄2N2
pw(x1, . . . , xN )− |Ω|

D

∑N
j=1 μjBjG(x;xj)∑N

j=1 μjBj

+O(|μ|) ,(4.21)

where μ̄ ≡ N−1 (μ1+· · ·+μN) and pw(x1, . . . , xN ) is defined in (2.13). This establishes
the claim in (4.17). Finally, with regards to v, we use (4.10) to calculate BT =
(B1, . . . , BN ). To leading order for μj � 1, (4.10) reduces to EUB ≈ μ̄B, which
yields BT ∼ (1, . . . , 1). Therefore, upon setting Bj ∼ 1 for j = 1, . . . , N in (4.21), we
readily obtain that (4.21) agrees asymptotically with the result for the MFPT given
in Principal Result 2.2.

4.1. An eigenvalue optimization problem. For the case of exactly one small
(connected) absorbing arc of a fixed length εl, we now seek to determine the location
of the center x0 ∈ ∂Ω of this arc that minimizes the principal eigenvalue of (4.1). As
stated in section 1, it was conjectured in section 1 of [3] that, for a general convex
domain with a smooth boundary, an optimal absorbing arc must lie in a region of ∂Ω
with large curvature. We first note that (4.13) shows that, up to O(μ2) terms, λ(ε) is
minimized at the global maximum of R(x0, x0) for x0 ∈ ∂Ω. From (2.5) we introduce
R(x;x0) by

(4.22) G(x;x0) = − 1

π
log |x− x0|+R(x;x0) , x0 ∈ ∂Ω .

When Ω is a smooth perturbation of the unit disk, we will examine below whether
maxima of R(x0;x0) coincide with maxima of the curvature of the boundary. To
do so, we require the following perturbation result determining the critical points of
R(x0;x0) for domains that are close to the unit disk.

Principal Result 4.3. Let Ω be a perturbation of the unit disk with boundary
given in terms of polar coordinates by

(4.23) r = r(θ) = 1 + δσ(θ) , σ(θ) =

∞∑
n=1

(an cos(nθ) + bn sin(nθ)) , δ � 1 .
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Let x0 = x0(θ0) = (r0 cos θ0, r0 sin θ0) be a point on the boundary, where r0 = 1 +
δσ(θ0). For x ∈ ∂Ω we define

(4.24) ρ(θ) = R(x;x0) and ρ(θ0) ≡ R(x0;x0) ,

where R(x;x0) is the regular part of the Green’s function in (4.22). Then, for δ � 1,
ρ′(θ0) satisfies

(4.25) ρ′(θ0) =
δ

π

∞∑
n=1

(
n2 + n− 2

)
(bn cosnθ0 − an sinnθ0) +O(δ2) .

The proof of this result is given in the appendix. We now use Principal Result 4.3
to obtain the following result.

Principal Result 4.4. The maxima of R(x0, x0) do not necessarily coincide
with the maxima of the curvature κ(θ) of the boundary of a smooth perturbation of the
unit disk. Consequently, for ε → 0, λ(ε) from (4.13) does not necessarily have a local
minimum at the location of a local maximum of the curvature of a smooth boundary.

To establish this result we take a2 = 1, a3 = μ, with an = 0 for n �= 2, 3 and
bn = 0 for n ≥ 1 in (4.23), so that

(4.26) σ(θ) = cos(2θ) + μ cos(3θ) .

For δ � 1, the curvature κ of the boundary r = 1 + δσ(θ) is given by

(4.27) κ(θ) =
r2 + 2r2θ − rrθθ

(r2 + r2θ)
3/2

∼ 1− δ (σ + σθθ) +O(δ2) .

Upon substituting (4.26) into (4.25) for ρ′(θ) and (4.27) for κ(θ), we obtain that

(4.28) κ′(θ) = −6δ [sin(2θ) + 4μ sin(3θ)] , ρ′(θ) = −4δ

π

[
sin(2θ) +

5μ

2
sin(3θ)

]
.

We calculate that κ′(π) = ρ′(π) = 0 and

(4.29) κ′′(π) = −6δ [2− 12μ] , ρ′′(π) = −4δ

π

[
2− 15μ

2

]
.

Thus, at θ = π, κ has a maximum when μ < 1/6 while ρ has a maximum when
μ < 4/15. Hence, for μ ∈ (16 ,

4
15 ), there is a point on ∂Ω where ρ has a local maximum

at which κ has a local minimum. As a consequence, the principal eigenvalue of (4.1),
given asymptotically in (4.13), does not in general have a local minimum when a small
absorbing window is centered at a local maximum of the boundary curvature. This
establishes Principal Result 4.4.

In Figure 9(a) we plot the domain when μ = 0.2 and δ = 0.1. For μ = 0.2
and δ = 0.1, in Figure 9(b) we plot κ(θ) − 1, r(θ) − 1, and the integral of the
asymptotic result (4.28) for ρ(θ) − C, where C is a constant of integration. For
μ = 0.2 and δ = 0.1, in Figure 10 we show a very favorable comparison between the
asymptotic result (4.28) for ρ′(θ) and the full numerical result for ρ′(θ) computed from
the BEM scheme of subsection 3.3. The asymptotic and numerical results for ρ′(θ)
are essentially indistinguishable in this plot. These numerical BEM results confirm
the asymptotic prediction that, for μ = 0.2 and δ � 1, ρ has a local maximum while
κ has a local minimum at θ = π.
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Fig. 9. Left figure: plot of the perturbed unit disk with boundary r = 1+ δ (cos(2θ) + μ cos(3θ))
with δ = 0.1 and μ = 0.2. Right figure: plot of κ(θ) − 1 (heavy solid line), δσ(θ) (solid line), and
ρ(θ) − C (dotted line), where κ, σ, and ρ′ are given in (4.27), (4.26), and (4.28), respectively. At
θ = π, the curvature has a local minimum and ρ has a local maximum.
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Fig. 10. Plot of the derivative κ′(θ) (dash-dotted curve) of the near unit disk r = 1+δ (cos(2θ)+
μ cos(3θ)) with δ = 0.1 and μ = 0.2 together with the asymptotic result (4.28) for ρ′(θ) (dashed curve)
and the full numerical BEM result for ρ′(θ) (solid curve) with N = 128 elements. The asymptotic
and numerical results for ρ′(θ) are very close.

5. Conclusion. The method of matched asymptotic expansions was used to
calculate the MFPT in an arbitrary two-dimensional domain with N asymptotically
small absorbing windows on the domain boundary. Analytical results are given for
the disk and the square for various arrangements of the small absorbing windows on
the domain boundary. Similar results for the MFPT for more general domains were
obtained by using a BEM to compute the surface Neumann Green’s function.

An open problem is to calculate the dwell time (cf. [21]) in a two-dimensional
domain with both asymptotically small absorbing windows on its boundary and traps
of asymptotically small radii located inside the domain. An example of such a problem
in the unit disk for the case of one concentric trap is considered in [21].

In Part II of this paper [5] we asymptotically calculate the MFPT for narrow
escape from a spherical domain.

Appendix. The regular part of the surface Neumann Green’s function
for a perturbed disk. In this appendix we prove Principal Result 4.3. From (2.5)
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and (4.22), we obtain that R(x;x0) satisfies
(A.1)

�R(x;x0) =
1

|Ω| , x ∈ Ω ; ∇R(x;x0) · n̂ =
1

π

(x− x0) · n̂
|x− x0|2

, x ∈ ∂Ω .

In polar coordinates we write x0 = (r0 cos θ0, r0 sin θ0), x = (r cos θ, r sin θ), and
r0 = r0(θ0). We then calculate that |x− x0|2 = r2 + r20 − 2rr0 cos(θ − θ0), and

n̂ =
1√

(r′)2 + r2

(
r′ sin θ + r cos θ
−r′ cos θ + r sin θ

)
,

(x− x0) · n̂ =
1√

(r′)2 + r2

[
r2 − r0r

′ sin(θ − θ0)− r0r cos(θ − θ0)
]
.

By writing r = 1+δσ and r0 = 1+δσ0, the right-hand side of the boundary condition
in (A.1) becomes

(A.2)
1

π

(x− x0) · n̂
|x− x0|2

=
1

2π

(
1 + δ

[
σ cos(θ − θ0)− σ0 − σ′ sin(θ − θ0)

1− cos(θ − θ0)

])
+O(δ2) .

The expression in the square brackets above is bounded for θ → θ0. Therefore, (A.2)
is uniformly valid for all θ ∈ [0, 2π). Next, we let f(θ) denote the term in the square
brackets in (A.2) and we expand it in a Fourier series as

f(θ) ≡ σ cos(θ − θ0)− σ0 − σ′ sin(θ − θ0)

1− cos(θ − θ0)

=

∞∑
m=1

[Am cosm(θ − θ0) + Bm sinm(θ − θ0)] ,

(A.3)

where Am and Bm for m ≥ 1 are defined in terms of integrals I1 and I2, which must
be calculated, by
(A.4)

I1 ≡ πAm =

∫ 2π

0

f(θ) cosm(θ − θ0) dθ , I2 ≡ πBm

∫ 2π

0

f(θ) sinm(θ − θ0) dθ .

First, we consider the case where σ = cosnθ = Re
(
einθ

)
. We write I1 in (A.4) as

I1 = Re

∫ 2π

0

(
cos(θ − θ0)e

inθ − einθ0 − ineinθ sin(θ − θ0)

1− cos(θ − θ0)

)
cosm(θ − θ0) dθ .

Let z = eiθ, z0 = eiθ0 , and w = z
z0
. Then, I1 = Re(I), where I is the following

contour integral over the unit disk:

I = izn0

∫
|w|=1

G(w)
(
wm + w−m

)
dw ,

G(w) ≡
(
(1− n)

2
wn+1 +

(1 + n)

2
wn−1 − 1

)
(1− w)−2 .

Since (1 − w)2 = d
dw

∑∞
n=0 w

n, then G(w) = −
(
1 + 2w + 3w2 + · · ·+ (n− 1)wn−2 +

(n−1)
2 wn−1 + · · ·

)
. From the residue theorem we calculate

(A.5) I = zn0

{ 2πm , 1 ≤ m < n ,
π(n− 1) , m = n ,
0 , m > n ,
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so that I1 = Re(I). Similarly, we can obtain I2 when σ = cos(nθ0). In this way, we
obtain

I1 = cos(nθ0)

{
2πm , 1 ≤ m < n ,
π(n− 1) , m = n ,
0 , m > n ,

I2 = − sin(nθ0)

{
2πm , 1 ≤ m < n ,
π(n− 1) , m = n ,
0 , m > n .

Alternatively, for σ = sin(nθ0), we get

I1 = sin(nθ0)

{ 2πm , 1 ≤ m < n ,
π(n− 1) , m = n ,
0 , m > n ,

I2 = cos(nθ0)

{ 2πm , 1 ≤ m < n ,
π(n− 1) , m = n ,
0 , m > n .

This determines An and Bn as An = 1
π I1 and Bn = 1

π I2. Therefore, for σ = cos(nθ0),
(A.3) becomes

f(θ) = (n− 1) (cosnθ0 cosn(θ − θ0)− sinnθ0 sinn(θ − θ0))

+

n−1∑
m=1

2m [cosnθ0 cosm(θ − θ0)− sinnθ0 sinm(θ − θ0)] .
(A.6a)

Alternatively, for σ = sin(nθ0), (A.3) becomes

f(θ) = (n− 1) (cosnθ0 sinn(θ − θ0) + sinnθ0 cosn(θ − θ0))

+
n−1∑
m=1

2m [cosnθ0 sinm(θ − θ0) + sinnθ0 cosm(θ − θ0)] .
(A.6b)

Since σ =
∑∞

n=1 (an cosnθ+bn sinnθ) from (4.23), we determine f(θ) by summing

(A.6) over n. We then interchange the order of summation by using
∑∞

n=1

∑n−1
m=1 χmn

=
∑∞

m=1

∑∞
n>m χmn =

∑∞
n=1

∑∞
m>n χnm to obtain

f(θ) =

∞∑
n=1

(An cosn(θ − θ0) +Bn sinn(θ − θ0)) ,

An = (n− 1) (an cosnθ0 + bn sinnθ0) + 2n
∞∑

m>n

(am cosmθ0 + bm sinmθ0) ,(A.7)

Bn = (n− 1) (bn cosnθ0 − an sinnθ0) + 2n

∞∑
m>n

(bm cosmθ0 − am sinmθ0) .

Next, we introduce S(x;x0) by

(A.8) R(x;x0) = S(x;x0) +
|x|2

4|Ω| .

By combining (A.8) and (A.1), we obtain that S(x;x0) satisfies

�S(x;x0) = 0 , x ∈ Ω ;

∂nS(x;x0) = ∂n

[
R(x;x0)−

|x|2
4|Ω|

]
∼ δ

2π
(f(θ)− σ(θ)) +O(δ2) , x ∈ ∂Ω .

(A.9)
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In deriving the boundary condition in (A.9) we used (A.2), (A.3), |Ω| ≈ π, and

∂n
(
|x|2

)
= 2r

(
1 + (r′)2/r2

)−1/2
. The O(δ) term in the boundary condition for S in

(A.9) suggests that we introduce S0(x;x0) by

(A.10) S(x;x0) =
δ

2π
S0(x;x0) .

To leading order we get ∂nS0 = ∂rS0|r=1 +O(δ). From (A.9) and (A.10), we obtain
that S0 satisfies

�S0(x;x0) = 0 , 0 ≤ r ≤ 1 , 0 ≤ θ < 2π ;

∂rS0(x;x0)|r=1 = f(θ)− σ(θ) , r = 1 .
(A.11)

The solution to (A.11) is written as

(A.12) S0 = D0 +

∞∑
n=1

rn [Dn cosn(θ − θ0) + En sinn(θ − θ0)] .

To determine the coefficients Dn and En we must use the boundary condition in
(A.11). To this end, we must rewrite σ, given by (4.23), in terms of cosn(θ− θ0) and
sinn(θ − θ0). This yields
(A.13)

σ =

∞∑
n=1

([an cosnθ0 + bn sinnθ0] cosn(θ − θ0) + [bn cosnθ0 − an sinnθ0] sinn(θ − θ0)) .

Then, we differentiate (A.12) at r = 1 and use (A.7), (A.11), and (A.13) to determine
Dn and En for n ≥ 1 as
(A.14)

nDn = An − [an cosnθ0 + bn sinnθ0] , nEn = Bn − [bn cosnθ0 − an sinnθ0] .

We remark that the constant D0 in (A.12) can be chosen to ensure that
∫
Ω G(x;x0) dx

= 0.
In summary, it follows from (A.8) and (A.10) that, for x ∈ ∂Ω,

R(x;x0) = S(x;x0) +
|x|2

4π
=

δ

2π
S0(x;x0) +

1

4π
+

δσ

2π
+O(δ2) , x ∈ ∂Ω .

By using the definition (4.24) and the reciprocity property of R, we calculate ρ′(θ0)
as

ρ′(θ0) =
d

dθ0
R(x0(θ0), x0(θ0)) = 2

d

dθ
R(x(θ), x0(θ0))|θ=θ0

∼ δ

π

[
d

dθ
S0(x(θ), x0(θ0))|θ=θ0 + σ′(θ0)

]
+O(δ2) .

Then, by using (A.12) and (A.13), we obtain

ρ′(θ0) =
δ

π

∞∑
n=1

(nEn + n [bn cosnθ0 − an sinnθ0]) .

Finally, we use (A.14) to relate Dn to Bn, and then we recall (A.7) for Bn. This
yields that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

834 S. PILLAY, M. WARD, A. PEIRCE, AND T. KOLOKOLNIKOV

(A.15)

ρ′(θ0) =
δ

π

∞∑
n=1

(
2(n− 1)γn + 2n

∞∑
m>n

γm

)
, γm = bm cosmθ0 − am sinmθ0 .

To simplify (A.15) we use the identity
∑∞

n=1

∑∞
m>n 2nγm =

∑∞
m=2 γm

∑m−1
n=1 2n =∑∞

n=1 n(n − 1)γn. This yields the final result (4.25) and completes the proof of
Principal Result 4.3.
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