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Abstract.We show that the asymptotics for the hitting time of 0 of the voter model started from a
single 1 can be obtained from the invariance principle for voter models and super-Brownian motion.

1. Introduction and Summary. The voter model (see Chapter IV of Liggett (1985)) is one
of the simplest interacting particle systems. It has been studied extensively since the 1970’s.
An invariance principle has recently been established (see Cox, Durrett and Perkins (2000) and
Bramson, Cox and LeGall (2001)) which shows that appropriately rescaled voter models converge
weakly to super-Brownian motion. Our purpose here is to use this invariance principle to give a
new proof of a fundamental result of Bramson and Griffeath (1980) on the asymptotic behavior of
the voter model started from a single 1.

We begin by describing the voter model. Let & denote the rate-1 voter model on Z? with
voting kernel p(z,y) satisfying

p(z,y) = p(0,y — z) is irreducible and symmetric, with p(0,0) = 0,
(1.1) and for some 0 < 02 < oo, Z p(0,z)z'z? = 6(i, )0
x€Z9
(6(i,7) =1 for i = j, and 6(4,j) = 0 otherwise). We think of &;(z) as the opinion, either 0 or 1, of

a voter at site z at time ¢, where the dynamics of & are given by: independently, at each site z,

0 — 1 at rate Zp(xay)l{&(y)ﬂ}’
Y

10 at rate Y p(x,9)1(e,)=0}-
Y

We identify & with the set {z : &(z) = 1}, and let & denote the voter model starting from 1’s

exactly on A, ¢ = A. We write ¢F for 5;{93}, and make use of the usual additive construction of
the voter model (see Section III.6 of Liggett (1985)),

g=U¢&
Tz€EA
It is easy to see that [£)| = >°_€2(z) is a martingale, and that |¢7| hits 0 eventually with
probability one. Letting p; = P(|£)| > 0), it follows that p; — 0 as ¢ — oco. Determination of the
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rate at which p; — 0 is not simple, since the rate at which |£?| changes depends on the spatial
configuration of the set £). In the one-dimensional nearest neighbor case, £ is always an interval,
and it is straightforward to determine the asymptotic behavior of p;. In higher dimensions, even
in the nearest neighbor case, the situation is is far more complicated. Nevertheless, Bramson and
Griffeath (1980) were able to obtain precise asymptotics.

To state their results, define (for ¢ > 0)

_Jt/logt ind=2,
(12) = {t ind >3,

let 7o = 2702, and for d > 3, let 4 be the probability that a random walk with jump kernel p(z,y)
starting at the origin never returns to the origin. The notation f(t) ~ g(¢) as ¢ — oo means that

limy oo f(t)/g(t) = 1. Here is the Bramson and Griffeath result.

Theorem 1. Assume d > 2. Ast — oo,

(1.3) pr ~ 1/vamy
and
(1.4) P(pel&)| > u| )| >0)=e™™,  u>0.

(Although the proof given in Bramson and Griffeath (1980) was for the nearest-neighbor case
p(0,z) = (1/2d) for |z| = 1, as noted in Lemma 2 of Bramson, Cox and Le Gall (2001), it is easily
modified to cover kernels p(z,y) satisfying (1.1).)

The asymptotics in Theorem 1 have proved to be important tools in the study of the voter
model and its variants. There were two key ingredients in Bramson and Griffeath’s proof. The first
was their derivation of the upper bound

1
(1.5) pe = O(—) as t — oo.
my

The second was Theorem 1.1 of Sawyer (1979), which gave asymptotics for the “patch of the
origin” for a general stepping stone model. The proof of Sawyer’s remarkable theorem proceded
via the method of moments, using intricate calculations of transforms of coalescing random walk
probabilites. It gave little insight into the theorem’s conclusions. By combining the upper bound
(1.5) and Sawyer’s theorem, Bramson and Griffeath obtained (1.3) and (1.4).

Our purpose here is to give a new proof of these asymptotics which we feel is more probabilistic
in nature and gives greater insight into why they hold. We make use of the upper bound (1.5), but
avoid the use of Sawyer’s result. Instead, we show that these asymptotics follow from an invariance
principle showing that rescaled voter models converge to super-Brownian motion.

We begin by defining rescaled voter models &Y, which are rate-N voter models on Sy =
Z?/v/N with voting kernels py(z,y) = p(zv/N,yV/N) for z,y € Sn. We assume throughout that
|EV] < oo. Let XN denote the associated measure-valued processes

1
XN =— Os,
my N
z€E,



where §, is the unit point mass as z.

Now let X; denote super-Brownian motion with branching rate v = 2,4 and diffusion coefficient
o2, taking values in Mp(RY), the space of finite measures on R%. X; is obtained as the limit of
rescaled critical branching random walks or Brownian motions, and can be defined via the following
martingale problem (see Perkins (2002)): For all ¢ € C§°(R9),

M(9) = Xu9) — Xolo) — | X, (72%) as

is a continuous L? martingale with My(4) = 0 and square function

(M(¢)) = /0 X, (b¢?) ds.

(For a measure p on R, u(¢) = [ ¢(z)u(dz).)
We will make use of the explicit formulas

(16) P(X,(1) > 0) = 1 - exp(~2Xo(1)/70)
and
1) Bexp(~0X,(1) = exp(- 51 0)),

where 1 is the function identically 1 on R%. These formulas are not difficult to derive, since the
total mass process, X;(1), is a Feller diffusion (see (I1.5.11) and (I1.5.12) of Perkins (2002)).

Here is the invariance principle, Theorem 1.2 of Cox, Durrett and Perkins (2000). The symbol
= denotes weak convergence, and D(R4, Mp(R?)) is the Skorohod space of cadlag Mp(R?)-
valued paths.

Theorem 2. Assume d > 2, and X' — Xo € Mp(R?) as N — oo. Then XY = X, in
D(R4, MF(R7)).

Let us consider the case d > 3 and see why Theorem 2 and the formulas (1.6) and (1.7) suggest
that (1.3) and (1.4) should hold. Let £ denote law, and let ~ denote “approximate equality.” Let
&N = {0}. Then L(|&?]) = E(|§é\/’N|), and in view of Theorem 2, we expect that L(|£]]|) ~

L(NX(1)) for large N, where Xo(1) = |¢lY|/N = 1/N. Setting ¢t = 1 and using (1.6), it follows
that
py = P(|€x] > 0) = P(NX1(1) > 0) = 1 —exp(—1/Nva) ~ 1/Nyq

as N — oo. This is (1.3). Similarly, for § > 0, we have
E (1 . e—epN|§(1)v| | |£?V‘ > 0) :p]_le (1 . e—9pN|5(1)v|)
~ p]—le (1 _ e—HpNNXl(l))

Opn

-1
= 1l —exp(———)),

where we have used (1.7) and the fact that X,(1) = 1/N. It is easy to see, since py ~ 1/N~4 as
N — o0, that the last expression converges to 6/(1 + ), which implies (1.4).

3



In order to make these arguments rigorous, we make use of the upper bound (1.5) and ideas
from Bramson, Cox and LeGall (2001). We also require a corollary to Theorem 2, which says
that the hitting times of 0 for X}¥ converge weakly to the hitting time of 0 for X;. With these
ingredients, we give a proof of Theorem 1 which avoids the use of Sawyer’s theorem.

We close the introduction by stating our hitting time result. For a > 0 let 7V and 7, be the
hitting times

N =inf{t >0: X (1) <a} and 7, =inf{t >0:X,(1) < a}.

Corollary 3. Assume that d > 2, and XY — X, € Mp(R?). Then

Xo(1)

V4

(1.8) Nlim P(ry¥ >t) = P(1o >t) =1 — exp(— )s t>0.
—0o0

The reason that Corollary 3 does not follow immediately from Theorem 2 is that there is no “soft”
way to ensure that once X} (1) reaches a level a > 0 very close to 0, it doesn’t linger there rather
than reaching 0 fairly quickly. We use (1.5) to take care of this problem.

2. Proofs. We first prove Corollary 3, then Theorem 1.

Proof of Corollary 3. The second equality is immediate from (1.6), so we only need prove the
first equality. For ¢ > 0 define

IN =inf{XN(1):0<s<t}, L =inf{X,(1):0<s<t}.

It follows from Theorem 2 that XY (1) = X,(1) as N — oo, and since the infimum over a path is a
continuous function on the space of continuous paths, we also have, for fixed ¢ > 0, IV = I;. More
specifically, as X,(1) is continuous, this follows from Theorem 3.10.2 of Ethier and Kurtz (1986).
For any a > 0, {IN > a} = {7} >t} and {I; > a} = {7, > t}. Consequently,

(2.1) liminf P(rg" > t) > P(7y > t).

N—oo
By (1.5) there is a constant C such that p; < C/m;. Consequently, for any initial state &J,
(2.2) P& > 0) < Cl&g|/mne.

This is because, by additivity,

PEN>0=P( | &°1>0 < Y P > 0) < ClEY | /mae.
zegl €LY

Now choose s,a such that s < ¢ and 0 < a < X((1). Then, making use of (2.2) and the Markov
property, for N large enough so that X}¥(1) > a, we have

P(rd > t) N> )+ P(rN <5, 7 > 1)

a >8)
s) +sup{P(I&Y | > 0): || < amy}

)

)
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We now take a to be a continuity point for the distribution function of I, so that P(IN > a) —
P(I, > a) as N — oo. Since P(I; > a) = P(1, > s) < P(19 > s), using the definition of m; we
therefore have

limsup P’ >t) < P(rg > s) + Ca/(t — s).

N—o0
We may now let s 7 ¢ and a | 0 such that a/(t — s) — 0, to obtain (recall from (1.6) that 7o has a
continuous distribution function)

(2.3) limsup P(1d’ >t) < P(1p > t).
N—>oo
Together, (2.1) and (2.3) imply (1.8). |

Proof of Theorem 1. For € > 0, let By . be the box in Sy centered at the origin of side length

(emn)Y/4/N'/2 so that |By | ~ emy as N — oo. Let dV’BN’E denote the rate-N voter model with
{év Brve — B N,e, With corresponding measure-valued process XtN ¢, and let ftN ¥ denote the process
with initial state fév * = {z}. Let X{ denote super-Brownian motion with Xy = edy, branching

rate y = 274, and diffusion coefficient o2. Since X' — Xy, by Corollary 3 it follows that

(2.4) Jim P(|EN BN > 0) = P(X: > 0) =1 — e/t
—00
Since N,B N, N,0
Ple, "> 0) < Y P& > 0) = [Bw,|P(1&"] > 0),
SCGBN’E
it follows that St
1— e €/

liminfmy PN > 0) > — %

N—oo 3
Letting ¢ — 0, we obtain
(2.5) lim infmy P(|EN0] > 0) > 1/74t.

—00

For a bound in the other direction, we appeal to additivity and inclusion-exclusion,

P(EY e >0 > Y0 PET >0 - Y PEYT > 0,167 > 0).

r€EB c#y
G N,e z,yEBN,e

By a correlation inequality, Lemma 1 of Arratia (1981), for x # v,
(26) Pl > 0,16 > 0) < P(I&""| > 0)P(1&| > 0) = P(&"°| > 0)*.
It therefore follows that

P(l&,"""% > 0) > | By | (&7 > 0) — | Bw..*P(I&""| > 0)*.
Rearranging this inequality and using the bound p; < C/m, we obtain
o2

2
MmN

B, | P(IE7°] > 0) < P(1&,"P¥| > 0) + |By..|?



Since |Bn | ~ emy and my/my: — 1/t as N — oo, (2.4) implies that
1 — e—¢&/vat
limsupmy P(|€)7°] > 0) < ef + C%¢ /12

N—o00

Letting ¢ — 0 now gives

(2.7) limsupmyP(|€°| > 0) < 1/74t.

N—o0

Together, (2.5) and (2.7) imply myP(|&)°] > 0) — 1/74t as N — oo. Setting ¢ = 1 we obtain
(1.3).
To prove (1.4), we fix > 0 and set ¥(u) = 1 — e~ u > 0. We will use several times without
comment the simple fact that 1(0) = 0. By Theorem 2,
Jim Ey(X[4(1)) = Byp(X; (1).
—00

In view of (1.7), this shows that

(2.8) lim Ew(w) — 1 —exp(——25 )
’ N—o0 my N P 14 G'ydt )
We will show that
[ |£” el
(2.9) ( ) Ep(2t—) + O(£%/%) as N — oo.
y (2.8) and the fact that ptN|BN75\ — 6/’)/dt as N — oo, (2.9) implies
Oc
1—exp(———)
lim sup |E(1( |£ | |£ > 0) — yqt 1+ 0yt | _ O(e/t).
N—o0 €
Letting £ — 0 gives
: \5 _Oyat
lim F
Nhoo (i ‘ ‘5 | >0) = 1+ Oyt

That is, conditional on [£}°] > 0, \{t ’ |/mN = 7v4t€(1), where £(1) denotes an exponential
random variable with mean 1. Since pyymy — 1/v4t, this implies that, conditional on |£iv 0
pen €% = (1) as N — oo. This proves (1.4).

To prove (2.9), we introduce the set SN = {z € By, : |&°

NoBxe - Clearly,

of surviving families in

N,e N,e N,
(2.10) oty = mud sy = 1 + B s > o)

mnp Mn

We use the correlation inequality (2.6) to handle the the second term on the right side of (2.10).
By additivity and the fact that 4 (0) =

N,e
Bt lysy 2 < PO (g > 006" > 0p
wvywe;}éayN,s
< D P(ETT > 0,167 > 0)
zFy
w,yEBN’E

< |Bw,:?P(l&"°] > 0)%.
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Since the definition of By . and (1.5) imply that
(2.11), |Bnelptnv = O(e/t) as N — oo

we have shown that

N,e
(2.12) B 'f; VSN >2) = 0(2/2)  as N — oo.
N

Consider now the first term on the right side of (2.10). The event {|¢}*| > 0} is the disjoint

union {SY = {z}} U {|e)” ,|SN| > 1}, and
P& > 0,151 > 1) < Y P& 2> 0)
YA
(2.13) < |By.e|P(&"" > 0)%,
where we have again used the inequality (2.6). Consequently,
[k N
B |5 = 1)
= Y B sy =
T€EBN,e
(2.14) _ & [
—Z[(( )\5 1> 0) = By~ )If )]
TEBN,
|5tN’°| >
BE()( i )) + O((|Bye|pne)”)

= By @) + o)

as N — oo, where (2.13) is used in the next to last equality and (2.11) is used in the last equality.
Plugging (2.12) and (2.14) into (2.10) yields (2.9), and we are done. O

REFERENCES

Arratia, R. (1981) Limiting point processes for rescaling of coalescing and annihilating random
walks on Z%. Ann. Probab. 9, 909-936.

Bramson, M., Cox, J.T., Le Gall, J.-F. (2001). Super-Brownian limits of voter model clusters. Ann.
Probab. 29, 1001-1032.

Bramson, M. and Griffeath, D. (1980) Asymptotics for Interacting Particle systems on Z9. Z.
Wahrsch verw. Gebiete, 53, 183-196.

Cox, J.T., Durrett, R. and Perkins, E.A. (2000). Rescaled voter models converge to super-Brownian
motion. Ann. Probab. 28, 185-234.



Ethier, S.N., and Kurtz, T.G. (1986). Markov Processs: Characterization and Convergence, Wiley,
New York.

Liggett, T.M. (1985) Interacting Particle Systems. Springer, New York.

Perkins, E.A. (2002). Dawson-Watanabe superprocesses and measure-valued diffusions. To appear,
Lectures on Probability Theory and Statistics; Ecole d’Et des Probabilits de St. Flour XXIX-
1999, LNM 1781, Springer.

Sawyer, S. (1979) A limit theorem for patch sizes in a selectively-neutral migration model. J. Appl.
Probability 16, 482-495.



