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S.1. Proof of Proposition 5.1 . For |z;| > g¢,i = 1,2, and ¢ € (0, &y),
if |27 — xa| < 5e, then use ze™* < e~ !, Vo > 0 to get

X o1 (1)

2 X(1) X, (1) %o (1
([T o (7 50)) <t (P o (27E0)),
=1

Recall the definition of F' = F ;, in (4.17). For all A > 0, an integration by
parts gives

X (1 X (1 o0
Es, ()\G;Z() exp(—)\G;Q())> :/0 \ze M dF (x)
00 e B (9] g Y 00 Y
:/0 Az = 1)e F(x)da:—/o (y— e F()\)dygF(2)+/2/\ ye VP (L)dy

o
<egg2P2eP2 4 / ye_y04.9(%)p_26p_2dy = C(eo, )\)ep_z,
2\

the last line by Proposition 4.9. Therefore

2 Xgui(l Xgei(1
E(SO(H)\G;() exp (— /\Ge())) < e 'C(e0, N)eP 2
i=1

2

< e 157720 (g0, N) |1 — @o|? PP,
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2 HONG, MYTNIK, AND PERKINS

provided |z1 — 2| < 5e. As a result,

throughout the rest of this Section we may fix ¢y > 0, |z;| > g9 and
e € (0,e0) with |21 —z5| > 5e. In this case, we have B(x1,2¢)NB(z2,2¢) = 0.

Let & = (z1,22), G = G NG%, and X = (A1, A2) € [0,00)2\{(0,0)}. For

Xo € Mp(R?) such that d(Supp(Xo), G¢) > 0, the decomposition (2.4) with
G=G%,i1=1,2, gives

(S.1) EXO(eXp (- 22: AXGZ,(D)) — exp ( - /Ux’f’s(x)Xo(d:n)),

- g
=1

where UX7”‘7"E > 0 is defined as
(S.2) UNEE () = Nx(l —exp (— Z Ni—5—

We use results from Chapter V of [17] to get the following lemma.
LEMMA S.1.1. UM< js g 2 function on G and solves

(S.3) AUNEE = (UA9)2 on G

Moreover, )
UM (2) < (A1 + Xo)e ™2, Va e G.

PROOF. Let

Then use 1 — e ™ < x to get

(S.4) u(x <N<Z)\ ) Z/\e (T < 00) < (A1 + Ag)e 2,

the equality by Proposition V.3 of [17], where (B;) is d-dimensional Brown-
ian motion starting from = under P, and 7, = inf{t > 0: B; ¢ GZi}.
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SUPPLEMENTARY MATERIAL 3

Next, for any 2’ € G, let D be an open ball that contains 2/, whose closure
is in G. Use (S.1) with Xy = ¢, and then Proposition 2.3(b)(i) to see that
forx € D,

X i (1)

o0 =5, (o (- A E)) < o, (o (- 300 )

i=1 i=1

=Es, <exp ( — /u(a:)XD(dx))> = exp ( — NI,(I — exp ( - /u(y)XD(dy)))>,

the third equality by (S.1) with Xy = Xp, and the last by the decomposition
(2.4). Therefore

u(z) =Ny (1 —exp ( — /u(y)XD(dy))) Vx € D.

Note u is bounded in G by (S.4), and hence on 9D. Use Theorem V.6 of
[17] to conclude

Au(z) = (u(x))?, Yz € D, and, in particular, for 2 = 2’.
Since 2’ is arbitrary, it holds for all x € G. [ |
Let Xo =0, in (S.1) for x € G to get

-

(S.5) (exp Z)\ Gz )—exp(—U)"f’E(x)).

Monotone convergence and the convexity of e™®* for a,z > 0 allow us to
differentiate the left-hand side of (S.5) with respect to A; > 0 through the

expectation and so conclude that for i = 1,2, UiA e (x) = 8‘2\ UrE “(z) exists
and

Xeei(1) 2 Xgei(1) St R
Es, (% exp (—Z i G; )) =eV (I)Ui)"x’s(x) for \; > 0,\3_; > 0.

i=1
Repeat the above to see that Ux’f’s(m) is C? in Ai,A2 > 0 and if
U2 () = gy UM< (), then

XG»"Cl( ) XGiUz 2 XGZz )

(S.6) Es, ( 5 Z A

= U@ [Uf“(st“’f(x) - Uﬁ’;%)} for i, Az >0

The next monotonicity result follows just as in the proof of Lemma 9.2
of [20].
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4 HONG, MYTNIK, AND PERKINS

> 0 is strictly decreasing in X € {(A\1,A2) : Ai > 0,A3—; > 0},
,2.
) > 0 is strictly decreasing in X € (0, 00)2.
Note that
(S.7)  UM(z) = UM (x —x;), for \; > 0 and \g_; = 0.

The above monotonicity results easily give the following, just as for Lemma 9.3
of [20].

LEMMA S.1.3. (a) For all \; > 12 and A\3—; > 0,

- 2 _ _
Ui)\’x’E(ZE) < X(U)\ie 2,6($i _ x) _ U(Ai/Q)e 2,€(xi _ :E))
2 2p
< ——= _DYN/2(2)eP2 V|ay — x| > 2.
)\z’ ‘l‘z — x\p
(b) For all A1, A\ > 12,
_Uﬁ’f’g(x) = A1 A2 z‘ril}g(U)\iE_Q’e(xi —a) — UMD (g )
4
< - 27([DM2(@2)ay — 2| TP A (DY (2)]wn — 2| PP,
A1 A2
Ve, — x| > 2, i =1,2.
Let r. = 2¢ and assume 0 < 7. < min{|z; — x| : ¢ = 1,2}. Set

TP =inf{t > 0: [By— | < re} and T, = T2 ATZ, and let (F) de-
note the right-continuous filtration generated by the Brownian motion B,

which starts at x under P,.

LEMMA S.1.4. Let Ay, Ao > 12.

(a) UM (BUNT,))— [T UM (B(s)) U™ (B(s))ds is an (F;)-martingale.
(b) For anyt >0,

-

L L INTh,
U (@) = B (UPP (BUEAT,, ) exp (— /O UATE(B(s))ds) ).

This result follows from Lemmas S.1.1, S.1.3 and It6’s Lemma, exactly
as for Lemma 9.4 in [20], and so the proof is omitted.
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SUPPLEMENTARY MATERIAL 5

LEMMA S.1.5.  For all Ay, Ao > 12,

_Uﬁfva(x) 5 ( /OTTE ﬁ Uix,f,a(B(t)) exp (— /t UX,f,E(B(S))ds) dt)
i=1

0
TTe P Y =
+ Ex<exp (- /0 UM (B(s))ds) (T, < oo)(—Ul):gc’E(B(TrE))>.

This follows from Lemmas S.1.3 and S.1.4, as in the proof of Lemma 9.5
of [20].

PROOF OF PROPOSITION 5.1. Recall r. = 2¢. For the case € € [£(/2, £¢),

(p—2)

the result follows immediately by letting c51 > 6_222(17_2)66 2 and by

using ze™* < e~!, for > 0, so we assume
(S.8) re = 2¢ < £g.

Recall that T} = inf{t > 0 : |B; — ;| < r.} and T, = T;. A T?2. Since
lz;| > €0, we have T,. > 0, Py-a.s.. We set X = (A\,\), & = (x1,22), and
A = |z1 — x2|, where the constant A > 0 will be chosen large below.

Apply (S.6) and Lemma S.1.3(a) to see that for A > 12,

Xgo (1) Xgra (1) 2\ X (1)
Es (AQ e eXP(—AZGgiz))
=1

-

_yXide(y X Z,e \i,e T
= N @ [N 0)U3F4(0) - U257 (0)]

< 2(DV2(2)) o | Plaa] P20 — NN (0)
(.9) < ey W20 4 \2(—UNF(0)).
To bound the last term, use Lemma S.1.5 to get

(S:10) N (-UR5(0)
T 2 t .
—_\2 )\,1’,8 ex _ )\7£,€ s S
) EO(/O [0 e /OU (B(s)ds)dr)

TTE NN N =
o2 (e (= [ URE(B(6)s) LT, < o) (<UL (BT.)))
0
=K + Ks.

We first consider Ky. On {7,. < oo} we may set z.(w) = B(T,.) and
choose i(w) so that |z;—xz:| > A/2. By the definition of T}._, |x; — x| > 7. = 2¢,
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6 HONG, MYTNIK, AND PERKINS
and so |z; — x| > (A Vr.). Lemma S.1.3(b) and the above imply

X(-UNE*(B(T,.))) < 4-22(DY2(2)(AV 1) P2)er=2 < (A V 1) Per =2,
This shows that
(S.11)

2 Tt
Ky < (A V1) PeP2 Z EO(I(TTZE < oo)exp (— /
i=1 0

Te N

U)"f’E(B(s))ds)) .

Use (S.7) and Corollary 4.7(a) with |B(s) — ;| > 7. = 2¢ and R = 2 to see
that

UNE(B(s)) > U 9(B(s) — 2;) 2U™*(B(s) — @;) — 2| B(s) — ;| "D (2)eP 2
(S.12) >V>®(B(s) — ;) — 2P| B(s) — x5 P D*(2)eP 2,

where the last follows by using (4.1) and scaling to see that
U®e(z) = e 2U(z/e) > e72V>®(z/e) = V>°(z) for all |z|/e > 1. Let
Tr. = inf{t : |B;| < r.} and let p,v be as in (4.9). Use the above in (S.11)
and then use Brownian scaling to see that for ¢ = 1, 2,

(S.13)

TZ

E0<1(Tf€ < 00) exp ( - / b UX”E"':(B(s))ds»

0
TV‘s 4 )‘ €p72 7—7‘5 —
<E_g, (1(7'7«5 < 00) exp (/0 72 ?BEQV ds> exp —/0 2’(5(5)’6? ds))

T ZPD)‘(2)£p_2rg_p

(
<E_../r. <1(T1 < 00) exp (/0 BG)P ds) exp < — /OT1 2’(;(;)"? ds))
=50 (e (/071 4D;’s’(2)d5> < o0) (il /o),

where we have used Lemma 4.5 in the last line, and recalled that p = v + p.
Choose A > 12 large such that

2y =2-4D*2) < 2(4 — d) < V7,

and then apply Lemma 4.4 to conclude that (S.13) is bounded by
caa(p,v)(|2il/re) P < caalp,v)eg"rL.
So (S.11) becomes
Ky <c(AvV ) PP 22¢4 4(p, v)eg'rt SC(EO)AQ_pEP_er:’_Q

(S.14) =2P"2¢(g9) A2 PP,
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SUPPLEMENTARY MATERIAL 7

In view of (S.9), (S.10) and (S.14), it remains to prove
(S.15) K1 < C(gg)A¥Pe2(r=2),
Apply Lemma S.1.3(a) to K; defined in (S.10) to get

1
Kl §A2F<2p+151)72D}\/2(2))2

(S.16) X EO(/OTTE ﬁ 1B, — 2| P exp ( _ /Ot UX,f,a(B(s))ds)dt).
=1

Let A; = x3—; — x;, so that |A;] = A. Let T;;i = inf{t : |By| < reor
|B; — Ai| <rc}. Apply (S.12) to see that (S.16) becomes

/

2 Trgi
Ky <0 S B ([ IBIIB — AT <15, - A
i=1 0

(S.17) X exp </0t %ds) exp ( - /Ot mds) dt).
On {|B;| < |B: — A;|}, we have

A=A < |By — Aj| + |B| <2|By — Ay,
and hence

1 —
1B, — Ai| P < (§A v |Bt|) " <o (AP A B, P).

..
Use T, < Tr. and Brownian scaling to see that

2
Ky < c?P7? Z E—x(/o
=1
b 2p DA(2)eP2 £2(4 —d)
X exp (/0 st) exXp ( — /O 7’B(5)’2 dS) dt)
2 1
<3 B / r272| By P(IBy| P A (Afre) )
i=1 0

t 9p DA €p727a§—p t _
X exp (/0 2'D ](;)(S)V’ ds) exp ( _/0 2’(;1@)’6? ds)dt)

2 0
=3 [ B (1 < MIBEATBEATIT A B )

tAT A tATY _
(S.18) X exp (/0 Tg(s(ﬁz ds) exp ( - /0 mds>)dt.
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8 HONG, MYTNIK, AND PERKINS

Now let 6 = 4D*(2), u, v be as in (4.9), and use Lemma A.1 to get
(S.19)

Ky <ecs 22/ (il /re)?™ “EI:EQT/QTV)< (t<7)ptAT)?
tAT1
X (p(t A1) P A(A)re) P)exp (/ 5,0;pds)p(t A 71)_”+“>dt
0

T t
R i 2 Z |3'57,|V /J,E|x2j|“/2rl;) (/0 pt—P—V+#(p;P N (A/T‘E)_p) exp (/0 5ps_pds)dt> .

We interrupt the proof of the proposition for another auxiliary result from
[20].

LEMMA S.1.6.  There is some universal constant cg1.¢ > 0 such that for
any r >0 with r < (|z;] ANA) and 0 < 6 < (p — 2)(2 — u), we have

T1

242

E|($i/:)(/0 i PV (p, P A (A)7)P) exp / 5pspd5)dt>
SCS.l.ﬁr 24 2p+v— ,u’ Z| 21/A2 p'

PRrOOF. This is included in the proof of Proposition 6.1 of [20] with
r = ry. In particular, the above expectation appears in (9.23) of [20] and
is bounded by eJ; in (9.27) of that paper. Following the inequalities in
that work, noting we only need consider Case 1 or Case 3 (the latter with
r < |z;] < A) at the end of the proof, we arrive at the above bound. [ |

Returning now to the proof of Proposition 5.1. Pick A > 12 large such
that 6 < (p — 2)(2 — u). Note we assumed |z;| > €9 > r. by (S.8) and

= |z1 — 2| > 5e > 7 at the very beginning of this section. So use Lemma
S.1.6 applied with r = r. to see that

2
K SC&“MHI*Q Z ‘wi‘u7u65.1.6r672+2p+1/7u‘xi‘fQVAQ—p
=1
2
(S.20) =Ce™ AP "ay| .

i=1
Use |z;| > &g to conclude
K, < 2C€apA2*p52p*4.
This gives (S.15), and so the proof is complete. |
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SUPPLEMENTARY MATERIAL 9

S.2. Proof of Lemma 7.3. We work under @, where |z9| > 2r0.
Recall the definitions of & and &g from Section 2. For 0 < r < rg, introduce

t
AT = /0 1(Gu < Sary, (W) s

so that G
nei=mns " =inf{t: A} > s}.

LEMMA S.2.1.  (a) Qg,-a.s. for allt > 0 we have
t
Al = / 1( glgf Wy (v)| >ro—7r)du Vrel0,r),
0 v=Cu
and
r— Aj is left-continuous on [0,19).
(b) lim,sq, 0 =7 for allr € (0,70), s >0 Qup-a.s.
(c) If T is an (&F)-stopping time, then W,r is &} -measurable.

PROOF. The proof is a straightforward modification of that of Lemma 7.4

in [20], where shrinking half spaces have now been replaced with shrinking
balls. |

Proof of Lemma 7.3. By (7.23) (with a different radii) and Lemma 2.1(a)
there are Borel maps ¥ on K and 9 on C'(Ry, W) such that

1p,, = $(R) = lm G({IW(s) : 5 < N}) = w(W),

where we have used (2.2) in the second equality. In the last equality we have
also called on the continuity of W — {W(s) : s < N} from C([0, 00), W) to
KC. Therefore a monotone class argument shows it suffices to fix s > 0 and
show that if ¢ : YW — R is bounded Borel then

(S.21) d(Wy) is 5;0_ — measurable.

Lemma S.2.1(b) implies that WnTO = limy oo W r _; Qu,-as. and so by
s ns

Lemma S.2.1(c) and (7.20), WnTO is 57‘%_—measurable. So to prove (S.21) it
suffices to show ‘
Ws = WnTo Qo — a.5..

This, in turn, would follow from AtTO =tforallt > 0 @Q,,-a.s., or equivalently
by Lemma S.2.1(a),

(S5.22) / 1( 1£1gf [Wu(v)] <19 —Tp)du=0 Qg —as..
0 v<Cu
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10 HONG, MYTNIK, AND PERKINS

Here we have truncated the integral at o since ¢, = 0 and |W,(0)| = |xo| >
2rg foru > 0. If 0 < u < (s and s’ < s is the last time before s that (¢ = u,
then inf,cy g (¢ = (¢ = u and so (e.g., see p. 66 of [17]) Wy(u) = W(s')
Q@,-a.s. This and Lemma 7.1 (recall also (7.1)) imply

(523)  inf iggf Wo(v)| =Ty =inf{|z| :z € R} =19 — Ty Quy — a8
Therefore (S.22) is equivalent to

(S.24) /1(1gcf Wo ()| =Tp)du=0 Qu — a.s
0 USCu

The historical process, (Hg,t > 0) is an inhomogeneous Markov process
under N, taking values in Mp(C(R,,R%))-see [4] or p. 64 of [17] to see
how it is easily defined from the snake W. The latter readily implies

(S.25) / Hy(¢)dt = / ¢(W,,) du for all non-negative Borel ¢,

where we have extended W, to R4 in the obvious manner. Recalling (7.1)
and letting X be the SBM under N, as usual, we have

(S.26)
Nuy (/0 1 inf [Wa(0)] = To)du)

V<Cu

<N ([ [ 16wt el = ToHian)ar) - by (8:25)
(8.27) < /OOONIO (/1(/000 Xol{o s lal < inf [y(¢)[})ds = 0) Hi(dy) ),

where in the last line we use (S.23) and y(-) = y(-At) Hy—a.a.y Vt > 0 Ng,-
a.e. Below we will let B denote a d-dimensional Brownian motion starting
at xo under P2, m; = infy <, |By| = |By,| (for some 7y < t), and L” be the
local time of the SBM X (at time infinity). Fix ¢ > 0 and use the Palm
measure formula for H; (e.g. Proposition 4.1.5 of [4]) to see that (cf. (7.22)

in [20])

Nm/ / Xolf s lal < Jnf [y(0)] s = 0) Fi(ay))

Syoac // / Xu({x: ol < mi})ds > 0)dNp,du)

(S28) < EP (exp(— /O Np, (LB > 0)du>).
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SUPPLEMENTARY MATERIAL 11

It follows from (1.13), (1.14) and Ps (LY = 0) = exp(—Ngz(LY > 0)) (see,

e.g.

, (2.12) in [20]) that

N, (LY > 0) = 2(4 — d)|z — y| ™%

Use this to bound (S.28) by

£ (e~ [ ).

A simple application of Lévy’s modulus for B shows the above integral is
infinite a.s. and so proves that (S.26) equals zero. This implies (S.24), as
required.
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