SUPPLEMENT TO "ON THE TOPOLOGICAL BOUNDARY OF THE RANGE OF SUPER-BROWNIAN MOTION"

By Jieliang Hong*,§ Leonid Mytnik^{†,¶} and Edwin Perkins^{‡,∥} University of British Columbia[§] and The Technion[¶] and University of British Columbia[∥]

This is the supplementary material to the paper [13]. It contains the proof of Proposition 5.1 and gives more details of the proof of Lemma 7.3 from [13].

CONTENTS

- S.1 Proof of Proposition 5.1
 1

 S.2 Proof of Lemma 7.3
 9

 References
 11
- **S.1. Proof of Proposition 5.1.** For $|x_i| \ge \varepsilon_0, i = 1, 2$, and $\varepsilon \in (0, \varepsilon_0)$, if $|x_1 x_2| \le 5\varepsilon$, then use $xe^{-x} \le e^{-1}, \forall x \ge 0$ to get

$$\mathbb{E}_{\delta_0} \Big(\prod_{i=1}^2 \lambda \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \exp \Big(- \lambda \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \Big) \Big) \le e^{-1} \mathbb{E}_{\delta_0} \Big(\lambda \frac{X_{G_{\varepsilon}^{x_1}}(1)}{\varepsilon^2} \exp \Big(- \lambda \frac{X_{G_{\varepsilon}^{x_1}}(1)}{\varepsilon^2} \Big) \Big).$$

Recall the definition of $F = F_{\varepsilon,x_1}$ in (4.17). For all $\lambda > 0$, an integration by parts gives

$$\mathbb{E}_{\delta_0} \left(\lambda \frac{X_{G_{\varepsilon}^{x_1}}(1)}{\varepsilon^2} \exp\left(-\lambda \frac{X_{G_{\varepsilon}^{x_1}}(1)}{\varepsilon^2} \right) \right) = \int_0^{\infty} \lambda x e^{-\lambda x} dF(x)$$

$$= \int_0^{\infty} \lambda (\lambda x - 1) e^{-\lambda x} F(x) dx = \int_0^{\infty} (y - 1) e^{-y} F(\frac{y}{\lambda}) dy \le F(2) + \int_{2\lambda}^{\infty} y e^{-y} F(\frac{y}{\lambda}) dy$$

$$\leq c_{4.9} 2^{p-2} \varepsilon^{p-2} + \int_{2\lambda}^{\infty} y e^{-y} c_{4.9} (\frac{y}{\lambda})^{p-2} \varepsilon^{p-2} dy = C(\varepsilon_0, \lambda) \varepsilon^{p-2},$$

the last line by Proposition 4.9. Therefore

$$\mathbb{E}_{\delta_0} \Big(\prod_{i=1}^2 \lambda \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \exp \Big(- \lambda \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \Big) \Big) \le e^{-1} C(\varepsilon_0, \lambda) \varepsilon^{p-2}$$

$$\le e^{-1} 5^{p-2} C(\varepsilon_0, \lambda) |x_1 - x_2|^{2-p} \varepsilon^{2(p-2)},$$

^{*}Supported by an NSERC Discovery Grant.

[†]Supported by the Israel Science Foundation grants 1325/14 and 1704/18.

[‡]Supported by an NSERC Discovery Grant.

provided $|x_1 - x_2| \leq 5\varepsilon$. As a result,

throughout the rest of this Section we may fix $\varepsilon_0 > 0$, $|x_i| \ge \varepsilon_0$ and $\varepsilon \in (0, \varepsilon_0)$ with $|x_1 - x_2| > 5\varepsilon$. In this case, we have $B(x_1, 2\varepsilon) \cap B(x_2, 2\varepsilon) = \emptyset$.

Let $\vec{x} = (x_1, x_2)$, $G = G_{\varepsilon}^{x_1} \cap G_{\varepsilon}^{x_2}$, and $\vec{\lambda} = (\lambda_1, \lambda_2) \in [0, \infty)^2 \setminus \{(0, 0)\}$. For $X_0 \in M_F(\mathbb{R}^d)$ such that $d(\operatorname{Supp}(X_0), G^c) > 0$, the decomposition (2.4) with $G = G_{\varepsilon}^{x_i}$, i = 1, 2, gives

$$(S.1) \qquad \mathbb{E}_{X_0}\left(\exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2}\right)\right) = \exp\left(-\int U^{\vec{\lambda}, \vec{x}, \varepsilon}(x) X_0(dx)\right),$$

where $U^{\vec{\lambda},\vec{x},\varepsilon} > 0$ is defined as

(S.2)
$$U^{\vec{\lambda}, \vec{x}, \varepsilon}(x) \equiv \mathbb{N}_x \left(1 - \exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2}\right) \right), \quad \forall x \in G.$$

We use results from Chapter V of [17] to get the following lemma.

Lemma S.1.1. $U^{\vec{\lambda},\vec{x},\varepsilon}$ is a C^2 function on G and solves

(S.3)
$$\Delta U^{\vec{\lambda}, \vec{x}, \varepsilon} = (U^{\vec{\lambda}, \vec{x}, \varepsilon})^2 \text{ on } G.$$

Moreover,

$$U^{\vec{\lambda}, \vec{x}, \varepsilon}(x) \le (\lambda_1 + \lambda_2)\varepsilon^{-2}, \ \forall x \in G.$$

Proof. Let

$$u(x) \equiv U^{\vec{\lambda}, \vec{x}, \varepsilon}(x) = \mathbb{N}_x \Big(1 - \exp\Big(- \sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \Big) \Big).$$

Then use $1 - e^{-x} \le x$ to get

$$(S.4) u(x) \le \mathbb{N}_x \left(\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \right) = \sum_{i=1}^2 \lambda_i \varepsilon^{-2} P_x(\tau_i < \infty) \le (\lambda_1 + \lambda_2) \varepsilon^{-2},$$

the equality by Proposition V.3 of [17], where (B_t) is d-dimensional Brownian motion starting from x under P_x and $\tau_i = \inf\{t \geq 0 : B_t \notin G_{\varepsilon}^{x_i}\}$.

Next, for any $x' \in G$, let D be an open ball that contains x', whose closure is in G. Use (S.1) with $X_0 = \delta_x$ and then Proposition 2.3(b)(i) to see that for $x \in D$,

$$e^{-u(x)} = \mathbb{E}_{\delta_x} \left(\exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2}\right) \right) = \mathbb{E}_{\delta_x} \left(\mathbb{E}_{X_D} \left(\exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2}\right) \right) \right)$$
$$= \mathbb{E}_{\delta_x} \left(\exp\left(-\int u(x) X_D(dx)\right) \right) = \exp\left(-\mathbb{N}_x \left(1 - \exp\left(-\int u(y) X_D(dy)\right)\right) \right),$$

the third equality by (S.1) with $X_0 = X_D$, and the last by the decomposition (2.4). Therefore

$$u(x) = \mathbb{N}_x (1 - \exp(-\int u(y) X_D(dy))) \quad \forall x \in D.$$

Note u is bounded in G by (S.4), and hence on ∂D . Use Theorem V.6 of [17] to conclude

$$\Delta u(x) = (u(x))^2$$
, $\forall x \in D$, and, in particular, for $x = x'$.

Since x' is arbitrary, it holds for all $x \in G$.

Let $X_0 = \delta_x$ in (S.1) for $x \in G$ to get

(S.5)
$$\mathbb{E}_{\delta_x} \left(\exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2}\right) \right) = \exp(-U^{\vec{\lambda}, \vec{x}, \varepsilon}(x)).$$

Monotone convergence and the convexity of e^{-ax} for a,x>0 allow us to differentiate the left-hand side of (S.5) with respect to $\lambda_i>0$ through the expectation and so conclude that for i=1,2, $U_i^{\vec{\lambda},\vec{x},\varepsilon}(x)=\frac{\partial}{\partial \lambda_i}U^{\vec{\lambda},\vec{x},\varepsilon}(x)$ exists and

$$\mathbb{E}_{\delta_x} \left(\frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \exp\left(-\sum_{i=1}^2 \lambda_i \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \right) \right) = e^{-U^{\vec{\lambda}, \vec{x}, \varepsilon}(x)} U_i^{\vec{\lambda}, \vec{x}, \varepsilon}(x) \text{ for } \lambda_i > 0, \lambda_{3-i} \ge 0.$$

Repeat the above to see that $U^{\vec{\lambda},\vec{x},\varepsilon}(x)$ is C^2 in $\lambda_1,\lambda_2>0$ and if $U^{\vec{\lambda},\vec{x},\varepsilon}_{1,2}(x)=\frac{\partial^2}{\partial\lambda_1\partial\lambda_2}U^{\vec{\lambda},\vec{x},\varepsilon}(x)$, then

$$(S.6) \quad \mathbb{E}_{\delta_{x}}\left(\frac{X_{G_{\varepsilon}^{x_{1}}}(1)}{\varepsilon^{2}} \frac{X_{G_{\varepsilon}^{x_{2}}}(1)}{\varepsilon^{2}} \exp\left(-\sum_{i=1}^{2} \lambda_{i} \frac{X_{G_{\varepsilon}^{x_{i}}}(1)}{\varepsilon^{2}}\right)\right)$$

$$= e^{-U\vec{\lambda}, \vec{x}, \varepsilon(x)} \left[U_{1}^{\vec{\lambda}, \vec{x}, \varepsilon}(x) U_{2}^{\vec{\lambda}, \vec{x}, \varepsilon}(x) - U_{1, 2}^{\vec{\lambda}, \vec{x}, \varepsilon}(x)\right], \text{ for } \lambda_{1}, \lambda_{2} > 0.$$

The next monotonicity result follows just as in the proof of Lemma 9.2 of [20].

Lemma S.1.2.

- (a) $U_i^{\vec{\lambda},\vec{x},\varepsilon}(x) > 0$ is strictly decreasing in $\vec{\lambda} \in \{(\lambda_1,\lambda_2) : \lambda_i > 0, \lambda_{3-i} \geq 0\},$ for i = 1, 2.
- (b) $-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(x) > 0$ is strictly decreasing in $\vec{\lambda} \in (0,\infty)^2$.

Note that

(S.7)
$$U^{\vec{\lambda},\vec{x},\varepsilon}(x) = U^{\lambda_i \varepsilon^{-2},\varepsilon}(x-x_i)$$
, for $\lambda_i > 0$ and $\lambda_{3-i} = 0$.

The above monotonicity results easily give the following, just as for Lemma 9.3 of [20].

LEMMA S.1.3. (a) For all $\lambda_i > 12$ and $\lambda_{3-i} \geq 0$,

$$U_{i}^{\vec{\lambda}, \vec{x}, \varepsilon}(x) \leq \frac{2}{\lambda_{i}} (U^{\lambda_{i} \varepsilon^{-2}, \varepsilon}(x_{i} - x) - U^{(\lambda_{i}/2) \varepsilon^{-2}, \varepsilon}(x_{i} - x))$$
$$\leq \frac{2}{\lambda_{i}} \frac{2^{p}}{|x_{i} - x|^{p}} D^{\lambda_{i}/2}(2) \varepsilon^{p-2}, \ \forall |x_{i} - x| \geq 2\varepsilon.$$

(b) For all $\lambda_1, \lambda_2 > 12$

$$-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(x) \leq \frac{4}{\lambda_1 \lambda_2} \min_{i=1,2} (U^{\lambda_i \varepsilon^{-2},\varepsilon}(x_i - x) - U^{(\lambda_i/2)\varepsilon^{-2},\varepsilon}(x_i - x))$$

$$\leq \frac{4}{\lambda_1 \lambda_2} 2^p ([D^{\lambda_1/2}(2)|x_1 - x|^{-p}] \wedge [D^{\lambda_2/2}(2)|x_2 - x|^{-p}])\varepsilon^{p-2},$$

$$\forall |x_i - x| \geq 2\varepsilon, \ i = 1, 2.$$

Let $r_{\varepsilon}=2\varepsilon$ and assume $0< r_{\varepsilon}<\min\{|x_i-x|:i=1,2\}$. Set $T^i_{r_{\varepsilon}}=\inf\{t\geq 0:|B_t-x_i|\leq r_{\varepsilon}\}$ and $T_{r_{\varepsilon}}=T^1_{r_{\varepsilon}}\wedge T^2_{r_{\varepsilon}}$, and let (\mathcal{F}_t) denote the right-continuous filtration generated by the Brownian motion B, which starts at x under P_x .

LEMMA S.1.4. Let $\lambda_1, \lambda_2 > 12$.

- (a) $U_1^{\vec{\lambda},\vec{x},\varepsilon}(B(t\wedge T_{r_{\varepsilon}})) \int_0^{t\wedge T_{r_{\varepsilon}}} U^{\vec{\lambda},\vec{x},\varepsilon}(B(s))U_1^{\vec{\lambda},\vec{x},\varepsilon}(B(s))ds$ is an (\mathcal{F}_t) -martingale.
- (b) For any t > 0.

$$U_1^{\vec{\lambda}, \vec{x}, \varepsilon}(x) = E_x \Big(U_1^{\vec{\lambda}, \vec{x}, \varepsilon} (B(t \wedge T_{r_{\varepsilon}}) \exp \Big(- \int_0^{t \wedge T_{r_{\varepsilon}}} U^{\vec{\lambda}, \vec{x}, \varepsilon} (B(s)) ds \Big) \Big).$$

This result follows from Lemmas S.1.1, S.1.3 and Itô's Lemma, exactly as for Lemma 9.4 in [20], and so the proof is omitted.

LEMMA S.1.5. For all $\lambda_1, \lambda_2 > 12$,

$$-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(x) = E_x \Big(\int_0^{T_{r_{\varepsilon}}} \prod_{i=1}^2 U_i^{\vec{\lambda},\vec{x},\varepsilon}(B(t)) \exp\Big(- \int_0^t U^{\vec{\lambda},\vec{x},\varepsilon}(B(s)) ds \Big) dt \Big)$$

$$+ E_x \Big(\exp\Big(- \int_0^{T_{r_{\varepsilon}}} U^{\vec{\lambda},\vec{x},\varepsilon}(B(s)) ds \Big) 1(T_{r_{\varepsilon}} < \infty) (-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(B(T_{r_{\varepsilon}})) \Big).$$

This follows from Lemmas S.1.3 and S.1.4, as in the proof of Lemma 9.5 of [20].

PROOF OF PROPOSITION 5.1. Recall $r_{\varepsilon} = 2\varepsilon$. For the case $\varepsilon \in [\varepsilon_0/2, \varepsilon_0)$, the result follows immediately by letting $c_{5.1} \geq e^{-2}2^{2(p-2)}\varepsilon_0^{-2(p-2)}$ and by using $xe^{-x} \leq e^{-1}$, for $x \geq 0$, so we assume

$$(S.8) r_{\varepsilon} = 2\varepsilon < \varepsilon_0.$$

Recall that $T_{r_{\varepsilon}}^{i} = \inf\{t \geq 0 : |B_{t} - x_{i}| \leq r_{\varepsilon}\}$ and $T_{r_{\varepsilon}} = T_{r_{\varepsilon}}^{1} \wedge T_{r_{\varepsilon}}^{2}$. Since $|x_{i}| \geq \varepsilon_{0}$, we have $T_{r_{\varepsilon}} > 0$, P_{0} -a.s.. We set $\vec{\lambda} = (\lambda, \lambda)$, $\vec{x} = (x_{1}, x_{2})$, and $\Delta = |x_{1} - x_{2}|$, where the constant $\lambda > 0$ will be chosen large below.

Apply (S.6) and Lemma S.1.3(a) to see that for $\lambda > 12$,

$$\mathbb{E}_{\delta_0} \left(\lambda^2 \frac{X_{G_{\varepsilon}^{x_1}}(1)}{\varepsilon^2} \frac{X_{G_{\varepsilon}^{x_2}}(1)}{\varepsilon^2} \exp\left(-\lambda \sum_{i=1}^2 \frac{X_{G_{\varepsilon}^{x_i}}(1)}{\varepsilon^2} \right) \right)$$

$$= \lambda^2 e^{-U\vec{\lambda}, \vec{x}, \varepsilon}(x) \left[U_1^{\vec{\lambda}, \vec{x}, \varepsilon}(0) U_2^{\vec{\lambda}, \vec{x}, \varepsilon}(0) - U_{1, 2}^{\vec{\lambda}, \vec{x}, \varepsilon}(0) \right]$$

$$\leq 2^{2p+2} (D^{\lambda/2}(2))^2 |x_1|^{-p} |x_2|^{-p} \varepsilon^{2(p-2)} - \lambda^2 U_{1, 2}^{\vec{\lambda}, \vec{x}, \varepsilon}(0)$$

$$\leq c \varepsilon_0^{-2p} \varepsilon^{2(p-2)} + \lambda^2 (-U_{1, 2}^{\vec{\lambda}, \vec{x}, \varepsilon}(0)).$$
(S.9)

To bound the last term, use Lemma S.1.5 to get

$$(S.10) \quad \lambda^{2}(-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(0))$$

$$=\lambda^{2}E_{0}\left(\int_{0}^{T_{r_{\varepsilon}}}\prod_{i=1}^{2}U_{i}^{\vec{\lambda},\vec{x},\varepsilon}(B(t))\exp\left(-\int_{0}^{t}U^{\vec{\lambda},\vec{x},\varepsilon}(B(s))ds\right)dt\right)$$

$$+\lambda^{2}E_{0}\left(\exp\left(-\int_{0}^{T_{r_{\varepsilon}}}U^{\vec{\lambda},\vec{x},\varepsilon}(B(s))ds\right)1(T_{r_{\varepsilon}}<\infty)(-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(B(T_{r_{\varepsilon}}))\right)$$

$$\equiv K_{1}+K_{2}.$$

We first consider K_2 . On $\{T_{r_{\varepsilon}} < \infty\}$ we may set $x_{\varepsilon}(\omega) = B(T_{r_{\varepsilon}})$ and choose $i(\omega)$ so that $|x_i - x_{\varepsilon}| \ge \Delta/2$. By the definition of $T_{r_{\varepsilon}}, |x_i - x_{\varepsilon}| \ge r_{\varepsilon} = 2\varepsilon$,

 $\verb|imsart-aop| ver. 2014/10/16 file: supppl_May17.tex date: May 17, 2019|$

and so $|x_i - x_{\varepsilon}| \geq \frac{1}{2} (\Delta \vee r_{\varepsilon})$. Lemma S.1.3(b) and the above imply

$$\lambda^2(-U_{1,2}^{\vec{\lambda},\vec{x},\varepsilon}(B(T_{r_{\varepsilon}}))) \le 4 \cdot 2^p(D^{\lambda/2}(2)(\Delta \vee r_{\varepsilon})^{-p}2^p)\varepsilon^{p-2} \le c(\Delta \vee r_{\varepsilon})^{-p}\varepsilon^{p-2}.$$

This shows that

(S.11)

$$K_2 \le c(\Delta \vee r_{\varepsilon})^{-p} \varepsilon^{p-2} \sum_{i=1}^{2} E_0 \Big(1(T_{r_{\varepsilon}}^i < \infty) \exp \Big(- \int_0^{T_{r_{\varepsilon}}^i} U^{\vec{\lambda}, \vec{x}, \varepsilon}(B(s)) ds \Big) \Big).$$

Use (S.7) and Corollary 4.7(a) with $|B(s) - x_i| \ge r_{\varepsilon} = 2\varepsilon$ and R = 2 to see that

$$U^{\vec{\lambda},\vec{x},\varepsilon}(B(s)) \ge U^{\lambda\varepsilon^{-2},\varepsilon}(B(s)-x_i) \ge U^{\infty,\varepsilon}(B(s)-x_i) - 2^p |B(s)-x_i|^{-p} D^{\lambda}(2)\varepsilon^{p-2}$$
(S.12)
$$\ge V^{\infty}(B(s)-x_i) - 2^p |B(s)-x_i|^{-p} D^{\lambda}(2)\varepsilon^{p-2},$$

where the last follows by using (4.1) and scaling to see that $U^{\infty,\varepsilon}(x) = \varepsilon^{-2}U^{\infty,1}(x/\varepsilon) \geq \varepsilon^{-2}V^{\infty}(x/\varepsilon) = V^{\infty}(x)$ for all $|x|/\varepsilon > 1$. Let $\tau_{r_{\varepsilon}} = \inf\{t : |B_t| \leq r_{\varepsilon}\}$ and let μ, ν be as in (4.9). Use the above in (S.11) and then use Brownian scaling to see that for i = 1, 2,

(S.13)

$$E_{0}\left(1(T_{r_{\varepsilon}}^{i} < \infty) \exp\left(-\int_{0}^{T_{r_{\varepsilon}}^{i}} U^{\vec{\lambda}, \vec{x}, \varepsilon}(B(s)) ds\right)\right)$$

$$\leq E_{-x_{i}}\left(1(\tau_{r_{\varepsilon}} < \infty) \exp\left(\int_{0}^{\tau_{r_{\varepsilon}}} \frac{2^{p} D^{\lambda}(2) \varepsilon^{p-2}}{|B(s)|^{p}} ds\right) \exp\left(-\int_{0}^{\tau_{r_{\varepsilon}}} \frac{2(4-d)}{|B(s)|^{2}} ds\right)\right)$$

$$\leq E_{-x_{i}/r_{\varepsilon}}\left(1(\tau_{1} < \infty) \exp\left(\int_{0}^{\tau_{1}} \frac{2^{p} D^{\lambda}(2) \varepsilon^{p-2} r_{\varepsilon}^{2-p}}{|B(s)|^{p}} ds\right) \exp\left(-\int_{0}^{\tau_{1}} \frac{2(4-d)}{|B(s)|^{2}} ds\right)\right)$$

$$= E_{|x_{i}|/r_{\varepsilon}}^{(2+2\nu)}\left(\exp\left(\int_{0}^{\tau_{1}} \frac{4D^{\lambda}(2)}{\rho_{s}^{p}} ds\right) \Big| \tau_{1} < \infty\right) (|x_{i}|/r_{\varepsilon})^{-p},$$

where we have used Lemma 4.5 in the last line, and recalled that $p = \nu + \mu$. Choose $\lambda > 12$ large such that

$$2\gamma \equiv 2 \cdot 4D^{\lambda}(2) \le 2(4-d) < \nu^2,$$

and then apply Lemma 4.4 to conclude that (S.13) is bounded by

$$c_{4.4}(p,\nu)(|x_i|/r_{\varepsilon})^{-p} \le c_{4.4}(p,\nu)\varepsilon_0^{-p}r_{\varepsilon}^p$$
.

So (S.11) becomes

$$K_{2} \leq c(\Delta \vee r_{\varepsilon})^{-p} \varepsilon^{p-2} 2c_{4.4}(p,\nu) \varepsilon_{0}^{-p} r_{\varepsilon}^{p} \leq c(\varepsilon_{0}) \Delta^{2-p} \varepsilon^{p-2} r_{\varepsilon}^{p-2}$$

$$= 2^{p-2} c(\varepsilon_{0}) \Delta^{2-p} \varepsilon^{2(p-2)}.$$
(S.14)

In view of (S.9), (S.10) and (S.14), it remains to prove

(S.15)
$$K_1 \le C(\varepsilon_0) \Delta^{2-p} \varepsilon^{2(p-2)}.$$

Apply Lemma S.1.3(a) to K_1 defined in (S.10) to get

$$K_1 \le \lambda^2 \frac{1}{\lambda^2} (2^{p+1} \varepsilon^{p-2} D^{\lambda/2}(2))^2$$

(S.16)
$$\times E_0 \left(\int_0^{T_{r_{\varepsilon}}} \prod_{i=1}^2 |B_t - x_i|^{-p} \exp\left(-\int_0^t U^{\vec{\lambda}, \vec{x}, \varepsilon}(B(s)) ds\right) dt \right).$$

Let $\Delta_i = x_{3-i} - x_i$, so that $|\Delta_i| = \Delta$. Let $T_{r_{\varepsilon}}^{',i} = \inf\{t : |B_t| \leq r_{\varepsilon} \text{ or } |B_t - \Delta_i| \leq r_{\varepsilon}\}$. Apply (S.12) to see that (S.16) becomes

$$K_1 \le c\varepsilon^{2(p-2)} \sum_{i=1}^{2} E_{-x_i} \left(\int_0^{T_{r_\varepsilon}',i} |B_t|^{-p} |B_t - \Delta_i|^{-p} 1(|B_t| \le |B_t - \Delta_i|) \right)$$

(S.17)
$$\times \exp\left(\int_0^t \frac{2^p D^{\lambda}(2)\varepsilon^{p-2}}{|B(s)|^p} ds\right) \exp\left(-\int_0^t \frac{2(4-d)}{|B(s)|^2} ds\right) dt\right).$$

On $\{|B_t| \leq |B_t - \Delta_i|\}$, we have

$$\Delta = |\Delta_i| \le |B_t - \Delta_i| + |B_t| \le 2|B_t - \Delta_i|,$$

and hence

$$|B_t - \Delta_i|^{-p} \le \left(\frac{1}{2}\Delta \vee |B_t|\right)^{-p} \le 2^p (\Delta^{-p} \wedge |B_t|^{-p}).$$

Use $T'_{r_{\varepsilon}}^{i,i} \leq \tau_{r_{\varepsilon}}$ and Brownian scaling to see that

$$K_{1} \leq c\varepsilon^{2(p-2)} \sum_{i=1}^{2} E_{-x_{i}} \left(\int_{0}^{\tau_{r\varepsilon}} |B_{t}|^{-p} (|B_{t}|^{-p} \wedge \Delta^{-p}) \right) \\ \times \exp\left(\int_{0}^{t} \frac{2^{p} D^{\lambda}(2)\varepsilon^{p-2}}{|B(s)|^{p}} ds \right) \exp\left(-\int_{0}^{t} \frac{2(4-d)}{|B(s)|^{2}} ds \right) dt \right) \\ \leq c\varepsilon^{2(p-2)} \sum_{i=1}^{2} E_{-x_{i}/r_{\varepsilon}} \left(\int_{0}^{\tau_{1}} r_{\varepsilon}^{2-2p} |B_{t}|^{-p} (|B_{t}|^{-p} \wedge (\Delta/r_{\varepsilon})^{-p}) \right) \\ \times \exp\left(\int_{0}^{t} \frac{2^{p} D^{\lambda}(2)\varepsilon^{p-2} r_{\varepsilon}^{2-p}}{|B(s)|^{p}} ds \right) \exp\left(-\int_{0}^{t} \frac{2(4-d)}{|B(s)|^{2}} ds \right) dt \right) \\ = c\varepsilon^{-2} \sum_{i=1}^{2} \int_{0}^{\infty} E_{-x_{i}/r_{\varepsilon}} \left(1(t < \tau_{1}) |B(t \wedge \tau_{1})|^{-p} (|B(t \wedge \tau_{1})|^{-p} \wedge (\Delta/r_{\varepsilon})^{-p}) \right) \\ (S.18) \times \exp\left(\int_{0}^{t \wedge \tau_{1}} \frac{4D^{\lambda}(2)}{|B(s)|^{p}} ds \right) \exp\left(-\int_{0}^{t \wedge \tau_{1}} \frac{2(4-d)}{|B(s)|^{2}} ds \right) dt.$$

Now let $\delta = 4D^{\lambda}(2)$, μ, ν be as in (4.9), and use Lemma A.1 to get (S.19)

$$K_{1} \leq c\varepsilon^{-2} \sum_{i=1}^{2} \int_{0}^{\infty} (|x_{i}|/r_{\varepsilon})^{\nu-\mu} E_{|x_{i}|/r_{\varepsilon}}^{(2+2\nu)} \Big(1(t < \tau_{1})\rho(t \wedge \tau_{1})^{-p}$$

$$\times (\rho(t \wedge \tau_{1})^{-p} \wedge (\Delta/r_{\varepsilon})^{-p}) \exp\Big(\int_{0}^{t \wedge \tau_{1}} \delta \rho_{s}^{-p} ds \Big) \rho(t \wedge \tau_{1})^{-\nu+\mu} \Big) dt$$

$$= c\varepsilon^{\mu-\nu-2} \sum_{i=1}^{2} |x_{i}|^{\nu-\mu} E_{|x_{i}|/r_{\varepsilon}}^{(2+2\nu)} \Big(\int_{0}^{\tau_{1}} \rho_{t}^{-p-\nu+\mu} (\rho_{t}^{-p} \wedge (\Delta/r_{\varepsilon})^{-p}) \exp\Big(\int_{0}^{t} \delta \rho_{s}^{-p} ds \Big) dt \Big).$$

We interrupt the proof of the proposition for another auxiliary result from [20].

LEMMA S.1.6. There is some universal constant $c_{S.1.6} > 0$ such that for any r > 0 with $r < (|x_i| \land \Delta)$ and $0 < \delta < (p-2)(2-\mu)$, we have

$$E_{|x_i|/r}^{(2+2\nu)} \left(\int_0^{\tau_1} \rho_t^{-p-\nu+\mu} (\rho_t^{-p} \wedge (\Delta/r)^{-p}) \exp\left(\int_0^t \delta \rho_s^{-p} ds \right) dt \right)$$

$$\leq c_{S.1.6} r^{-2+2p+\nu-\mu} |x_i|^{-2\nu} \Delta^{2-p}.$$

PROOF. This is included in the proof of Proposition 6.1 of [20] with $r = r_{\lambda}$. In particular, the above expectation appears in (9.23) of [20] and is bounded by eJ_i in (9.27) of that paper. Following the inequalities in that work, noting we only need consider Case 1 or Case 3 (the latter with $r \leq |x_i| \leq \Delta$) at the end of the proof, we arrive at the above bound.

Returning now to the proof of Proposition 5.1. Pick $\lambda > 12$ large such that $\delta < (p-2)(2-\mu)$. Note we assumed $|x_i| \geq \varepsilon_0 > r_\varepsilon$ by (S.8) and $\Delta = |x_1 - x_2| > 5\varepsilon > r_\varepsilon$ at the very beginning of this section. So use Lemma S.1.6 applied with $r = r_\varepsilon$ to see that

(S.20)
$$K_{1} \leq c\varepsilon^{\mu-\nu-2} \sum_{i=1}^{2} |x_{i}|^{\nu-\mu} c_{S.1.6} r_{\varepsilon}^{-2+2p+\nu-\mu} |x_{i}|^{-2\nu} \Delta^{2-p}$$
$$= C\varepsilon^{2p-4} \Delta^{2-p} \sum_{i=1}^{2} |x_{i}|^{-p}.$$

Use $|x_i| \geq \varepsilon_0$ to conclude

$$K_1 \le 2C\varepsilon_0^{-p}\Delta^{2-p}\varepsilon^{2p-4}.$$

This gives (S.15), and so the proof is complete.

 $\verb|imsart-aop| ver. 2014/10/16 file: supppl_May17.tex date: May 17, 2019|$

S.2. Proof of Lemma 7.3. We work under Q_{x_0} where $|x_0| \geq 2r_0$. Recall the definitions of η_s^G and \mathcal{E}_G from Section 2. For $0 \leq r < r_0$, introduce

$$A_t^r = \int_0^t 1(\zeta_u \le S_{G_{r_0-r}}(W_u)) \, du,$$

so that

$$\eta_s^r := \eta_s^{G_{r_0-r}} = \inf\{t : A_t^r > s\}.$$

LEMMA S.2.1. (a) Q_{x_0} -a.s. for all $t \ge 0$ we have

$$A_t^r = \int_0^t 1(\inf_{v \le \zeta_u} |W_u(v)| > r_0 - r) \, du \quad \forall r \in [0, r_0),$$

and

$$r \mapsto A_t^r$$
 is left-continuous on $[0, r_0)$.

- (b) $\lim_{r'\uparrow r} \eta_s^{r'} = \eta_s^r$ for all $r \in (0, r_0)$, $s \ge 0$ Q_{x_0} -a.s. (c) If T is an (\mathcal{E}_r^+) -stopping time, then $W_{\eta_s^T}$ is \mathcal{E}_T^+ -measurable.

PROOF. The proof is a straightforward modification of that of Lemma 7.4 in [20], where shrinking half spaces have now been replaced with shrinking balls.

Proof of Lemma 7.3. By (7.23) (with a different radii) and Lemma 2.1(a) there are Borel maps ψ on \mathcal{K} and ψ on $C(\mathbb{R}_+, \mathcal{W})$ such that

$$1_{D_{r_0}} = \tilde{\psi}(\mathcal{R}) = \lim_{N \to \infty} \tilde{\psi}(\{\hat{W}(s) : s \le N\}) = \psi(W),$$

where we have used (2.2) in the second equality. In the last equality we have also called on the continuity of $W \mapsto \{\hat{W}(s) : s \leq N\}$ from $C([0,\infty), \mathcal{W})$ to \mathcal{K} . Therefore a monotone class argument shows it suffices to fix $s \geq 0$ and show that if $\phi: \mathcal{W} \to \mathbb{R}$ is bounded Borel then

(S.21)
$$\phi(W_s)$$
 is $\mathcal{E}_{T_0-}^+$ – measurable.

Lemma S.2.1(b) implies that $W_{\eta_s^{T_0}} = \lim_{n \to \infty} W_{\eta_s^{T_n-1}} Q_{x_0}$ -as. and so by Lemma S.2.1(c) and (7.20), $W_{\eta_s^{T_0}}$ is $\mathcal{E}_{T_0-}^+$ -measurable. So to prove (S.21) it suffices to show

$$W_s = W_{\eta_s^{T_0}} \quad Q_{x_0} - \text{a.s.}.$$

This, in turn, would follow from $A_t^{T_0} = t$ for all $t \geq 0$ Q_{x_0} -a.s., or equivalently by Lemma S.2.1(a),

(S.22)
$$\int_0^\sigma 1(\inf_{v \le \zeta_u} |W_u(v)| \le r_0 - T_0) du = 0 \quad Q_{x_0} - \text{a.s..}$$

Here we have truncated the integral at σ since $\zeta_u = 0$ and $|W_u(0)| = |x_0| \ge 2r_0$ for $u \ge \sigma$. If $0 \le u < \zeta_s$ and s' < s is the last time before s that $\zeta_{s'} = u$, then $\inf_{t \in [s',s]} \zeta_t = \zeta_{s'} = u$ and so (e.g., see p. 66 of [17]) $W_s(u) = \hat{W}(s')$ Q_{x_0} -a.s. This and Lemma 7.1 (recall also (7.1)) imply

(S.23)
$$\inf_{u \le \sigma} \inf_{v \le \zeta_u} |W_u(v)| = \hat{T}_0 = \inf\{|x| : x \in \mathcal{R}\} = r_0 - T_0 \quad Q_{x_0} - \text{a.s..}$$

Therefore (S.22) is equivalent to

(S.24)
$$\int_0^{\sigma} 1(\inf_{v \le \zeta_u} |W_u(v)| = \hat{T}_0) du = 0 \quad Q_{x_0} - \text{a.s.}.$$

The historical process, $(H_t, t \ge 0)$ is an inhomogeneous Markov process under \mathbb{N}_{x_0} taking values in $M_F(C(\mathbb{R}_+, \mathbb{R}^d))$ —see [4] or p. 64 of [17] to see how it is easily defined from the snake W. The latter readily implies

(S.25)
$$\int_0^\infty H_t(\phi)dt = \int_0^\sigma \phi(W_u) du \text{ for all non-negative Borel } \phi,$$

where we have extended W_u to \mathbb{R}_+ in the obvious manner. Recalling (7.1) and letting X be the SBM under \mathbb{N}_{x_0} as usual, we have

(S.26)

$$\mathbb{N}_{x_0} \left(\int_0^\infty 1(\inf_{v \le \zeta_u} |W_u(v)| = \hat{T}_0) du \right) \\
\le \mathbb{N}_{x_0} \left(\int_0^\infty \int 1(\inf_{t'} |y_{t'}| = \hat{T}_0) H_t(dy) dt \right) \quad \text{(by (S.25))} \\
(S.27) \quad \le \int_0^\infty \mathbb{N}_{x_0} \left(\int 1 \left(\int_0^\infty X_s(\{x : |x| < \inf_{t' \le t} |y(t')|\}) ds = 0 \right) H_t(dy) \right) dt,$$

where in the last line we use (S.23) and $y(\cdot) = y(\cdot \wedge t)$ H_t – a.a. $y \forall t \geq 0$ \mathbb{N}_{x_0} a.e. Below we will let B denote a d-dimensional Brownian motion starting at x_0 under $P_{x_0}^B$, $m_t = \inf_{t' \leq t} |B_{t'}| = |B_{\tau_t}|$ (for some $\tau_t < t$), and L^x be the local time of the SBM X (at time infinity). Fix t > 0 and use the Palm measure formula for H_t (e.g. Proposition 4.1.5 of [4]) to see that (cf. (7.22) in [20])

$$\mathbb{N}_{x_0} \left(\int 1 \left(\int_0^\infty X_s(\{x : |x| < \inf_{t' \le t} |y(t')|\}) ds = 0 \right) H_t(dy) \right) \\
= E_{x_0}^B \left(\exp\left(-\int_0^t \int 1 \left(\int_0^\infty X_s(\{x : |x| < m_t\}) ds > 0 \right) d\mathbb{N}_{B_u} du \right) \right) \\
(S.28) \le E_{x_0}^B \left(\exp\left(-\int_0^t \mathbb{N}_{B_u} (L^{B_{\tau_t}} > 0) du \right) \right).$$

It follows from (1.13), (1.14) and $\mathbb{P}_{\delta_x}(L^y = 0) = \exp(-\mathbb{N}_x(L^y > 0))$ (see, e.g., (2.12) in [20]) that

$$\mathbb{N}_x(L^y > 0) = 2(4-d)|x-y|^{-2}.$$

Use this to bound (S.28) by

$$E_{x_0}^B \left(\exp\left(-\int_0^t \frac{2(4-d)}{|B_s - B_{\tau_t}|^2} ds\right) \right).$$

A simple application of Lévy's modulus for B shows the above integral is infinite a.s. and so proves that (S.26) equals zero. This implies (S.24), as required.

REFERENCES

- R. Abraham and J.F. Le Gall. Sur la mesure de sortie du super mouvement brownien. Prob. Th. Rel. Fields 99: 251–275, (1994).
- [2] H. Brezis, L. A. Peletier and D. Terman. A very singular solution of the heat equation with absorption. Arch. Rat. Mech. Anal. 95: 185–209, (1986).
- [3] D. Dawson, I. Iscoe and E. Perkins. Super-Brownian motion: Path properties and hitting probabilities. *Prob. Th. Rel. Fields* 83: 135–205, (1989).
- [4] D. Dawson and E.A. Perkins. Historical processes. Mem. Amer. Math. Soc., 93 (1991).
- [5] C. Dellacherie and P.A. Meyer. Probabilities et Potential Vol 1. North-Holland, Amsterdam, (1978).
- [6] R. Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, (2010).
- [7] R. Durrett. Ten Lectures on Particle Systems. Lectures on Probability Theory and Statistics, no. 1608, Ecole d'Eté de Probabilités de Saint Flour 1993. Springer, Berlin (1995).
- [8] W. Feller. An Introduction to Probability Theory and Its Applications Vol. 2. Wiley Series in Probability and Mathematical Statistics John Wiley and Sons, New York, (1971).
- [9] G. Grimmett and D. Stirzaker. Probability and Random Processes, 3rd Edition. Oxford University Press, Oxford, (2001).
- [10] M. Hesse and A. Kyprianou. The mass of super-Brownian motion upon exiting balls and Sheu's compact support condition. Stoch. Proc. Appl., 124:2003–2022, (2014).
- [11] J. Hong. Renormalization of local times of super-Brownian motion. *Electron. J. Probab.*, 23: no. 109, 1–45, (2018).
- [12] J. Hong. Improved Hölder continuity near the boundary of one-dimensional super-Brownian motion. *Math. ArXiv*, 1808.01073, (2018). To appear in *Electron. C. Probab.*.
- [13] J. Hong, L. Mytnik and E. Perkins. On the topological boundary of the range of super-Brownian motion. Submitted to *Annal. Probab.*, (2019).
- [14] T. Hughes and E. Perkins. On the boundary of the zero set of super-Brownian motion and its local time. *Math. ArXiv*, 1802.03681, (2018).

- [15] I. Iscoe. On the supports of measure-valued critical branching Brownian motion. Ann. Probab., 16 (1):200–221, (1988).
- [16] J.F. Le Gall. The Brownian snake and solutions of $\Delta u = u^2$ in a domain. *Probab. Theory Relat. Fields*, **102**:393–432, (1995).
- [17] J.F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics, ETH, Zurich. Birkhäuser, Basel (1999).
- [18] J.F. Le Gall. Subordination of trees and the Brownian map. Probab. Theory Relat. Fields, 171: 819–864, (2018).
- [19] T.M. Liggett. Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften 276. Springer-Verlag, New York (1985).
- [20] L. Mytnik and E. Perkins. The dimension of the boundary of super-Brownian motion. Math ArXiv no. 1711.03486, to appear in *Prob. Th. Rel Fields*.
- [21] E.A. Perkins. Dawson-Watanabe Superprocesses and Measure-valued Diffusions. Lectures on Probability Theory and Statistics, no. 1781, Ecole d'Eté de Probabilités de Saint Flour 1999 Springer, Berlin (2002).
- [22] L.C.G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales Vol.2. Cambridge University Press, Cambridge (1994).
- [23] M.L. Silverstein. A new approach to local times. J. Math. Mech., 17: 1023–1054, (1968).
- [24] S. Sugitani. Some properties for the measure-valued branching diffusion processes. J. Math. Soc. Japan, 41:437–462, (1989).
- [25] S.J. Taylor. On the connection between generalized capacities and Hausdorff measures. Proc. Cam. Phil. Soc., 57:524–531, (1961).
- [26] M. Yor. On some exponential functionals of Brownian motion. Adv. Appl. Prob., 24: 509–531, 1992.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, BC, CANADA V6T1Z2 E-MAIL: jlhong@math.ubc.ca

FACULTY OF INDUSTRIAL ENGINEERING AND MANAGEMENT, TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY HAIFA 32000, ISRAEL E-MAIL: leonid@ie.technion.ac.il

DEPARTMENT OF MATHEMATICS UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B.C., CANADA V6T 1Z2 E-MAIL: perkins@math.ubc.ca