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1 Introduction

Consider the contact process on the fine lattice ZN ≡ Zd/(
√
NMN ). Sites are either occupied by

a particle or vacant.

• Particles die at rate N and give birth at rate N + θ

• When a birth occurs at x the new particle is sent to a site y 6= x chosen at random from
x+N where N = {z ∈ ZN : ‖z‖∞ ≤ 1/

√
N} is the set of neighbors of 0.

• If y is vacant a birth occurs there. Otherwise, no change occurs.

The
√
N in the definition of ZN scales space to take care of the fact that we are running time at

rate N . The MN serves to soften the interaction between a site and its neighbors so that we can
get a nontrivial limit. From work of Bramson, Durrett, and Swindle (1989) it is known that one
should take

MN =


N3/2 d = 1

(N logN)1/2 d = 2
N1/d d ≥ 3

Mueller and Tribe (1995) studied the case d = 1 and showed that if we assign each particle mass
1/N and the initial conditions converge to a continuous limiting density u(x, 0), then the rescaled
particle system converged to the stochastic PDE:

du =
(
u′′

6
+ θu− u2

)
dt+

√
2u dW

where dW is a space-time White noise.
Durrett and Perkins (1999) considered the case d ≥ 2. To state their result we need to introduce

super-Brownian motion with branching rate b, diffusion coefficient σ2, and drift coefficient β. Let
MF = MF (Rd) denote the space of finite measures on Rd equipped with the topology of weak
convergence. Let C∞b be the space of infinitely differentiable functions on Rd with bounded partial
derivatives of all orders. Then the above super-Brownian motion is the MF -valued process Xt,
which solves the following martingale problem:

For all φ ∈ C∞b , if Xt(φ) denotes the integral of φ with respect to Xt then

Zt(φ) = Xt(φ)−X0(φ)−
∫ t

0
Xs(σ2∆φ/2 + βφ) ds(1.1)

is a martingale with quadratic variation < Z(φ) >t=
∫ t
0 Xs(bφ2) ds.

Durrett and Perkins showed that if the initial conditions converge to a nonatomic limit then the
rescaled empirical measures, formed by assigning mass 1/N to each site occupied by the rescaled
contact processes, converge to the super-Brownian motion with b = 2, σ2 = 1/3, and β = θ − cd.
Here c2 = 3/2π and in d ≥ 3, cd =

∑∞
n=1 P (Un ∈ [−1, 1]d)/2d with Un a random walk that takes

steps uniform on [−1, 1]d. Note that the −u2 interaction term in d = 1 becomes −cdu in d ≥ 2.
This occurs because the environments seen by well separated particles in a small macroscopic ball
are almost independent, so by the law of large numbers mass is lost due to collisions (births onto
occupied sites) at a rate proportional to the amount of mass there.
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There has been a considerable amount of work constructing measure-valued diffusions with in-
teractions in which the parameters b, σ2 and β in (1.1) depend on X and may involve one or more
interacting populations. State dependent σ’s, or more generally state dependent spatial motions,
can be characterized and constructed as solutions of a strong equation driven by a historical Brow-
nian motion (see Perkins (1992), (2002)), and characterized as solutions of a martingale problem
for historical superprocesses (Perkins (1995)) or more simply by the natural extension of (1.1)
(see Donnelly and Kurtz (1999) Donnelly and Kurtz (1999)). (Historical superprocesses refers
to a measure-valued process in which all the genealogical histories of the current population are
recorded in the form of a random measure on path space.) State dependent branching in general
seems more challenging. Many of the simple uniqueness questions remain open although there has
been some recent progress in the case of countable state spaces (Bass and Perkins (2004)). In
Dawson and Perkins (1998) and Dawson et al (2002), a particular case of a pair of populations
exhibiting local interaction through their branching rates (called mutually catalytic or symbiotic
branching) is analyzed in detail thanks to a couple of special duality relations. State dependent
drifts (β) which are not “singular” and can model changes in birth and death rates within one
or between several populations can be analyzed through the Girsanov techniques introduced by
Dawson (1978) (see also Ch. IV of Perkins (2002)). Evans and Perkins (1994,1998) study a pair of
interacting measure-valued processes which compete locally for resources through an extension of
(1.1) discussed below (see remark after Theorem 1.1). In two or three dimensions these interactions
involve singular drifts β for which it is believed the change of measure methods cited above will
not work. In 3 dimensions this is known to be the case (see Theorem 4.14 of Evans and Perkins
(1994)). Corresponding models with infinite variance branching mechanisms and stable migration
processes have been constructed by Fleischmann and Mytnik (2003).

Given this work on interacting continuum models, it is natural to consider limits of multitype
particle systems. The simplest idea is to consider a contact process with two types of particles
for which births can only occur on vacant sites and each site can support at most one particle.
However, this leads to a boring limit: independent super-processes. This can be seen from Section
5 in Durrett and Perkins (1999) which shows that in the single type contact process “collisions
between distant relatives can be ignored.”

To obtain an interesting interaction, we will follow Durrett and Levin (1998) and consider two
types of particles that modify each other’s death or birth rates. In order to concentrate on the
new difficulties that come from the interaction, we will eliminate the restriction of at most one
particle per site and let ξi,N

t (x) be the number of particles of type i at x at time t. Having changed
from a contact process to a branching process, we do not need to let MN → ∞, so we will again
simplify by considering the case MN ≡M . Let σ2 denote the variance of the uniform distribution
on (Z/M) ∩ [−1, 1].

Letting x+ = max{0, x} and x− = max{0,−x}, the dynamics of our competing species model
may be formulated as follows:

• When a birth occurs, the new particle is of the same type as its parent and is born at the
same site.

• For i = 1, 2, let ni(x) be the number of individuals of type i in x+N . Particles of type i give
birth at rate N + γ+

i 2−dNd/2−1n3−i(x) and die at rate N + γ−i 2−dNd/2−1n3−i(x).
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Here 3 − i is the opposite type of particle. It is natural to think of the case in which γ1 < 0 and
γ2 < 0 (resource competition), but in some cases the two species may have a synergistic effect:
γ1 > 0 and γ2 > 0. Two important special cases that have been considered earlier are

(a) the colicin model. γ2 = 0. In Durrett and Levin’s paper, γ1 < 0, since one type of E. coli
produced a chemical (colicin) that killed the other type. We will also consider the case in which
γ1 > 0 which we will call colicin.

(b) predator-prey model. γ1 < 0 and γ2 > 0. Here the prey 1’s are eaten by the predator 2’s which
have increased birth rates when there is more food.

Two related example that fall outside of the current framework, but for which similar results should
hold:

(c) epidemic model. Here 1’s are susceptible and 2’s are infected. 1’s and 2’s are individually
branching random walks. 2’s infect 1’s (and change them to 2’s) at rate γ2−dNd/2n2(x), while 2’s
revert to being 1’s at rate 1.

(d) voter model. One could also consider branching random walks in which individuals give birth to
their own types but switch type at rates proportional to the number of neighbours of the opposite
type.

The scaling Nd/2−1 is chosen on the basis of the following heuristic argument. In a critical
branching process that survives to time N there will be roughly N particles. In dimensions d ≥ 3
if we tile the integer lattice with cubes of side 1 there will be particles in roughly N of the Nd/2

cubes within distance
√
N of the origin. Thus there is probability 1/Nd/2−1 of a cube containing

a particle. To have an effect over the time interval [0, N ] a neighbor of the opposite type should
produce changes at rate N−1Nd/2−1 or on the speeded up time scale at rate Nd/2−1. In d = 2
an occupied square has about logN particles so there will be particles in roughly N/(logN) of
the N squares within distance

√
N of the origin. Thus there is probability 1/(logN) of a square

containing a particle, but when it does it contains logN particles. To have an effect interactions
should produce changes at rate 1/N or on the speeded up time scale at rate 1 = Nd/2−1. In d = 1
there are roughly

√
N particles in each interval [x, x + 1] so each particle should produce changes

at rate N−1N−1/2 or on the speeded up time scale at rate N−1/2 = Nd/2−1.
Our guess for the limit process comes from work of Evans and Perkins (1994, 1998) who studied

some of the processes that will arise as a limit of our particle systems. We first need a concept
that was introduced by Barlow, Evans, and Perkins (1991) for a class of measure-valued diffusions
dominated by a pair of independent super-Brownian motions. Let (Y 1, Y 2) be an MF

2-valued
process. Let ps(x) s ≥ 0 be the transition density function of Brownian motion with variance σ2s.
For any φ ∈ Bb(Rd) (bounded Borel functions on Rd) and δ > 0, let

Lδ
t (Y

1, Y 2)(φ) ≡
∫ t

0

∫
Rd

∫
Rd

pδ(x1 − x2)φ((x1 + x2)/2)Y 1
s (dx1)Y 2

s (dx2) ds t ≥ 0.(1.2)

The collision local time of (Y 1, Y 2) (if it exists) is a continuous non-decreasingMF -valued stochastic
process t 7→ Lt(Y 1, Y 2) such that

Lδ
t (Y

1, Y 2)(φ) → Lt(Y 1, Y 2)(φ) as δ ↓ 0 in probability,

for all t > 0 and φ ∈ Cb(Rd), the bounded continuous functions on Rd. It is easy to see that
if Y i

s (dx) = yi
s(x)dx for some Borel densities yi

s which are uniformly bounded on compact time
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intervals, then Lt(Y 1, Y 2)(dx) =
∫ t
0 y

1
s(x)y

2
s(x)dsdx. However, the random measures we will be

dealing with will not have densities for d > 1.
The final ingredient we need to state our theorem is the assumption on our initial conditions.

Let B(x, r) = {w ∈ Rd : |w− x| ≤ r}, where |z| is the L∞ norm of z. For any 0 < δ < 2 ∧ d we set

%N
δ (µ) ≡ inf

{
% : sup

x
µ(B(x, r)) ≤ %r(2∧d)−δ, for all r ∈ [N−1/2, 1]

}
,

where the lower bound on r is being dictated by the lattice Zd/(
√
NM).

We say that a sequence of measures
{
µN , N ≥ 1

}
satisfies condition UBN if

sup
N≥1

%N
δ (µN ) <∞, for all 0 < δ < 2 ∧ d

We say that measure µ ∈MF (Rd) satisfies condition UB if for all 0 < δ < 2 ∧ d

%δ(µ) ≡ inf
{
% : sup

x
µ(B(x, r)) ≤ %r(2∧d)−δ, for all r ∈ (0, 1]

}
<∞

If S is a metric space, CS and DS are the space of continuous S-valued paths and càdlàg S-valued
paths, respectively, the former with the topology of uniform convergence on compacts and the
latter with the Skorokhod topology. Ck

b (Rd) denotes the set of functions in Cb(Rd) whose partial
derivatives of order k or less are also in Cb(Rd).

The main result of the paper is the following. If X = (X1, X2), let FX
t denote the right-

continuous filtration generated by X.

Theorem 1.1 Suppose d ≤ 3. Define measure-valued processes by

Xi,N
t (φ) = (1/N)

∑
x

ξi,N
t (x)φ(x)

Suppose γ1 ≤ 0 and γ2 ∈ R. If {Xi,N
0 }, i = 1, 2 satisfy UBN and converge to Xi

0 in MF for
i = 1, 2, then {(X1,N , X2,N ), N ≥ 1} is tight on DMF

2. Each limit point (X1, X2) ∈ CMF
2 and

satisfies the following martingale problem Mγ1,γ2

X1
0 ,X2

0
: For φ1, φ2 ∈ C2

b (Rd),

X1
t (φ1) = X1

0 (φ1) +M1
t (φ1) +

∫ t

0
X1

s (
σ2

2
∆φ1) ds+ γ1Lt(X1, X2)(φ1),(1.3)

X2
t (φ2) = X2

0 (φ2) +M2
t (φ2) +

∫ t

0
X2

s (
σ2

2
∆φ2) ds+ γ2Lt(X1, X2)(φ2)

where M i are continuous (FX
t )-local martingales such that

〈M i(φi),M j(φj)〉t = δi,j2
∫ t

0
Xi

s(φ
2
i ) ds

Remark. Barlow, Evans, and Perkins (1991) constructed the collision local time for two super-
Brownian motions in dimensions d ≤ 5, but Evans and Perkins (1994) showed that no solutions to
the martingale problem (1.3) exist in d ≥ 4 for γ2 ≤ 0.

Given the previous theorem, we will have convergence whenever we have a unique limit process.
The next theorem gives uniqueness in the case of no feedback, i.e., γ1 = 0. In this case, the first
process provides an environment that alters the birth or death rate of the second one.
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Theorem 1.2 Let γ1 = 0 and γ2 ∈ R, d ≤ 3, and Xi
0 , i = 1, 2, satisfy condition UB. Then there

is a unique in law solution to the martingale problem (MPγ1,γ2

X1
0 ,X2

0
).

The uniqueness for γ1 = 0 and γ2 ≤ 0 above was proved by Evans and Perkins (1994) (Theorem
4.9) who showed that the law is the natural one: X1 is a super-Brownian motion and conditional
on X1, X2 is the law of a super ξ-process where ξ is Brownian motion killed according to an
inhomogeneous additive functional with Revuz measure X1

s (dx)ds. We prove the uniqueness for
γ2 > 0 in Section 5 below. Here X1 is a super-Brownian motion and conditional on X1, X2

is the superprocess in which there is additional birthing according to the inhomogeneous additive
functional with Revuz measure X1

s (dx)ds. Such superprocesses are special cases of those studied by
Dynkin (1994) and Kuznetsov (1994) although it will take a bit of work to connect their processes
with our martingale problem.

Another case where uniqueness was already known is γ1 = γ2 < 0.

Theorem 1.3 (Mytnik (1999)) Let γ1 = γ2 < 0, d ≤ 3, and Xi
0 , i = 1, 2, satisfy Condition UB.

Then there is a unique in law solution to the martingale problem (1.3).

Hence as an (almost) immediate Corollary to the above theorems we have:

Corollary 1.4 Assume d ≤ 3, γ1 = 0 or γ1 = γ2 < 0, and {Xi,N
0 }, i = 1, 2 satisfy UBN and

converge to Xi
0 in MF for i = 1, 2. If Xi,N is defined as in Theorem 1.1, then (X1,N , X2,N )

converges weakly in DMF
2 to the unique in law solution of (1.3).

Proof We only need point out that by elementary properties of weak convergence Xi
0 will satisfy

UB since {Xi,N
0 } satisfies UBN . The result now follows from the above three Theorems.

For d = 1 uniqueness of solutions to (1.3) for γi ≤ 0 and with initial conditions satisfying∫ ∫
log+(1/|x1 − x2|)X1

0 (dx1)X2
0 (dx2) <∞

(this is clearly weaker that each X1
0 satisfying UB) is proved in Evans and Perkins (1994) (Theorem

3.9). In this case solutions can be bounded above by a pair of independent super-Brownian motions
(as in Theorem 5.1 of Barlow, Evans and Perkins (1991)) from which one can readily see that
Xi

t(dx) = ui
t(x)dx for t > 0 and Lt(X1, X2)(dx) =

∫ t
0 u

1
s(x)u

2
s(x)dsdx. In this case u1, u2 are also

the unique in law solution of the stochastic partial differential equation

dui =

(
σ2ui′′

2
+ θui + γiu

1u2

)
dt+

√
2ui dW i i = 1, 2

where W 1 and W 2 are independent white noises. (See Proposition IV.2.3 of Perkins (2002).)
Turning next to γ2 > 0 in one dimension we have the following result:

Theorem 1.5 Assume γ1 ≤ 0 ≤ γ2, X1
0 ∈ MF has a continuous density on compact support and

X2
0 satisfies Condition UB. Then for d = 1 there is a unique in law solution to Mγ1,γ2

X1
0 ,X2

0
which

is absolutely continuous to the law of the pair of super-Brownian motions satisfying M0,0
X1

0 ,X2
0
. In

particular Xi(t, dx) = ui(t, x)dx for ui : (0,∞) → CK continuous maps taking values in the space
of continuous functions on R with compact support, i = 1, 2.
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We will prove this result in Section 5 using Dawson’s Girsanov Theorem (see Theorem IV. 1.6
(a) of Perkins (2002)). We have not attempted to find optimal conditions on the initial measures.
As before, the following convergence theorem is then immediate from Theorem 1.1

Corollary 1.6 Assume d = 1, γ1 ≤ 0, {Xi,N
0 } satisfy UBN and converge to Xi

0 ∈ MF , i = 1, 2,
where X1

0 has a continuous density with compact support. If Xi,N are as in Theorem 1.1, then
(X1,N , X2,N ) converges weakly in DMF

2 to the unique solution of MPγ1,γ2

X1
0 ,X2

0
.

Having stated our results, the natural next question is: What can be said about uniqueness in
other cases?

Conjecture 1.7 Uniqueness holds in d = 2, 3 for any γ1 , γ2 .

For γi ≤ 0 Evans and Perkins (1998) prove uniqueness of the historical martingale problem
associated with (1.3). The particle systems come with an associated historical process as one
simple puts mass N−1 on the path leading up to the current position of each particle at time t. It
should be possible to prove tightness of these historical processes and show each limit point satisfies
the above historical martingale problem. It would then follow that in fact one has convergence of
empirical measures in Theorem 1.1 (for γi ≤ 0) to the natural projection of the unique solution to
the historical martingale problem onto the space of continuous measure-valued processes.

Conjecture 1.8 Theorem 1.1 continues to hold for γ1 > 0 in d = 2, 3. There is no solution in
d ≥ 4. The solution explodes in finite time in d = 1 when γ1, γ2 > 0.

In addition to expanding the values of γ that can be covered, there is also the problem of considering
more general approximating processes.

Conjecture 1.9 Our results hold for the long-range contact process with modified birth and death
rates.

Returning to what we know, our final task in this Introduction is to outline the proofs of Theo-
rems 1.1 and 1.2. Suppose γ1 ≤ 0 and γ2 ∈ R, and set γ̄1 = 0 and γ̄2 = γ+

2 . Proposition 2.2 below
will show that the corresponding measure-valued processes can be constructed on the same space
so that Xi,N ≤ X̄i,N for i = 1, 2. Here (X̄1,N , X̄2,N ) are the sequence of processes corresponding
to parameter values (γ̄1, γ̄2). Tightness of our original sequence of processes then easily reduces to
tightness of this sequence of bounding processes, because increasing the measures will both increase
the mass far away (compact containment) and also increase the time variation in the integrals of
test functions with respect to these measure-valued processes–see the approximating martingale
problem (2.12) below. Turning now to (X̄1,N , X̄2,N ), we first note that the tightness of the first
coordinate (and convergence to super-Brownian motion) is well-known so let us focus on the second.
The first key ingredient we will need is a bound on the mean measure, including of course its total
mass. We will do this by conditioning on the branching environment X̄1,N . The starting point
here will be the Feynman-Kac formula for this conditional mean measure given below in (2.17). In
order to handle tightness of the discrete collision measure for X̄2,N we will need a concentration
inequality for the rescaled branching random walk X̄1,N , i.e., a uniform bound on the mass in small
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balls. A more precise result was given for super-Brownian motion in Theorem 4.7 of Barlow, Evans
and Perkins (1991). The result we need is stated below as Proposition 2.4 and proved in Section 6.

Once tightness of (X1,N , X2,N ) is established it is not hard to see that the limit points satisfy
a martingale problem similar to our target, (1.3), but with some increasing continuous measure-
valued process A in place of the collision local time. To identify A with the collision local time of
the limits, we take limits in a Tanaka formula for the approximating discrete local times (Section
4 below) and derive the Tanaka formula for the limiting collision local time. As this will involve
a number of singular integrals with respect to our random measures, the concentration inequality
for X̄1,N will again play an important role. This is reminiscent of the approach in Evans and
Perkins (1994) to prove the existence of solutions to the limiting martingale problem when γi ≤ 0.
However the discrete setting here is a bit more involved, since requires checking the convergence
of integrals of discrete Green functions with respect to the random mesures. The case of γ2 > 0
forces a different approach as we have not been able to derive a concentration inequality for this
process and so must proceed by calculation of second moments–Lemma 2.3 below is the starting
point here. The Tanaka formula derived in Section 5 (see Remark 5.2) is new in this setting.

Theorem 1.2 is proved in Section 5 by using the conditional martingale problem of X2 given
X1 to describe the Laplace functional of X2 given X1 in terms of an associated nonlinear equation
involving a random semigroup depending on X1. The latter shows that conditional on X1, X2 is a
superprocess with immigration given by the collision local time of a Brownian path in the random
field X1.

Convention As our results only hold for d ≤ 3, we will assume d ≤ 3 throughout the rest of this
work.

2 The Rescaled Particle System–Construction and Basic Proper-
ties

We first will write down a more precise description corresponding to the per particle birth and
death rates used in the previous section to define our rescaled interacting particle systems. We let
pN denote the uniform distribution on N , that is

pN (z) =
1(|z| ≤ 1/

√
N)

(2M + 1)d
, z ∈ ZN .(2.1)

Let PNφ(x) =
∑

y p
N (y − x)φ(y) for φ : ZN → R for which the righthand side is absolutely

summable. Set M ′ = (M + (1/2))d. The per particle rates in Section 1 lead to a process (ξ1, ξ2) ∈
ZZN

+ × ZZN
+ such that for i = 1, 2,

ξi
t(x) → ξi

t(x) + 1 with rate Nξi
t(x) +Nd/2−1ξi

t(x)γ
+
i (M ′)d

∑
y

pN (y − x)ξ3−i
t (y),

ξi
t(x) → ξi

t(x)− 1 with rate Nξi
t(x) +Nd/2−1ξt(x)γ−i (M ′)d

∑
y

pN (y − x)ξ3−i
t (y),

and
(ξi

t(x), ξ
i
t(y)) → (ξi

t(x) + 1, ξi
t(y)− 1) with rate NpN (x− y)ξi

t(y).
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The factors of (M ′)d may look odd but they combine with the kernels pN to get the factors of 2−d

in our interactive birth and death rates.
Such a process can be constructed as the unique solution of an SDE driven by a family of

Poisson point processes. For x, y ∈ ZN , let Λi,+
x ,Λi,−

x ,Λi,+,c
x,y ,Λi,−,c

x,y ,Λi,m
x,y , i = 1, 2 be independent

Poisson processes on R2
+, R2

+, R3
+, R3

+, and R2
+, respectively. Here Λi,±

x governs the birth and
death rates at x, Λi,±,c

x,y governs the additional birthing or killing at x due to the influence of the
other type at y and Λi,m

x,y governs the migration of particles from y to x. The rates of Λi,±
x are

Nds du; the rates of Λi,±,c
x,y are Nd/2−1M ′pN (y − x)ds du dv; the rates of Λi,m

x,y are NpN (x − y)du.
Let Ft be the canonical right continuous filtration generated by this family of point processes and
let F i

t denote the corresponding filtrations generated by the point processes with superscript i,
i = 1, 2. Let ξ0 = (ξ10 , ξ

2
0) ∈ ZZN

+ × ZZN
+ be such that |ξi

0| ≡
∑

x ξ
i
0(x) <∞ for i = 1, 2–denote this

set of initial conditions by SF –and consider the following system of stochastic jump equations for
i = 1, 2, x ∈ ZN and t ≥ 0:

ξi
t(x) = ξi

0(x) +
∫ t

0

∫
1(u ≤ ξi

s−(x))Λi,+
x (ds, du)−

∫ t

0

∫
1(u ≤ ξi

s−(x))Λi,−
x (ds, du)

+
∑

y

∫ t

0

∫ ∫
1(u ≤ ξi

s−(x), v ≤ γ+
i ξ

3−i
s− (y))Λi,+,c

x,y (ds, du, dv)

−
∑

y

∫ t

0

∫ ∫
1(u ≤ ξi

s−(x), v ≤ γ−i ξ
3−i
s− (y))Λi,−,c

x,y (ds, du, dv)(2.2)

+
∑

y

∫ t

0

∫
1(u ≤ ξi

s−(y))Λi,m
x,y (ds, du)−

∑
y

∫ t

0

∫
1(u ≤ ξi

s−(x))Λi,m
y,x (ds, du).

Assuming for now that there is a unique solution to this system of equations, the reader can
easily check that the solution does indeed have the jump rates described above. These equations
are similar to corresponding systems studied in Mueller and Tribe (1994), but for completeness
we will now show that (2.2) has a unique Ft-adapted SF -valued solution. Associated with (2.2)
introduce the increasing Ft-adapted Z+ ∪ {∞}-valued process

Jt =
2∑

i=1

|ξi
0| +

∑
x

∫ t

0

∫
1(u ≤ ξi

s−(x))Λi,+
x (ds, du) +

∑
x

∫ t

0

∫
1(u ≤ ξi

s−(x))Λi,−
x (ds, du)

+
∑
x,y

∫ t

0

∫ ∫
1(u ≤ ξi

s−(x), v ≤ γ+
i ξ

3−i
s− (y))Λi,+,c

x,y (ds, du, dv)

+
∑
x,y

∫ t

0

∫ ∫
1(u ≤ ξi

s−(x), v ≤ γ−i ξ
3−i
s− (y))Λi,−,c

x,y (ds, du, dv)

+
∑
x,y

∫ t

0

∫
1(u ≤ ξi

s−(y))Λi,m
x,y (ds, du).

Set T0 = 0 and let T1 be the first jump time of J . This is well-defined as any solution to (2.2) cannot
jump until T1 and so the solution is identically (ξ10 , ξ

2
0) until T1. Therefore a short calculation shows

9



that T1 is exponential with rate at most

(2.3)
2∑

i=1

4N |ξi
0|+M ′Nd/2−1|γi||ξi

0|.

At time T1 (2.2) prescribes a unique single jump at a single site for any solution ξ and J increases
by 1. Now proceed inductively, letting Tn be the nth jump time of J . Clearly the solution ξ to
(2.2) is unique up until T∞ = limn Tn. Moreover

(2.4) sup
s≤t

|ξ1s |+ |ξ2s | ≤ Jt for all t ≤ T∞.

Finally note that (2.3) and the corresponding bounds for the rates of subsequent times shows that
J is stochastically dominated by a pure birth process starting at |ξ10 | + |ξ20 | and with per particle
birth rate 4N + M ′Nd/2−1|(|γ1| + |γ2|). Such a process cannot explode and in fact has finite pth
moments for all p > 0 (see Ex. 6.8.4 in Grimmett and Stirzaker (2001)). Therefore T∞ = ∞ a.s.
and we have proved (use (2.4) to get the moments below):

Proposition 2.1 For each ξ0 ∈ SF , there is a unique Ft-adapted solution (ξ1, ξ2) to (2.2). More-
over this process has càdlàg SF -valued paths and satisfies

E(sup
s≤t

(|ξ1s |+ |ξ2s |)p) <∞ for all p, t ≥ 0.(2.5)

The following “Domination Principle” will play an important role in this work.

Proposition 2.2 Assume γ+
i ≤ γ̄i, i = 1, 2 and let ξ, respectively ξ̄, denote the corresponding

unique solutions to (2.2) with initial conditions ξi
0 ≤ ξ̄i

0, i = 1, 2. Then ξi
t ≤ ξ̄i

t for all t ≥ 0, i = 1, 2
a.s.

Proof. Let J and Tn be as in the previous proof but for ξ̄. One then argues inductively on
n that ξi

t ≤ ξ̄i
t for t ≤ Tn. Assuming the result for n (n = 0 holds by our assumption on the

initial conditions), then clearly neither process can jump until Tn+1. To extend the comparison
to Tn+1 we only need consider the cases where ξi jumps upward at a single site x for which
ξi
Tn+1−(x) = ξ̄i

Tn+1−(x) or ξ̄i jumps downward at a single site x for which the same equality holds.
As only one type and one site can change at any given time we may assume the processes do not
change in any other coordinates. It is now a simple matter to analyze these cases using (2.2) and
show that in either case the other process (the one not assumed to jump) must in fact mirror the
jump taken by the jumping process and so the inequality is maintained at Tn+1. As we know
Tn →∞ a.s. this completes the proof.

Denote dependence on N by letting ξN = (ξ1,N , ξ2,N ) be the unique solution to (2.2) with a
given initial condition ξN

0 and let

(2.6) Xi,N
t =

1
N

∑
x∈ZN

δxξ
i,N
t (x), i = 1, 2

10



denote the associated pair of empirical measures, each taking values in MF . We will not be able
to deal with the case of symbiotic systems where both γi > 0 so we will assume from now on
that γ1 ≤ 0. As we prefer to write positive parameters we will in fact replace γ1 with −γ1 and
therefore assume γ1 ≥ 0. We will let ξ̄i,N and X̄i,N denote the corresponding particle system and
empirical measures with γ̄ = (0, γ+

2 ). We call (X1,N , X2,N ) a positive colicin process, as X̄1,N is
just a rescaled branching random walk which has a non-negative local influence on X̄2,N . The
above Domination Principle implies

(2.7) Xi,N ≤ X̄i,N for i = 1, 2.

In order to obtain the desired limiting martingale problem we will need to use a bit of jump
calculus to derive the martingale properties of Xi,N . Define the discrete collision local time for
Xi,N by

Li,N
t (φ) = 2−d

∫ t

0

∫
Rd
φ(x)Nd/2X3−i,N

s (B(x,N−1/2))Xi,N
s (dx) ds(2.8)

We denote the corresponding quantity for our bounding positive colicin process by L̄i,N . These
integrals all have finite means by (2.5) and, in particular, are a.s. finite. Let Λ̃ denote the predictable
compensator of a Poisson point process Λ and let Λ̂ = Λ − Λ̃ denote the associated martingale
measure. If ψi : R+ × Ω×ZN → R are Ft-predictable define a discrete inner product by

∇Nψ
1
s · ∇Nψ

2
s(x) = N

∑
y

pN (y − x)(ψ1(s, y)− ψ1(s, x))(ψ2(s, y)− ψ2(s, x))

and write ∇2
Nψ

i
s(x) for ∇Nψ

i
s · ∇Nψ

i
s(x). Next define

M i,N
t (ψi) =

∑
x

1
N

[ ∫ t

0

∫
ψi(s, x)1(u ≤ ξi

s−(x))Λ̂i,+
x (ds, du)(2.9)

−
∑

x

∫ t

0

∫
ψi(s, x)1(u ≤ ξi

s−(x))Λ̂i,−
x (ds, du)

+
∑
x,y

∫ t

0

∫ ∫
ψi(s, x)1(u ≤ ξi

s−(x), v ≤ γ+
i ξ

3−i
s− (y))Λ̂i,+,c

x,y (ds, du, dv)

−
∑
x,y

∫ t

0

∫ ∫
ψi(s, x)1(u ≤ ξi

s−(x), v ≤ γ−i ξ
3−i
s− (y))Λ̂i,−,c

x,y (ds, du, dv)

+
∑
x,y

∫ t

0

∫
ψi(s, x)1(u ≤ ξi

s−(y))Λ̂i,m
x,y (ds, du)

−
∑
x,y

∫ t

0

∫
ψi(s, x)1(u ≤ ξi

s−(x))Λ̂i,m
y,x (ds, du)

]
.

To deal with the convergence of the above sum note that its predictable square function is

〈M i,N (ψi)〉t =
∫ t

0
Xi,N

s (2(ψi
s)

2) ds+
|γi|
N
Li,N

t ((ψi)2) +
∫ t

0

1
N
Xi,N

s (∇2
Nψ

i
s) ds.(2.10)
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If ψ is bounded, the above is easily seen to be square integrable by (2.5), and so M i,N (ψi)t is
an L2 Ft-martingale. More generally whenever the above expression is a.s. finite for all t > 0,
M i,N

t (ψ) is an Ft-local martingale. The last two terms are minor error terms. We write M̄ i,N for
the corresponding martingale measures for our dominating positive colicin processes.

Let ∆N be the generator of the “motion” process BN
· which takes steps according to pN at rate

N :

∆Nφ(x) = N
∑

y∈ZN

(φ(y)− φ(x))pN (y − x).

Let ΠN
s,x be the law of this process which starts from x at time s. We will adopt the convention

ΠN
x = ΠN

0,x. It follows from Lemma 2.6 of Cox, Durrett and Perkins (2000) that if σ2 is as defined
in Section 1 then for φ ∈ C1,3

b ([0, T ]×Rd)

(2.11) ∆Nφ(s, x) → σ2

2
∆φ(s, x), uniformly in s ≤ T and x ∈ Rd as N →∞.

Let φ1, φ2 ∈ Cb([0, T ]×ZN ) with φ̇i = ∂φi

∂t also in Cb([0, T ]×ZN ). It is now fairly straightforward
to multiply (2.2) by φi(t, x)/N , sum over x, and integrate by parts to see that (X1,N , X2,N ) satisfies
the following martingale problem MN,γ1,γ2

X1,N
0 ,X2,N

0

:

X1,N
t (φ1(t)) = X1,N

0 (φ1(0)) +M1,N
t (φ1) +

∫ t

0
X1,N

s (∆Nφ1(s) + φ̇1(s)) ds(2.12)

− γ1L
1,N
t (φ1), t ≤ T,

X2,N
t (φ2(t)) = X2,N

0 (φ2(0)) +M2,N
t (φ2) +

∫ t

0
X2,N

s (∆2,Nφ2(s) + φ̇2(s)) ds

+ γ2L
2,N
t (φ2) , t ≤ T,

where M i,N are Ft −martingales, such that

〈M i,N (φi),M j,N (φj)〉t = δi,j

(∫ t

0
Xi,N

s (2φi(s)2) ds

+
|γi|
N
Li,N

t

(
φ2

i

)
+
∫ t

0

1
N
Xi,N

s (∇2
Nφ

i
s) ds.

)
Let

gN (X̄1,N
s , x) = 2−dNd/2X̄1,N

s (B(x,N−1/2)).

To derive the conditional mean of X̄2,N given X̄1,N we first note that ξ̄1,N is in fact F1
t -adapted

as the equations for ξ̄1,N are autonomous since γ̄1 = 0 and so the pathwise unique solution will be
adapted to the smaller filtration. Note also that if F̄t = F1

∞ ∨ F2
t , then Λ̂2,±, Λ̂2,±,c, Λ̂2,m are all

F̄t-martingale measures and so M̄2,N (ψ) will be a F̄t-martingale whenever ψ : [0, T ]×Ω×ZN → R
is bounded and F̄t-predictable. Therefore if ψ, ψ̇ : [0, T ] × Ω × ZN → R are bounded, continuous
in the first and third variables for a.a. choices of the second, and F̄t-predictable in the first two
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variables for each point in ZN , then we can repeat the derivation of the martingale problem for
(X1,N , X2,N ) and see that

X̄2,N
t (ψt) = X̄2,N

0 (ψ0) + M̄2,N
t (ψ) +

∫ t

0
X̄2,N

s

(
∆Nψs + γ+

2 gN (X̄1,N
s , ·)ψs + ψ̇s

)
ds, t ≤ T,

where M̄2,N
t (ψ) is now an F̄t-local martingale because the right-hand side of (2.10) is a.s. finite for

all t > 0.
Fix t > 0, and a map φ : ZN × Ω → R which is F1

∞-measurable in the second variable and
satisfies

(2.13) sup
x∈ZN

|φ(x)| <∞ a.s.

Let ψ satisfy

∂ψs

∂s
= −∆Nψs − γ+

2 gN (X̄1,N
s , ·)ψs, 0 ≤ s ≤ t,

ψt = φ.

One can check that ψs , s ≤ t is given by

ψs(x) = P gN
s,t (φ) (x) ≡ ΠN

s,x

[
φ(BN

t ) exp
{∫ t

s
γ+

2 gN (X̄1,N
r , BN

r ) dr
}]

,(2.14)

which indeed does satisfy the above conditions on ψ. Therefore for ψ, φ as above

X̄2,N
t (φ) = X̄2,N

0 (P gN
0,t (φ)) + M̄2,N

t (ψ).(2.15)

For each K > 0,

E(M̄2,N
t (ψ)|F̄0) = E(M̄2,N

t (ψ ∧K)|F̄0) = 0 a.s. on {sup
s≤t

|ψs| ≤ K|} ∈ F0

and hence, letting K →∞, we get

(2.16) E(M̄2,N
t (ψ)|F̄0) = 0 a.s.

This and (2.15) imply

E
[
X̄2,N

t (φ)|X̄1,N
]

= X̄2,N
0

(
P gN

0,t (φ) (·)
)

(2.17)

=
∫

Rd
Π0,x

[
φ(BN

t ) exp
{∫ t

0
γ+

2 gN (X̄1,N
r , BN

r ) dr
}]

X̄2,N
0 (dx).

It will also be convenient to use (2.15) to prove a corresponding result for conditional second
moments.
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Lemma 2.3 Let φi : ZN ×Ω → R, (i = 1, 2) be F1
∞-measurable in the second variable and satisfy

(2.13). Then

E
[
X̄2,N

t (φ1)X̄
2,N
t (φ2)|X̄1,N

]
= X̄2,N

0

(
P gN

0,t (φ1) (·)
)
X̄2,N

0

(
P gN

0,t (φ2) (·)
)

(2.18)

+ E

[∫ t

0

∫
Rd

2P gN
s,t (φ1) (x)P gN

s,t (φ2) (x)X̄2,N
s (dx) ds

∣∣∣X̄1,N

]

+ E

∫ t

0

∫
Rd

( ∑
y∈ZN

(P gN
s,t (φ1) (y)− P gN

s,t (φ1)(x))

× (P gN
s,t (φ2) (y)− P gN

s,t (φ2)(x))pN (x− y)
)
X̄2,N

s (dx) ds
∣∣∣X̄1,N

]
+ E

[
γ+

2

N
L̄2,N

t

(
P gN
·,t (φ1) (·)P gN

·,t (φ2) (·)
) ∣∣∣X̄1,N

]
.

Proof. Argue just as in the derivation of (2.16) to see that

E(M̄2,N
t (φ1)M̄

2,N
t (φ2)|F̄0) = E(〈M̄2,N (φ1), M̄2,N (φ2)〉t|F̄0) a.s.

The result is now immediate from this, (2.15) and (2.10).

Now we will use the Taylor expansion for the exponential function in (2.14) to see that for
φ : ZN × Ω → [0,∞) as above, and 0 ≤ s < t,

P gN
s,t (φ)(x) =

∞∑
n=0

(γ+
2 )n

n!
ΠN

s,x

[
φ(BN

t )
∫ t

s
. . .

∫ t

s

n∏
i=1

gN (X̄1,N
si

, BN
si

) ds1 . . . dsn

]

=
∞∑

n=0

(γ+
2 )n

[∫
Rn

+

1(s < s1 < s2 < . . . < sn ≤ t)(2.19)

×

(∫
Rdn

p(n)
x (s1 , . . . , sn, t, y1 , . . . , yn, φ)

n∏
i=1

X̄1,N
si

(dyi)

)
ds1 . . . dsn

]
.

Here

p(n)
x (s1 , . . . , sn, t, y1 , . . . , yn, φ)

= 2−dnNdn/2ΠN
x

(
φ(BN

t )1(
∣∣yi −BN

si

∣∣ ≤ 1/
√
N, i = 1, . . . , n)

)
.

We now state the concentration inequality for our rescaled branching random walks X̄1,N which
will play a central role in our proofs. The proof is given in Section 6.

Proposition 2.4 Assume that the non-random initial measure {X̄1,N
0 } satisfies UBN . For δ > 0,

define
Hδ,N ≡ sup

t≥0
%N

δ (X̄1,N
t ).

Then for any δ > 0, Hδ,N is bounded in probability uniformly in N , that is, for any ε > 0, there
exists M(ε) such that

P (Hδ,N ≥M(ε)) ≤ ε, ∀N ≥ 1.
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Throughout the rest of the paper we will assume

Assumption 2.5 The sequences of measures {Xi,N
0 , N ≥ 1}, i = 1, 2, satisfy condition UBN ,

and for each i, Xi,N
0 → Xi

0 in MF as N →∞.

It follows from (MN,0,0

X1,N
0 ,X2,N

0

) and the above assumption that sups X̄
1,N
s (1) is bounded in prob-

ability uniformly in N . For example, it is a non-negative martingale with mean X1,N
0 (1) → X1

0 (1)
and so one can apply the weak L1 inequality for non-negative martingales. It therefore follows from
Proposition 2.4 that (suppressing dependence on δ > 0)

(2.20) RN = Hδ,N + sup
s
X̄1,N

s (1)

is also bounded in probability uniformly in N , that is

(2.21) for any ε > 0 there is an Mε > 0 such that P (RN ≥Mε) ≤ ε for all N.

The next two Sections will deal with the issues of tightness and Tanaka’s formula, respectively.
In the course of the proofs we will use some technical Lemmas which will be proved in Sections
7 and 8, and will involve a non-decreasing σ(X̄1,N )-measurable process R̄N (t, ω) whose definition
(value) may change from line to line and which also satisfies

(2.22) for each t > 0, R̄N (t) is bounded in probability uniformly in N.

3 Tightness of the Approximating Systems

It will be convenient in Section 4 to also work with the symmetric collision local time defined by

LN
t (φ) = 2−d

∫ t

0

∫
Rd×Rd

1
(
|x1 − x2| ≤ N−1/2

)
Nd/2φ((x1 + x2)/2)X1,N

s (dx1)X2,N
s (dx2) ds.

This section is devoted to the proof of the following proposition.

Proposition 3.1 Let γ1 ≥ 0, γ2 ∈ R and {(X1,N , X2,N ) : N ∈ N} be as in (2.6) with {Xi,N
0 , N ∈

N}, i = 1, 2, satisfying Assumption 2.5. Then {(X1,N , X2,N , L2,N , L1,N , LN ), N ∈ N} is tight on
DMF

5 and each limit point (X1, X2, A,A,A) ∈ CMF
5 and satisfies the following martingale problem

M−γ1,γ2,A
X1

0 ,X2
0

: For φi ∈ C2
b (Rd), i = 1, 2,

X1
t (φ1) = X1

0 (φ1) +M1
t (φ1) +

∫ t

0
X1

s (
σ2

2
∆φ1) ds− γ1At(φ1),

X2
t (φ2) = X2

0 (φ2) +M2
t (φ2) +

∫ t

0
X2

s (
σ2

2
∆φ2) ds+ γ2At (φ2)

where M i are continuous local martingales such that

〈M i(φi),M j(φj)〉t = δi,j2
∫ t

0
Xi

s(φ
2
i ) ds.
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As has alreeay been noted, the main step will be to establish Proposition 3.1 for the positive col-
icin process (X̄1,N , X̄2,N ) which bounds (X1,N , X2,N ). Recall that this process solves the following
martingale problem: For bounded φ : ZN → R,

X̄1,N
t (φ) = X̄1,N

0 (φ) + M̄1,N
t (φ) +

∫ t

0
X̄1,N

s (∆Nφ) ds,(3.1)

X̄2,N
t (φ) = X̄2,N

0 (φ) + M̄2,N
t (φ) +

∫ t

0
X̄2,N

s (∆Nφ) ds(3.2)

+ γ+
2

∫ t

0

∫
Rd
φ(x)L̄2,N (dx, ds),

where

〈M̄1,N (φ)〉t = 2
∫ t

0
X̄1,N

s (φ2) ds+
∫ t

0

∫
Rd

 ∑
x∈ZN

(φ(x)− φ(y))2pN (x− y)

 X̄1,N
s (dy) ds(3.3)

〈M̄2,N (φ)〉t = 2
∫ t

0
X̄2,N

s (φ2) ds+
∫ t

0

∫
Rd

∑
y∈ZN

(φ(y)− φ(x))2pN (x− y)

 X̄2,N
s (dx) ds(3.4)

+
γ+

2

N
L̄2,N

t

(
φ2
)

Proposition 3.2 The sequence {X̄1,N , N ≥ 1} converges weakly in DMF
to super-Brownian

motion with parameters b = 2, σ2, and β = 0.

Proof This result is standard in the super-Brownian motion theory, see e.g. Theorem 15.1 of Cox,
Durrett, and Perkins (1999).

Most of the rest of this section is devoted to the proof of the following proposition.

Proposition 3.3 The sequence {X̄2,N , N ≥ 1} is tight in DMF
and each limit point is supported

by CMF
.

Recall the following lemma (Lemmas 2.7, 2.8 of Durrett and Perkins (1999)) which gives con-
ditions for tightness of a sequence of measure-valued processes.

Lemma 3.4 Let {PN} be a sequence of probabilities on DMF
and let Yt denote the coordinate

variables on DMF
. Assume Φ ⊂ Cb(Rd) be a separating class which is closed under addition.

(a) {PN} is tight in DMF
if and only if the following conditions holds.

(i) For each T, ε > 0, there is a compact set KT,ε ⊂ Rd such that

lim sup
N

PN

(
sup
t≤T

Yt(Kc
T,ε) > ε

)
< ε.
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(ii) limM→∞ supN PN (supt≤T Yt(1) > M) = 0.

(iii) If PN,φ(A) ≡ PN (Y·(φ) ∈ A), then for each φ ∈ Φ, {PN,φ, N ≥ 1} is tight in DR .

(b) If PN satisfies (i), (ii), and (iii), and for each φ ∈ Φ all limit points of PN,φ are supported
by CR , then PN is tight in DMF

and all limit points are supported on CMF
.

Notation. We choose the following constants:

0 < δ < δ̃ < 1/6,(3.5)

and define

ld ≡ (d/2− 1)+ ,
%̂N

δ (µ) ≡ %N
δ (µ) + µ(1) .(3.6)

By Proposition 2.4

sup
x,t

X̄1,N
t (B(x, r)) ≤ Hδ,Nr

(2∧d)−δ, ∀r ∈ [1/
√
N, 1],

and hence for φ : R+ ×ZN → [0,∞),

1
N
L̄2,N

t (φ) ≤ Hδ,NN
−1+ld+δ/22−d

∫ t

0

∫
Rd
φ(x)X̄2,N

s (dx) ds .(3.7)

Recall our convention with respect to R̄N (t, ω) from the end of Section 2. The proof of the
following bound on the semigroup P gN

s,t is deferred until Section 7.

Proposition 3.5 Let φ : ZN → [0,∞). Then for 0 ≤ s < t

(a) ∫
P gN

s,t (φ) (x1)µN (dx1) ≤
∫

ΠN
s,x1

[
φ(BN

t )
]
µN (dx1)

+ %̂N
δ (µN )R̄N (t)

∫ t

s
(sn − s)−ld−δ̃

∫
sup

|zn|≤N−1/2

ΠN
sn,yn+zn

[
φ(BN

t )
]
X̄1,N

sn
(dyn) dsn .

(b)

P gN
s,t (φ) (x1) ≤ ‖φ‖∞ R̄N (t), x1 ∈ ZN .

As simple consequences of the above we have the following bounds on the conditional mean
measures of X̄2,N .

Corollary 3.6 If φ : ZN → [0,∞), then

17



(a)

E
[
X̄2,N

t (φ)|X̄1,N
]

≤
∫

ΠN
x1

[
φ(BN

t )
]
X̄2,N

0 (dx1)

+ ρ̂δ(X̄
2,N
0 )R̄N (t)

∫ t

0
s−δ̃−ld
n

∫
sup

|zn|≤N−1/2

ΠN
yn+zn

[
φ(BN

t−sn
)
]
X̄1,N

sn
(dyn) dsn .

(b)
E
[
X̄2,N

t (φ)|X̄1,N
]
≤ ‖φ‖∞ X̄2,N

0 (1)R̄N (t).

Proof Immediate from (2.17) and Proposition 3.5.

The next lemma gives a bound for a particular test function φ and is essential for bounding the
first moments of the approximate local times.

Lemma 3.7 (a)∫
ZN

P gN
0,t

(
Nd/21

(
|· − y| ≤ 1/

√
N
))

(x1)µN (dx1)

≤ %̂N
δ (µN )R̄N (t)t−ld−δ̃ , ∀t > 0, y ∈ ZN , N ≥ 1.

(b) ∫
ZN

P gN
0,t

(
Nd/21

(
|· − y| ≤ 1/

√
N
))

(x1)µN (dy)

≤ %̂N
δ (µN )R̄N (t)t−ld−δ̃ , ∀t > 0, x1 ∈ ZN , N ≥ 1.

Proof Deferred to Section 7.

Lemma 3.8 For any ε > 0, T > 0, there exist r1 such that

P

(
sup
t≤T

E
[
X̄2,N

t (B(0, r)c)|X̄1,N
]
≤ ε3

)
≥ 1− ε1, ∀N, ∀r ≥ r1.(3.8)

Proof Corollary 3.6(a) implies

E
[
X̄2,N

t (B(0, r)c)|X̄1,N
]

≤
∫

ΠN
x1

(∣∣BN
t

∣∣ > r
)
X̄2,N

0 (dx1)

+ ρ̂δ(X̄
2,N
0 )R̄N (t)

∫ t

0
s−δ̃−ld
n

∫
sup

|zn|≤N−1/2

ΠN
sn,yn+zn

(∣∣BN
t

∣∣ > r
)
X̄1,N

sn
(dyn) dsn

≡ I1,N
t (r) + I2,N

t (r) .
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Now we have

I1,N
t (r) ≤ X̄2,N

0 (B(0, r/2)c) + X̄2,N
0 (1)ΠN

0

(∣∣BN
t

∣∣ > r/2
)
.

Clearly,

For any compact K ⊂ Rd,
{
ΠN

y : y ∈ K, N ≥ 1
}

is tight on DRd .(3.9)

By (3.9) and Assumption 2.5 we get that for all r sufficiently large and all N ∈ N,

sup
t≤T

I1,N
t (r) ≤ 1

2
ε3.(3.10)

Arguing in a similar manner for I2,N , we get

sup
t≤T

I2,N
t (r) ≤ ρ̂δ(X̄

2,N
0 )R̄N (T )

∫ T

0
s−δ̃−ld ds

(
sup
s≤T

X̄1,N
s (B(0, r/2)c)

+ sup
s≤T

X̄1,N
s (1)ΠN

0

(∣∣BN
t

∣∣ > r/2−N−1/2
))

.

Again, by (3.9), our assumptions on {X̄2,N
0 , N ≥ 1} and tightness of {R̄N (T ), N ≥ 1} and

{X̄1,N , N ≥ 1} we get that for all r sufficiently large and all N ,

P

(
sup
t≤T

I2,N
t (r) ≤ 1

2
ε3

)
≥ 1− ε1 ,(3.11)

and we are done.

Lemma 3.9 For any ε, ε1 > 0, T > 0, there exists r1 such that

P
(
E
[
L̄2,N

T (B(0, r)c) |X̄1,N
]
≤ ε2

)
≥ 1− ε1, ∀N ∈ N, ∀r ≥ r1.(3.12)

Proof

E
[
L̄2,N

T (B(0, r)c) |X̄1,N
]

≤ 2−d

∫ T

0

∫
z∈Rd

E

[
Nd/2

∫
|x|≥r

1
(
|x− z| ≤ N−1/2

)
X̄2,N

s (dx)|X̄1,N

]
X̄1,N

s (dz) ds

= 2−d

∫ T

0

∫
|z|≥r−N−1/2

∫
ZN

P gN
0,s

(
Nd/21

(
|· − z| ≤ 1/

√
N
))

(x1)X̄
2,N
0 (dx1)X̄1,N

s (dz) ds

(by (2.17))

≤ R̄N (T )%̂N
δ (X̄2,N

0 ) sup
s≤T

X̄1,N
s

(
B(0, r −N−1/2)c

)∫ T

0
s−ld−δ̃ ds (by Lemma 3.7(a))

= R̄N (T )%̂N
δ (X̄2,N

0 ) sup
s≤T

X̄1,N
s

(
B(0, r −N−1/2)c

)
.
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Now recalling Assumption 2.5 and the tightness of {R̄N (T ), N ≥ 1} and {X̄1,N , N ≥ 1}, we
complete the proof as in Lemma 3.8.

Notation For any r > 1 let fr : Rd 7→ [0, 1] be a C∞ function such that

B(0, r) ⊂ {x : fr(x) = 0} ⊂ {x : fr(x) < 1} ⊂ B(0, r + 1)

Lemma 3.10 For each T, ε > 0, there is an r = r2 > 0 sufficiently large, such that

lim sup
N→∞

P

(
sup
t≤T

X̄2,N
t (B(0, r2)c) > ε

)
≤ ε.(3.13)

Proof Apply Chebychev’s inequality on each term of the martingale problem (3.2) for X̄2,N and
then Doob’s inequality to get

P

(
sup
t≤T

X̄2,N
t (fr) > ε|X̄1,N

)
(3.14)

≤
{

1
(
X̄2,N

0 (fr) > ε/4
)

+
c

ε2
E
[
〈M̄2,N

· (fr)〉T |X̄1,N
]

+
c

ε

∫ T

0
E
[
X̄2,N

s (B(0, r)c)|X̄1,N
]
ds

+
c

ε
γE

[∫ T

0

∫
Rd
fr(x)L̄2,N (dx, ds)|X̄1,N

]}
∧ 1

Hence by tightness of {X̄2,N
0 }, (3.4) and Lemmas 3.8, 3.9 we may take r sufficiently large such

that the right-hand side of (3.14) is less than ε/2 with probability at least 1− ε/2 for all N . This
completes the proof.

Lemma 3.11 For any φ ∈ Bb,+(Rd), t > 0,

E
[
L̄2,N

t (φ) |X̄1,N
]

≤ ‖φ‖∞ R̄N (t)X̄2,N
0 (1)

∫ t

0
s−ld−δ̃ ds.(3.15)

Proof By (2.17),

E
[
L̄2,N

t (φ) |X̄1,N
]

≤ ‖φ‖∞ 2−d

∫ t

0

∫
x1∈Rd

(∫
z∈Rd

P gN
0,t

(
Nd/21

(
|· − z| ≤ 1/

√
N
))

(x1)X̄1,N
s (dz)

)
X̄2,N

0 (dx1) ds

≤ ‖φ‖∞ sup
s≤t

%̂N
δ (X̄1,N

s )X̄2,N
0 (1)

∫ t

0
s−ld−δ̃ ds,
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where the last inequality follows by Lemma 3.7(b) with µN = X̄1,N
s . As we may assume

sup
s≤t

%̂N
δ (X̄1,N

s ) ≤ R̄N (t)

(the left-hand side is bounded in probability uniformly in N by Propostions 2.4 and 3.2), the result
follows.

Lemma 3.12 For any T > 0,

lim
K→∞

sup
N
P (sup

t≤T
X̄2,N

t (1) > K) = 0.

Proof Applying Chebychev’s inequality on each term of the martingale problem (3.2) for X̄2,N

and then Doob’s inequality, one sees that

P

(
sup
t≤T

X̄2,N
t (1) > K|X̄1,N

)
≤

{
1
(
X̄2,N

0 (1) > K/3
)

+
c

K2
E
[
〈M̄2,N

· (1)〉T |X̄1,N
]

(3.16)

+
c

K
γ+

2 E
[
L̄2,N

T (1)|X̄1,N
]}

∧ 1.

Now apply Assumption 2.5, (3.4), Lemma 3.11, and Corollary 3.6(b) to finish the proof.

Lemma 3.13 The sequence {L̄2,N , N ≥ 1} is tight in CMF
.

Proof Lemmas 3.9 and 3.11 imply conditions (i) and (ii), respectively in Lemma 3.4. Now let us
check (iii). Let Φ ⊂ Cb(Rd) be a separating class of functions. We will argue by Aldous’ tightness
criterion (see Theorem 6.8 of Walsh (1986)). First by (2.22) and Lemma 3.11 we immediately get
that for any φ ∈ Φ, t ≥ 0, {L̄2,N

t (φ) : N ∈ N} is tight. Next, let {τN} be arbitrary sequence of
stopping times bounded by some T > 0 and let {εN , N ≥ 1} be a sequence such that εN ↓ 0 as
N →∞. Then arguing as in Lemma 3.11 it is easy to verify

E
[
L̄2,N

τN+εN
(φ)− L̄2,N

τN
(φ) |X̄1,N ,FτN

]
≤ ‖φ‖∞ R̄N (T )X̄2,N

τN
(1)
∫ τN+εN

τN

(s− τN )−ld−δ̃ ds,

Then by (2.22) and Lemma 3.12 we immediately get that∣∣∣L̄2,N
τN+εN

(φ)− L̄2,N
τN

(φ)
∣∣∣→ 0

in probability as N → ∞. Hence by Aldous’ criterion for tightness we get that {L̄2,N (φ)} is tight
in DR for any φ ∈ Φ. Note L̄2,N (φ) ∈ CR for all N , and so {L̄2,N (φ)} is tight in CR, and we are
done.

The next lemma will be used for the proof of Proposition 3.1. The processes Xi,N , Li,N and
LN are all as in that result.
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Lemma 3.14 The sequences {Li,N , N ≥ 1}, i = 1, 2, and {LN , N ≥ 1} are tight in CMF
, and

moreover for any uniformly continuous function φ on Rd and T > 0

sup
t≤T

∣∣∣Li,N
t (φ)− LN

t (φ)
∣∣∣→ 0, in probability as N →∞, i = 1, 2.(3.17)

Proof First, by Proposition 2.2

L2,N
t ≤ L̄2,N

t , L2,N
t − L2,N

s ≤ L̄2,N
t − L̄2,N

s , ∀0 ≤ s ≤ t,(3.18)

where L̄2,N is the approximating collision local time for the (X̄1,N , X̄2,N ) solving MN,0,γ+
2

X1,N
0 ,X2,N

0

. By

Lemma 3.13 L̄2,N
t is tight in CMF

, and hence, by (3.18), L2,N is tight as well (see the proof of
Lemma 3.13).

To finish the proof it is enough to show that for any uniformly continuous function φ on Rd

and T > 0

sup
t≤T

∣∣∣L1,N
t (φ)− L2,N

t (φ)
∣∣∣→ 0, as N →∞, in probability,(3.19)

sup
t≤T

∣∣∣LN
t (φ)− L2,N

t (φ)
∣∣∣→ 0, as N →∞, in probability.(3.20)

We will check only (3.19), since the proof of (3.20) goes along the same lines. By trivial calculations
we get

sup
t≤T

∣∣∣L1,N
t (φ)− L2,N

t (φ)
∣∣∣ ≤ sup

|x−y|≤N−1/2

|φ(x)− φ(y)|L2,N
T (1),

≤ sup
|x−y|≤N−1/2

|φ(x)− φ(y)| L̄2,N
T (1), ∀N ≥ 1,

where the last inequality follows by (3.18). The result follows by the uniform continuity assumption
on φ and Lemma 3.13.

Now we are ready to present the

Proof of Proposition 3.3 We will check conditions (i)–(iii) of Lemma 3.4. By Lemmas 3.10
and 3.12, conditions (i) and (ii) of Lemma 3.4 are satisfied. Turning to (iii), fix a φ ∈ C3

b (Rd).
Then using the Aldous criterion for tightness along with Lemma 3.12 and (2.11), and arguing as
in Lemma 3.13, it is easy to verify that {

∫ ·
0 X̄

2,N
s (∆Nφ) ds} is a tight sequence of processes in CR .

By Lemma 3.13 and the uniform convergence of PNφ to φ we also see that {γ+
2 L̄

2,N
· (PNφ)} is a

tight sequence of processes in CR .
Turning now to the local martingale term in (3.2), arguing as above, now using |∇φ|2 ≤ Cφ <∞

and Lemma 3.13 as well, we see from (3.4) that {〈M̄2,N (φ)〉· , N ≥ 1} is a tight sequence of processes
in CR . Note also that by definition,

sup
t≤T

∣∣∣∆M̄2,N
t (φ)

∣∣∣ ≤ 2 ‖φ‖∞N−1.

Theorem VI.4.13 and Proposition VI.3.26 of Jacod and Shiryaev Jacod and Shiryaev (1987) show
that {M̄2,N

t (φ) , N ≥ 1} is a tight sequence in DR and all limit point are supported in CR. The

22



above results with (3.2) and Corollary VI.3.33 of Jacod and Shiryaev Jacod and Shiryaev (1987)
show that X̄2,N

· (φ) is tight in DR and all the limit points are supported in CR. Lemma 3.4(b) now
completes the proof.

Proof of Proposition 3.1 Arguing as in the proof of Proposition 3.3 and using Proposition 2.2
and Lemma 3.14, we can easily show that {(X1,N , X2,N , L2,N , L1,N , LN ), N ≥ 1} is tight on
DMF

5 , and any limit point belongs to CMF
5 . Let {(X1,Nk , X2,Nk , L2,Nk , L1,Nk , LNk), k ≥ 1}

be any convergent subsequence of {(X1,N , X2,N , L2,N , L1,N , LN ), N ≥ 1}. By Lemma 3.14, if
(X1, X2, A) is the limit of {(X1,Nk , X2,Nk , L2,Nk), k ≥ 1}, then

(X1,Nk , X2,Nk , L2,Nk , L1,Nk , LNk) ⇒ (X1, X2, A,A,A),(3.21)

as k →∞. By Skorohod’s theorem, we may assume that convergence in (3.21) is a.s. in DMF
5 to

a continuous limit. To complete the proof we need to show that (X1, X2) satisfies the martingale
problem M−γ1,γ2,A

X1
0 ,X2

0
. Let φi ∈ C3

b (Rd), i = 1, 2. Recalling from (2.11), that

∆Nφi →
σ2

2
∆φi uniformly on Rd,(3.22)

we see that all the terms in MNk,−γ1,γ2

X
1,Nk
0 ,X

2,Nk
0

converge to the corresponding terms in M−γ1,γ2,A
X1

0 ,X2
0

, except

perhaps the local martingale terms. By convergence of the other terms in MNk,γ1,γ2

X
1,Nk
0 ,X

2,Nk
0

we see that

M i,Nk
t (φi) →M i

t (φi) = Xi
t(φi)−Xi

0(φi)−
∫ t

0
Xi

s(
σ2∆φi

2
) ds− (−1)iγiAt(φi) a.s. in DR, i = 1, 2.

These local martingales have jumps bounded by 2
Nk
‖φi‖∞, and square functions which are bounded

in probability uniformly in Nk by Proposition 3.2 and Lemma 3.12. Therefore they are locally
bounded using stopping times {TNk

n } which become large in probability as n → ∞ uniformly in
Nk. One can now proceed in a standard manner (see, e.g. the proofs of Lemma 2.10 and Proposition
2 in Durrett and Perkins (1999)) to show that M i(φ) have the local martingale property and square
functions claimed in M−γ1,γ2,A

X1
0 ,X2

0
. Finally we need to increase the class of test functions from C3

b to

C2
b . For φi ∈ C2

b apply the martingale problem with Pδφi (Pδ is the Brownian semigroup) and let
δ → 0. As Pδ∆φi → ∆φi in the bounded pointwise sense, we do get M−γ1,γ2,A

X1
0 ,X2

0
for φi in the limit

and so the proof is complete.

4 Convergence of the approximating Tanaka formulae

Define KN = Nd/2(M + 1
2)d. Then for any φ : Z → R bounded or non-negative define

Gα
Nφ(x1 , x2) = ΠN

x1
×ΠN

x2

[∫ ∞

0
e−αsKNp

N (B1,N
s −B2,N

s )φ

(
B1,N

s +B2,N
s

2

)
ds

]
,(4.1)
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where α ≥ 0 for d = 3 and α > 0 for d ≤ 2. These conditions on α will be implicitly assumed in
what follows. Note that for any bounded φ we have

Gα
Nφ(x1 , x2) ≤ ‖φ‖∞ΠN

x1
×ΠN

x2

[∫ ∞

0
e−αsKNp

N (B1,N
s −B2,N

s ) ds
]

≡ ‖φ‖∞Gα
N1(x1 , x2)

= ‖φ‖∞Nd/22−d
∑

|z|≤N−1/2

∫ ∞

0
e−αspN

2s(x1 − x2 − z) ds,(4.2)

where pN
· is the transition probability function of the continuous time random walk BN with

generator ∆N .
For 0 < ε < 1, define

ψε
N (x1 , x2) ≡ Gα

N1(x1 , x2)1(|x1 − x2| ≤ ε),

hd(t) ≡


1, if d = 1,
1 + ln+(1/t), if d = 2,
t1−d/2, if d = 3.

(4.3)

Let (X1,N , X2,N ) be as in (2.6) as usual. Recall

L2,N
t (φ) = 2−d

∫ t

0

∫
Rd
φ(x)Nd/2X1,N

s (B(x,N−1/2))X2,N
s (dx) ds,

L1,N
t (φ) = 2−d

∫ t

0

∫
Rd
φ(x)Nd/2X2,N

s (B(x,N−1/2))X1,N
s (dx) ds,

LN
t (φ) = 2−d

∫ t

0

∫
Rd×Rd

1
(
|x1 − x2| ≤ N−1/2

)
Nd/2φ((x1 + x2)/2)X1,N

s (dx1)X2,N
s (dx2) ds.

We introduce

XN
t = X1,N

t ×X2,N
t , ∀t ≥ 0.(4.4)

Then arguing as in Lemma 5.2 of Barlow, Evans, and Perkins (1991) where an Ito’s formula for a pair
of interacting super-Brownian motions was derived, we can easily verify the following approximate
Tanaka formula for φ : Z → R bounded:

XN
t (Gα

Nφ) = XN
0 (Gα

Nφ)− γ1

∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)X2,N
s (dx2)L1,N (ds, dx1)

+ γ2

∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)X1,N
s (dx1)L2,N (ds, dx2)(4.5)

+ α

∫ t

0
XN

s (Gα
Nφ) ds

+
∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)
(
X1,N

s (dx1)M2,N (ds, dx2) +X2,N
s (dx2)M1,N (ds, dx1)

)
− LN

t (φ),
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where M i,N , i = 1, 2, are the martingale measures in M−γ1,γ2,A
X1

0 ,X2
0

. Let (X1, X2, A,A,A) ∈ CMF
5

be an arbitrary limit point of (X1,N , X2,N , L1,N , L2,N , LN ) (they exist by Proposition 3.1)), and to
simplify the notation we assume

(X1,N , X2,N , L1,N , L2,N , LN ) ⇒ (X1, X2, A,A,A),

as N → ∞. Moreover, throughout this section, by the Skorohod representation theorem, we may
assume that

(X1,N , X2,N , L1,N , L2,N , LN ) → (X1, X2, A,A,A), in (DMF
5), P − a.s.(4.6)

Recall that pt(·) is transition density of the Brownian motion B with generator σ2

2 ∆. Let Πx

be the law of B with B0 = x and denote its semigroup by Pt. If φ : Rd → R is Borel and bounded
define

Gαφ(x1 , x2) ≡ lim
ε↓0

Πx1 ×Πx2

[∫ ∞

0
e−αspε(B1

s −B2
s )φ

(
B1

s +B2
s

2

)
ds

]
=

∫ ∞

0
e−αsp2s(x1 − x2)Ps/2φ

(x1 + x2

2

)
ds.

A change of variables shows this agrees with the definition of Gαφ in Section 5 of Barlow-Evans
and Perkins (1991) and so is finite (and the above limit exists) for all x1 6= x2, and all (x1, x2) if
d = 1. For φ ≡ 1, Gα1(x1, x2) is bounded by c(1 + log+(1/|x1 − x2|)) if d = 2 and c|x1 − x2|−1 if
d = 3 (see (5.5)–(5.7) of Barlow, Evans and Perkins (1991)).

In this section we intend to prove the following proposition.

Proposition 4.1 Let (X1, X2, A) be an arbitrary limiting point described above. Then for φ ∈
Cb(Rd),

Xt(Gαφ) = X0(Gαφ)− γ1

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)X2

s (dx2)A(ds, dx1)

+ γ2

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)X1

s (dx1)A(ds, dx2)(4.7)

+ α

∫ t

0
Xs(Gαφ) ds+ M̃t(φ)−At(φ),

where M̃t(φ) is a continuous FX,A
t -local martingale.

To verify the proposition we will establish the convergence of all the terms in (4.5) through a
series of lemmas.

If µ ∈MF (ZN ), µ∗pN (dx) denotes the convolution measure on ZN . The proof of the following
lemma is trivial and hence is omitted.

Lemma 4.2 If µ ∈MF (ZN ) then

sup
x
µ ∗ pN (B(x, r)) ≤ %δ(µ)r(2∧d)−δ, ∀r ∈ [0, 1].

25



Now let us formulate a number of helpful results whose proofs are deferred to Section 8.

Lemma 4.3 For 0 < ε < 1,

sup
x1

∫
ZN

ψε
N (x , x1)µN (dx) ≤ c%̂N

δ (µN )ε1−ld−δ̃ , ∀N ≥ ε−2 .(4.8)

Lemma 4.4 If 0 < η < 2/7, then for all 0 < ε < 1/2,

E

[∫ t

0

∫
Z2

N

ψε
N (x1, x)X̄2,N

s (dx1)L̄1,N (ds, dx) ds|X̄1,N

]
≤ R̄N (t)%̂N

δ (X̄2,N
0 )2εη(1−ld−3δ̃)t1−ld−δ̃ , ∀t > 0, N ≥ ε−2.

Define

qN (x) = 10(x) + pN (x).(4.9)

Lemma 4.5 If 0 < η < 2/7, then for all 0 < ε < 1/2,∫
Rd
E

[∫
Rd
ψε

N (x, x1)X̄
2,N
t (dx1)

∫
Rd
Gα

N1(x , x2)X̄
2,N
t (dx2)|X̄1,N

](
X̄1,N

t ∗ qN
)

(dx)

≤ R̄N (t)[%̂N
δ (X̄2,N

0 )2 + 1]εη(1−ld−3δ̃), ∀t ≥ 0, N ≥ ε−2.

Now, for any δ̂ > 0 define

Gα,δ̂
N φ(x1 , x2) ≡ ΠN

x1
×ΠN

x2

[∫ ∞

δ̂
e−αsKNp

N (B1,N
s −B2,N

s )φ((B1,N
s +B2,N

s )/2) ds
]
,

Gα,δ̂φ(x1 , x2) ≡
∫ ∞

δ̂
e−αsp2s(x1 − x2)Ps/2φ

(x1 + x2

2

)
ds.

Unlike Gαφ, Gα,δ̂φ is bounded on R2d for bounded Borel φ : Rd → R.

Lemma 4.6 (a) For any φ ∈ Cb(Rd)

Gα
Nφ(·, ·) → Gαφ(·, ·), as N →∞,(4.10)

uniformly on the compact subsets of Rd ×Rd \ {(x1 x2) : x1 = x2}.
(b) For any φ ∈ Cb(Rd), δ̂ > 0,

Gα,δ̂
N φ(·, ·) → Gα,δ̂φ(·, ·), as N →∞,(4.11)

uniformly on the compact subsets of Rd ×Rd.

Proof: Let ε0 ∈ (0, 1). The key step will be to show

(4.12) lim
ε↓0

sup
N,|x1−x2|≥ε0

∫ ε

0
Nd/2ΠN

x1
×ΠN

x2
(|B1,N

s −B2,N
s | ≤ N−1/2) ds = 0.
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Once (4.12) is established we see that the contribution to Gα
Nφ from times s ≤ ε is small uniformly

for |x1 − x2| ≥ ε0 and N . A straightforward application of the continuous time local central limit
theorem (it is easy to check that (5.2) in Durrett (2004) works in continuous time) and Donsker’s
Theorem shows that uniformly in x1, x2 in compacts,

lim
N→∞

Gα,ε
N φ(x1, x2)

= lim
N→∞

∫ ∞

ε
2−dNd/2ΠN

x1
×ΠN

x2

(
1(|B1,N

s −B2,N
s | ≤ N−1/2)φ

(B1,N
s +B2,N

s

2

))
e−αs ds

=
∫ ∞

ε
p2s(x1 − x2)Ps/2φ

(x1 + x2

2

)
e−αs ds = Gα,εφ(x1, x2).

This immediately implies (b), and, together with (4.12), also gives (a).
It remains to establish (4.12). Assume |x| ≡ |x1 − x2| ≥ ε0 and let {Sj} be as in Lemma 7.1.

Then for N−1/2 < ε0, use Lemma 7.1 to obtain∫ ε

0
Nd/2ΠN

x1
×ΠN

x2
(|B1,N

s −B2,N
s | ≤ N−1/2) ds

=
∫ ε

0
Nd/2−1 e

−2Ns

2

∞∑
j=1

(2Ns)j

j!
P
( Sj√

j
∈
√
N√
j
x+ [−j−1/2, j−1/2]d)2N ds

≤
∞∑

j=1

Nd/2−1C exp{−c((N/j)|x|2 ∧
√
N |x|)}j−d/2

∫ 2Nε

0
e−uu

j

j!
du.(4.13)

Now use Stirling’s formula to conclude that for j ≥ 1 and ε′ = 2eε,∫ 2Nε

0
e−uu

j

j!
du ≤ (2Nε)j

j!
≤ c0√

j

(e2Nε
j

)j
≤ c0

(Nε′
j

)j
,

and so conclude ∫ 2Nε

0
e−uu

j

j!
du ≤ c0 min

(
1,
(Nε′
j

)j)
.

Use this to bound (4.13) by

C ′
[
Nd/2−1e−c

√
Nε0

∑
1≤j≤

√
Nε0

j−d/2 +Nd/2−1
∑

j≥2ε′N

2−j

+N−1
∑

√
Nε0<j<2ε′N

((j + 1)/N)−d/2 exp{−cε20/(j/N)}
]

≤ C ′
[
Nd/2e−c

√
Nε0 +Nd/2−12−2ε′N +

∫ 2ε′

0
u−d/2 exp{−cε20/u} du.

]
Choose ε = ε(ε0) such that the right-hand side is at most ε0 for N ≥ N0(ε0). By making ε smaller
still we can handle the finitely many values of N ≤ N0 and hence prove (4.12).
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Lemma 4.7 For any φ ∈ Cb,+(Rd) and T > 0,

sup
t≤T

∫
Rd×Rd

Gαφ(x1, x2)X1
t (dx1)X2

t (dx2) <∞, P − a.s.,(4.14)

and

sup
t≤T

∣∣∣∣∫
Rd×Rd

Gα
Nφ(x1, x2)X

1,N
t (dx1)X

2,N
t (dx2)(4.15)

−
∫

Rd×Rd
Gαφ(x1, x2)X1

t (dx1)X2
t (dx2)

∣∣∣∣→ 0,

in probability, as N →∞. Finally

(4.16) t→
∫

Rd×Rd
Gαφ(x1, x2)X1

t (dx1)X2
t (dx2) is a.s. continuous.

Proof First let us prove (4.15). By Proposition 2.4, Lemma 4.3, Proposition 3.2, Lemma 3.12
and Proposition 2.2, for any δ1 , δ2 > 0, there exists ε∗ > 0, such that

P

(
sup
t≤T

∫
Rd×Rd

Gα
Nφ(x1, x2)1(|x1 − x2| ≤ 2ε)X1,N

t (dx1)X
2,N
t (dx2) > δ1

)
≤ δ2,(4.17)

for any ε ≤ ε∗ and N ≥ ε−2
∗ .

As in the previous section, for 1/2 > ε > 0, fε ∈ [0, 1] is a C∞ function such that

fε(x) =
{

1, if |x| ≤ ε,
0 if |x| > 2ε.

(4.18)

By Lemma 4.6(b) and the convergence

(X1,N , X2,N ) → (X1, X2), in DMF
2 , P − a.s.

with (X1, X2) ∈ CMF
2 , we get

P

(
sup
t≤T

∫
Rd×Rd

Gα,δ̂φ(x1, x2)fε(x1 − x2)X1
t (dx1)X2

t (dx2) > δ1

)

≤ lim
N→∞

P

(
sup
t≤T

∫
Rd×Rd

Gα,δ̂
N φ(x1, x2)fε(x1 − x2)X

1,N
t (dx1)X

2,N
t (dx2) > δ1

)

≤ lim
N→∞

P

(
sup
t≤T

∫
Rd×Rd

Gα
Nφ(x1, x2)fε(x1 − x2)X

1,N
t (dx1)X

2,N
t (dx2) > δ1

)
≤ δ2.

Since δ̂ > 0 was arbitrary we can take δ̂ ↓ 0 in the above to get

P

(
sup
t≤T

∫
Rd×Rd

Gαφ(x1, x2)fε(x1 − x2)X1
t (dx1)X2

t (dx2) > δ1

)
≤ δ2 .(4.19)
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Now

P

(
sup
t≤T

∣∣∣∣∫
Rd×Rd

Gα
Nφ(x1, x2)X

1,N
t (dx1)X

2,N
t (dx2)

−
∫

Rd×Rd
Gαφ(x1, x2)X1

t (dx1)X2
t (dx2)

∣∣∣∣ ≥ 3δ1

)
≤ P

(
sup
t≤T

∣∣∣∣∫
Rd×Rd

Gα
Nφ(x1, x2)(1− fε(x1 − x2))X

1,N
t (dx1)X

2,N
t (dx2)

−
∫

Rd×Rd
Gαφ(x1, x2)(1− fε(x1 − x2))X1

t (dx1)X2
t (dx2)

∣∣∣∣ ≥ δ1

)
+ P

(
sup
t≤T

∫
Rd×Rd

Gα
Nφ(x1, x2)fε(x1 − x2)X

1,N
t (dx1)X

2,N
t (dx2) ≥ δ1

)

+ P

(
sup
t≤T

∫
Rd×Rd

Gαφ(x1, x2)fε(x1 − x2)X1
t (dx1)X2

t (dx2) ≥ δ1

)
.

Now let N →∞. Apply Lemma 4.6(a), convergence of X1,N , X2,N and (4.17), (4.19) to get

lim sup
N→∞

P

(
sup
t≤T

∣∣∣∣∫
Rd×Rd

Gα
Nφ(x1, x2)X

1,N
t (dx1)X

2,N
t (dx2)

−
∫

Rd×Rd
Gαφ(x1, x2)X

1,N
t (dx1)X

2,N
t (dx2)

∣∣∣∣ ≥ 3δ1

)
≤ 2δ2 ,

and since δ1 , δ2 > 0 were arbitrary (4.15) follows. Now (4.14) follows immediately from (4.15)
and (4.17).

Weak continuity of t → Xi
t and the fact that (1 − fε(x1 − x2))Gαφ(x1, x2) is bounded and

continuous imply the continuity of

t→
∫
R2d

Gαφ(x1, x2)(1− fε(x1 − x2))X1
t (dx1)X2

t (dx2)

for any ε > 0. (4.16) now follows from (4.19).

Lemma 4.8 For any φ ∈ Cb,+(Rd) and T > 0,∫ T

0

∫
Rd×Rd

Gαφ(x1, x2)X2
s (dx2)A(ds, dx1) <∞, P − a.s.,(4.20)

and

sup
t≤T

∣∣∣∣∫ t

0

∫
Rd×Rd

Gα
Nφ(x1, x2)X2,N

s (dx2)L1,N (ds, dx1)(4.21)

−
∫ t

0

∫
Rd×Rd

Gαφ(x1, x2)X2
s (dx2)A(ds, dx1)

∣∣∣∣→ 0,

in probability, as N →∞.
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Proof By Lemma 4.4, Assumption 2.5 and Proposition 2.2, for any δ1 , δ2 > 0, there exists ε∗ > 0,
such that

P

(
sup
t≤T

∫ t

0

∫
Rd×Rd

Gα
Nφ(x1, x2)1(|x1 − x2| ≤ 2ε)X2,N

s (dx2)L1,N (ds, dx1) > δ1

)
≤ δ2,(4.22)

for any ε ≤ ε∗, N ≥ ε−2
∗ . Then, arguing as in the derivation of (4.19) in Lemma 4.7, we get

P

(∫ T

0

∫
Rd×Rd

Gαφ(x1, x2)fε(x1 − x2)X2
s (dx2)A(ds, dx1) > δ1

)
≤ δ2 ,(4.23)

and hence, again as in Lemma 4.7,

lim sup
N→∞

P

(
sup
t≤T

∣∣∣∣∫ t

0

∫
Rd×Rd

Gα
Nφ(x1, x2)X2,N

s (dx2)L1,N (ds, dx1)

−
∫ t

0

∫
Rd×Rd

Gαφ(x1, x2)X2
s (dx2)A(ds, dx1)

∣∣∣∣ ≥ 3δ1

)
≤ 2δ2 .

Since δ1 , δ2 were arbitrary we are done, as in Lemma 4.7.

Lemma 4.9 For any φ ∈ Cb,+(Rd), T > 0,∫ T

0

∫
Rd×Rd

Gαφ(x1, x2)X1
s (dx1)A(ds, dx2) <∞, P − a.s.,(4.24)

and

sup
t≤T

∣∣∣∣∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)X1,N
s (dx1)L2,N (ds, dx2)(4.25)

−
∫ t

0

∫
Rd×Rd

Gαφ(x1, x2)X1
s (dx1)A(ds, dx2)

∣∣∣∣→ 0,

in probability, as N →∞.
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Proof Let fε ∈ [0, 1] be a continuous function on Rd satisfying (4.18). Then

sup
t≤T

∣∣∣∣∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)X1,N
s (dx1)L2,N (ds, dx2)

−
∫ t

0

∫
Rd×Rd

Gαφ(x1, x2)X1
s (dx1)A(ds, dx2)

∣∣∣∣
≤ sup

t≤T

∣∣∣∣∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)(1− fε(x1 − x2))X1,N
s (dx1)L2,N (ds, dx2)

−
∫ t

0

∫
Rd×Rd

Gαφ(x1, x2)(1− fε(x1 − x2))X1
s (dx1)A(ds, dx2)

∣∣∣∣
+
∫ T

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)fε(x1 − x2)X1,N
s (dx1)L2,N (ds, dx2)

+
∫ T

0

∫
Rd×Rd

Gαφ(x1, x2)fε(x1 − x2)X1
s (dx1)A(ds, dx2)(4.26)

≡ I1,N,ε + I2,N,ε + I3,ε

With Lemma 4.6(a) at hand, it is easy to check that for any compact K ⊂ Rd

sup
(x1 x2)∈K×K

|Gα
Nφ(x1, x2)(1− fε(x1 − x2))−Gαφ(x1, x2)(1− fε(x1 − x2))| → 0.

Therefore by the convergence

(X1,N , L2,N ) → (X1, A), in DMF
2 , P − a.s.

with (X1, A) ∈ CMF
2 and uniform boundedness of Gαφ away from the diagonal, we easily get

I1,N,ε → 0, P − a.s., ∀ε > 0.(4.27)

By Lemma 4.3, Proposition 2.2, and Proposition 2.4 we get that for all N > ε−2

I2,N,ε ≤ L̄2,N
T (1)

{
sup

x2,s≤T

∫
Rd
Gα

Nφ(x1, x2)1(|x1 − z| ≤ 2ε)X1,N
s (dx1)

}
≤ cL̄2,N

T (1)RN ε
1−ld−δ̃ recall (2.20)

= cL̄2,N
T (1)RN ε

1−ld−δ̃.

Hence by Lemma 3.11, for any δ1 , δ2 > 0 there exists ε∗ such that

P
(
I2,N,ε > δ1

)
≤ δ2 , ∀N ≥ ε−2

∗ , ε ≤ ε∗.(4.28)

Arguing as in the derivation of (4.19) in Lemma 4.7, we get

P
(
I3,ε > δ1

)
≤ δ2 , ∀ε ≤ ε∗.(4.29)

Now combine (4.27), (4.28), (4.29) to complete the proof.
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Lemma 4.10 For any φ ∈ Cb,+(Rd) and T > 0,∫ T

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X2

s (dx2)
)2

X1
s (dx1) ds <∞, P − a.s.,(4.30)

and for p̂N (z) = pN (z) or p̂N (z) = 10(z) we have

sup
t≤T

∣∣∣∣∣
∫ t

0

∫
Rd

(∫
Rd
Gα

Nφ(x1, x2)X2,N
s (dx2)

)2 (
X1,N

s ∗ p̂N
)
(dx1) ds(4.31)

−
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X2

s (dx2)
)2

X1
s (dx1) ds

∣∣∣∣∣→ 0,

in probability, as N →∞.

Proof Let fε be continuous function of Rd given by (4.18). Recall that

ψε
N (x1 , x2) = Gα

N1(x1 , x2)1(|x1 − x2| ≤ ε)

and let ψε(x1 , x2) = Gα1(x1 , x2)1(|x1 − x2| ≤ ε). Then by simple algebra

sup
t≤T

∣∣∣∣∣
∫ t

0

∫
Rd

(∫
Rd
Gα

Nφ(x1, x2)X2,N
s (dx2)

)2 (
X1,N

s ∗ p̂N
)
(dx1) ds

−
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X2

s (dx2)
)2

X1
s (dx1) ds

∣∣∣∣∣
≤ sup

t≤T

∣∣∣∣∣
∫ t

0

∫
Rd

(∫
Rd
Gα

Nφ(x1, x2)(1− fε(x1 − x2))X2,N
s (dx2)

)2 (
X1,N

s ∗ p̂N
)
(dx1) ds

−
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)(1− fε(x1 − x2))X2

s (dx2)
)2

X1
s (dx1) ds

∣∣∣∣∣
+ 3 ‖φ‖2

∞

∫ T

0

∫
R3d

ψε
N (x1, x2)X2,N

s (dx2)Gα
N1(x1 , x

′
2)X

2,N
s (dx′2)

(
X1,N

s ∗ p̂N
)
(dx1) ds

+ 3 ‖φ‖2
∞

∫ T

0

∫
R3d

ψε(x1, x2)X2
s (dx2)Gα1(x1 , x

′
2)X

2
s (dx′2)X

1
s (dx1) ds

≡ I1,N,ε + I2,N,ε + I3,ε.

Therefore by Lemma 4.6(a) and the convergence

(X1,N , X2,N ) → (X1, X2), in DMF
2 , P − a.s.

with (X1, X2) ∈ CMF
2 , as in the previous proof we get

I1,N,ε → 0, P − a.s. ∀ε > 0.(4.32)

By Lemma 4.5, Assumption 2.5 and Proposition 2.2, for any δ1 , δ2 > 0 there exists ε∗ such that

P
(
I2,N,ε > δ1

)
≤ δ2 , ∀N ≥ ε−2

∗ , ε ≤ ε∗.(4.33)
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Then arguing as in the derivation of (4.19) in Lemma 4.7 we get

P
(
I3,ε > δ1

)
≤ δ2 , ∀ε ≤ ε∗.(4.34)

Now combine (4.32), (4.33), and (4.34) to complete the proof.

Lemma 4.11 For any φ ∈ Cb,+(Rd) and T > 0,∫ T

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X1

s (dx1)
)2

X2
s (dx2) ds <∞, P − a.s.,(4.35)

and for p̂N (z) = pN (z) or p̂N (z) = 10(z),

sup
t≤T

∣∣∣∣∣
∫ t

0

∫
Rd

(∫
Rd
Gα

Nφ(x1, x2)X1,N
s (dx1)

)2 (
X2,N

s ∗ p̂N
)
(dx2) ds(4.36)

−
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X1

s (dx1)
)2

X2
s (dx2) ds

∣∣∣∣∣→ 0,

in probability, as N →∞.

Proof The proof goes along the same lines as of Lemma 4.10, with the only difference being that
we use Lemmas 4.3 and 4.2 instead of Lemma 4.5.

Before we formulate the next lemma, let us introduce the following notation for the martingales
in the approximate Tanaka formula (4.5):

M̃N
t (φ) ≡

2∑
i=1

∫ t

0

∫
Rd

∫
Rd
Gα

Nφ(x1, x2)X3−i,N
s (dx1)M i,N (ds, dx2), i = 1, 2, φ ∈ Cb(Rd).(4.37)

Lemma 4.12 For any φ ∈ Cb(Rd) there is a continuous FX,A
t -local martingale M̃(φ) such that for

any T > 0,

sup
t≤T

∣∣∣M̃N
t (φ)− M̃t(φ)

∣∣∣→ 0,

in probability, as N →∞.

Proof Lemmas 4.7, 4.8 and 4.9 show that all the terms in (4.5), except perhaps M̃N
t (φ), converge

in probability, uniformly for t in compact time sets, to an a.s. continuous limit as N →∞. Hence
there is an a.s. continuous FX,A

t -adapted process M̃t(φ) such that supt≤T |M̃N
t (φ)− M̃t(φ)| → 0 in

probability as N →∞.
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(4.2) and Lemma 7.2 below imply

|Gα
Nφ(x1, x2)| ≤ |φ|∞2−d

∫ ∞

0
e−αsNd/2P (BN

2s ∈ x2 − x1 + [−N−1/2N−1/2]d) ds

≤ c‖φ‖∞
∫ ∞

0
e−αs

( N

Ns+ 1

)d/2
ds

≤ c‖φ‖∞N1/2.

Therefore

|∆M̃N
s (φ)| ≤ N−1 sup

x2

2∑
i=1

∣∣∣∫ Gα
Nφ(x1, x2)Xi,N

s (dx1)
∣∣∣ ≤ c‖φ‖∞N−1/2

2∑
i=1

Xi,N
s (1).

In view of |∆Xi,N
s (1)| ≤ N−1, and Proposition 3.1, we see that if

TN
n = inf{s : |M̃N

s (φ)|+
2∑

i=1

Xi,N
s (1) ≥ n},

then

(4.38) |M̃N
s∧T N

n
| is uniformly bounded and as n→∞ TN

n is large in probability, unformly in N.

Therefore M̃N
·∧T N

n
is a uniformly bounded continuous FXN

t -local martingale and from this and (4.38)

it is easy and standard to check that M̃(φ) is a continuous FX,A
t -local martingale.

Proof of Proposition 4.1 Immediate from the approximate Tanaka formula (4.5), the Lem-
mas 4.7, 4.8, 4.9, 4.12 and convergence of LN to A.

5 Proofs of Theorems 1.1, 1.2 and 1.5

Lemma 5.1 Let (X1, X2, A) be any limit point of (X1,N , X2,N , L2,N ). Then the collision local
time L(X1, X2) exists and for any φ ∈ Cb(Rd),

Xt(Gαφ) = X0(Gαφ)− γ1

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)X2

s (dx2)A(ds, dx1)

+ γ2

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)X1

s (dx1)A(ds, dx2)(5.1)

+ α

∫ t

0
Xs(Gαφ) ds− Lt(X1, X2)(φ)

+
∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)

(
X1

s (dx1)M2(ds, dx2) +X2
s (dx1)M1(ds, dx2)

)
,
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where the stochastic integral term is a continuous local martingale with quadratic variation∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X2

s (dx1)
)2

X1(dx2) ds

+
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X1

s (dx1)
)2

X2(dx2) ds.

Proof Define

Gα
ε φ(x1 , x2) = Πx1 ×Πx2

[∫ ∞

0
e−αspε(B1

s −B2
s )φ

(
B1

s +B2
s

2

)
ds

]
.

As in Section 5 of Barlow, Evans and Perkins (1991), Mγ1,γ2,A
X1

0 ,X2
0

implies

Xt(Gα
ε φ) = X0(Gα

ε φ)− γ1

∫ t

0

∫
Rd

∫
Rd
Gα

ε φ(x1, x2)X2
s (dx2)A(ds, dx1)

+ γ2

∫ t

0

∫
Rd

∫
Rd
Gα

ε φ(x1, x2)X1
s (dx1)A(ds, dx2) + α

∫ t

0
Xs(Gα

ε φ) ds(5.2) ∫ t

0

∫
Rd

∫
Rd
Gα

ε φ(x1, x2)
(
X1

s (dx1)M2(ds, dx2) +X2
s (dx1)M1(ds, dx2)

)
−
∫ t

0

∫
Rd

∫
Rd

pε(x1 − x2)φ((x1 + x2)/2)X1
s (dx1)X2(dx2) ds.

Now apply Lemmas 4.7, 4.8, 4.9, 4.10, 4.11 (trivially dropping the non-negativity hypothesis
on φ), and argue as in Section 5 of Barlow, Evans, Perkins (1991), essentially using dominated
convergence, to show that all the terms (5.2) (except possibly the last one) converge in probability to
the corresponding terms of (5.1), as ε ↓ 0. Hence the last term in (5.2), Lε

t(X
1, X2)(φ), converges in

probability to say Lt(φ) for each φ ∈ Cb(Rd). This gives (5.1) with Lt(φ) in place of Lt(X1, X2)(φ).
As each term in (5.1) is a.s. continuous in t (use (4.16) for the left-hand side) the same is true
of t → Lt(φ). This implies uniform convergence in probability for t ≤ T of Lε

t(X
1, X2) to Lt(φ)

for each φ ∈ Cb(Rd). It is now easy to construct L as a random non-decreasing continuous MF -
valued process, using a countable convergence determining class and hence we see that by definition
Lt = Lt(X1, X2).

Proof of Theorem 1.1 In view of Proposition 3.1, it only remains to show that Lt(X1, X2) exists
and equals At. This, however now follows from Lemma 5.1, Proposition 4.1, and the uniqueness of
the decomposition of the continuous semimartingale Xt(Gαφ).

Remark 5.2 Since At = Lt(X1, X2), Lemma 5.1 immediately gives us the following form of
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Tanaka’s formula for (X1, X2):

Xt(Gαφ) = X0(Gαφ)− γ1

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)X2

s (dx2)L(ds, dx1)

+ γ2

∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, z)X1

s (dx1)L(ds, dx2)

+ α

∫ t

0
Xs(Gαφ) ds− Lt(X1, X2)(φ)

+
∫ t

0

∫
Rd

∫
Rd
Gαφ(x1, x2)

(
X1

s (dx1)M2(ds, dx2) +X2
s (dx1)M1(ds, dx2)

)
,

where the stochastic integral term is a continuous local martingale with quadratic variation∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X2

s (dx1)
)2

X1(dx2) ds

+
∫ t

0

∫
Rd

(∫
Rd
Gαφ(x1, x2)X1

s (dx1)
)2

X2(dx2) ds.

Proof of Theorem 1.2 As mentioned in the Introduction, the case of γ2 ≤ 0 is proved in
Theorem 4.9 of Evans and Perkins (1994) and so we assume γ2 > 0. Let Xi

0 satisfy UB, i = 1, 2,
and assume P is a law on CMF

2 under which the canonical variables (X1, X2) satisfy MP0,γ2

X1
0 ,X2

0
.

Then X1 is a super-Brownian motion with branching rate 2, variance parameter σ2, and law PX1
,

say. By Theorem 4.7 of Barlow, Evans and Perkins (1991),

(5.3) Hδ ≡ sup
t≥0

ρδ(X1
t ) <∞ ∀δ > 0 PX1 − a.s.

Let qη : R+ → R+ be a C∞ function with support in [0, η] such that
∫
qη(u)du = 1. For ε > 0

we will choose an appropriate η = η(ε) ≤ ε below and so may define

hε(X1, s, x) = γ2

∫ ∞

0
qη(u− s)pε ∗X1

u(x) du ≡ pε ∗Xε,1
s (x).

Then (5.3) implies

(5.4) sup
t≥0,ε>0

ρδ(X
ε,1
t ) ≤ γ2Hδ <∞ ∀δ > 0 a.s.

Let Er,x denote expectation with respect to a Brownian motion B beginning at x at time r and let
Pr,tf(x) = Er,x(f(Bt)) for r ≤ t. It is understood that B is independent of (X1, X2). Define

`εt (B,X
1) =

∫ t

0
hε(X1, s, Bs) ds,

where the integrand is understood to be 0 for s < r under Pr,x. The additional smoothing in
time in our definition of hε does force some minor changes, but it is easy enough to modify the
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arguments in Theorems 4.1 and 4.7 of Evans and Perkins (1994), using (5.4), to see there is a Borel
` : CRd × CMF

→ CR+
such that

(5.5) lim
ε↓0

sup
r≥0,x∈Rd

Er,x

(
sup
t≥r

|`εt (B,X1)− `t(B,X1)|2
)

= 0 PX1 − a.s.,

and for a.a. X1, t → `t(B,X1) is an increasing continuous additive functional of B. It is easy to
use (5.4) and (5.5) to see that for a.a. X1, `t is an admissible continuous additive functional in the
sense of Dynkin and Kuznetsov (see (K1) in Kuznetsov (1994)). Let

C` = {φ ∈ Cb(Rd) : φ as a finite limit at ∞},

and C+
` be the set of non-negative functions in C`. Let φ : CMF

→ C+
` be Borel and let Vr,t = V X1

r,t φ

be the unique continuous C+
` -valued solution of

(5.6) Vr,t(x) = Pr,tφ(x) + Er,x

(∫ t

r
Vs,t(Bs)`(B,X1)(ds)− Vs,t(Bs)2 ds

)
, r ≤ t.

The existence and uniqueness of such solutions is implicit in Kuznetsov (1994) and may be shown
by making minor modifications in classical fixed point arguments (e.g. in Theorems 6.1.2 and
6.1.4 of Pazy (1983)), using the L2 bounds on `t from (5.5) and the negative quadratic term in
(5.6) to see that explosions cannot occur. The construction shows V X1

r,t is Borel in X1–we will not
comment on such measurability issues in what follows. Theorems 1 and 2 of Kuznetsov (1994) and
the aforementioned a.s. admissibility of `(B,X1) give the existence of a unique right continuous
measure-valued Markov process X such that

(5.7) EX0(e
−Xt(φ)) = e−X0(V0,tφ), φ ∈ C+

` .

If PX0|X1 is the associated law on path space we will show

(5.8) P (X2 ∈ ·|X1) = PX2
0 |X1(·)

and hence establish uniqueness of solutions to MP0,γ2

X1
0 ,X2

0
.

The proof of the following lemma is similar to its discrete counterpart, Proposition 3.5(b), and
so is omitted ((5.4) is used in place of Proposition 2.4).

Lemma 5.3
sup

r≤T,x∈Rd

sup
ε>0

Er,x

(
eλ`ε

T

)
<∞ ∀T, λ > 0 PX1 − a.s.

Let P ε,X1

r,t f(x) = Er,x

(
f(Bt)e`

ε
t

)
and PX1

r,t f(x) = Er,x

(
f(Bt)e`t

)
. By Lemma 5.3 these are

well-defined inhomogeneous semigroups for bounded Borel functions f : Rd → R. It follows from
(5.5), Lemma 5.3, and a dominated convergence argument that for each t > 0, and bounded Borel
f ,

sup
r≤t,x∈Rd

|P ε,X1

r,t f(x)− PX1

r,t f(x)| ≤ sup
r≤t,x∈Rd

‖f‖∞Er,x

(
|e`ε

t − e`t |
)

(5.9)

→ 0 as ε ↓ 0 PX1 − a.s.
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Let D(∆/2) be the domain of the generator of B acting on the Banach space C` and D(∆/2)+
be the nonnegative functions in this domain. Assume now that φ : CMF

→ D(∆/2)+ is Borel. Let
V ε

r,t = V ε,X1

r,t , be the unique continuous C+
` -valued solution of

(5.10) V ε
r,t(x) = Pr,tφ(x) + Er,x

(∫ t

r
V ε

s,t(Bs)`ε(B,X1)(ds)− V ε
s,t(Bs)2 ds

)
, r ≤ t.

We claim V ε
r,t also satisfies

(5.11) V ε
r,t(x) = P ε,X1

r,t φ(x)−
∫ t

r
P ε,X1

r,s ((V ε
s,t)

2)(x) ds.

Theorem 6.1.5 of Pazy (1983) shows that V ε
r,t ∈ D(∆/2) for r ≤ t, is continuously differentiable in

r < t as a C`-valued map, and satisfies

(5.12)
∂V ε

r,t

∂r
(x) = −

(σ2∆
2

+ hε(r, x)
)
V ε

r,t(x) + (V ε
r,t(x))

2, r < t, V ε
t,t = φ.

Then (5.11) is just the mild form of (5.12) and follows as in section 4.2 of Pazy (1983). Note here
that hε is continuously differentiable in s thanks to the convolution with qη and so Theorem 6.1.5
of Pazy (1983) does apply.

We next show that

(5.13) lim
ε↓0

sup
r≤t

‖V ε
r,tφ− Vr,tφ‖∞ = 0 PX1 − a.s.

First use (5.11) and Lemma 5.3 to see that for each t > 0,

sup
r≤t,x∈Rd

,ε>0

V ε
r,t(x) ≤ sup

r≤t,x∈Rd
,ε>0

P ε,X1

r,t φ(x)(5.14)

≤ ‖φ(X1)‖∞ sup
r≤t,x∈Rd

,ε>0

Er,x(e`
ε
t ) = cφ,t(X1) <∞ PX1 − a.s.

Using (5.11) again, we see that

‖V ε
r,t − V ε′

r,t‖∞ ≤ ‖P ε,X1

r,t φ− P ε′,X1

r,t φ‖∞ +
∫ t

r
‖(P ε,X1

r,s − P ε′,X1

r,s )((V ε
s,t)

2)‖∞ ds

+
∫ t

r
‖P ε′,X1

r,s ((V ε
s,t + V ε′

s,t)(V
ε
s,t − V ε′

s,t))‖∞ ds(5.15)

≡ T ε,ε′

1 + T ε,ε′

2 + T ε,ε′

3 .

(5.14) shows that

T ε,ε′

2 ≤
∫ t

r
sup

x
Er,x(|e`ε

s − e`
ε′
s |)cφ,t(X1)2

→ 0 uniformly in r ≤ t as ε, ε′ ↓ 0 PX1 − a.s. (by (5.5) and Lemma 5.3).
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(5.9) implies T ε,ε′

1 → 0 uniformly in r ≤ t as ε, ε′ ↓ 0 and (5.14) also implies

T ε,ε′

3 ≤ 2cφ,t(X1)
∫ t

0
‖V ε

s,t − V ε′
s,t‖∞ ds.

The above bounds and a simple Gronwall argument now show that V ε
r,t(x) converges uniformly in

x ∈ Rd, and r ≤ t to a continuous C+
` -valued map as ε ↓ 0. It is now easy to let ε ↓ 0 in (5.10) and

use (5.5) to see that this limit is Vr,t, the unique solution to (5.6). This completes the derivation
of (5.13).

As usual FXi

t is the canonical right-continuous filtration generated by Xi. Consider also the
enlarged filtration F̄t = FX1

∞ × FX2

t . Argue as in the proof of Theorem 4.9 of Evans and Perkins
(1994), using the predictable representation property of X1, to see that for φ ∈ D(∆/2), M2

t (φ)
is a continuous F̄t-local martingale such that 〈M2(φ)〉t =

∫ t
0 X

2
s (2φ2) ds. The usual extension of

the orthogonal martingale measure M2 now shows that if f : R+ × Ω×Rd → R is P(F̄·)× Borel-
measurable (here P(F̄·) is the F̄t-predictable σ-field), such that

∫ t
0 X

2
s (f2

s ) ds < ∞ ∀t > 0 a.s.,
then

M2
t (f) ≡

∫ t

0

∫
f(s, ω, x)M2(ds, dx) is a well-defined continuous (F̄t)− local martingale

such that 〈M(f)〉t =
∫ t

0
X2

s (2f2
s ) ds.

It is easy to extend the martingale problem for X2 to bounded f : [0, t] × Rd → R such that
fs ∈ C2

b (Rd) for s ≤ t, and ∂fs

∂s , (∆/2)fs ∈ Cb([0, t] × Rd), (e.g. argue as in Proposition II.5.7 of
Perkins (2002)). For such an f one has

X2
u(fu) = X2

0 (f0) +M2
u(f) +

∫ u

0
X2

s

(σ2

2
∆fs +

∂fs

∂s

)
ds+ γ2Lu(X̄1, X̄2) (f) , u ≤ t.(5.16)

Next we claim (5.16) holds for f(s, x,X1) where f : [0, t]×Rd×CMF
→ R is a Borel map such

that for PX1
-a.a. X1,

f(s, ·, X1) ∈ D(∆/2) for all s ≤ t, (∆/2)fs,
∂fs

∂s
∈ Cb([0, t]×Rd),(5.17)

sup
s≤t,x∈Rd

|f(s, x,X1)|+
∣∣∣∆
2
f(s, x,X1)

∣∣∣+ ∣∣∣∂f
∂s

(s, x,X1)
∣∣∣ = C(X1) <∞.

To see this, for f : [0, t]×Rd × CMF
→ R bounded, introduce

f δ(s, x,X1) =
∫ ∞

0
pδ ∗ fu,X1(x)qδ(u− s) du.

Note that if fn → f in the bounded pointwise sense where the bound may depend on X1, then
∂fδ

n
∂u → ∂fδ

∂u and ∆
2 f

δ
n → ∆

2 f
δ in the same sense as n → ∞. By starting with f(u, x,X1) =

f1(u, x)f2(X1) where fi are bounded and Borel, and using a monotone class argument we obtain
(5.16) for fδ where f is any Borel map on R+×Rd×CMF

with sups≤t,x |f(s, x,X1)| <∞ for each
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X1. If f is as in (5.17) then it is easy to let δ ↓ 0 to obtain (5.16) for f . Note we are using the
extension of the martingale measure M2 to the larger filtration F̄t in these arguments.

Now recall φ : CMF
→ D(∆/2)+ (Borel) and V ε

r,t is the unique solution to (5.10). Recall from
(5.12) that V ε

r,t is a classical solution of the non-linear pde and in particular (5.17) is valid for
f(r, x) = V ε

r,t(x). Therefore we may use (5.12) in (5.16) to get

X2
s (V ε

s,t) = X2
0 (V ε

0,t) +
∫ s

0

∫
V ε

r,t(x)M
2(dr, dx) +

∫ s

0
X2

r ((V ε
r,t)

2) dr(5.18)

+
∫ s

0

∫
V ε

r,t(x)[γ2L(X1, X2)(dr, dx)− hε(X1, r, x)X2
r (dx)dr], s ≤ t.

We claim the last term in (5.18) approaches 0 uniformly in s ≤ t P -a.s. as ε = εk ↓ 0 for an
appropriate choice of ηk = η(εk) in the definition of hε. The definition of collision local time allows
us to select εk ↓ 0 so that Lεk(X1, X2) → L(X1, X2) in MF (R+ ×Rd) a.s. Note that∣∣∣γ2

∫ s

0

∫ ∫
Vr,t

(x1 + x2

2

)
pεk

(x1 − x2)X1
r (dx1)X2

r (dx2) dr

−
∫ s

0

∫
V εk

r,t (x2)hεk
(X1, r, x2)X2

r (dx2) dr
∣∣∣

≤ γ2

∫ s

0

∫ ∫
|Vr,t

(x1 + x2

2

)
− V εk

r,t (x2)|pεk
(x1 − x2)X1

r (dx1)X2
r (dx2) dr(5.19)

+γ2

∣∣∣∫ s

0

∫ [
Pεk

∗X1
r (x2)−

∫ ∞

0
qη(εk)(u− r)Pεk

∗X1
u(x2) du

]
V εk

r,t (x2)X2
r (dx2) dr

∣∣∣
= Ik

1 (s) + Ik
2 (s).

Let δ0 > 0. By (5.13) and the uniform continuity of (r, x) → Vr,t(x) there is a k0 = k0(X1) ∈ N
a.s. such that

sup
r≤t

|Vr,t

(x1 + x2

2

)
− V εk

r,t (x2)| < δ0 for k > k0 and |x1 − x2| < εk0 .

By considering |x1 − x2| < εk0 and |x1 − x2| ≥ εk0 separately one can easily show there is a
k1 = k1(X1) so that

sup
s≤t

Ik
1 (s) < δ0 if k > k1.

Next use the upper bound in (5.14) and the continuity of u → pεk
∗ X1

u(x2) to choose η so that
ηk = η(εk) ↓ 0 fast enough so that

sup
s≤t

Ik
2 (s) → 0 P -a.s. as k →∞.

The above bounds show the lefthand side of (5.19) converges to 0 a.s. as k → ∞. The a.s.
convergence of Lεk(X1, X2) to L(X1, X2) therefore shows that

lim
k→∞

sup
s≤t

∣∣∣γ2

∫ s

0

∫
Vr,t(x)L(X1, X2)(dr, dx)−

∫ s

0

∫
V εk

r,t (x)hεk
(X1, r, x)X2

r (dx)dr
∣∣∣ = 0 a.s.
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The uniform convergence in (5.13) now shows that the last term in (5.18) approaches 0 uniformly
in s ≤ t P -a.s. as ε = εk → 0. (5.13) also allows us to let εk ↓ 0 in (5.18), taking a further
subsequence perhaps to handle the martingale term, and conclude

X2
s (Vs,t) = X2

0 (V0,t) +
∫ s

0

∫
Vr,t(x)M2(dr, dx) +

∫ s

0
X2

r ((Vr,t)2) dr for all s ≤ t a.s.

Now apply Ito’s lemma to conclude

e−X2
s (Vs,t) = e−X2

0 (V0,t) −
∫ s

0

∫
e−X2

r (Vr,t)Vr,t(x)M2(dr, dx), s ≤ t.

The stochastic integral is a bounded F̄t-local martingale and therefore is an F̄t-martingale. This
proves for t1 < t,

E(e−X2
t (φ)|F̄t1) = eX

2
t1

(Vt1,tφ) for any Borel φ : CMF
→ D(∆/2)+.

Now Vt1,tφ : CMF
→ D(∆/2)+ is also Borel and so if φ1 : CMF

→ D(∆/2)+ is Borel, we can also
conclude

E(e−X2
t (φ)−X2

t1
(φ1)|F̄0) = E(e−X2

t1
((Vt1,tφ)+φ1)|F̄0)

= exp(−X2
0 (V0,t1((Vt1,tφ) + φ1))).

This uniquely identifies the joint distribution of (X2
t1 , X

2
t ) conditional on X1. Iterating the above a

finite number of times, we have identified the finite-dimensional distributions of X2 conditional on
X1, and in fact have shown that conditional on X1, X2 has the law of the measure-valued process
considered by Dynkin and Kuznetsov in (5.7).

Proof of Theorem 1.5. Let (X1, X2) be a solution to M−γ1,γ2

X1
0 ,X2

0
and let P denote its law on the

canonical space of MF
2-valued paths. Conditionally on X, let Y denote a super-Brownian motion

with immigration γ1Lt(X1, X2) (see Theorem 1.1 of Barlow, Evans and Perkins (1991)) constructed
perhaps on a larger probability space. This means for φ ∈ C2

b (R2),

Yt(φ) = γ1Lt(X1, X2)(φ) +MY
t (φ) +

∫ t

0
Ys(

σ2∆φ
2

) ds,

where

〈MY (φ)〉t =
∫ t

0
Ys(2φ2) ds,

and MY is orthogonal with respect to the MXi
, i = 1, 2. All these martingales are martingales with

respect to a common filtration. Then it is easy to check that X̄1 = X1 +Y satisfies the martingale
problem characterizing super-Brownian motion starting at X1

0 , i.e., is as in the first component
in M0,0

X1
0 ,X2

0
. Therefore there is jointly continuous function, ū1(t, x), with compact support such

that X̄1
t (dx) = ū1(t, x)dx (see, e.g., Theorem III.4.2 and Corollary III.1.7 of Perkins (2002)) and

so there is a bounded function on compact support, u1(t, x), so that X1
t (dx) = u1(t, x)dx by the

domination X1 ≤ X̄1. Let φ ∈ Cb(Rd). Then Lebesgue’s differentiation theorem implies that

lim
δ→0

∫
pδ(x1 − x2)φ(

x1 + x2

2
)u1(s, x1)dx1 = φ(x2)u1(s, x2) for Lebesgue a.a. (s, x2) a.s.
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Moreover the approximating integrals are uniformly bounded by ‖φ‖∞‖u1‖∞ and so by Dominated
Convergence one gets from the definition of L(X1, X2) that

Lt(X1, X2)(φ) =
∫ t

0

∫
φ(x2)u1(s, x2)X2

s (dx2) ds.

Evans and Perkins (1994) (Theorem 3.9) used Dawson’s Girsanov theorem to show there is a unique
in law solution to M−γ1,0

X1
0 ,X2

0
in our one-dimensional setting. If P−γ1,0 denotes this unique law on the

canonical path space of measures, then they also showed

(5.20) P−γ1,0 << PX1
0
× PX2

0
,

the product measure of two super-Brownian motions with diffusion parameter σ2 and branching
rate 2. Our boundedness of u1 shows that∫ t

0

∫
u1(s, x)2X2

s (dx) <∞ for all t > 0 P − a.s. and P−γ1,0 − a.s.

The latter is a special case of our argument when γ2 = 0. This allows us to apply Dawson’s
Girsanov theorem (see Theorem IV. 1.6 (a) of Perkins (2002)) to conclude that

dP

dP−γ1,0

∣∣∣
Ft

= exp
{∫ t

0

∫
u1(s, x)/2MX2

(ds, dx)− 1
8

∫ t

0

∫
u1(s, x)2X2

s (dx)ds
}
.

Here MX2
is the martingale measure associated with X2 and u1 is the density of X1, both under

P−γ1,0. Although the Girsanov theorem quoted above considered absolute continuity with respect
to PX1

0
× PX2

0
, the same proof gives the above result. This proves uniqueness of P and, together

with (5.20) shows that P is absolutely continuous with respect to PX1
0
× PX2

0
. This gives the

required properties of the densities of Xi as they are well-known for super-Brownian motion (see
Theorem III.4.2 of Perkins (2002)).

6 Proof of the Concentration Inequality–Proposition 2.4

As we will be proving the concentration inequality for the ordinary rescaled critical branching
random walk, X̄1,N , in order to simplify the notation we will write XN for X̄1,N , and write ξN , or
just ξ, for ξ̄1,N . Dependence of the expectation on the initial measure XN

0 = X̄1,N
0 will be denoted

by EXN
0

. {PN
u , u ≥ 0} continues to denote the semigroup of our rescaled continuous time random

walk BN .

Notation. If ψ : ZN → R, let PNψ(x) =
∑

y pN (y − x)ψ(y) and let

Rψ(x) = RNψ(x) =
∞∑

k=0

2−k(PN )kψ(x).

To bound the mass in a fixed small ball we will need good exponential bounds. Here is a general
exponential bound whose proof is patterned after an analogous bound for super-Brownian motion
(see e.g. Lemma III.3.6 of Perkins (2002)). The discrete setting does complicate the proof a bit.
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Proposition 6.1 Let f : ZN → R+ be bounded and define

f̄N (u) = ‖PN
u f‖∞, ĪNf(t) =

∫ t

0
f̄N (u) du.

If t > 0 satisfies

(6.1) ĪNf(t) ≤ 1
14

exp(−4‖f‖∞/N),

then

(6.2) EXN
0

(
exp(XN

t (f))
)
≤ exp

(
2XN

0 (PN
t Rf)

)
.

Proof Assume φ : [0, t] × ZN → R+ is such that φ and φ̇ ∈ Cb([0, t] × ZN ). Then MN,0,0

X1,N
0 ,X2,N

0

and (2.9) imply

XN
t (φt) = XN

0 (φ0) +
∫ t

0
XN

s (∆Nφs + φ̇s) ds

+
∑

x

∫ t

0

∫
1
N
φ(s, x)1(u ≤ ξs−(x))[Λ̂1,+

x (ds, du)− Λ̂1,−
x (ds, du)](6.3)

+
∑
x,y

∫ t

0

∫
1
N

[φ(s, x)− φ(s, y)]1(u ≤ ξs−(y))Λ̂1,m
x,y (ds, du).

A short calculation using Ito’s lemma for Poisson point processes (see p. 66 in Ikeda and Watanabe
(1981)) shows that

exp
(
XN

t (φt)
)
− exp

(
XN

0 (φ0)
)

=
∫ t

0
exp
(
XN

s (φs)
)
[XN

s (∆Nφs + φ̇s) + dN
s ] ds+ M̃N

t ,(6.4)

where

dN
s = N

∑
x

ξs(x)
[
exp
( 1
N
φ(s, x)

)
+ exp

(
− 1
N
φ(s, x)

)
− 2
]

+N
∑

y

ξs(y)
∑

x

pN (y − x)
[
exp
( 1
N

(φ(s, x)− φ(s, y)
)
− 1
N

(φ(s, x)− φ(s, y))− 1
]
,

and M̃N is a locally bounded local martingale. In fact

M̃N
t =

∑
x

∫ t

0

∫
exp
(
XN

s−(φs) +
1
N

1(u ≤ ξs−(x))φ(s, x)
)
− exp

(
XN

s−(φs)
)
Λ̂1,+

x (ds, du)

+
∑

x

∫ t

0

∫
exp
(
XN

s−(φs)−
1
N

1(u ≤ ξs−(x))φ(s, x)
)
− exp

(
XN

s−(φs)
)
Λ̂1,−

x (ds, du)

+
∑
x,y

∫ t

0

∫
exp
(
XN

s−(φs) +
1
N

1(u ≤ ξs−(y))(φ(s, x)− φ(s, y))
)
− exp

(
XN

s−(φs)
)
Λ̂1,m

x,y (ds, du).
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Assume now that for some c0 > 0,

(6.5) ‖φ‖∞ ≤ 4c0N,

and note that if |w| ≤ 4c0, then

(6.6) 0 ≤ ew − 1− w = w2
∞∑

k=0

wk

(k + 2)!
≤ w2 e

4c0

2
.

Now use (6.6) with w = φ(s, x)/N ∈ [0, 4c0] or w = φ(s,x)−φ(s,y)
N ∈ [−4c0, 4c0] to see that

dN
s ≤ e4c0XN

s (φ2
s) +

e4c0

2
1
N

∑
y

ξs(y)
∑

x

pN (y − x)(φ(s, x)− φ(s, y))2

≤ e4c0XN
s (φ2

s) +
e4c0

2
XN

s

(
φ2

s + PN (φ2
s)
)

= e4c0 3
2
XN

s (φ2
s) +

e4c0

2
XN

s (PN (φ2
s)).(6.7)

Now assume t > 0 satisfies (6.1), let c1 = 7 exp (4‖f‖∞/N) and define κ(u) = (1− c1ĪNf(t− u))−1

for u ∈ [0, t]. Introduce

φ(u, x) = PN
t−uRf(x)κ(u), u ≤ t, x ∈ ZN .

As convoluting PN with PN
t amounts to running BN until the first jump after time t, one readily

sees that these operators commute and hence so do R and PN
t . Therefore

(6.8) |PN
u (Rf)(x)| = |R(PN

u f)(x)| ≤ 2f̄N (u), u ≤ t.

We also have

PN (PN
u Rf)(x) = PNR(PN

u f)(x) =
∞∑

k=0

2−k(PN )k+1(PN
u f)(x)

≤ 2R(PN
u f)(x) = 2PN

u (Rf)(x).(6.9)

By (6.1) and (6.8), for u ≤ t,

|φ(u, x)| ≤ 2f̄N (t− u)κ(u) ≤ 4f̄N (t− u) ≤ 4‖f‖∞
N

N,
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and so (6.5) holds with c0 = ‖f‖∞
N . Clearly φ, φ̇ ∈ Cb([0, t] × ZN ) and so (6.7) is valid with this

choice of c0. We therefore have

XN
s (φ̇s + ∆Nφs) + dN

s

= XN
s (PN

t−sRf)κ̇s + dN
s

= −XN
s (PN

t−sRf)κ2
sc1f̄

N (t− s) + dN
s

≤ κ2
sX

N
s

(e4c03
2
(
PN

t−sRf
)2 +

e4c0

2
PN
(
(PN

t−sRf)2
)
− c1f̄

N (t− s)PN
t−sRf

)
(by (6.7))

≤ κ2
s f̄

N (t− s)XN
s

(
3e4c0

(
PN

t−sRf
)

+ e4c0PN
(
PN

t−sRf
)
− c1P

N
t−sRf

)
(by (6.8))

≤ κ2
s f̄

N (t− s)
[
5e4c0 − c1

]
XN

s

(
PN

t−sRf
)

( by (6.9))

≤ 0,

the last by the definition of c1. Now return to (6.4) with the above choice of φ. By choosing
stopping times TN

k ↑ ∞ as k →∞ such that E(M̃N
t∧T N

k
) = 0 and using Fatou’s lemma we get from

the above that

E
(
exp
(
XN

t (f)
))

≤ E
(
exp
(
XN

t (Rf)
))

≤ exp
[XN

0 (PN
t Rf)

1− c1ĪNf(t)

]
≤ exp

(
2XN

0 (PN
t Rf)

)
(by (6.1)).

We now specialize the above to obtain exponential bounds on the mass in a ball of radius r.
In fact we will use this bound for the ball in a torus and so present the result in a more general
framework. Lemma 7.3 below will show that the key hypothesis, (6.10) below, is satisfied in this
context.

Corollary 6.2 Let c6.10 ≥ 1, T > 0 and δ ∈ (0, 2∧ d). There is an r0 = r0(c6.10, δ, T ) ∈ (0, 1] such
that for any N , r ∈ [N−1/2, r0] and any C ⊂ Rd satisfying

(6.10) sup
x

ΠN
x (BN

u ∈ C) ≤ c6.10r
d(1 + u−d/2) ∀u ∈ (0, T ],

then for any c > 0,
EXN

0

[
exp (rδ−2∧dXN

t (C))
]
≤ e2c,

for all 0 ≤ t ≤ T satisfying

(6.11) XN
0 (PN

t R1C) ≤ cr2∧d−δ.

Proof We want to apply Proposition 6.1 with f = rδ−2∧d1C , where N−1/2 ≤ r ≤ 1 and C ⊂ Rd

satisfies (6.10). Note that

(6.12) ‖f‖∞ ≤ rδ−2∧d ≤ N
−δ
2

+ 2∧d
2 ≤ N,
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and by (6.10), for t ≤ T

ĪNf(t) ≤ rδ−2∧dc6.10

[∫ t

0
rd du+

∫ t

0
(rdu−d/2) ∧ 1 du

]
≤ rδ−2∧dc6.10

[
rdt+

∫ r2

0
du+ rd

∫ t

r2

u−d/2 du 1(t > r2)
]
.

If
φd(r, t) = 1 + t+ [log+(t/r2)1(d = 2)],

then a simple calculation leads to

ĪNf(t) ≤ 3c6.10r
δφd(r, t) t ≤ T.

In view of (6.12), condition (6.1) in Proposition 6.1 will hold for all t ≤ T if r ≤ r0(c6.10, δ, T ) for
some r0 > 0. Therefore Proposition 6.1 now implies the required result.

Corollary 6.3 If 0 < θ ≤ N and t ≤ e−4(14θ)−1, then

EXN
0

(exp(θXN
t (1)) ≤ exp (4θXN

0 (1)).

Proof Take f ≡ θ (θ as above) in Proposition 6.1. Note that condition (6.1) holds iff
t ≤ exp(−4θ/N)(14θ)−1 and so for θ ≤ N is implied by our bound on t. As PN

t Rf = 2θ,
Proposition 6.1 gives the result.

Remark 6.4 The above corollary is of course well known as XN
t (1) = ZNt/N , where {Zu, u ≥ 0}

is a rate 1 continuous time Galton-Watson branching process starting with NXN
0 (1) particles and

undergoing critical binary branching. It is easy to show, e.g. by deriving a simple non-linear
o.d.e in t for E(uZt |Z0 = 1), (see (9.1) in Ch. V of Harris (1963)) that for θ > 0 and t <
[N(eθ/N − 1)]−1, or θ ≤ 0 and all t ≥ 0,

(6.13) EXN
0

[
exp(θXN

t (1)
]

=
[
1 +

eθ/N − 1
1− tN(eθ/N − 1)

]NXN
0 (1)

.

The above exponential bounds will allow us to easily obtain the required concentration inequality
on a mesh of times and spatial locations. To interpolate between these space-time points we will
need a uniform modulus of continuity for the individuals making up our branching random walk.
For this it will be convenient to explicitly label these individuals by multi-indices

β ∈ I ≡ ∪∞n=0{0, 1, . . . , |ξ0| − 1} × {0, 1}n.

If β = (β0, . . . , βn) ∈ I, let πβ = (β0, . . . , βn−1) if n ≥ 1 be the parent index of β, set πβ = ∅ if
n = 0, and let β|i = (β0, . . . , βi) if 0 ≤ i ≤ n ≡ |β|. Define β|(−1) = ∅.

Let {τβ : β ∈ I}, {bβ : β ∈ I} be two independent collections of i.i.d. random variables with τβ

exponentially distributed with rate 2N and P (bβ = 0) = P (bβ = 2) = 1/2. Let T ∅ = 0 and define

T β =
∑

0≤i≤|β|

τβ|i1
(i−1∏

j=1

bβ|j > 0
)
.
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We will think of [T πβ, T β) as the lifetime of particle β, so that T β = T πβ (iff bβ|j = 0 for some
j < |β|) means particle β never existed, while bβ is the number of offspring of particle β. Write
β ∼ t iff particle β is alive at time t, i.e., iff T πβ ≤ t < T β. Let {Bk

0 : 0 ≤ k < |ξ0|} be points
in ZN satisfying

∑
k 1(Bk

0 = x) = ξ0(x) for all x ∈ ZN . Now condition on {T β : β ∈ I}. Let
{Bβ

s − Bβ
T πβ : s ∈ [T πβ, T β)}T πβ<T β be a collection of independent copies of BN , starting at 0.

Formally they may be defined inductively with Bβ
T πβ chosen to be Bπβ

T πβ−. Such labelling schemes
may be found in Ch. 8 of Walsh (1986) or Ch. II of Perkins (2002).

If ξ̂(x) =
∑

β∼t 1(Bβ
t = x), then (ξt, t ≥ 0) and (ξ̂t, t ≥ 0) are identical in law. One can see this

by noting {ξ̂t : t ≥ 0} is an SF -valued Markov process with the same jump rates and initial condition
as {ξt : t ≥ 0}. Formally one can work with the associated empirical processes X̂N

t = 1
N

∑
x ξ̂t(x)

and XN
t and calculate their respective generators as in Section 9.4 of Ethier and Kurtz (1986). The

generator of the former can be found by arguing as in Section II.4 of Perkins (2002).
Alternatively, one can in fact define the above branching particle system from our original

Poisson equations (2.2) since one can use the uniform variables in our driving Poisson point processes
to trace back ancestries. We briefly outline the construction. We begin by labeling the |ξ0| initial
particles as above with multi-indices 0, . . . , |ξ0| − 1 ∈ I and assigning each particle at each site x
an integer 1 ≤ k ≤ ξ0(x) that we call its level. Since there are only finitely many particles we
can explain how these labels and levels propagate forwards in time at the jump times in (2.2).
If at time t there is an “arrival” in Λ1,+

x with height u ∈ [k − 1, k), where k ≤ ξt−(x), then the
particle at level k at site x branches. If β is the label of this branching particle at time t− then
two new particles are created at x with labels β0 at level k and β1 at level ξt(x) = ξt−(x) + 1.
(β no longer labels a particle at time t.) All other particles keep their current labels and levels.
If at time t there is an “death” in Λ1,−

x with height u ∈ [k − 1, k), where k ≤ ξt−(x), then the
particle at level k at site x dies. It is removed from the population (it’s label β no longer labels
a particle at time t), and all particles at x with levels greater than k have their levels decreased
by 1, and keep their current labels at time t. If at time t there is a “migration” from y to x in
Λ1,m

x,y with height u ∈ [k − 1, k), where k ≤ ξt−(y), then the particle at level k at site y migrates
to x where its new level is ξt(x) = ξt−(x) + 1. The particles at y with levels greater than k have
their levels reduced by 1. The migrating particle keeps its label β, so that this label now refers to
particle ξt(x) at site x. All other particles keep their current labels and levels. At this point we
have inductively defined a multi-index α(t, x, k) ∈ I which labels the particle with level k ≤ ξt(x)
at site x ∈ ZN and time t ≥ 0. Here we use α to denote this random function as β will denote
the independent I-valued variable. As the birth of a label coincides with a branching event and
its death must coincide with either a branching event (it has 2 children) or a death event (it has 0
children) it is clear the set of times at which β is alive, Aβ = {t ≥ 0 : ∃x, k s.t. α(t, x, k) = β} is a
left semi-closed interval [Uβ, T β) (possibly empty) with Uβ = T πβ, where again T ∅ = 0. Also we
see that T β−T πβ is exponential with rate 2N (the time to a birth or death event of the appropriate
height corresponding to the level labelled by β). The independence properties of the Poisson point
processes allow one to show that the collection of these exponential increments are independent.
They are only indexed by those β which have a positive lifespan but the collection can be padded
out with iid exponentials to reconstruct the indendent τβ ’s described above. The same reasoning
applies to reconstruct the bβ ’s. For t ∈ [T πβ, T β) define Bβ

t and `βt by

α(t, Bβ
t , `

β
t ) = β.
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Then Bβ starts at Bπβ
T πβ− and jumps according to migration events of the appropriate height.

Therefore conditional on the {T β′ , bβ
′} it is a copy of BN . The independence property of the Poisson

point processes Λ1,m
x,y show they are (conditionally on the birth and death times) independent.

We have shown that the collection of labelled branching particles constructed from (2.2) are
identical in law to those described above and used for example in Ch. II of Perkins (2002). We have
been a bit terse here as the precise details are a bit tedious and in fact one can proceed without
this intrinsic labelling as noted above since starting from the labelled system one can reconstruct
the process of interest, XN .

However you prefer to proceed, it will be convenient to extend the definition of Bβ
s to all

s ∈ [0, T β) by following the paths of β’s ancestors, i.e.,

Bβ
s = Bβ|i

s if T β|i−1 ≤ s < T β|i, i ≤ |β|.

Then for β ∼ t, s→ Bβ
s is a copy of BN on [0, T β) as it is a concatenation of independent random

walks with matching endpoints.
Here is the modulus of continuity we will need.

Proposition 6.5 Let ε ∈ (0, 1/2). There is a random variable δN,ε s.t. for some ci(ε) > 0, i = 1, 2,

(6.14) P (δN,ε < 2−n) ≤ c1(ε) exp
(
−c2(ε)2nε

)
for all 2−n ≥ N−1,

and whenever δN,ε ≥ 2−n ≥ N−1, for n ∈ N,

(6.15) |Bβ
t −Bβ

j2−n | ≤ 2−n( 1
2
−ε) for any j ∈ {0, 1, . . . , n2n}, t ∈ [j2−n, (j + 1)2−n] and β ∼ t.

Proof In Section 4 of Dawson, Iscoe and Perkins (1989) a more precise result is proved for a
system of branching Brownian motions in discrete time. Our approach is the same and so we will
only point out the changes needed in the argument. Let h(r) = r

1
2
−ε.

In place of the Brownian tail estimates we use the following exponential bound for our continuous
time random walks which may be proved using classical methods:

(6.16) ΠN
0 (|BN (2−n)| > h(2−n)) ≤ 3d exp

(
−c6.162nε

)
for 2−n ≥ N−1 and some positive c6.16(ε).

We write β′ > β iff β′ is a descendent of β, i.e., if β = β′|i for some i ≤ |β′|. The next ingredient
is a probability bound on

Γn(j2−n) = card{β ∼ j2−n : ∃β′ > β s.t. β′ ∼ (j + 1)2−n},

the number of ancestors at time j2−n of the population at (j+1)2−n. The probability of a particular
individual having ancestors at time 2−n in the future is (1 +N2−n)−1 (use (6.13) with θ = −∞).
From this and easy binomial probability estimates one gets

(6.17) P (∃j ≤ n2n s. t. Γn(j2−n) ≥ [e2XN
j2−n(1) + 1]2n) ≤ n2n exp(−2n).

Define n1 = n1(N) by 2−n1 ≥ 1
N > 2−n1−1 and for 1 ≤ n ≤ n1 define

An =
{

max
1≤j≤n2n

max
β∈Γn(j2−n)

|Bβ
j2−n −Bβ

(j−1)2−n | > h(2−n)
}
.
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Set A0 = Ω. Next introduce

A∗n1
=
{

max
j≤n12n1

sup
t∈[j2−n1 ,(j+1)2−n1 ],β∼t

|Bβ
t −Bβ

j2−n1
| > h(2−n)

}
.

Set δN,ε = 2−n iff ω /∈ A∗n1
∪ (∪n1

n′=nAn′) and ω ∈ An−1 for n ∈ N. If ω ∈ A∗n1
, set δN,ε = 1. A

standard binomial expansion argument (as in Dawson, Iscoe and Perkins (1989)) shows that (6.15)
holds with some universal constant c in front of the bound on the righthand side. The latter is easily
removed by adjusting ε. It follows easily from (6.16) and (6.17) that P (An) ≤ c1 exp

(
−c22nε

)
.

Therefore to show (6.14), and so complete the proof it remains to show

(6.18) P (A∗n1
) ≤ c1 exp

(
−c22n1ε

)
.

This bound is the only novel feature of this argument. It arises due to our continuous time setting.
Let 0 ≤ j ≤ n12n1 and condition on Nj = NXN

j2−n1
(1). For each of these Nj particles run it

until its first branching event. The particle is allowed to give birth iff it splits into two before time
(j + 1)2−n1 . If it splits after this time or if it dies at the branching event, it is killed. Note that
particles will split into two with probability

q =
1
2

∫ 2−n1

0
e−2Ns2Nds =

1
2
(1− e−2N2−n1 ) ≤ 1

2
(1− e−4) <

1
2
,

the last inequality by our definition of n1. Let Z1 be the size of the population after this one
generation. Now repeat the above branching mechanism allowing a split only if it occurs before
the next time interval of length 2−n1 and continue this branching mechanism until the population
becomes extinct. In this way we get a subcritical discrete time Galton-Watson branching process
with mean offspring size µ = 2q < 1. Let Tj denote the extinction time of this process. Then
P (Tj > m) ≤ E(Zm) = Njµ

m and so, integrating out the conditioning, we have

(6.19) P ( max
j≤n12n1

Tj > m) ≤ n12n1NXN
0 (1)µm.

In keeping track of this branching process until Tj we may in fact be tracing ancestral lineages
beyond the interval [j2−n1 , (j + 1)2−n1 ], which is of primary interest to us, but any branching
events in this interval will certainly be included in our Galton Watson branching process as they
must occur within time 2−n1 of their parent’s branching time. The resulting key observation is
therefore that Tj is an upper bound for the largest number of binary splits in [j2−n1 , (j + 1)2−n1 ]
over any line of descent of the entire population. Since the offspring can move at most 1/

√
N from

the location of its parent at each branching event, Tj/
√
N gives a (crude) upper bound on the

maximum displacement of any particle in the population over the above time interval. It therefore
follows from (6.19) that

P
(

max
j≤n12n1

sup
t∈[j2−n1 ,(j+1)2−n1 ],β∼t

|Bβ
t −Bβ

j2−n1
| > mN−1/2

)
≤ n12n1NXN

0 (1)µm

≤ n122n1+1XN
0 (1)µm.

Now take m to be the integer part of
√
Nh(2−n1) in the above. A simple calculation (recall

Assumption 2.5) now gives (6.18) and so completes the proof.
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Proof of Proposition 2.4. Let ε ∈ (0, 1/2) and T ∈ N. We use n0 = n0(ε, T ) to denote a
lower bound on n which may increase in the course of the proof. Let h(r) = r

1
2
−ε (as above) and

φ(r) = r2∧d−ε for r > 0. Following Barlow, Evans and Perkins (1991), let Bn(y) = B(y, 3h(2−n)),
Bn = {Bn(y) : y ∈ 2−nZd} and for n ≥ n0 define a class Cn of subsets of Rd such that from some
constants c6.22 and c6.23, depending only on {XN

0 } and ε,

(6.20) ∀B ∈ Bn ∃C ∈ Cn s. t. B ⊂ C

(6.21) ∀C ∈ Cn ∃B ∈ Bn s.t. C ⊂ B̃ ≡ ∪
k∈Zdk +B

(6.22) ∀C ∈ Cn, N ∈ N, XN
0 (Pj2−nR1C) ≤ c6.22φ(h(2−n)) for j ∈ {0, . . . , T2n}

(6.23) card(Cn) ≤ c6.23T2c(d)n.

To construct Cn note first that as in Lemma 4.2 for B ∈ Bn,

µN
t (B) ≡ XN

0 (PN
t R1B) ≤ 2 sup

x
XN

0 (B(x, 3h(2−n)))

≤ c0({XN
0 }, ε)φ(h(2−n)).(6.24)

Here we have used Assumption 2.5. For a fixed y ∈ (2−nZd)∩ [0, 1)d let C be a union of balls in Bn

of the form k+Bn(y), k ∈ Zd, where such balls are added until max0≤j≤T2n µN
j2−n(C) > φ(h(2−n)).

It follows from (6.24) that for each 0 ≤ j ≤ 2nT , µj2−n(C) ≤ φ(h(2−n))+c0φ(h(2−n)) and so (6.22)
holds with c6.22 = 1 + c0. Continue the above process with new integer translates of Bn(y) until
every such translate is contained in a unique C in Cn. If n0 is chosen so that 6h(2−n0) < 1, then
these C’s will be disjoint and all but one will satisfy max0≤j≤2nT µj2−n(C) > φ(h(2−n)). Therefore

number of C’s constructed from Bn(y) ≤
2nT∑
j=0

µj2−n(B̃n(y))φ(h(2−n))−1 + 1(6.25)

≤ XN
0 (1)T2nφ(h(2−n))−1 + 1.

Now repeat the above for each y ∈ (2−nZd)∩ [0, 1)d. Then (6.25) gives (6.23), and (6.20) and (6.21)
are clear from the construction.

Let 0 ≤ t ≤ T , x ∈ Rd and assume 1
N ≤ 2−n ≤ δN , where δN = δN,ε is as in Proposition 6.5.

Choose 0 ≤ j ≤ 2nT and y ∈ 2−nZd so that t ∈ [j2−n, (j + 1)2−n) and |y − x| ≤ 2−n ≤ h(2−n),
respectively. Let β ∼ t and Bβ

t ∈ B(x, h(2−n). Then Proposition 6.5 implies

|Bβ
j2−n − y| ≤ |Bβ

j2−n −Bβ
t |+ |Bβ

t − x|+ |x− y|

≤ 3h(2−n),

and so,

(6.26) Bβ
j2−n ∈ Bn(y) ⊂ C for some C ∈ Cn,
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where the last inclusion holds by (6.20). For C ∈ Cn, let

XN,j2−n,C
t (A) =

1
N

∑
β∼t

1(Bβ
j2−n ∈ C,Bβ

t ∈ A), t ≥ j2−n

denote the time t distribution of descendents of particles which were in C at time j2−n. Use (6.26)
to see that XN

t (B(x, h(2−n))) ≤ XN,j2−n,C
t (1), and therefore

(6.27) sup
0≤t≤T,x∈Rd

XN
t (B(x, h(2−n))) ≤ max

j≤2nT,C∈Cn

sup
t≤2−n

XN,j2−n,C
t+j2−n (1).

The process t → XN,j2−n,C
t+j2−n (1) evolves like a continuous time critical Galton-Watson branching

process–conditional on Fj2−n it has law PXN
j2−n |C

–and in particular is a martingale. If θn, λn > 0

we may therefore apply the weak L1 inequality to the submartingale exp(θnX
N,j2−n,C
t+j2−n (1)) to see

that (6.27) implies
(6.28)
P
(

sup
t≤T,x∈Rd

XN
t (B(x, h(2−n))) > λn, 2−n < δN

)
≤
∑

j≤2nT

∑
C∈Cn

e−θnλnE
(
EXN

j2−n |C
(exp(θnX

N
2−n(1)))

)
.

Let θn = 2
n

(
d∧2
2
−3ε

)
and λn = 2

−n

(
d∧2
2
−4ε

)
. For n ≥ n0 we may assume 2−n ≤ e−4(14θn)−1, and

as we clearly have θn ≤ 2n ≤ N , Corollary 6.3 implies

(6.29) EXN
j2−n |C

(exp (θnX
N
2−n(1))) ≤ exp(4θnX

N
j2−n(C)).

Next we apply Corollary 6.2 with C ∈ Cn as above, δ = ε, and r = h(2−n) ∈ [N−1/2, h(2−n0)].
Lemma 7.3 below and (6.21) imply hypothesis (6.10) of Corollary 6.2 and (6.22) implies

XN
0 (PN

j2−nR1c) ≤ c6.22φ(r) = c6.22r
d∧2−ε ∀0 ≤ j2−n ≤ T.

Note that for n ≥ n0,

rε−d∧2 = 2−n( 1
2
−ε)(ε−d∧2) ≥ 2

n

(
d∧2
2
−ε(d∧2)

)
≥ 4θn.

Therefore Corollary 6.2 shows that for n ≥ n0(ε, T ),

E
(
exp (4θnX

N
j2−n(C))

)
≤ e2c6.22 ∀0 ≤ j2−n ≤ T.

Use this in (6.29) and apply the resulting inequality and (6.23) in (6.28) to see that for n ≥ n0(ε, T ),

P
(

sup
t≤T,x∈Rd

XN
t (B(x, h(2−n))) ≥ 2−n( d∧2

2
−4ε)

)
≤ (2nT + 1) c6.23T exp(c(d)n) exp (−2nε)e2c6.22 + P (δN ≤ 2−n)
≤ T 2c({XN

0 }, ε) exp(c′ (d)n− 2nε) + c1(ε) exp (−c2(ε)2nε).
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We have used (6.14) from Proposition 6.5 in the last line. If r0(ε, T ) = h(2−n0), the above bound
is valid for (recall n ≥ n0 and 2−n ≥ N−1)

h(2−n) ∈ [N− 1
2
+ε, r0(ε, T )].

A calculation shows that 2−n(1−4ε) ≤ h(2−n)d∧2−8ε2−nε. Therefore elementary Borel-Cantelli and
interpolation arguments (in r) show that if

Hδ,N (ε, T, r0) = sup
0≤t≤T,x∈Rd

sup
N− 1

2+ε≤r≤r0

XN
t (B(x, r))
rd∧2−δ

,

then for any η > 0 there is an M = M(η, ε, T ) such that

sup
N
P (H8ε,N (ε, T, r0(ε)) ≥M) ≤ η.

Here we are also using
P ( sup

0≤t≤T
XN

t (1) ≥ K) ≤ XN
0 (1)/K ≤ C/K

by the weak L1 inequality. The latter also allows us to replace r0(ε) by 1 in the above bound. If
we set r′ = r

1
1−2ε ≤ r so that r ≥ N− 1

2
+ε iff r′ ≥ N−1/2, one can easily show

sup
0≤t≤T,x∈Rd

sup
1√
N
≤r′≤1

XN
t (B(x, r′))
r′d∧2−10ε

≤ sup
0≤t≤T,x∈Rd

sup
N− 1

2+ε≤r≤1

XN
t (B(x, r))
r′d∧2−8ε

,

that is H10ε,N (0, T, 1) ≤ H8ε,N (ε, T, 1). Therefore we have shown that for each T ∈ N and ε > 0,
H10ε,N (0, T, 1) = sup0≤t≤T ρ

N
10ε(X

N
t ) is bounded in probability uniformly in N . The fact that XN

·
has a finite lifetime which is bounded in probability uniformly in N (e.g. let θ → −∞ in (6.13))
now lets us take T = ∞ and so complete the proof of Proposition 2.4.

7 Proof of Proposition 3.5 and Lemma 3.7

In this section we will verify some useful moment bounds on the positive colicin models which,
through the domination in Proposition 2.2, will be important for the proof of our theorems. As
usual, |x| is the L∞ norm of x.

Lemma 7.1 Let

Sn =
n∑

i=1

Xi,

where {Xi , i ≥ 1} are i.i.d. random variables, distributed uniformly on (Zd/M) ∩ [0, 1]d. Then
there exist c, C > 0 such that

(7.1) P

(
Sn√
n
∈ x+ [−r, r]d

)
≤ Ce−c(|x|2∧(|x|

√
n))rd,

for all (x, r) ∈ Rd × [n−1/2, 1].
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Proof It suffices to bound P (Sn/
√
n = x) for x ∈ Zd/M

√
n by the right-hand side with r = n−1/2

for then we can add up the points in the cube to get the result. For this, note if |x| ≤ 2 we can ignore
the exponentials on the right-hand side, and for |x| > 2 we have |x′| > |x|/2 for all x′ ∈ x+ [−r, r]d
and any r ≤ 1. The local central limit theorem implies

(7.2) sup
z
P (Sn = z) ≤ Cn−d/2.

Suppose now that n = 2m is even. For 1 ≤ i ≤ d,

(7.3) P (|Si
n| ≥ an, Sn = y) ≤ 2P (|Si

m| ≥ am, Sn = y)

since for |Si
n| ≥ an we must have |Si

m| ≥ am or |Si
n−Si

m| ≥ am and the increments of Si
k conditional

on Sn = y are exchangeable. A standard large deviations result (see Section 1.9 in Durrett (2004))
implies

P (|Si
m| ≥ am) ≤ e−γ(a)m

where γ(a) = supθ>0−θa+ φ(θ) and φ(θ) = E exp(θXi). γ is convex with γ(0) = 0, γ′(0) = 0, and
γ′′(0) > 0, so γ(a) ≥ c(a2 ∧ a).

Let y = x
√
n and choose i so that |yi| = |y|. Taking a = |x|/

√
n it follows that

P (|Si
m| ≥ am) ≤ Ce−c(|x|2∧|x|

√
n),

so using (7.2) and (7.3) we have

P (Sn = y) = P (|Si
n| ≥ an, Sn = y) ≤ 2P (|Si

m| ≥ am, Sn = y)
≤ E[1(|Si

m| ≥ am)P (Sm = y − Sm(ω))]

≤ Ce−c(|x|2∧|x|
√

n)n−d/2.

The result for odd times n = 2m + 1 follows easily from the observation that if Sn = x then
Sn−1 = y where y is a neighbor of x and on the step n the walk must jump from y to x.

Using the local central limit theorem for the continuous time random walk to estimate the
probability of being at a given point leads easily to:

Lemma 7.2 There is a constant c such that for all s > 0

sup
x

ΠN
0

(
BN

s ∈ x+ [−r, r]d
)
≤ crdNd/2

(Ns+ 1)d/2
, ∀r ≥ N−1/2.(7.4)

and in particular for r = 1/
√
N and any N ≥ 1 we have

sup
x

ΠN
0

(
BN

s ∈ x+
[
−1/

√
N, 1/

√
N
]d)

≤ c

(Ns+ 1)d/2
.(7.5)

We also used the following version of Lemma 7.2 for the torus in the proof of the concentration
inequality in the previous section. This time we give the details.

Notation. If x ∈ Rd, r > 0, let C(x, r) = ∪
k∈ZdB(x+ k, r).

Lemma 7.3 There is a constant C such that

sup
x∈Rd

ΠN
0 (BN

u ∈ C(x, r)) ≤ Crd(1 + u−d/2) for all u > 0, r ∈ [N−1/2, 1].
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Proof Note first it suffices to consider x ∈ [−1, 1]d and

(7.6) N−1/2 ≤ r ≤
√
u/2.

If {Sn} is as in Lemma 7.1, we may define BN
u = SτN

u
/
√
N , where τN is an independent rate N

Poisson process. We have

ΠN
0 (BN

u ∈ C(x, r)) ≤ P (τN
u /∈ [Nu/2, 2Nu])(7.7)

+
∑

Nu/2≤j≤2Nu

P (τN
u = j)

∑
k∈Zd

P
( Sj√

j
∈ B

(
(x+ k)

√
N

j
, r

√
N

j

))
.

Standard exponential bounds imply

P (τN
u /∈ [Nu/2, 2Nu]) ≤ e−cNu(7.8)

for some c > 0. By (7.6), we have j−1/2 ≤ r
√

N
j ≤ 1 for Nu/2 ≤ j ≤ 2Nu and so we may use

Lemma 7.1 to bound the series on the right-hand side of (7.7) by

∑
Nu/2≤j≤2Nu

P (τN
u = j)

∑
k∈Zd

C exp
(
−c
( |x+ k|2N

j
∧ |x+ k|

√
N
))

(N/j)d/2rd

≤ 2d/2C
∑

k∈Zd

exp
(
−c
( |x+ k|2

2u
∧ |x+ k|

√
N
))
u−d/2rd

≤ C
∑

k∈Zd

(
exp
(−c|x+ k|2

u

)
+ exp(−c|x+ k|)

)
u−d/2rd

≤ C(ud/2 + 1)u−d/2rd.

In the last line we have carried out an elementary calculation (recall |x| ≤ 1) and as usual are
changing constants from line to line. Use the above and (7.8) in (7.7) to get

sup
x

ΠN
0 (BN

u ∈ C(x, r)) ≤ e−cNu + C(1 + u−d/2)rd

≤ C(Nu)−d/2 + C(1 + u−d/2)rd

≤ Crdu−d/2 + C(1 + u−d/2)rd,

since r ≥ N−1/2. The result follows.

Eliminating times near 0 and small |x| we can improve Lemma 7.2.

Lemma 7.4 Let 0 < δ∗ < 1/2, 0 < δ′ < 1. Then for any a ≥ 0, there exists c = c(a, δ, δ∗)) > 0
such that

ΠN
0

(
BN

s ∈ x+ [−r, r]d
)
≤ crd(sa ∧ 1),

for all r ≥ N−1/2, s ≥ N δ′−1, and |x| ≥ s1/2−δ∗.
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Proof As before, it suffices to consider r = N−1/2. Let τN
s = number of jumps of BN up to time s.

Then, as in 7.8, there exists c > 0 such that

(7.9) ΠN
0

(
τN
s > 2Ns or τN

s < Ns/2
)
≤ e−csN .

Now for Ns/2 ≤ j ≤ 2Ns and r ≥ N−1/2, Lemma 7.1 implies

P

(
Sj/
√
j ∈

(
x+ [−N−1/2, N−1/2]d

) √N√
j

)
≤ C exp

(
−c

(
|x|2N
j

∧ |x|
√
N√
j

))
j−d/2.

Using 2Ns ≥ j ≥ Ns/2, |x| ≥ s1/2−δ∗ , and calculus the above is at most

C exp(−c(|x|2/s ∧ |x|/
√
s))N−d/2s−d/2

≤ C[exp(−cs−δ∗) + exp(−cs−2δ∗)]N−d/2s−d/2

≤ C(a, δ∗)(sa ∧ 1)N−d/2

To combine this with (7.9) to get the result, we note that (sa ∧ 1)−1e−csN/2 is decreasing in s, so
if s ≥ N δ′−1, then

e−csN/2

sa ∧ 1
≤ e−cNδ′/2

Na(δ′−1)
≤ C(δ′, a).

Using e−cNδ′/2 ≤ c(δ′)N−d/2 we see that the right-hand side of (7.9) is also bounded by

C(δ′, a)(sa ∧ 1)N−d/2

and the proof is completed by combining the above bounds.

Lemma 7.5 For any 0 < δ∗ < 1/2, let

QN =
{

(s, x) : |x| ≥ s1/2−δ∗ ∨N−1/2+δ∗
}
.

Let IN (s, x) = Nd/2 ΠN
0

(∣∣BN
s − x

∣∣ ≤ 1/
√
N
)
. Then there exists a constant c7.10 = c7.10(δ∗) such

that

(7.10) sup
N≥1

sup
(s,x)∈QN

IN (s, x) ≤ c7.10

Proof Fix 0 < δ′ < δ∗. If s ≥ N δ′−1 then the result follows from Lemma 7.4. For s ≤ N δ′−1

and |x| ≥ N−1/2+δ∗ , |BN
s − x| ≤ 1/

√
N implies |BN

s | > N−1/2+δ∗/2. Therefore for p ≥ 2, a simple
martingale inequality implies

IN (s, x) ≤ Nd/2ΠN
0

(∣∣BN
s

∣∣ > N−1/2+δ∗/2
)
≤ cpN

d/2Np(1/2−δ∗)ΠN
0

[∣∣BN
s

∣∣p]
≤ cpN

d/2Np(1/2−δ∗)sp/2 ≤ cpN
d/2+p(δ′/2−δ∗) ≤ cp

if p is large enough so that d/2 + p(δ′/2− δ∗) < 0.

Recall that in (3.5) we fixed the constants δ, δ̃ such that 0 < δ < δ̃ < 1/6.

Lemma 7.6 There exists c7.11 = c7.11(δ, δ̃) such that for all s > 0, z′ ∈ ZN and µN ∈MF (ZN )

(7.11) Nd/2

∫
Rd

sup
|z1|≤1/

√
N

ΠN
0

(∣∣BN
s + z′ + z1 − y

∣∣ ≤ 1/
√
N
)
µN (dy) ≤ c7.11%̂

N
δ (µN )s−ld−δ̃.
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Proof Recall ld = (d/2− 1)+. Let s ≥ 1. Then from Lemma 7.2 we immediately get that

Nd/2

∫
Rd

sup
|z1|≤1/

√
N

ΠN
0

(∣∣BN
s + z′ + z1 − y

∣∣ ≤ 1/
√
N
)
µN (dy)

≤ Nd/2 c

(Ns+ 1)d/2
µN (1) ≤ cµN (1)s−d/2 ≤ cµN (1)s−ld−δ̃

and hence for s ≥ 1 we are done.
Now let 0 < s < 1 and fix 0 < δ∗ < 1/2 such that δ/2 + δ∗((2 ∧ d) − δ) = δ̃. A little algebra

converts the condition into

− d/2 + ((2 ∧ d)− δ)(1/2− δ∗) = −ld − δ̃.(7.12)

Define AN =
{
y : |z′ − y| ≤ (s1/2−δ∗ ∨N−1/2+δ∗) +N−1/2

}
. Let I1

N and I2
N be the contributions to

(7.11) from the integrals over AN and Ac
N , respectively. Let s ≥ 1/N . Then we apply Lemma 7.2

to bound I1
N as follows:

I1
N ≤ Nd/2 c

(Ns+ 1)d/2

∫
AN

µN (dy)

≤ %̂N
δ (µN )

c

(s+ 1/N)d/2

(
(s1/2−δ∗ ∨N−1/2+δ∗) +N−1/2

)2∧d−δ

≤ c%̂N
δ (µN )

c

(s)d/2

(
2s1/2−δ∗

)2∧d−δ
≤ c%̂N

δ (µN )s−ld−δ̃,

where (7.12) is used in the last line. If s ≤ 1/N we get (using (7.12) again)

I1
N ≤ Nd/2µN

(
B(z′ , N−1/2+δ∗ +N−1/2)

)
≤ c%̂N

δ (µN )Nd/2N (−1/2+δ∗)2∧d−δ

= c%̂N
δ (µN )N ld+δ̃ ≤ c%̂N

δ (µN )s−ld−δ̃.

As for the second term I2
N we have the following. Note that for any y ∈ Ac

N and |z1| ≤ 1/
√
N

we have,

(7.13)
∣∣z′ + z1 − y

∣∣ ≥ s1/2−δ∗ ∨N−1/2+δ∗ .

Then by (7.13) and Lemma 7.5 we get

I2
N ≤ c7.10µ

N (1) ≤ c7.10s
−ld−δ̃µN (1),

where the last inequality is trivial since s < 1. Summing our bounds on I1
N and I2

N gives the
required inequality for 0 < s < 1 and the proof is complete.

Return now the the proof of Proposition 3.5. Let φ : Z → [0,∞). By our choice of δ̃,

l̃d ≡ 1− ld − δ̃ > 0.

From (2.19), Lemma 7.6, and the definition of Hδ,N we get the following bounds by using the
Markov property of BN :
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P gN
s,t (φ) (x1) ≤ ΠN

s,x1

[
φ(BN

t )
]

+ γ+
2 2−d

∫ t

s

∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
s,x1

(
BN

s1
= y1 + z

)
ΠN

s1,y1+z

[
φ(BN

t )
]

(7.14)

× X̄1,N
s1

(dy1) ds1

+
∞∑

n=2

2−dn(γ+
2 )ncn7.11

(
Hδ,N + sup

s≤u≤t
X̄1,N

u (1)
)n ∫

Rn
+

1(s < s1 < . . . < sn ≤ t)

×
n∏

i=1

(si − si−1)−ld−δ̃ sup
x

ΠN
sn,x

[
φ(BN

t )
]
ds1 . . . dsn ,

and for µN ∈MF (ZN ),

∫
P gN

s,t (φ) (x1)µN (dx1) ≤
∫

ΠN
s,x1

[
φ(BN

t )
]
µN (dx1)

+
∞∑

n=1

%̂N
δ (µN )2−dn(γ+

2 )ncn7.11

(
Hδ,N + sup

s≤u≤t
X̄1,N

u (1)
)n−1 ∫

Rn
+

1(s < s1 < . . . < sn ≤ t)(7.15)

×
n∏

i=1

(si − si−1)−ld−δ̃

×
∫

sup
|zn|≤N−1/2

ΠN
sn,yn+zn

[
φ(BN

t )
]
X̄1,N

sn
(dyn) ds1 . . . dsn .

In the above integrals, s0 = 0 and we have distributed the X̄1,N
si integrations among the BN

increments in different manners in (7.14) and (7.15).
Define

Jn(sn) ≡
∫

Rn−1
+

1(s1 < . . . < sn)
n∏

i=1

(si − si−1)−ld−δ̃ ds1 . . . dsn−1 , n ≥ 1.

Some elementary calculations give

Jn(sn) =
Γ(l̃d)n

Γ(nl̃d)
s(n−2)l̃d+1−2ld−2δ̃
n , ∀n ≥ 1.(7.16)

Define

RN
7.17(t, ω) ≡

∞∑
n=2

(
RN (ω)2−dγ+

2 c7.11Γ(l̃d)
)n
t(n−2)l̃d+1−2ld

Γ(nl̃d)
,(7.17)

RN
7.18(t, ω) ≡

∞∑
n=1

(
2−dγ+

2 c7.11Γ(l̃d)
)n
RN (ω)n−1t(n−1)l̃d

Γ(nl̃d)
.(7.18)
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Note that

RN
7.17(t, ω) +RN

7.18(t, ω) = sup
s≤t

(RN
7.17(s, ω) +RN

7.18(s, ω)) < ∞, P − a.s.(7.19)

where the last inequality follows since

Cn

Γ(nε)
→ 0, as n→∞,

for any C > 0 and ε > 0 (recall that d ≤ 3, l̃d > 0, 1 − 2ld ≥ 0). Moreover, (2.21) immediately
yields

(7.20) for each t > 0, RN
7.17(t, ω) +RN

7.18(t, ω) is bounded in probability uniformly in N (tight).

Now we are ready to give some bounds on expectations.

Lemma 7.7 Let φ : Z → [0,∞). Then, for 0 ≤ s < t,

ΠN
s,x1

[
φ(BN

t ) exp
{∫ t

s
γ+

2 gN (X̄1,N
r , BN

r ) dr
}]

≤ ΠN
s,x1

[
φ(BN

t )
]

+ γ+
2 2−d

∫ t

s

∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
s,x1

(
BN

s1
= y1 + z

)
ΠN

s1,y1+z

[
φ(BN

t )
]
X̄1,N

s1
(dy1) ds1

+RN
7.17(t)

∫ t

s
(sn − s)−2δ̃ sup

x
ΠN

sn,x

[
φ(BN

t )
]
dsn .

Proof Immediate from (7.14) and (7.16).

Proof of Proposition 3.5

(a) Immediate from (7.15), (7.18) and (7.20) with R̄N (t) = RN
7.18(t).

(b) By Lemma 7.7, Lemma 7.6 and the definition of RN we get

ΠN
s,x1

[
φ(BN

t ) exp
{∫ t

s
γ+

2 gN (X̄1,N
r , BN

r ) dr
}]

≤ ‖φ‖∞
(

1 + γ+
2 2−d

∫ t

s

∫
ZN

Nd/2ΠN
s,x1

(
|BN

s1
− y1| ≤ N−1/2

)
X̄1,N

s1
(dy1) ds1

+RN
7.17(t)

∫ t

s
(sn − s)−2δ̃ dsn

)
≤ ‖φ‖∞

(
1 + 2−dγ+

2 c7.11RN

∫ t

s
(s1 − s)−ld−δ̃ ds1 +RN

7.17(t)t
1−2δ̃

)
≤ ‖φ‖∞ c

(
1 +RN t

1−ld−δ̃ +RN
7.17(t)t

1−2δ̃
)

= ‖φ‖∞ R̄N (t),
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and we are done.

Proof of Lemma 3.7

(a) Recall that our choice of parameter δ̃ in (3.5) implies that l̃d = 1 − ld − δ̃ > 0. By Proposi-
tion 3.5(a) we get∫

ZN

P gN
0,t

(
Nd/21

(
|· − y| ≤ 1/

√
N
))

(x1)µN (dx1)

≤
∫

Rd
Nd/2ΠN

0,x1

(∣∣BN
t − y

∣∣ ≤ 1/
√
N
)
µN (dx1)

+ %̂N
δ (µN )R̄N (t)

∫ t

0
s−δ̃−ld
n(7.21)

×
∫

Rd
Nd/2 sup

|zn|≤N−1/2

ΠN
yn+zn

(∣∣BN
t−sn

− y
∣∣ ≤ N−1/2

)
X̄1,N

sn
(dyn) dsn.

By Lemma 7.6 the first term in (7.21) is bounded by

c7.11%̂
N
δ (µN )t−δ̃−ld(7.22)

uniformly on x1.

Now it is easy to check that∫ t

0
s−2δ̃(t− s)−ld−δ̃ ds ≤ c(t), and c(t) is bounded uniformly on the compacts.(7.23)

Apply (7.23) and Lemma 7.6, and recall that R̄N (t) may change from line to line, to show
that the second term in (7.21) is bounded by

c(t)%̂N
δ (µN )R̄N (t)RN

∫ t

0
s−δ̃−ld
n (t− sn)−ld−δ̃ dsn(7.24)

≤ %̂N
δ (µN )R̄N (t)t1−2ld−2δ̃

≤ %̂N
δ (µN )R̄N (t)t−δ̃−ld

Now put together (7.22, (7.24) to get that (7.21) is bounded by

%̂N
δ (µN )R̄N (t)t−ld−δ̃

and we are done.
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(b) Apply Lemma 7.7 with φ(x) = Nd/2
∫
Z 1(|x− y| ≤ N−1/2)µN (dy) to get∫

ZN

P gN
0,t

(
Nd/21

(
|· − y| ≤ 1/

√
N
))

(x1)µN (dy)

= P gN
0,t φ(x1)

≤
∫

Rd
Nd/2ΠN

x1

(∣∣BN
t − y

∣∣ ≤ 1/
√
N
)
µN (dy)

+ γ+
2 2−d

∫ t

0

∫
Z2

N

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1
= y1 + z

)
Nd/2ΠN

y1+z

(∣∣BN
t−s1

− y
∣∣ ≤ 1/

√
N
)

(7.25)

× X̄1,N
s1

(dy1)µN (dy) ds1

+ R̄N (t)
∫ t

0
s−2δ̃
n sup

x1

{
ΠN

x1

(
Nd/2

∫
ZN

∣∣BN
t−sn

− y
∣∣ ≤ 1/

√
NµN (dy)

)}
dsn.

By Lemma 7.6 the first term in (7.25) is bounded by

c7.11%̂
N
δ (µN )t−ld−δ̃(7.26)

uniformly on x1. Let us consider the second term in (7.25). First apply Lemma 7.6 to bound
the integrand.∫
Z2

N

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1
= y1 + z

)
Nd/2ΠN

y1+z

(∣∣BN
t−s1

− y
∣∣ ≤ 1/

√
N
)
X̄1,N

s1
(dy1)µN (dy)

≤
(

sup
z1

∫
ZN

Nd/2ΠN
z1

(∣∣BN
t−s1

− y
∣∣ ≤ 1/

√
N
)
µN (dy)

)
×
∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1
= y1 + z

)
X̄1,N

s1
(dy1)

≤ c%̂N
δ (µN )RNs

−ld−δ̃
1 (t− s1)−ld−δ̃.

Hence the second term in (7.25) is bounded by

%̂N
δ (µN )R̄N (t)

∫ t

0
s−ld−δ̃
1 (t− s1)−ld−δ̃ ds1 ≤ c%̂N

δ (µN )R̄N (t)t1−2ld−2δ̃.

≤ %̂N
δ (µN )R̄N (t)t−ld−δ̃(7.27)

Now apply (7.23) and Lemma 7.6 to show that the third term in (7.25) is bounded by

c(t)ρ̂N
δ (µN )R̄N (t).(7.28)

Now put together (7.26), (7.27), (7.28) to bound (7.25) by

%̂N
δ (µN )R̄N (t)t−ld−δ̃

and we are done.
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8 Proof of Lemmas 4.3, 4.4 and 4.5

We start with the

Proof of Lemma 4.3

ψε
N (x , x1) = 2−dNd/2

∑
|z|≤N−1/2

∫ ∞

0
e−αspN

2s(x1 − x− z) ds1 (|x− x1| ≤ ε)

≤
∫ ∞

ε
e−αsNd/2

∑
|z|≤N−1/2

pN
2s(x1 − x− z) ds1 (|x− x1| ≤ ε)

+Nd/2
∑

|z|≤N−1/2

∫ ε

0
e−αspN

2s(x1 − x− z) ds

≡ I1,N
ε (x, x1, z1) + I2,N

ε (x, x1, z1) .

By Lemma 7.2 we get the following bound on I1,N
ε :

I1,N
ε (x, x1, z1) ≤ c

∫ ∞

ε
s−d/2e−αs ds1 (|x− x1| ≤ ε)

≤ chd(ε)1 (|x− x1| ≤ ε) .

Now use condition UBN to get∫
ZN

I1,N
ε (x, x1, z1)µN

0 (dx) ≤ chd(ε)
∫
ZN

1 (|x− x1| ≤ ε)µN (dx)

≤ c%̂N
δ (µN )hd(ε)ε(2∧d)−δ̃

≤ c%̂N
δ (µN )ε1−δ̃, ∀x1 ∈ ZN .(8.1)

As for I2,N
ε , apply Lemma 7.6 to get∫

ZN

I2,N
ε (x, x1)µN (dx) ≤ c7.11%̂

N
δ (µN )

∫ ε

0
s−ld−δ̃ ds

≤ c%̂N
δ (µN )ε1−ld−δ̃ , ∀x1 ∈ ZN .(8.2)

By combining (8.1) and (8.2) we are done.

Recall from (4.3) that

hd(t) ≡


1, if d = 1,
1 + ln+(1/t), if d = 2,
t1−d/2, if d = 3.

Recall also that α > 0 if d ≤ 2, and α ≥ 0 if d = 3.

Lemma 8.1 There is a c = cα > 0 such that

ΠN
x1

[
Gα

N1(BN
t , x2)

]
≤ chd(t) ∀t > 0, ∀x1 , x2 ∈ ZN .
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Proof First apply Lemma 7.2 to get

ΠN
x1

[
Gα

N1(BN
t , x2)

]
= ΠN

x1

Nd/2
∑

|z|≤N−1/2

∫ t

0
e−αspN

2s(B
N
t − x2 − z) ds


+ ΠN

x1

Nd/2
∑

|z|≤N−1/2

∫ ∞

t
e−αspN

2s(B
N
t − x2 − z) ds


≤ ct−d/2

∫ t

0
e−αs ds+ c

∫ ∞

t
e−αss−d/2 ds

≤ c(t1−d/21(t ≤ 1) + t−d/2

∫ t

0
e−αs ds1(t ≥ 1)) + chd(t) .

Now a trivial calculation shows that

c(t1−d/21(t ≤ 1) + t−d/2

∫ t

0
e−αs ds1(t ≥ 1)) ≤ chd(t)

and we are done.

Notation, assumptions. Until the end of this section we will make the following assumption on
N, ε

0 < ε < 1/2, N ≥ ε−2 .(8.3)

We will typically reserve notation µN for measures in MF (ZN ) and c(t) will denote a constant
depending on t ≥ 0 which is bounded on compacts. Also recall that δ, δ̃ satisfy (3.5).

Lemma 8.2 If 0 < η < (2/d) ∧ 1, there exists a constant c = cη > 0 such that

ΠN
x1

[
ψε

N (BN
t , x2)

]
≤

{
chd(t), if 0 < t ≤ εη

cε1−dη/2 otherwise,

uniformly in x1 , x2 ∈ Z, N ≥ ε−2 .

Proof First let us treat the case t ≤ εη. By Lemma 8.1, for all x1, x2 ∈ ZN ,

ΠN
x1

[
ψε

N (BN
t , x2)

]
≤ ΠN

x1

[
Gα

N1(BN
t , x2)

]
≤ chd(t) .(8.4)

Now let us turn to the case t > εη. Then

ΠN
x1

[
ψε

N (BN
t , x2)

]
= ΠN

x1

1
(∣∣BN

t − x2

∣∣ ≤ ε
)
Nd/2

∑
|z|≤N−1/2

∫ ∞

ε
e−αspN

2s(B
N
t − x2 − z) ds


+ ΠN

x1

1
(∣∣BN

t − x2

∣∣ ≤ ε
)
Nd/2

∑
|z|≤N−1/2

∫ ε

0
e−αspN

2s(B
N
t − x2 − z) ds


≡ I1 + I2.
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Then for any x1

I1 ≤ sup
x

ΠN
x1

1
(∣∣BN

t − x
∣∣ ≤ ε

)
Nd/2

∑
|z|≤N−1/2

∫ ∞

ε
e−αspN

2s(B
N
t − x− z) ds


≤ sup

x
ΠN

x1

[
1
(∣∣BN

t − x
∣∣ ≤ ε

)
c

∫ ∞

ε
e−αss−d/2 ds

]
(by (7.5))

≤ chd(ε)εdt−d/2 (by Lemma 7.2)
≤ chd(ε)εd−ηd/2 (since t > εη)
≤ cε1−ηd/2,

where the last inequality follows by the definition of hd. Now apply again Lemma 7.2 and the
assumption t > εη to get

I2 ≤ ΠN
x1

Nd/2
∑

|z|≤N−1/2

∫ ε

0
e−αspN

2s(B
N
t − x2 − z) ds


≤ ct−d/2

∫ ε

0
ds

≤ cε−ηd/2ε

and we are done.

We will also use the trivial estimate

hd(t) ≤ ct−ld−δ̃, t ≤ 1.(8.5)

The proof of the following trivial lemma is omitted.

Lemma 8.3 Let f(t) be a function such that

f(t) ≤
{
chd(t), if 0 < t ≤ εη

cε1−dη/2 otherwise.

Then for 0 < η < 1/2 and some c(η, t), bounded for t in compacts, we have∫ t

0
s−2δ̃f(t− s) ds ≤ c(t)εη(1−ld−3δ̃).(8.6)

The next several lemmas will give some bounds on the Green’s functions Gα
N used in Section 4.

Lemma 8.4 For any 0 < η < 2/7 there exists {R̄N (t)}t≥0 (possibly depending on η), such that for
all 0 < ε < 1/2,

P gN
s,t (ψε

N (·, x2)) (x1) ≤
{
hd(t− s)R̄N (t), if 0 < t− s ≤ εη,

εη(1−ld−3δ̃)R̄N (t) if t− s > εη,

uniformly in x1, x2, N ≥ ε−2 .
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Proof First, by Lemma 7.7 we get

P gN
s,t (ψε

N (·, x2)) (x1) ≤ ΠN
s,x1

[
ψε

N (x2 , B
N
t )
]

+ γ+
2 2−d

∫ t

s

∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
s,x1

(
BN

s1
= y1 + z

)
ΠN

s1,y1+z

[
ψε

N (x2 , B
N
t )
]

× X̄1,N
s1

(dy1) ds1

+ R̄N (t)
∫ t

s
(sn − s)−2δ̃ sup

x1,x2

ΠN
x1

[
ψε

N (x2 , B
N
t−sn

)
]
dsn

≡ I1,N (s, t) + I2,N (s, t) + I3,N (s, t).(8.7)

Note that I1,N (s, t) = I1,N (t − s), and hence, if t − s ≥ εη, then by Lemma 8.2, I1,N (s, t) in (8.7)
is bounded by

cε1−dη/2 ≤ cεη(1−ld−3δ̃), ∀ε ≤ 1,(8.8)

where the inequality follows since 1− dη/2 ≥ η(1− ld − 3δ̃) by our assumptions on η, δ̃. To bound
I1,N (s, t) for t− s ≤ εη use again Lemma 8.2 and hence obtain

I1,N (s, t) ≤
{
chd(t− s), if 0 < t− s ≤ εη,

cεη(1−ld−3δ̃) if t− s > εη.
(8.9)

Next consider I2,N (s, t). First bound the integrand:∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
s,x1

(
BN

s1
= y1 + z

)
ΠN

s1,y1+z

[
ψε

N (x2 , B
N
t )
]
X̄1,N

s1
(dy1)

≤

(
sup

x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
])

×
∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1−s = y1 + z
)
X̄1,N

s1
(dy1)

≤ c7.11RN (s1 − s)−ld−δ̃ sup
x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
, s ≤ s1 ≤ t,(8.10)

where the last inequality follows by Lemma 7.6 and definition of RN . Now for t − s ≤ εη we
apply (8.10), (8.5), and Lemma 8.2 to get

I2,N (t) ≤ γ+
2 2−dc7.11RN

∫ t

s
(s1 − s)−ld−δ̃ sup

x,x2∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
ds1(8.11)

≤ cRN

∫ t

s
(s1 − s)−ld−δ̃(t− s1)−ld−δ̃ ds1

≤ cRN (t− s)1−2ld−2δ̃

∫ 1

0
u−ld−δ̃(1− u)−ld−δ̃ du

≤ c(t)RNhd(t− s), t− s ≤ εη.
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Now, for t− s ≥ εη use (8.10) to get

I2,N (s, t) ≤ γ+
2 2−dc7.11RN

∫ t

s
(s1 − s)−ld−δ̃ sup

x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
ds1(8.12)

≤ cRN

∫ t−ε2η

s
(s1 − s)−ld−δ̃ sup

x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
ds1

+ cRN

∫ t

t−ε2η

(s1 − s)−ld−δ̃ sup
x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
ds1.

Let us estimate the first integral on the right hand side of (8.12). By Lemma 8.2 with 2η < 2/3 in
place of η, it is bounded by

cε1−ηd

∫ t−ε2η

s
(s1 − s)−ld−δ̃ ds1

= c(t)ε1−ηd

≤ c(t)εη(1−ld−3δ̃).(8.13)

The last line follows as in (8.8) and uses η < 2/7.
Now, let us estimate the second integral on the right hand side of (8.12). Since t − s ≥ εη, we

see that for ε < 1/2, there is a constant c = c(η) such that

t− ε2η ≥ s+ εη − ε2η ≥ s+ cεη,

and hence the second integral on the right hand side of (8.12) is bounded by

cεη(−ld−δ̃)

∫ t

t−ε2η

sup
x∈ZN

ΠN
x

[
ψε

N (x2 , B
N
t−s1

)
]
ds1(8.14)

≤ cεη(−ld−δ̃)ε2η(1−ld−δ̃) (by (8.5) and Lemma 8.2).

Since ld ≤ 1/2, the right-hand side of (8.14) is bounded by

cεη(1−ld−3δ̃).(8.15)

Combining (8.11)—(8.15) we get

I2,N (s, t) ≤
{
c(t)RNhd(t− s), if 0 < t− s ≤ εη,

c(t)RN ε
η(1−ld−3δ̃) if t− s > εη.

(8.16)

For I3,N (t), we apply Lemmas 8.2 and 8.3 to get

I3,N (s, t) ≤ R̄N (t)εη(1−ld−3δ̃)(8.17)

Moreover, since εη(1−ld−3δ̃) ≤ hd(t− s) for t− s ≤ 1, we obtain

I3,N (s, t) ≤
(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
R̄N (t).(8.18)
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Now put together (8.9), (8.16), (8.18) to bound (8.7) by(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
R̄N (t),(8.19)

and we are done.

Lemma 8.5 There is a c = cα such that

sup
x1

∫
ZN

Gα
N1(x , x1)µN (dx) ≤ c%̂N

δ (µN ), ∀µN ∈MF (ZN ), ∀N ∈ N ,

Proof By Lemma 7.2 we get

Gα
N1(x , x1) ≤ Nd/2

∑
|z|≤N−1/2

∫ 1

0
e−αspN

2s(x1 − x− z) ds

+ c

∫ ∞

1
e−αss−d/2 ds

≡ Nd/2
∑

|z|≤N−1/2

∫ 1

0
e−αspN

2s(x1 − x− z) ds+ c8.20(α),(8.20)

for all x, x1 ∈ ZN . Apply Lemma 7.6 to get∫
ZN

Gα
N1(x , x1)µN (dx) ≤ c7.11%̂

N
δ (µN )

∫ 1

0
s−ld−δ̃ ds+ c8.20(α)µN (1)

≤ c%̂N
δ (µN ) , ∀ x1 ∈ ZN ,

and we are done.

Lemma 8.6 There is an R̄N (t) so that∫
ZN

P gN
s,t (Gα

N1(x , ·)) (x1)µN (dx) ≤ c(t)%̂N
δ (µN )R̄N (t) ,

for all t ≥ s ≥ 0, x1 ∈ ZN , µN ∈MF (ZN ), and N ∈ N .

Proof The result is immediate by Lemma 8.5 and Proposition 3.5(b).

Lemma 8.7 There is a c8.7 such that if µN ∈MF (ZN ), then∫
ZN

sup
|z1|≤1/

√
N

ΠN
x1+z1

[
Gα

N1(x ,BN
t )
]
µN (dx1)

≤ c8.7%̂
N
δ (µN ) , ∀t ≥ 0, x ∈ ZN , N ∈ N.
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Proof Use (8.20) to get

ΠN
x1+z1

[
Gα

N1(x ,BN
t )
]

≤ Nd/2ΠN
x1+z1

 ∑
|z|≤N−1/2

∫ 1

0
e−αspN

2s(B
N
t − x− z) ds


+ c8.20(α),(8.21)

for all t ≥ 0, x, x1, z1 ∈ ZN . If µN ∈MF (ZN ), we have

Nd/2

∫
ZN

sup
|z1|≤1/

√
N

ΠN
x1+z1

 ∑
|z|≤N−1/2

∫ 1

0
e−αspN

2s(B
N
t − x− z) ds

µN (dx1)

≤
∫ 1

0
Nd/2

∫
Rd

sup
|z1|≤1/

√
N

ΠN
x1+z1

(∣∣BN
t+2s − x

∣∣ ≤ 1/
√
N
)
µN (dx1) ds

≤ c8.22ρ̂δ(µN ), ∀t ≥ 0, x ∈ ZN ,(8.22)

where the last inequality follows by Lemma 7.6. This and (8.21) imply∫
ZN

sup
|z1|≤1/

√
N

ΠN
x1+z1

[
Gα

N1(x ,BN
t )
]
µN (dx1)

≤ c8.22ρ̂δ(µN ) + c8.20(α)µN (1)
≤ c%̂N

δ (µN ) , ∀t ≥ 0, x ∈ ZN ,

and the proof is finished.

Lemma 8.8 There is an R̄N (t) such that∫
ZN

P gN
0,t (Gα

N1(x , ·)) (x1)µN (dx1) ≤ %̂N
δ (µN )R̄N (t) ,

for all t ≥ 0, x ∈ ZN , µN ∈MF (ZN ), N ∈ N .

Proof First, by Lemma 7.7 we get∫
ZN

P gN
0,t (Gα

N1(x , ·)) (x1)µN (dx1)

≤
∫

Rd
ΠN

0,x1

[
Gα

N1(x ,BN
t )
]
µN (dx1)

+ γ+
2 2−d

∫ t

0

∫
Z2

N

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1
= y1 + z

)
ΠN

y1+z

[
Gα

N1(x ,BN
t−s1

)
]

(8.23)

× X̄1,N
s1

(dy1)µN (dx1) ds1 + R̄N (t)µN (1)
∫ t

0
s−2δ̃
n sup

x1 ,x
ΠN

x1

[
Gα

N1(x ,BN
t−sn

)
]
dsn

≡ I1,N + I2,N + I3,N .

67



By Lemma 8.7,

I1,N ≤ c(t)%̂N
δ (µN ).(8.24)

Now, let us consider the second term in (8.23). By Lemma 8.7 and Lemma 7.6 we get

I2,N ≤ γ+
2 2−d

∫ t

0

∫
ZN

(
sup

|z1|≤N−1/2

ΠN
y1+z1

[
Gα

N1(x ,BN
t−s1

)
])

×

∫
ZN

Nd/2
∑

|z|≤N−1/2

ΠN
x1

(
BN

s1
= y1 + z

)
µN (dx1)

 X̄1,N
s1

(dy1) ds1

≤ c7.11%̂
N
δ (µN )

∫ t

0
s−ld−δ̃
1 c8.7%̂

N
δ (X̄1,N

s1
) ds1

≤ c%̂N
δ (µN )RN

∫ t

0
s−ld−δ̃
1 ds1

≤ c(t)%̂N
δ (µN )RN , ∀t ≥ 0.(8.25)

Apply (7.23), (8.5) and Lemma 8.1 to get that

I3,N ≤ R̄N (t)µN (1),(8.26)

where we recall again that R̄N (·) may change from line to line. Now combine (8.24), (8.25), (8.26)
to get that the expression in (8.23) is bounded by

%̂N
δ (µN )R̄N (t),(8.27)

and we are done.

Lemma 8.9 There is an R̄N (·) such that for all µN ∈MF (ZN ),∫
ZN

P gN
0,t (ψε

N (·, x)) (x1)µN (dx)(8.28)

≤ ε1−ld−δ̃c(t)%̂N
δ (µN )R̄N (t) , ∀t ≥ 0, x1 ∈ ZN , N ≥ ε−2 .

Proof The result is immediate by Lemma 4.3, Proposition 3.5(b) and the symmetry of ψε
N .

We next need a bound on the convolution of P gN
s,t with pN . Let

ḡN (X̄1,N
s , x) = 2−dNd/2X̄1,N

s (B(x, 2N−1/2)).

Clearly

P gN
s,t (φ) ≤ P ḡN

s,t (φ) , ∀s ≤ t, φ : ZN → [0,∞).(8.29)

Lemma 8.10 For any φ : ZN → [0,∞)., and s ≤ t∑
x1∈ZN

P gN
s,t (φ) (x1 + x)pN (x1) ≤

∑
x1∈ZN

P ḡN
s,t (φ(x1 + ·)) (x)pN (x1)
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Proof It is easy to see that∑
x1∈ZN

P gN
s,t (φ) (x1 + x)pN (x1)

=
∑

|x1|≤N−1/2

pN (x1)ΠN
x

[
φ
(
BN

t−s + x1

)
exp

{∫ t−s

0
γ+

2 gN (X̄1,N
r+s , B

N
r + x1) dr

}]

≤
∑

|x1|≤N−1/2

pN (x1)ΠN
x

[
φ
(
BN

t−s + x1

)
exp

{∫ t−s

0
γ+

2 ḡN (X̄1,N
r+s , B

N
r ) dr

}]
=

∑
x1∈ZN

P ḡN
s,t (φ(x1 + ·)) (x)pN (x1).

Proof of Lemma 4.4 By Lemma 2.3 (see below) and (3.7),

E

[∫
Z3

N

ψε
N (x1, x)1(|x2 − x| ≤ 1/

√
N)Nd/2X̄2,N

t (dx1)X̄
2,N
t (dx2)X̄

1,N
t (dx)|X̄1,N

]
(8.30)

≤
∫
Z3

N

P gN
0,t (ψε

N (·, x)) (x1)Nd/2P gN
0,t

(
1(|· − x| ≤ 1/

√
N)
)

(x2)

× X̄2,N
0 (dx1)X̄

2,N
0 (dx2)X̄

1,N
t (dx)

+ c
[
1 +Hδ,NN

−1+`d+δ/2
]
E
[∫ t

0

(
sup

y∈ZN

P gN
s,t (ψε

N (·, x)) (y)

)

×
∫
Z2

N

Nd/2P gN
s,t

(
1(|· − x| ≤ 1/

√
N)
)

(z)X̄2,N
s (dz) ds X̄1,N

t (dx)|X̄1,N
]

(8.31)

+ cE
[∫ t

0

(
sup

y∈ZN

P gN
s,t (ψε

N (·, x)) (y)

)

×
∫
Z2

N

∑
y∈ZN

Nd/2P gN
s,t

(
1(|· − x| ≤ 1/

√
N)
)

(y)pN (z − y)

 X̄2,N
s (dz) ds X̄1,N

t (dx)|X̄1,N
]
.

Here we have noted that if φ1, φ2 ≥ 0 in Lemma 2.3, then the third term on the right-hand side of
(2.18) is at most

E
(∫ t

0

∫
ZN

(∑
y

P gN
s,t φ1(y)P

gN
s,t φ2(y)pN (z − y)

)
+ P gN

s,t φ1(z)P
gN
s,t φ2(z)X̄2,N

s (dz)ds|X̄1,N
)
.
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The first term on the right hand side of (8.30) is bounded by∫
Z2

N

P gN
0,t (ψε

N (·, x)) (x1)X̄
2,N
0 (dx1)X̄

1,N
t (dx)(8.32)

×
{

sup
x
Nd/2P gN

0,t

(
1(|· − x| ≤ 1/

√
N)
)

(x2)X̄
2,N
0 (dx2)

}
≤ ε1−ld−δ̃X̄2,N

0 (1)%̂N
δ (X̄2,N

0 )RN R̄N (t)2t−ld−δ̃

= R̄N (t)ε1−ld−δ̃%̂N
δ (X̄2,N

0 )2t−ld−δ̃

where the first inequality follows by Lemmas 8.9 and 3.7(a), and the second is immediate conse-
quence of the definition of %̂N

δ (X̄2,N
0 ).

Now we consider the second term on the right-hand side of (8.30). By Lemma 8.4, for η ∈ (0, 2/7),
it is bounded by

c(1 +RN )R̄N (t)
∫
ZN

∫ t

0

(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
(8.33)

× E

[∫
ZN

Nd/2P gN
s,t

(
1(|· − x| ≤ 1/

√
N)
)

(z)X̄2,N
s (dz)|X̄1,N

]
ds X̄1,N

t (dx).

Now use (2.17) to evaluate the conditional expectation inside the integral with respect to s to get

E

[∫
ZN

Nd/2P gN
s,t

(
1(|· − x| ≤ 1/

√
N)
)

(z)X̄2,N
s (dz)|X̄1,N

]
(8.34)

=
∫
ZN

Nd/2P gN
0,t

(
1(|· − x| ≤ 1/

√
N)
)

(z)X̄2,N
0 (dz)

≤ R̄N (t)%̂N
δ (X̄2,N

0 )t−ld−δ̃, ∀x ∈ ZN ,

where the last inequality follows by Lemma 3.7(a). This and (8.5) allows us to bound (8.33) by

c(1 +RN )%̂N
δ (X̄2,N

0 )X̄1,N
t (1)t−ld−δ̃R̄N (t)2

(
tεη(1−ld−3δ̃) + cεη(1−ld−δ̃)

)
(8.35)

= R̄N (t)εη(1−ld−3δ̃)t−ld−δ̃%̂N
δ (X̄2,N

0 ).

Now we consider the third term on the right-hand side of (8.30). We use Lemmas 8.4, 8.10 to show
that it is bounded by

R̄N (t)
∫ t

0

(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
×
∫
ZN

E

∫
ZN

∑
y∈ZN

Nd/2P ḡN
s,t

(
1(|·+ y − x| ≤ 1/

√
N)
)

(z)pN (y)

(8.36)

× X̄2,N
s (dz)|X̄1,N

]
ds X̄1,N

t (dx).
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Now use (2.17), (8.29), Chapman-Kolmogorov and Lemma 3.7(a) to get that∑
y∈ZN

(
E

[∫
ZN

Nd/2P ḡN
s,t

(
1(|·+ y − x| ≤ 1/

√
N)
)

(z)X̄2,N
s (dz)|X̄1,N

])
pN (y)

=
∑

y∈ZN

(∫
ZN

Nd/2P ḡN
0,t

(
1(|·+ y − x| ≤ 1/

√
N)
)

(z)X̄2,N
0 (dz)

)
pN (y)

≤ %̂N
δ (X̄2,N

0 )R̄N (t)t−ld−δ̃,

where in the last inequality we applied Lemma 3.7(a) for the P ḡN semigroup.
This, (8.5) and (8.36) imply that the third term is bounded by

R̄N (t)X̄1,N
t (1)%̂N

δ (X̄2,N
0 )t−ld−δ̃εη(1−ld−3δ̃).(8.37)

Combine (8.32) and (8.35), (8.37) to get the desired result.

Proof of Lemma 4.5 It is easy to use Lemma 2.3 and (3.7), as in (8.30), to show that∫
Rd
E

[∫
Rd
ψε

N (x, x1)X̄
2,N
t (dx1)

∫
Rd
Gα

N1(x , x2)X̄
2,N
t (dx2)|X̄1,N

](
X̄1,N

t ∗ qN
)

(dx)

≤
∫
Z3

N

P gn
0,t (ψε

N (x , ·)) (x1)P
gn
0,t (Gα

N1(x , ·)) (x2)X̄
2,N
0 (dx1)X̄

2,N
0 (dx2)

(
X̄1,N

t ∗ qN
)

(dx)

+ c
[
1 +Hδ,NN

−1+`d+δ/2
]
E

[∫ t

0

(
sup

z,x∈ZN

P gn
s,t (ψε

N (x , ·)) (z)

)

×
∫
ZN

(
sup

z∈ZN

∫
ZN

P gn
s,t (Gα

N1(x , ·)) (z)
(
X̄1,N

t ∗ qN
)

(dx)

)
X̄2,N

s (dz1) ds|X̄1,N

]
≡ I1,N + I2,N .(8.38)

In the above the sup over z in the last integrand avoids the additional convolution with pN we had
in (8.30). First, apply Lemmas 8.8, 8.9, and 4.2 to get

I1,N ≤ %̂N
δ (X̄2,N

0 )R̄N (t)
∫
Z2

N

P gn
0,t (ψε

N (x , ·)) (x1)
(
X̄1,N

t ∗ qN
)

(dx)X̄2,N
0 (dx1)(8.39)

≤ %̂N
δ (X̄2,N

0 )R̄N (t)ε1−ld−δ̃%̂N
δ (X̄1,N

t )X̄2,N
0 (1)

≤ %̂N
δ (X̄2,N

0 )2R̄N (t)ε1−ld−δ̃.
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Now, let us bound I2,N . By Lemmas 8.4, 8.6, and 4.2 we get for η ∈ (0, 2/7),

I2,N ≤ c(1 +RN )R̄N (t)
∫ t

0

(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
× sup

z∈ZN

{∫
ZN

P gN
s,t (Gα

N1(x , ·)) (z)
(
X̄1,N

t ∗ qN
)

(dx)
}

× E
[
X̄2,N

s (1)|X̄1,N
]
ds

≤ %̂N
δ (X̄1,N

t )R̄N (t)

×
∫ t

0

(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
E
[
X̄2,N

s (1)|X̄1,N
]
ds.

Apply Corollary 3.6(b) to get

I2,N ≤ %̂N
δ (X̄2,N

t )R̄N (t)2X̄2,N
0 (1)

∫ t

0

(
εη(1−ld−3δ̃)1(t− s ≥ εη) + hd(t− s)1(t− s ≤ εη)

)
ds

≤ %̂N
δ (X̄2,N

0 )R̄N (t)εη(1−ld−3δ̃),(8.40)

where (8.5) is used in the last line. Combine this with (8.39) to finish the proof.
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