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Abstract

A class of time-inhomogeneous Fleming-Viot processes are introduced. Their laws are

shown to be the laws of the normalized Dawson-Watanabe process, conditioned on the

total mass process. This is motivated by, and gives another derivation of, a recent result of

Etheridge and March rvhich identifies the Fleming-Viot process as the Dawson-Watanabe

process conditioned to have total mass one.



Conditional Dawson-Watanabe Processes and
Fleming-Viot Processes

by Edwin A. Perkins
I

There has been interest recently in establishing connections between the Dawson-

Watanabe and Fleming-Viot superprocesses (eg. Konno-Shiga (1988), Etheridge-March

(1990)). Sometimes results are more readily derived for one class of processes but one

would like to be able to infer them for the other with minimal effort. Tribe (1989) used the

I(onno-Shiga (1988) results to analyze the Dawson-Watanabe superprocess near extinction.

Etheridge and March (1990) showed that the Fleming-Viot superprocesses is the

Darvson-Watanabe superprocess, conditioned to have total mass one. Our goal is to gen-

eralize this pretty result via a different approach.

Let E be a locally compact space rvith a countable base and one-point compactification

E* : ^E U {m}. Its Borel a-field is t and bt denotes the class of bounded t-measurable

functions from .E to R. Mr(E) and M1(.8) denote the spaces of finite measures, and

probability measures, respectively, rvith the topologies of weak convergence. If 4 e bt and

u e Mp(E), 
"@) 

denotes I g(r)du(x).

Let f | :  C([0, a),Mp(E)) and O: C([0,6),,Mt(E)) (compact-open topologies) and

lel F and. F be their respective Borel o-fields. Xr(.) : w(t) and *r(ti) : tt(r) denote

the coordinate mappings on O and 0, respectively, and ff : o(Xs: s ( f ), fl : o(*, :

s (  t ) ,  f t :  4+, f r :  f* .

Let (Y,&) b" an -E-valued conservative Feller process with generator A defined on

D(A) C C"(E) (continuous functions on .8, vanishing at m). Recall that this means fi,

the semigroup of Y, is strongly continuous on C'(E). For each o2 > 0 and rn e Mr(E)

L
\, .



there is a unique probability P,,, on (O,.F) such that

(Dw'")

^l t
< M(i l  ) t :  o2 |  x"162ps.

Jo

For each o2 > 0 and rn e ML(E) there is a unique probability on (0, f) such that

vg e D(A) u,(6) : &(d) - *(6) - [' x"1.t61a" is an
Jo

(FV*) 1ir) - martingale starting at 0 and such that

.  u(O) )t :  o2 [ '  
" ,(6\ 

-  x"(g)2ds.
Jo

See Ethier-Kurtz (1986, Ch. 9.4, 10.4) or Roelly-Coppoletta (1986) for the above results.

P,,, and f 
- 

.r" the laws of the A-Dawson-Watanabe and A-Fleming-Viot superprocesses,

respectively. o2 is usually assumed to be one, unless otherrvise indicated, and hence is

suppressed in our notation..

Remark L. (DW*) and (FV-) extend to $ = 1. by taking limits through a sequence

{6"} C D(A) such that 6n + 1 and Adn 
- 

0, both in the bounded pointwise sense. For

example, Let $*(x) : 1] frf*(r)dt where f^(r): | - 
"-nil(x'e') 

and d is a bounded metric

on -Ooo. The extension will also hold f.ot (FV*;) described below and will be used without

further comment.

If ? > 0, let (O"-, fr-) - (C([0,7),,M1(E)), Borel sets) and let (Oa,.fr) denote

the same space with [0,?] in place of [0,?). (Or, fy) ar'd (Or-, fr-) denote the same

spaces with Mp(E) in place of. M1(E). (We are abusing the Fr notation slightly here.)

1t
vd e D(A) Mr(d1 : xt(il - *@) - I x"(A$)ds is an

JO

(ft) - martingale starting at 0 and such that



Each of these spaces is given the compact-open topology. If P is a probability on (O, f) (or

1O,f;1,n;"- is defined on (Oa-, fr-) (or on (Ot-, ir-)) byPla-(A):P(Xlfo,r1 € A)

(or use Jt in place of X). Similarly one defines Plr.

Here then is a slight restatement of the result of Etheridge and March (1990).

Theorem A. (Etheridge-March (1990)). Assume tnn + m in My(E) where *(E): 1. Let

e,, I 0 and ?" + T, where ?" e (0, m) and ? e (0, m]. Then

F-" l r - (  .  |  . , tp lxr(1) -  1 l  < ,^)  3p, ' l r -  on (Crr- , f r - ) .
t lTn

The best way to understand this result is to recall the "particie pictures" of these two

processes.

Consider a system of -I(1,' particles which follow independent copies of Y on [0,1/N]

and then at t : 1/I/ independently produce offspring according to a larv z with mean one

and variance one. The offspring then follorv independent copies of Y on lIlN,2lN) and

this pattern of alternating branching and spatial motions continues. If XN(fXA) is N-l

times the number of particles in A at time t andP,n' is the law of Xry on D([0, x),Mp(E))

then X1,'(0) 
- 

* in Mp(E) implies F1,' 3 P-.

Now consider a system of N particles rvhich follow independent copies of Y on [0, 1/N].

At t - 1/N these N particles produce a vector of offspring in Z$ distributed as a multi-

nomial random vector with N trials and p1 : ... : px : IlN. This pattern of alter-

nating spatial motions and "multinomial branching" continues. Xru(t) denotes the em-

pirical probability distribution of the N particles at time t and Fry is the law of fry on

D([0, a),M{E)). I f  Xry(0) -* m in Mr(E) thenFry 3P-.

These results are minor modifications of results in Ethier-Kurtz (1986, Ch. 9.4, 10.4).



N

If {Xr : i < N} are Poisson (1) and,9ry: 
Etr,then 

an easy calculation shows that

P((Xr...Xry) €'lSrv - N) is multinomiat with N trials and p1 -..._ot: *.

This shows that if we take u to be Poisson (1) in the above construction of Fr,., then

Fry( '  lXry(t) :1 for  t  <T) l r :Frylr .

Letting N -r m suggests (but does not prove) the result of Etheridge and March. Our

original proof of our main result (Theorem 3 below) used this particle picture. The proof

given belorv has sacrificed intuition for brevity.

Let

C+: {/ '  [0,oo) * [0,oo) : /  continuous, 3t1 € (0,*] such that

/ ( t )  > 0 i f  t  € [0, t / )  and /( t ) :O i f  t> t t ]

with the compact-open topology. If ACCa and ? > 0let Alr-: {/ lto,O I f e A} and

Aly:{ /110,4:  f  eA}.

Theorem 2.

(u) If f e C+ and rn € Mr(.D), there is a unique probability f-,t on (0, f) such that

under frrn,f:

v6 e D(A) M,(i l - xr(6) - *(6) - [ '  x"1e67ar, t 1ty,
Jo

is an e) - martingale starting at 0 and such that
(FV,, , t )  

1t
< M(i l  >r:  |  (*"@') -  *"@)')/(s)-rds Yt <ty.

Jo

€,: .F

Xt: Xtt for all t > tf -



(b) If (*n,, fnlp,r)) * (*, f lp,n) in M1(E) x C+lr- where T 1 ty, then f ,,,., nlr- 3

fr,,,i lr- on (0a-, ir-).In particular if tf : *,fr^o,fn 3fr^,f .

Remark. If /(") : o-2 is constant clearly f-,y is just the unique solution f- of (FV*).

The proof of Theorem 2 is easy (although some tedious calculations make it a little

long), and given at the end of this work. f *,1 will be constructed by making a deterministic

time change of a Fleming-Viot process whose underlying Markov process, Y, is time-

inhomogeneous.

I f  m € Me(E)-{0}, let  f " (A) :  m(A)lm(E).  I f  tx(r)  :  inf  {u :  X"(E):  0}(u € Q),

then Tribe (1989) showed that iim11t* Xt exists F--a.s. Hence we may P--a.s. extend

{Xt : t a tx } to a continu ous M1(E)-valued process on [0, *) by setting X, : X1* - for

t ) ty. In fact Tribe's result wiil follow from our arguments but this is not surprising as

we will borrow some of his methods.

Lel Q, € Mr(C+) denote the law of the unique solution of

zt:a+ lr ' . ,Eas,

(B a standard Brownian motion). If follows from (DW,.) with { : 1 that

P-(X.( l )  eA):Q,*6(A).

Theorem 3. lf m € Mr(E) - {0}, then

P-(X € AlX.(1) : f) :'fr^,t(A) Q,.e) - a.a.f YA e F.

Hence P*,f (.) is a regular conditional distribution for X on (f), .F,P-) given X.(1) : /.

Proof. If Mt(i l is as in (DW,.), 6 e D(A), ?" : inf{t: Xt(1) 1n-t }, and

- f f t
0) Mr@): I 1(" S 

",)x"(1)-1au,161- 
| 1( '  < T")X"(6)X"(r)-2dM"(1), then

Jo Jo



It6's Lemma implies

1t

(2) Xtnr.( i l : r7r( i l+/  t ts<T,)N"(A$)ds+Mi@).

(2) implies that

(3) sup lMi@l s 2lldll- + I(l lAdll-.
t<K,n€JN

Since {Mi@: n € N} is a martingale in n (t fixed) by (1), it converges a.s. as r? + oo

for each t > 0 by the Martingale Convergence Theorem and (3). A simple application of

the .t2-maximal inequality shows that the convergence is uniform for f in compacts a.s.

(by perhaps passing to a subsequence). Hence the limit, IiIr(6), is a continuous martingale

rvhich clearly satisfies

Mi(il - fi ltnr.(il Yt 2 0 a.s.

(5) sup lilz'(d)l < 2lldll." a l{llAl11." a.s.
t<K

We now may let n --+ oo in (2) to see

(6) Xr( i l : * ( i l+ 
I r '1(r< 

tx)X"(Ad)ds* I i t r (6)  vt>0a.s.v/  eD(A).

Let 9t - ftY o(X"(l) 
' 
s > 0). We claim Mr(il is a (9t)-martingale (6 e n1e1fixed).

Let s ( t and let F be a bounded a(X.(L))-measurable random variable. The predictable

representation theorem of Jacod and Yor (see Yor (1978, Thm. 3) and reca"ll Q*G) is the

law of X.(1)) shows that

(4)

(7)
f@

F:P,-(F) + /  / (s, to)dX"(1)
Jo

6



for some a(X,(l) : s ( f)-predictable /. Therefore

E ̂ ((Mrnr.(il - M s nr^( d))f lf")

:p*((Mi(d) - M:(6)) [* 7g1au,(1)1.F") (bv (a) and (?))
Jo

-p.,((1" 1(, < 
",)x,(1)- 

tau,(6) - 
I"' 

r(, F r,)x,(d)x,(t)-2dM,(l)) 
/ f (u)d,M,(r)F")

-p*(1" 1(, < r;(x*(ilx,(1)-1 - x,(6)x,(r)-')/(, )ttulF")

-0.

Let n -' oo in the above and use (4,5) to see that P.,((M{il - IiI"(il)Flf") : 0 and

hence lf[r(il is a (9r)-martingale.

It follows from (4) and f,[1n1*(il: Ur161 ttt"t

(8) < ttt14y >,: [ '  ,G< rxX*"( d\ - X,(d)\x"(1)-1ds F* - a.s.
Jo

Let {F(Al f) , A e i,f e C+} be a reguiar conditional probability for X given

X (1): /( .)  (underP-).  I f  6 e nlel  and / € C+, def ine u{fOl:  M!@)(x) o" (0,"F)

by the first equation in (FV*,i for f ( t1 and set M!@): l;,1!,-(/) for t ) ty. I'{ote

that (6) and M{$) : Mtntx(/) imply

(9) Mr(il: trtf'{rtrdxX) vt > 0 P- - a.s. v/ e D(A).

If G € 6.{ and s ( t, then the (9t)-martingale property of Mr(6) shows that

P*((M,(6) - M"(6DG(x)lx.(1)) : 0 P- - a's.

and hence, by (9),

effu! fOl - u!tO>lcl/) : 0 Q^Q) - a.a.r.



Consider the null set, A, of /'s off which the above holds for all rational s ( f and all G

in C", a countable set in bfl whose bounded pointwise closure is bff . By working on A"

and taking limits in both s and G one easily shows that

g
(10) {M/(q): r 2 0} is an (f1) - martingale underP(.1/) for Q-(t) - a.a.f.

If. t{ - inf {u : f (u) < Llnl;, then (8) implies that

G\ M!^,,(i l '  - [ '  ,G < r{Xx"( d\ - *,@)t)f(s)-1ds is an (ft)-martingale under\  /  tnt ; . ' ,  Jo

P('l/) Vn e lN for Q*(t)-a.a.f.

Now consider a countable core, D6, f.or A and fix / outside a Qm(r;-ttuli set so that (10)

and (11) hold for atl d € Do. Take uniform limits it (d,A/) (recall the definition of M/)

to see that (10) and (11) hold for all / in D(A) for Q-(t)-u.u.1. Therefore P(.1/) solves

(FV^, i l for  Q*Q)-a.a. f .  and soP( ' l / ) :F*,1( ' )  for  Q*(t)-a.a. f .  by Theorem 2.1

Corollar]'4. Let {m"} c MF(E) - {0} satisfy tnn + m in M1(E). Assume {,4,} is a

sequence of Borel subsets of. C1,f e C+ and ? e (0,ty] satisfy:

( tZ) Q*"( t ) ( / , )>0 Vn

(13) sup{ ls( t )  - / ( t ) l '  9 € An,, t  <,5} - '+ 0 as r ,  -+ oo VS < ?.

ThenF-,(f €.1X.(1) e A.)lr- 3'fr,, ,1r- on (O7-, ir-).

Proof. Let 6: Qr- --+ R be bounded and continuous. Then

P-.(d(x)lx (1) e A,) -'fr*,r(6)l

:  |  [  f i^, ,n(d) - ' f r , . , t (d)dQ*^Q)(; ' t r)1A,,)-11 (Theorem 3)
JA^

S sup W^.,0(6)-P*, f (d) l
geAn

which approaches 0 as n -+ oo by (t3) and Theorem 2(b);



Corollary 5. Let {rn,} and rn be as in Corollary 4. Let f € C+, T e (0,t1,,

Tn+T (7.  (  *) ,  €, ,  l0 and assume Ine"( l ) - / (0) l  1€," .Then

( . )  P-,(e . l  
'gp lx,(1)- / ( t ) l  < e,) l r -  3 P*slr-  on (Qr-,  Fr-)
t lTn

(b) F-"(Xlf ..1&"A lx'(l) -/(t)l < e,)lr- 3fr,,, i lr- on (Or-,,Fr-).

Proof.

(a) follows from Corollary 4 with

An: {s e c*' 
, '=? lg(t) - /(t) l  < u"}.

(b) Note that  for  S <T and large n, i f  6o - ."( ;S f ( t ) ( f  ( t )  - . , " ) ) - t ,  then

*-"(:13 lx,(1)-' * /(r)-' l < 6,14,) : 1

(A,, as above). Since 5n + 0, (b) is immediate from (a).1

Clearly Theorem A is just (b) of the above result with /(t) : 1.

Let $(r) - 12 loglogllr (r I e-r ) and iet / - m(A) denote the Hausdorff /-measure

of. A c Rd. Let .S(z) denote the closed support of. u € Ur(Rd). ffP- denotes the law of

super-Brownian motion then for d > 3 there is a universal constant I{a € (0, oo) such that

(14) Xr(A):  Kad -*(An,S(X,))  V.4 € B(Ro) p, ,  -  a.s.  Vr > 0

(see Dawson-Perkins (1990, Theorem 5.2)). Theorem 3 therefore shows that for all t > 0

and Q-(t)-a.a.f,

(15) Xr(A): f  ( t)- tKa6 - *@n S(X,)) VA € B(Rr) f  
- , ;  

- . .r .

It would of course be nice to know if (15) holds for a particular / such as 1. It seems

likely that (14) together with the result of I{onno-Shiga (1988) and a version of the 0-1 law



used to prove (1a) will give (14) for the A/2-Fleming-Viot superprocess but with another

unknown constant Ki. I have no idea on how one could prove or disprove K4: 65.

We now return to the proof of Theorem 2.

fu i

If 9 : [0, m) * (0, *) is continuous,let C(") -- 
J, 

g(s)ds. For (fo, y) € [0' x)xE : E

define P(r,,il on the Borel sets of D([0, m),.d) Uy

P(r.,ol(A): Pv(Y-s e A)

where f n(t) : (to +t,Y(G(t' + t) - G(t,))) ' Let P1t.,sy : P(r,, i l  and' let f1t; a"""te the

canonical process on D([0, *), E)).

Proposition 6. (f ,P(r.,r) is an .d-valued Feller process, that is, it is a strong Markov

process with a strongly continuous semigroup,if , onC"(E).

Proof. This is routine. For example, for the strong continuity of ff f use the uniform

continuity of G on compacts and the fact that 
,J% llf (t,,')11"" : 0 for / e C'(E).5

I

Notation. C7(A,B) denotes the space of continuous functions from A to B rvith com-

pact support and Ck@,,B) denotes those functions in C<(A,B) which are continuously

differentiable.

co: l rh ec"1E) trh| , ,") :  i  ,hr( t)dt(r) , ,  d;  € D(A),  $;  e cfu110,oo),R))
r ' :1

C : {$ e C"(E) : t t+ *r, Orh, and, $t are all functions in Cr([0,m), C,(E))]
'o t

Let is denote the generator of fg and write i U, rt.

Proposition 7.

(") C is a core for is and if $ eC, then

io rl,(t, d : *$, 0) + g(t) A,br(r).'  ot-

10



(b) C" is a core f.ot A.

Proof. The closurc of Co;n C"(E) contains all functions t/(t,c) as in the definition of Co

but with 6; e C"(E). Apply Stone-Weierstrass to this latter class to see that C, (and

hence also C ) C,)is dense in C"(E). Note that if {,(t,") : 
i ,b;(t)6;@) e Co, then
i=1

i f  ,b(t . ,")  :  i  rh i( t  + t  o)Tc$+t ")-c(t")  d;(r) .
i : l

It is now easy to check that i{ : Co + C. A theorem of S. Watanabe (Ethier-Kurtz

(1986, Chapter 1, Prop. 3.3)) will show C is a core fot is providing we prove C c O1is1.

Moreovercince fl : Co + Co, the same argument will also prove (b). A direct calculation

shows that if ,h e C then r/ e D(ic) and, .trcrb is given by the formula in (a) above. We

omit the details.r

Proof of Theorem 2. (a) Consider first the uniqueness off 
-,1. 

Claim it suffices to prove the

f t t  l
result rvhen tf : * and, Ty : | *at: oo. To prove this claim lel Tn I tf (7" < t)

'  Jo / (s)

and let f  ,(t) :  f  (t  A?1"). Note that ty" :  Th: oo. Let P be a solution of (FV*,). A

solution, f,", of (FV^,f*) *.y be constructed by letting Fr, : P o" "fl4 and setting the

conditional distribution of {tr*r-, t > 0} given .f equal to far, , the unique solution of

(FVt^ ) wiih o2 : f(T)-1. The assumed uniqueness of f," establishes the uniqueness of
,  aTn,

Plrg . Since *t: f1, for all t ) tf (iftt < *), the uniqueness of F on (ft,f; it clear,
' '  Tn

and the claim is proved.

Assume now that tf :Tf : oo. LetF be a solution of (FV,-,). It is easy to extend

{Mr(i l :6 e D(A)} to a martingale measure {M{h): h e bt} such that ( nf 1fr1 >r:

fi
I (*"(n') - X"(D\/(s)-lds (all under'fr1. Ut is then a worthy martingale measure (in

Jo

the sense of Walsh (1986, Ch. 2)) and so we can extend. Ii[, to integrands h(t,x) which are

11



bounded measurable functions on .E : [0, oo) x .8. Fbr such an Iz we have

(16)

An elementary stochastic calculus argument now shows that

< M(h) rr- 
lo'{x"(h?) 

- *"(h")')/(s)-rds f - u.r.

(17)

(1e)

X(rt,) -m({,,)+ [' X"1ir1,"1as+ Ur(tb) Vt > 0 f - u,...
Jo

1t

first fonb eC, and thenfor all ,! e n1i1by Proposition 7(b). Let C1 : | 71"yta".
Jo

The conditions ty - Tf : oo show C is a continuous function from [0, oo) onto [0, m) with

a continuous inverse r. Lel g(u): f  (r,), ,  iu: i ,-  and *@): *(r,).Let $ € C and set

tbU,r):6(Ct,,r).  I t  is easy to check that r/ € C and hence (17) holds (since C C D(4).

Therefore if M"(6) - Ii[,-(t/), then, using the expression for Arlt fto* Proposition 7, we

have

xr(dr) - *,,($,,) -- r-r(6,) + ["' *"(* * At[")ds + fu,ot(b)
Jo 'os

(1S) : m(6") * 
Io" 

*"(KG",')/(r)-t * A6c")ds * tutr(6)

f t^  i
: m(4") + 

Jo 
X"(Ao d"1du + Mt(d),

where we have changed variables and used Proposition 7(a). Mt(il ls an (Fr)-martingale

with

< u(o) ,,: 
lo 6"@?) - x"(,h")r)/(s)-1ds

: 
lo' x,(o?) - *,(6,), d.,.

Since C is a core for Ac by Proposition 7, (18) and (19) hold for all tb e D(An). This

proves that P(6. x t. e.) solves (FW,x-) for As ar.rd, hence Vf : il x tt is the in - fV

process starting at 6o x rn (under n;. Sitt""

xr(il : v3,(6), 6(t,") : d@)(20)

72



we see that F is unique.

Consider now the problem of existence of.fr*,y. II tt - Tf : @, then use (20) to

define F-,y in terms of an it - FV process. It is then straightforward to check that

f-,1 satisfies (FV,*,). Assume now that t1 ATy ( oo. Choose T, I tf,Tn 1tf. If

f.(t) : f(t A ?") then clearly tf^ : Tf. : oo and so by the above there is a unique

fr^,f^ on (0,.F) solving (FV*,h). It is easy to use uniqueness to see that if & 2 n then

fr*,f-: f-,.f. 
"" 

il^. Taking a projective limit of @-,t : n e N), we may construct

a probability f 
-,y 

on (0, frr-11?*- - i) such that all the conditions of. (FV*,y) hold

except the last (f,, : *r, f.o, t 2 t ). We may, and shall, assume that ty ( oo (or we are

done). Then fot $ € D(A) U {1}

sup lM'(d)l s 2lldll"" +tTllAsll*
t<t t

and so by the Martingale Convergence Theorem, iim Ur(il existsf 
-,;-a.s. 

It now follows
t l t  t

trivially from (.FV-,1) (on [0, tt)) that lim *r@) existsf 
-,;-a.s. 

first for all 6 € D(A)U{!}
tIt t

and hence for all 6 e C(E*) therefore ll+Xr - ttr- exists in M1(8."). It foilows easily
tIt t

from (F1l,,,,1) that f.or $ e C(E@)

P *,f(Xtt-(d)) : lr, f ;P-,r(X'(d))

: liTP-r'l(d(r'))
: P*e)(6(4' -)).

This show" *tt-({*}) : 0 a.s. and hence rttt e M(E). Now extend}*,f to f by

. i -
requir ing that Xt - Xtt- Yt> ty P-,1-a.s. ClearlyP-,1 solves(FV^,y) and theproof

of (a) is complete.

(21)

l-

13



(b) Fix S < T. Since Or- is equipped with the compact-open topology it suffi.ces to

prove

(22) fr*n, fn ls * f* ,11s on 0s.

If e : irfrssf(rx> 0) (recall S < T S t) then infr< s f"(t) > elz for n ) N and so for

6enlelandn)N,

l< M(il)r - ( ufOl>" I S l ldll l  [ '  f,(u)ou slldllT"zr-tlt-rl vs,r ( ,s f-.,r.-a.s.
Js

Standard. arguments now give the tightness of $*.,-f,ls ,t, €N) viewed as probabiiities

"n 
O3" : C([0, S],, Mr(E"")) (see for example Thm. 2.3 of. Roelly-Coppoletta (1986) but

note she is implicitly working with the vague topology and hence we only get tightness on

0f , not Os;. fo obtain tightness in Qs introduce hu@) - 
"-Pd(x,a) 

(d a bounded metric

fr
on Eoo), go: I nhoOdt e D(A) and note that Ago - Ttgp - 9p. Thenby (FV,n.,y.)

Jo

rve have

rS

supf,(eo) S m,(gp) + sup l t tr(dl+ |  *"(T1gr)du fr^,, fn - a.s.
tcs r<s Jo

1S

Now it is easy to use < tt(g) >t< | *"@'r)f,(u)-tdu fr*n,fn - a.s. and the super-
JO

process property (see (21)) to conclude that

ullg 
t"pP,nn, tn(sug -tr(go)) : O.

Since,1$oo(r;:1, this proves the compact containment property needed in order to

conclude @-.,.f,|s , ,t €N) are tight in f,ls.

Let P be a limit point of the above sequence I e iUr(O5)). Since everything in sight

is uniformly bounded it is clear that the two equations in (FV,,,f) are satisfied under P

L4



I
for t ( .S. Extend P to (Q, i) UV setting the conditional distribution of {f,t+s : t 2 0} i

g iven.{  equal  tof*" , ,  where g(t) :  f (S+t) .  Thenp:f- , . f  and. soPls: ' f r , . ,y1s.  (22)

follows and the proof is complete.l
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