Holder norm estimates for elliptic operators

on finite and infinite dimensional spaces
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Abstract

We introduce a new method for proving the estimate
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where u solves the equation Au — Au = f. The method can be applied to the Laplacian
on R*°. It also allows us to obtain similar estimates when we replace the Laplacian by
an infinite dimensional Ornstein-Uhlenbeck operator or other elliptic operators. These
operators arise naturally in martingale problems arising from measure-valued branching
diffusions and from stochastic partial differential equations.
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1. Introduction.
Let A be the Laplacian on R? and for « € (0, 1) define the usual Hélder norms by

1flloe = sup | f(z) | + sup LTEFEH = F@)|
d x, h0 |h|

= [[flloo + [flo=- (L.1)

A classical estimate is that if A > 0 and u is the solution in R? to

Au— Au = f, (1.2)
then we have the inequality
0%u
< o 1.3
5] <l (1)

where 1 < 14,5 < d and c; is a constant not depending on f. In the case of the Laplacian in
finite dimensions, there are a number of proofs of (1.3). See, for example, [GT], Chapter
4, or [Bal, Section I1.3. Another proof can be found in [Ba], Section IV.3 or [S], Section
V.4. This latter proof is the basis of the method we pursue in this work. Two of the more
important applications of (1.3) and its generalizations are to the existence of solutions to
certain elliptic partial differential equations with variable coefficients and to the uniqueness
in law of solutions to certain stochastic differential equations. The connection of (1.3)
with the latter arises from the fact the resolvent of Markov solutions to the stochastic
differential equations will provide solutions to the generalization of (1.2) to more general
elliptic operators.
In this paper we investigate the analogue of (1.3) when the Laplacian is replaced
by other elliptic operators. In particular we:
(1) introduce a new method, which we call the semigroup method, for proving (1.3);
(2) use our method to obtain an analogue of (1.3) for the case of infinite dimensional
Ornstein-Uhlenbeck operators; and
(3) show how the semigroup method allows one to determine the appropriate substitute
for the norms given in (1.1) and illustrate this by proving that the norm introduced
in [BP] to handle a class of degenerate diffusions is a special case of this general
method.

In work in preparation ([ABGP]) we use some of the above results to prove unique-
ness for an infinite dimensional system of Ornstein-Uhlenbeck type stochastic differential
equations with Holder continuous coefficients.

The semigroup method is particularly simple in the case of the Laplacian, even if
we replace R by R*®. We need one elementary calculation, namely, that
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where py(z,y) = (27t) "2 exp(—(y — z)%/2t) for z,y € R. We use this and the fact that
the transition density for d-dimensional Brownian motion is a product of 1-dimensional
densities to see that

2.
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where P, is the semigroup corresponding to the Laplacian. Some manipulations of semi-
groups then lead to (1.3). A key step is to define the semigroup norm

|P.f — £l
||f||5" = ||f||oo + St1>l%)) %- (1.4)

This norm was also used in the argument of [CD].

The proof of (1.3) for the Laplacian in infinitely many dimensions is relatively recent
and is due to Cannarsa and Da Prato [CD]. Their method involves interpolation spaces.
It is well suited to the Laplacian, but perhaps less so for other operators. Our results in
Section 3 give a new proof for the infinite dimensional Laplacian.

We use the semigroup method to obtain an analogue to (1.3) when the Laplacian
is replaced by the operator £ defined by

LH@)= Y aigo i Sy v 3 (1.5)
1,7=1 t i,j=1

where a is positive definite and V' is nonnegative definite (See Theorem 5.6). This operator
is a generalization of the infinite dimensional Ornstein-Uhlenbeck operator. It is well
known that the infinite dimensional Ornstein-Uhlenbeck operator arises when using Fourier
transforms to study parabolic stochastic partial differential equations (see [W]) and this
was in fact the motivation for considering this problem. One principal difference from the
Laplacian case is that the operators 0/0z; and P, no longer commute. Related results for
the Ornstein-Uhlenbeck case have been obtained by [D], [L], [Z]. In Remark 5.8 we discuss
them briefly and compare them to our results Theorem 5.6 and Corollary 5.7.

When one considers operators other than the Laplacian, it turns out that the C¢
norms defined by (1.1) may not be the most appropriate. In fact, the semigroup norm
given in (1.4) is in some cases the natural one. In the case of certain degenerate elliptic
operators, we discovered this after the fact. In [BP] two of the authors investigated Holder
norm inequalities for an operator that arises in the study of branching measure-valued
diffusions. There the estimates were proved by hand, and we were forced to replace the
use of the C'® norms by weighted Holder norms. In this paper we prove that these weighted
Holder norms are precisely the S norms used by the semigroup method. This suggests the
potential for a more unified approach to such norms in the study of degenerate stochastic
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differential equations in both finite and infinite dimensions and avoids having to guess the
appropriate norm through ad hoc methods.

Layout of the paper: Here is the plan for the rest of the paper. In Section 2 we
define the semigroup norm and establish some preliminary facts. In Section 3 we present
the semigroup method in the case of the infinite dimensional Laplacian (Proposition 3.3).
Although the estimates in the Laplacian case are known, we present this case separately for
clarity. In Section 4 we give some connections between the semigroup norm and the usual
Holder norms (Proposition 4.1 and 4.2). Next, in Section 5, we consider the Ornstein-
Uhlenbeck operator, and establish the analogue of (1.3) in Theorem 5.6 and Corollary 5.7.
Section 6 considers geometrical aspects of the semigroup norm, analogous to section 4.
Many of these results will be used in the in the uniqueness proof for infinite dimensional
stochastic equations in [ABGP)]. In Section 7 we establish the equivalence of the semigroup
norm with weighted Hélder norms in the context of the operator considered in [BP]. We
use the letter ¢ with subscripts for finite positive constants whose value is unimportant.
The constants c1, co, ... may change from proposition to proposition.

Acknowledgment.
We would like to thank L. Zambotti for patiently answering our many questions
concerning norms related to the Ornstein-Uhlenbeck operator.

2. The semigroup norm.

We use the following notation. If £ = Rd,Ri ,R°°, or a separable Hilbert space H,
and f: E — R, D, f(x) is the directional derivative of f at = € F in the direction w; we
do not require w to be a unit vector. We write D; for D,; and D;; for D;D;, where ¢;
denotes the sth unit vector in a convenient orthonormal system; for R? or R®, ¢; will be
the i*" coordinate direction.

The inner product in F is denoted by (-, -), and | - | denotes the norm generated by
this inner product. Cp = Cp(FE) is the collection of R-valued bounded continuous functions
on E and for a € (0,1), C* is the set of functions in Cy for which ||f|lce = || fllco + | flce,
defined as in (1.1) by replacing R with E, is finite. Finally C# is the set of functions in
Cy for which the first and second order partials are also in Cp.

Given an operator £ that is the infinitesimal generator of a semigroup P; on the
space of bounded measurable functions on E, we let

RA:/ e NP, ds
0

be the corresponding resolvent. Recall that (A—L)Ry f = f provided R f is in the domain
of the operator £. We define the semigroup norm (the “S” stands for “semigroup”) || - || s«
for

o€ (0.1) by [llse = flloo +supt™ RS = Fll. (2.1)
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Let S denote the space of measurable functions on F for which this norm is finite. We
set |f|se equal to the last term in (2.1), so

[fllse = lloo + [flse-

In a number of places we will use a similar convention: |f|p will denote a seminorm in
some Banach space B, and || f||p will then be ||f||c + |f|B-

Remark 2.1. Since ||P;f — f|loo < 2||f||c0, We have

1 £lls« <3l flloo + sup ™2 Pif = fllco- (2:2)
0<t<1

We will use the following result a number of times.

Lemma 2.2. There exists ca(«) such that if for some w € E and 0 < ¢1 < o0,

c1w|
|1 DwPif|loc < 1 flloo

TVt

for all bounded measurable f, then for all f € S¢,

|1 Dw P flloo < cra|w]t @ D72 f|ga.

Proof. Note for r > 0,w € FE
DwPQ'rf - DwP'rf = DwPr[PTf - f]

The sup norm of the expression inside the brackets is bounded by r®/2|f|s«. Therefore by
our hypothesis,
||DwP2rf - DwPrf”oo S Cl|w‘r(a_1)/2|f|50‘- (23)

Using the hypothesis again,
1 DewPeot f oo < exlw|(t2%) 72| flloo — 0

as k — oo. Therefore

Dthf = Z(prtgkf - Dth2k+1f).
k=0
Using (2.3) and the triangle inequality,

1DwPiflloo < D erw|(225) D72 f[ 50 < e1fw]es (@)t ™12 f|ga.
k=0



Lemma 2.3. Assume

1DuPiflloe < Cl};" 1£llo (2.4)

for all bounded measurable f on F and allw € E. Then §¢ C C* and

[flloe < (ere2(a) + 2)[ f] 5=
where co(a) is as in Lemma 2.2.
Proof. By (2.4), Lemma 2.2 and the mean value theorem, if w € E then
|Pef (z + w) = Pof (2)] < exealw[t D2 f]sa.
We also have
[Pof (@ +w) = f(z+w)| <t*2||fllsa,  [Pf() = f(@)] <% f||se,
by the definition of S*. By the triangle inequality,
(@ +w) = f(2)] <t/ (crealwlt™? + 2)[|f]| 5o
If we take t = |w|?, we see that ||f||ce < (c1ca + 2)||f]|se- 0

Lemma 2.4. Let {X;,t > 0} be an E-valued Markov process with semigroup P; and laws
{P*,z € E}. Assume (2.4) and also

E(| Xy — E(X,)|?) < cot'/? for all t < 1. (2.5)

If f,g € S%, then fg € S* and for some c¢; = ¢1(cg, @),

[f9lse < alllflloolglse +1fls=llglloo + | floxlglox + [ fllcollgllcol; (2.6)

and
1 fglls> < el flls=llgllse- (2.7)

Proof. Let Q;z = E”(X;) € F (by hypothesis). Note that

Pefg(z) — fo(x) =E5((f(Xe) — f(Qex))(9(Xe) — 9(Qez)) + 9(Qez) (Pef (z) — f(2))
+ f(Quz)(Pig(z) — 9(2)) — (f(Quz) — f(2))(9(Qz) — g(2)). (2.8)
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Note also that for ¢t <1,

F(Qiz) — f(@)] < |Pf(2) — f(2)] + [E*(F(X2) — (Qe))]
< | flsat®? + | flcaB7(|X; — Quz|*)
< | flsat®? + |flcacy P to/4, (2.9)

the latter by (2.5) and Jensen’s inequality. We put this into (2.8) and use Hdélder’s in-
equality to conclude that for all t <1,

|Pifg(x) — fg(z)] <|flcalglo-E" (| X — Qz|?)*
+ (lllocl 1= + 1/ lloclls)27?
+1£(@Quw) = £@)|([lglst" + ¢ lgloat*/4] A 2lgllso )
<[clfloslglon + l1gllocl Fls= + 3l1S loclglse ]t/
+ 1£(Quw) = f(@)lesl(lgloat™*) A gl

We use (2.9) again to bound the last term by
call flsallglloo + [ floalgloa]t®’?.

Substituting this into the above, we see that for ¢ < 1,

|Pifg(x) — fa(z)| < arlllfllclglse + [flsallglloo + [floalgloa]-

If ¢t > 1, the left-hand side is at most 2| f||oo||9||cc and, using the fact that || f|lco < ||f||se,
we arrive at (2.6). This and Lemma 2.3 now imply (2.7). 0

3. Holder estimates — the Laplacian case.

Let #2 be the space of real square summable sequences {z; : i« € N} equipped with
the norm |z| = (3, 2)1/2 and take ¢; to be the unit vector in the ith coordinate direction.
We study perturbations of

i
Here we assume each a; > 0 and |a|*> = ), a? < co. The reader interested only in the
finite dimensional case may restrict all indices to the range 1 to d and take each a; = 1

but we will be implicitly working in #? below. Let P, be the semigroup corresponding to

L.



Lemma 3.1. There exists ¢, such that for any bounded measurable f,

C1
IDiP,flleo < =2

[1f lloo-

Proof. Let

J T, dy;) =
pt(J ’!/J) a;v/2mt

be the transition density of one dimensional Brownian motion with parameter a?. Let

Y — % e—(yj —a:j)2/2a?td

2
ajt

xi,dy;) = Dipl(x;,dy;) = ;.
Qt( J y]) ]pt( J y]) G,J\/2—7Tt yJ

Note that

; > 1 |y, — 22 /92 c

I (e | — J Il —(yj—=;)?/2a%t 3, _ 2

q; (xj,d —/ e \WiT% itdy; = .
/| ¢ (@5 dys)| —oo @5V 27t a?t Yi aj\/i

Now fix 7 and let

F(yi;mat7i) = /sz(‘rjadyj)f(yhy%-")'

J#i
Here we are integrating f with respect to the Gaussian measure [];; p{(mj, dy;) which is
supported on £2 for z = (z;) € 2 since |a]? < co. Then

Diruf(@) = [ Di( [[wies. dup) £ = [ [ ditou. ) [T oy s )
J j#i
=/q§(wi,dyi)F(yi;w,t,i)-
Since p? (xj,dy;) integrates to one for each j, we see that ||F||e < ||f|/cc- Therefore

C2

\maﬂmmnmm/mwm@ms 1£1lso-

ait

Remark 3.2. The conclusion of Lemma 3.1 is not the same as (2.4) because of the
presence of the a;.

Proposition 3.3. Let R) be the resolvent corresponding to L. There exists c¢; not de-
pending on A and ¢y = co(\) such that for all f € S,

& —
(@) IDiD;Raflloo <~ A=/2] e

= 10,



Cz()\)

D;D; . < .
(b) [ D:D; R flse < Py 1f1ls
C
© DR flloo < SV e,
and
ca(A
(@ DB flse < 2V 5.

Proof. (a) By the translation invariance of Brownian motion, D; and P; commute. By

the semigroup property we have
D,D;Ry\f(z) = / e D;D; P, f(z)ds = / e D;P,/3D; P, s f(z) ds.
0 0
(The interchange of the integration and differentiation follows easily by dominated conver-

gence.) By Lemmas 3.1 and 2.2, || D;P,/2floc < csa; s~ 1/2||f||sa. Using Lemma 3.1
again

ca [ a1 a1y € y—a/2
D;D:R o < — —_— d o < A a. 3.1
IDDs RSl < S [ s s e < L e 1)

(b) In view of Remark 2.1, we need only consider ¢ < 1. We write

Pi(D;D;Ryf) — (D;DjRy\f) = e / e D;D; P, f ds — / e"D;D;P,fds  (3.2)
t 0

e’} t
= (eM—1) / e D;D;P,f ds — e / e ™ D;D;Psf ds.
0 0

Since t < 1, then \e” —1] <Mt < cet®/?, and so the L norm of the first term on the
last line is bounded by ceto‘/2||DiDjR>\f||oo. Applying (3.1), we bound the first term by
cr(N) (aza;) "1 2| f | e

Since t < 1, then e is bounded. By Lemmas 3.1 and 2.2,

cg _ c — a—
IDiD;Puflloc = |1DiPyj2D;Pujaflioc < 57 2(|D;Pypaflloo < 57125702 f| 50
% el

Integrating from 0 to ¢, the second term on the last line of (3.2) is bounded by

t
c a_ C11
| e [ 4 tas = DLl e,
0

a;a; a;a;
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(¢) The first derivative estimates are similar but easier. Using Lemma 3.1,

nmmmws/ e Dy P, f| oo ds (3.3)
0

o0
<@/‘f“fwwmmsﬂh*ﬂww
0 a;

Toay 7

(d) For t < 1, we write
t
Py(DiRxf) — (DiRxf) = (e = 1)D; Ry f + 6”/ e M D;P,f ds
0

as in (3.2). The first term on the right is bounded by c14(\)a; 't|| f||c, Which is fine since
t < 1. Use Lemmas 2.2 and 3.1 to bound the second term on the right by

t
c _ c C17
e e T P P
a; 0 a a

(2 (2

4. Relationship between norms — the Laplacian case.

Proposition 4.1. If f € C* and g € S%, then

1fglls= < ([a]* + D[ fllc=llgllse-

In fact,
[fglse < lIflloolglse + lal*[flcllglloc]-

Proof. The L norm of fg is clearly bounded by the product of the L°° norms of f and
g. Fix z. We need to obtain a bound on

1P:(f9)(@) = (fg)(x)].

Let f(y) = f(y) — f(z); clearly f(z) = 0. Then
Pi(fg)(z) - fg(z) = Pi(fg)(x) + f(x) Pig(x) — f(x)g(x),
Pi(f9)(x) = fg(@)| < [P(Fg) ()| + |f (@)] | Peg — g] < |Pe(Fa)(@)| + t*2|| flloo]gs-

10



The first term on the right hand side is

[ (f9)(z + X4)| < llgllooE |f (@ + X) — (@),
< llglloo| floaE (| X¢|*)
< llglloo| flca (B (1Xe[?)*/
= llglloo| flclal*t*/2,

where X; is the Brownian motion associated with the semigroup P;. The required bound
follows. .

Clearly the function that is identically one is in S%, and hence the above proposition
implies that C* C S“. Here is a partial converse, which also shows that these spaces
coincide and have equivalent norms in the finite-dimensional case. Incidentally, this and
Proposition 3.3 provide a new proof for (1.3) as well.

Note that because of the presence of the a; in the conclusion of Lemma 3.1, we
cannot conclude that S* and C'* are equivalent in the infinite dimensional case. Let us set

@+ her) — ()]

flayi = Su o (4.1)
Proposition 4.2. There exists ¢1(«) such that for each i, |f|q,i < c1a; “|f|se.
Proof. By Lemmas 2.2 and 3.1
Pf(x + hei) = Pof (2)| < [B] |IDiPef lloo < calhlay @D/ f|sa.
We also have
[Puf (@) = f ()] <t/ f|se,

and the same with = replaced by x + he;. Using the triangle inequality,

(2 + heg) = f(@)] < (2% + ealhlag @ 7D2) |50
Taking t = a; %|h|? yields our result. O

Remark 4.3. Although our bounds show |f|s« < |a|*|f|ca and |f
does not give a geometric characterization in terms of Holder norms. It is natural to ask

@, S clai_a|f|5a, this
if a more complicated combination of |f|,; and |f|ce could be used to accomplish this.
To see that this does not appear to be possible, consider the d-dimensional case with all
the a;’s equal to 1. For each integer 1 < k < d, we now construct an example where
|fllce = 1, |flai = 1 for each i, yet ||f||se ~ k*/2. Here “~” means the ratio of the
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left and right hand sides are bounded above and below by positive constants that do not
depend on 7, k, or d. All constants ¢ below are also independent of these quantities.

Let ¢ : [0,00) — [0,1] be a smooth decreasing function which equals 1 on [0, 1] and
0 on [2,00). Let g(z) = ¢(z)z* for z > 0. Then

19(21) — 9(22)| < ca|z1 — 22|, 9]0 < 2. (4.2)

Set y(k) = 0 € R* and choose {y(j) : j = k+1,...,d} in R¥ so that for all distinct i, 5,
ly(7) — y(5)] > 4M = 4M(d,k) > 20, where M will be chosen sufficiently large in what
follows. If 71, : R* — RF is the projection onto the first k& coordinates, define

f(@) = g(|mi(x Zgblwk —y(i))g(|z)),

j=k+1

where z; is the jth coordinate of . Note that our spacing of the y(j)’s means at most one
of the summands will be non-zero and so || f||c < 2%. For z € R? there is at most one j so
that |7, (x) — y(j)| < 2M. Let jo = jo(x) denote this j when it exists. If jo = k we have

[EZf(Xe) = fla)] < IEw( (Imk (Xe)]) = g(|mn])]

+ Z E 7 (¢(Ime(Xe) — y(7)Da(1X7))

7j=k+1

d
< B (jme(Xe) — mi(@)[*) +2% Y P(|mi(Xy) — mu(z)| > M)
j=k+1
< E (Jm(Xe) — mo(@)[*) /2 + 2%dE (| (Xe) — me(2)|*) M ~®
< C2ta/2ka/2—|—2adta/2ka/2M_a
< Cgka/2ta/2.

In the last line we have taken M sufficiently large depending on (d, k). If there is no jo
then the above argument remains valid. If jo > k a similar argument gives the same bound

and we have shown
| flge < ck®/2.

To obtain the reverse bound note that

d

[E°(f(X0) = £(0)] > E°(|me (Xe)|*b(|mr (X)) = 2% D PO(Imi(Xe) — y(j)| < 2)

j=k+1

> E°(|mi(Xe)|*) — E2(me(Xe) | *L(jmy (x0)51))
d

—2% 3 PO(|mi(Xe)| > M).
j=k+1
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An easy calculation shows the first term on the right-hand side is at least c5k®/2t®/2 and
so the right-hand side is at least

csk®/?t%/% — E°(|m(X,)[?) — 2% (|mx (X4)[F) M
> ta/2ka/2[c5 _ (kt)l—a/Z(l + CGdM—Z)]
2 c7ta/2ka/2’

where the last line is valid for M large and ¢ < to(k). This proves |f|se > ¢7k®/? and so
we have established |f|gsa ~ k/2.

If |h| < 1 it is easy to see that there is at most one summand in the definition of
f which is non-zero for either x or x 4+ h. It is therefore straightforward to check that
|flce & | fla,i = 1 for all ¢. For the lower bounds on |f|,, ; consider |f(he;) — f(0)] if ¢ < k&
and [f(7(2) + he;) — f(§(2))|, where §(z) = (y(4),0,...,0) if i > k.

Therefore there does not appear to be a simple characterization of S% in terms of
the |f|q,i- On the other hand, if we write || f|/ s« as

1£lloo + supt~*/2 sup
t

T

[ Pe.0.y=2)rw) - f@)dy

where P(t, z,y) is the transition density for P, in R?, we see that S® does have a geometric
characterization in terms of a weighted average of f(y) — f(z).

5. Holder estimates — the generalized Ornstein-Uhlenbeck case.

In this section we obtain Holder norm estimates for perturbations of an appropriate
Ornstein-Uhlenbeck operator. Let H be a separable Hilbert space with inner product (-, -)
and let V : D(V) — H be a (densely defined) self-adjoint non-negative definite operator
on H such that

V1 is a trace class operator on H, (5.1)

Then there is a complete orthonormal system {e, : n € N} of eigenvectors of V1 with
corresponding positive eigenvalues A, ! satisfying

Z)\;l <00, ApToo, Ve, =Ae,
n=1

(see, e.g. Section 120 in [RN]). Let Q; = etV be the semigroup of contraction operators
on H with generator —V. If w € H, let w, = (w,€,) and, as discussed in Section 2, we
will write D; f and D;;f for D, f and D, D, f, respectively. (In the example from the
theory of SPDEs that motivated us, V is given by Ve; = c1i2¢;, and clearly V! is of trace
class.)
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Assume a : H — H is a bounded positive definite operator on H with a bounded
inverse and set a;; = (ae;, €j). Therefore for some vy > 0,

v Hz? > Zaijzizj > |z, z € H. (5.2)
i,J

We consider the H-valued process which, with respect to the coordinates z; = (z,€;), is
associated with the generator

Z ai; Dijf ( ZA z:D;f( (5-3)

3,7=1

The definition is as follows.

Let (Wg,t > 0) be the cylindrical Brownian motion on H with covariance a. Recall
(see section 3.2 of [KX]) this means if o is the positive definite square root of a, then W; is
an R*°-valued process such that for some sequence of independent 1-dimensional Brownian
motions {B,},

w* ( Wt 61 ZU ij
and so more generally,

Wi(h) = (h,e)Wi(e;), heH,t>0

is a mean zero Gaussian process with covariance
E(Ws(h)Wi(h'")) = (h,ah/)(s A T).

As usual we may extend the definition of (W;(h),t < T') to measurable paths b : [0,T] - H
such that fOT ||hs||?ds < co. Then (Wy(h),t < T,h € H) is again a mean zero Gaussian

process with covariance

B(WWW.e) = [ "y, ag,)dr.

We often will write fg hsdWy for Wi(h), where the integral is the Wiener integral. F;
denotes the right-continuous filtration generated by W.

Consider the stochastic differential equation

dXt - —VXtdt + th

14



A continuous H-valued F;-adapted process is a solution of this stochastic differential equa-
tions if and only if for all h € D(V) we have

(X, h) = (Xo, h) — /O XLV W(R) £30,  as (5.4)

Using standard techniques (extend (5.4) to time dependent h and set hy = Q—sh
first for h € D(V) and then for h € H), one can show that such a solution is a continuous
H-valued Fi-adapted process which solves the mild form of (5.4) with initial condition
Xo € H, that is

t
(X, hy = (X0, Qth) —I—/ Qt—shdW, a.s. forallt > 0and h € H. (5.5)
0

There is a pathwise unique solution of (5.5) (which also solves (5.4)) whose laws
{P*,z € H} define a unique homogeneous strong Markov process on the space of continuous
H-valued paths (see, e.g. Section 5.2 of [KX] and note (5.4) follows trivially from (5.2.26)
of [KX]). We let P, f(z) = E®(f(X})) denote the associated semigroup. Clearly {X;,t > 0}
is an H-valued Gaussian process satisfying

E ((X¢, h)) = (Xo,Qth) for all h € H, (5.6)

and
Cov ((Xt,9)(X¢, h)) = /o (Qt—sh,aQi—sg)ds = Ci(g, h). (5.7)

Our reason for introducing (5.4) is that it shows that X will solve a martingale
problem associated with £. More precisely if f : H — R is a bounded C? function
of (x1,...,2,) with bounded first and second partial derivatives, then f(X;) — f(Xo) —
f(f Lf(Xs)ds is an Fi-martingale. Our objective in this section is to obtain bounds on
D;D;R) in the S* norm associated with P, where R) is the A-resolvent corresponding
with P;. We start by noting that P; no longer commutes with the differential operators
D,,.

Proposition 5.1. Assumet > 0, w € H, and f : H — R is a bounded measurable
function such that Dg,,, f is bounded and continuous (on H). Then

Dthf(.T) = Pt(DQtwf)(a:), T € H
Proof. Let Z; € H denote a mean zero Gaussian random vector with covariance C;. Then
P*(X; € -) = P(Qtx + Z; € -). Therefore if r € R,

Pif(z+rw) — P f(z) :E(f(Zt+Qt(-7/'+7'w))_f(Zt‘i‘Qtl')).

T A

(5.8)
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Use the mean value theorem to see that for some 7’ between 0 and r the integrand on the
right side of (5.8) equals Dq, . f(Z; + Qix+1'Qiw), which approaches Dq,., f(Z: + Qi) as
r approaches 0 by the assumed continuity of Dg,., f. The result now follows by dominated
convergence. O

The next step is the analogue of Lemma 3.1, which will require considerably more
work in the present Ornstein-Uhlenbeck setting. Recall that Cy(H) is the space of bounded
continuous real-valued functions on H.

We introduce the following notation. Let

h(t) _ {2t/(62t — 1) lft >0
1 ift=0.

For t > 0 and w € H set |w|; = (3, w?h(A\;t))1/2. Clearly h(t) and |w|; are decreasing
functions of ¢ and |w|y = |w|.
The next result is closely related to (6.2.10) and (6.4.14) of [DZ].

Proposition 5.2. If f : H — R is bounded and measurable and w € H, then for allt > 0,
P, f is Lipschitz continuous on H, D,,P,f € Cy(H) and

wle |l

Dthf [e’e] S
| | NG

Proof. First consider f € Cy(H). Let 7, be the projection operator of H onto R" given
by 7y = ((y,€i))i<n. Then under P?, m, X; is an n-dimensional Gaussian variable with

mean m,Q;x and covariance matrix

t t
CZL(ZL?) = /() <Qt—s€i,aQt_s€j>d$ = /O 6_(>\i+)‘j)sd8 QAijs 1,] < n.

Here of course a;; = (€;,a¢;). If z € R*, then for some &, ; > 0,

(z,CPx) / ZZaZﬂ:ZmJ —Xise=Aisdg > / ')/foe_”"'sds > sn,t|x\2.
=1 g=1 =1
This shows C7' is non-degenerate and so 7, X; has a Gaussian density
Py (z) = (271')_”/2 (det Ct”)_l/2 exp(—(z — 1, Qsz, (2C*) "z — T Q:x))).
Let fn(y) = f(Z?(ya €i>6i) = .fn("rny)' Then

Pufule+ rw) — Pifu(a / foly) [P T Q) ZPEW)

r

(5.9)



By the mean value theorem, there is an ' = 7’(y) between 0 and r such that the expression
in square brackets is

—Dr, @bt (y — 7' T Qpw) (5.10)
=p(y — r'mQiw){((CH) ' TnQiw, y — mn Qe — ' T Qiw)),

by an easy calculation. As » — 0 the above converges to

P (CY) T Quw, y — 1 Q).

It is easy to see that the integrands on the right side of (5.9) are uniformly integrable in r
over |r| < 1 due to the Gaussian tail of pf’. For example, one can show the contribution
from |y| > k is small uniformly in |r| < 1 for k large. Therefore we may apply dominated
convergence to take the limit as » — 0 through the integral in (5.9) and conclude that

D Ptfn /fn pt n) Wthw y— Wthx»dy
([ (Xe){(CH) ' Qew, mp (X — Qe))).
Introduce U, = (CP)~Y?7,Quw, Z, = (CP)~Y?1,(X; — Qsx) and R, = (Up, Z,). The

above may now be rewritten as

DyPifn(x) =E*(fn(Xt)Ry)- (5.11)

We need the following lemma whose proof is provided at the end of the current

argument.

Lemma 5.3.

Un| < NeTh (5.12)

The coordinates of Z,, are i.i.d. standard normal random variables and so Lemma
5.3 implies that

x 2 2 |UJ|%
E”(R2) = U2 < 12, (5.13)
vt
If Y; = X; — Q:x, then the joint laws of (Y3, Z,,),n € N, are independent of z (recall Z,, =

cM~ 1/ 27rnYt) and the same is therefore true of the joint laws of (Y3, R,,) on H x R. This
sequence of laws is tight by (5.13) and so we may choose a subsequence {ny} (independent
of z and f) such that (Y3, R,,) = (Y;°°, R) with respect to weak convergence in H x R.
As Y™ clearly is equal in law to Y; we will drop the superscript. Using (5.11), we have

Dy Pifn, (@) = E*(f(Qux + Ye) Ry ) + E°((fn, (Xe) — f(Xi)) Bay) (5.14).
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The second term is bounded in absolute value by E”((f,, (X:) — f(X¢))?)Y/2E®(R2 )1/
which approaches 0 as k& — oo by (5.13), the continuity of f and dominated convergence.
The above weak convergence along with the continuity of f and (5.13) show that as k — oo
the first term in (5.14) converges to E (f(Q:x + Y;)R), and Fatou’s lemma and (5.13) show

that )
lwly

E(R?) < .
(B <

(5.15)

We have proved that
kli)n(r)lo DyPifn, (z) =E(f(Qix + Y:)R) = J(x).

Clearly J is continuous on H by the continuity of f, (5.15) and dominated convergence.
Dominated convergence also shows that P;f,, () — P.f(xz) as k — co. An elementary
argument using the fundamental theorem of calculus now shows that

D, P, f(z) exists and equals J(z).

In particular, D,, P, f is continuous. The required bound on the sup norm of D,, P, f is now
immediate from (5.15) and Cauchy-Schwarz.

Consider now the case when f is only bounded and measurable. We have shown
above that for a fixed w € H and all g € C,(H),

Pig(x + w) — Pyg(z) = /0 E (9(Q¢(x + sw) + Y;)R)ds, xz € H. (5.16)

Let S be the set of all bounded measurable (real-valued) maps on H for which (5.16) is
valid. S is clearly a vector space containing Cy(H) and is closed under bounded pointwise
limits. A standard result (e.g., p. 11 of [M]) now shows that S contains all bounded
measurable functions. This, together with (5.15), proves that for f as above,

\Pyf(z +w) — Pf(z)] < %

and in particular P, f is Lipschitz continuous on H.

Finally if 0 < € < t, we may apply the bound obtained in the continuous case to the
continuous map P f and conclude that Dy, P, f(x) = Dy, P—.(P.f)(z) exists, is continuous
and is bounded in absolute value by

|| Pe £l oo|wlt—e < ||f||00"w|t—e.
Yit—¢e) — lt—e)

Let € | 0 to obtain the required bound. O
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Proof of Lemma 5.3. Note that m,Q;w = (e"**w;);<,, where m,w = > 7 w;€;, and so
by replacing w with >"7 w;€;, we may assume (w,¢;) = 0 for ¢ > n. We may consider Q;
as an operator on R™ via Q; = diag(e™*i%),<,, and the required result then becomes

ny—1/2 o _ |wlf n
[(CY) Qiw| S—fyt , w € R*.

t

Define D; : R* — R” by Dyw = (e%j(’/\“;’) ) - Then we claim the above follows
2
(CP) 2 Duf? < ";—'tu 33 (5.17)

from

To see this set u; = w;\/h(\;t). Then Dyu = Qiw and (5.17) would imply the required
inequality. If BP = D;'CPD; " (all operators now are on R") then

t
By (i, 7) :/O h(Ait)ei =g 0 [ h(At) et =9 ds.

If v is as in (5.2) then one easily sees that
t n
(2 B12) > [ 7Y 2RO s =yt
0 =1

Therefore B} is symmetric positive definite matrix with all eigenvalues no smaller than
~t. If the eigenvectors of B} are 7; with corresponding eigenvalues p;, then

(z, Bi'z) = Z:u'i<za Ti>2

< Z 'u—?(z, )2
< "
= (7)™ Nz, (BY')*2) = (7)1 | B 2|*.
Therefore if z = (C?) "1 D;u, then
(CF) 2 Dyuf® = (2, CF2)
= (2, Dy B}' D;z)
= (Dyz, By Dy z)
< (vt)"HBIDyz|? (by the above with D,z in place of z)
= (vt) " uf®.

Thus (5.17) holds and the proof is complete. 0

Now that we have Proposition 5.2, we obtain the Holder norm estimates by making
suitable modifications to what we did in Section 3. The main difference is the lack of
commutativity between P; and D,,.

19



Proposition 5.4. Let f : H — R be in §% and let u,w € H. Then D,,P,f and D, D,,P; f

are in Cy(H) and for some constant c¢q(a,7y), satisfy

a—1
[DwPeflloe < crlwlet ™= || flse

and
|1DuDuy P flloo < c1lttl/2]Qejaw]e/at® >~ f|se-

Moreover
f€C® and ||f|lce < e flse-

(5.18)

(5.19)

(5.20)

Proof. Using Proposition 5.2 we have by Lemma 2.2 (with ¢; = |w|¢/|w]| in that result)

that

1Dw Pif oo < ealw]st D72 f]sa.

The continuity of D,, P, f is given by Proposition 5.2.

(5.21)

Use (5.21) with Propositions 5.1 and 5.2 to conclude that for ¢ > 0 and u,w € H,

D,D,Pf = DuPt/zDQt/th/zf exists, is continuous,

and satisfies

IDuDuPiflloc < (7/2)72Jult/al D@y suPrsaf lloo
< eat ™2 |ulyya|Qupawlea (t/2) 2| £ s

which gives (5.19).
The last result follows from Proposition 5.2 and Lemma 2.3.

Lemma 5.5. Ifr > 0,8 < 1, there is a ¢1(B,r) such that for any A > 0,

/0 e Muwlp P dt < e Yy (A+ )P Ml

=1

Proof. If I; = [ e *h(\;t/r)t~#dt, Fubini’s theorem shows that

o0 oo
/0 e_)‘t\w\f/rt_ﬂdt = Zw?li.
i=1

Note that if A\; > 0, then

I; < / 7;17/ L (2Nt /r) 2N db(2/r)P
0 e i T __

< 02(7")>\iﬂ_1/
0

1-8
Y 1d’u = 03(7"))\?_1.

e’l}_
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Moreover for all A we have

I; < / e M) TPAPTINGE < el NP
0

Therefore I; < c5(r)(A+ X;)?~1, and if this is used in (5.23), the desired result follows. [

If we H, set |w||g =Y ooy |wil

Theorem 5.6. Let A > 0, f : H — R be in %, and u,w € H. The functions D, Ry f
and D, D,, Ry f are bounded and continuous on H. Moreover there exist constants ci(«,y)
and {ca(a,7v,€) : € € (0,/2)}, independent of f and A, such that for each € € (0,a/2),

e 1/2
1DwRs oo < e2X™CFA (3T w? (A 27 7) T fllse. (5.24)

=1

1Dy Do R f oo §C2(Zw2()\—|—)\ ) (Zu2()\+)\ =) P iflse (5:25)

DuBaflse < e (D w0+ 2) 772 [ Fllse (5.26)
=1
DuDuBxflse < ex(ful [wlla + hul fullz) 1 1se- (5.27)

Proof. A use of Proposition 5.4 allows us to differentiate through the time integral and
see that Dy, Ry f(z fo e D, P, f(x)ds and DD Ry f(z fo e DD, P,f(x)ds
are both contmuous on H. Moreover by (5.19) and the Cauchy Schwarz inequality,

”DquRAf”oo

< c4||f||5°‘/ |u‘s/2|Qs/2w|s/23a/2_16_>\8d3 (528)
0
° 1/2 , [ 1/2
§C4 f 5 / Ulg R le_ASdS / Qs ’IUE 36_1€_A8d8 .
171 ( 0 [uls /2 ) ( 0 |Qs/2 /2 )

Use Lemma 5.5 and the trivial bound |Q,/w|s/2 < |w],/2 to conclude from the above that

1DuDu B flloe < csllfllse (Z()"L)‘)E a 2)1/2(2(’\+)‘i)_6“’?)1/2‘
=1 i=1

This gives (5.25) and the derivation of (5.24) is similar.
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Now consider (5.26). As in Remark 2.1 we may assume that 0 < ¢ < 1. Use (5.18)
to see that

||DthR/\f - DwRAf“oo
[e%9) t
< (eM — 1)H/ e_ASDwPSfdsH + H/ e_stisfdsH
t o 0 oo

oo t
< cs(a, 7)||flls= [(eM - 1)/ e_)\s‘w|s3(a_1)/2d3 +/ e_)‘s\w|ss(°‘_1)/2d3
t

0
= co||flse [11 n 12] (5.29)

First bound I; by
Z |wz|e )\t/ /2)\3 2)\3_ 1/2()\ s)(a 1)/2)\ dSA( 1—a)/2

Ai>A

Mo1) ) \wz|/ e M (As) @ 1/2) gg N(-17)/2 (5.30)

A <A

A substitution shows the integral in the first term in (5.30) is bounded uniformly in 7 and
so this first term is at most

cr(@)(1—e ™) 37 fuy {2, (5.31)
Ai>A

The integral in the second term in (5.30) is at most cg(a)e™* and so the second term in
(5.30) is at most
cs(1—e ) Y fu; A2 (5.32)
Xi<A

Use (5.31) and (5.32) in (5.30) to conclude that

I < co(1 — —At)Z\wuH)( 1=a)/2

=1

oo
< cot™? Y il (A4 ) T (5.33)

=1

Next bound I3 by
/ —Asz|wz|\/m (€25 _ 1)~ 1/2ga=1)/2
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< Z Iwz\/ V2Xis(e?hi® —1)71/2 () s) (@ 1/2 ) ds)\( a—1)/2

Ai>A

+ ) |wz|/ *(As)(@7D/2) gs (17 2)/2
A <A

< Z |wz|/ \/5(62“ _ 1)_1/2ua/2du )\z(_l_a)/Q
0

3 i / @2 gy A1)/ (5.34)
A <A

The integral in the first summation is at most
Ait
ClO/ Ua/Z_ld’U, S Clo()\it)a/z
0
and the integral in the second summation in (5.34) is at most

At
/ e 22 Ly < eqo(AE)Y/ 2,
0

Use these bounds in (5.34) to see that I3 is also bounded by the right hand side of (5.33).
Use this and (5.33) in (5.29) to conclude that

oo

|DwP.Rxf = DB flloo < enn (Z()\ + )\i)_l/2|wi\)ta/2||f||5a. (5.35)

i=1
Proposition 5.1 and (5.18) imply that

||PtDisf - DthPsf”oo = ||PtDw—Qthsf||oo
< c1z|w — Quwlys V2| £ s (5.36)
Note that

/ e M w — Quw|,s @1/ 2ds
0
< Jwil (1 - e‘*it)/ e (25) V2 (BN — 1) 1/25la- 124
=1 0

o0
< Z wi|(1— e_Ait)/ (2)\is)1/2(ez>‘i3 — 1)—1/2()\is)(a—l)/2)\ids)\z(_—1—a)/2
Ai>A 0

o0
T Z |wz‘(1 — e_)\it)/ 6_)‘5(AS)(a_l)/2)\d8)\(_1_a)/2
A< 0

< 6132 |wz|(1 _ 6_>‘it)<)\ + )\i)(—l—a)/z

< iy il A+ X)L,
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Integrate (5.36) with respect e~**ds, use the above bound, and combine the resulting
inequality with (5.35) to derive (5.26).
Finally consider (5.27). Use (5.19) to see that for 0 <t <1 and u,w € H,

||DquPtR>\f - DquRAf“oo

° t
< (M- 1)H/ MDD, Pofds| + H/ e~ D, Dy P, fds|
t o0 0 0
< c1al|f||se [(e)‘t - 1)/ e |5 /2|Qs jawls 28 P ds
t

t
4 [P lulepa Qupzwl. s/ ]
0

t

o0
< cxafol u] | £llse [ = 1) / e 1 qur—e/? 4 / s/ 1ds]
At 0

< crslwl [u] | fllsa[(1 — e AT 4 12/2]
< eiglwl [ul || f]|sat*2. (5.37)

Now

PtDquPsf - DquPtPsf = [PtDquPsf - DuPtDisf] (538)
+ [DuPtDisf - DquPtPsf]

By Proposition 5.1 and (5.22) (the latter to verify the hypothesis of Proposition 5.1), the

first term on the right is equal to P;D,,_q,u Dy Psf and so by (5.19) has sup norm bounded
by

1782 " Hu — Quuls 2| Qs j2wls 2| fllse < 1857 THu — Quulsalwls ol fllse-
Propositions 5.1 and 5.2 show that the second term on the right-hand side of (5.38)

is Dy PyD_q,wPsf, which by (5.22) and Proposition 5.1 equals P,Dq,.D(r—q,)wPsf. Use
(5.19) to bound the sup norm of this expression by

c108% 71 Quuls/2|Qs 2 (w — Quw)|s 2l fllse < c108% " Mulsalw — Qewls ol fllse-
These bounds and (5.38) give

||PtDquPsf_DquPtPsf||oo (539)

< 2082 " Mlulgjalw — Qwlsya + [wljalu — Quul o]l flse-
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Note that

/ e @Dy o lw — Quuwyjads|| £ se
0

oo /2 . Ais 1/2
<fullifllse [ s [t -] s

)\Z’S
veris — 1

Aids(1 — e~ Xit),

o0
< Ju] I ]| = / S@/DTIS (1 — &) ds

(As5) (a 1)/2)\ a/2
Veris — 1

Note that 1 — e~ < (A\;¢)*/? and so the above gives

< ful 5w Sofus] | ¢

oo
/ e 5D uly olw — Quwlyjads||fllse < carlul [wllmallf st/
0

Integrate (5.39) with respect to e~**ds, use the above bound, and combine the resulting
bound with (5.37) to conclude

”PtDquR)\f - DquRAfHoo

and (5.27) follows. O

Corollary 5.7. There exists a constant ci(«,~y) such that for all A > 0, any bounded
measurable f : H — R, and for all 1 < j € N,

|DiRxflloo < e1(A+ i)~ (@FD/2|| f|| 5, (5.40)
IDijRaflloe < cx(A+ X))~ £l sa, (5.41)
|DiRx fllse < ex(A+ X)) 72| f|se, (5.42)

| Dij Bafllse < el fllse- (5.43)

Proof. The first two inequalities follow easily from the bounds in the proof of Theorem
5.6 prior to the use of Holder’s inequality. For example, to derive (5.41), use (5.28) with
u = ¢; and w = ¢; to conclude

Di:Ryf| §C3||f||5a/ Jh(his/2)s%/2 e s
J 0 J
<aillfllse [ VA du

< sl fllser; .
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Use h < 1 to also bound the first line of the above display by cs||f||sa A~%/? and (5.41)
follows. A similar argument gives (5.40). The last two inequalities are now immediate
from (5.26), (5.27) and the first two inequalities. 0

Remark 5.8 In Corollary 5.7 we showed that the operator D;; Ry is a bounded operator
on S% with a norm independent of 4 and j. It is also known that D;; Ry is a bounded
operator with respect to the usual C'* norm, again with a norm independent of ¢ and j;
see [D], [L], [Z], or especially Section 6.4.1 of [DZ]. Neither of these results contains the
other. The C* norm emphasizes the local continuity, while the S® norm also gives weight
to the behavior of f(z) when |z| is large. Both results are of interest.

6. Relationship between norms — the generalized Ornstein-Uhlenbeck case.
We now prove the analogue of Proposition 4.1. Let |f|q,; be defined as in (4.1) and

set
A /2
Flaiw = sup |f(z + he;) f2(x)\ i % (6.1)
z,h#0 |h|a/
Let
a,iw = [ flloo + [ flEe, (6.2)

[z = [ flleo + Z |flai + ZA?/2|f

and let E* be the space of continuous functions with ||f||g« < oc. In Proposition 6.3
below we introduce a norm || - || pe which is equivalent to || - || s« in finite dimensions. This
norm could be used in place of || - || g in the statement of Proposition 6.1; we use || - | g
in the next proposition because of its simpler form.

Proposition 6.1. There exists ci(a,7y) such that if f € E* and g € S®, then
[ £gllse < callfllz=lgllse-

In fact,
[£gllse < ealllflloclglse + | fElglloo]-

In particular E* C S¢ C C*.

Proof. As in the proof of Proposition 4.1, it suffices to fix x € H and show that if
f(x) =0, then for some cy = co(a, )

|Pi(f9) ()] < cal flmellglloot ™. (6.3)

For y € H let z;(y), 2z} (y) € H satisfy

(zi(y), €5) = (W, €5) 1<) + (T, €)1 (j>i)
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and
(77 (), €5) = (Y, €)1 (j<i) + (Qex, €)1 (j=iy + (2, €)1 (j>i)-
Let
fi(y) = f(zi(y)) — f(zi-1(y))-

Note that f;(y) is equal to f(zi—1(y) + (yi —x:)€i) — f(zi—1(y)). Therefore we see || fi|loco <
|fla,ilys — zi|®. Our assumption f(z) = 0, together with dominated convergence and the
continuity of f, implies P,(fg)(z) =Y oy Pi(fig)(z). Then

Bf9)@)| £ Y Pifigl(@) < Y ol Pl @), (64)

Let Z; denote a mean zero Gaussian random vector in H with covariance C;. Then

P ([fil) (@) = E([f (2:(Qex + %)) — f(zi-1(Qe + Z1))])
SE([f(z(Quz + Z1)) — f(2 (Qex + Z0))]) + E (I (2 (Quz + Z1)) — f(2i-1(Quz + Z1))])
< FlaB ((Zes )| ) + | flas,w Qe = @, €| 2|23 =21, 20) (6.5)

Note that
E ((Z, €)?) = a;i(1 — e 22it)(2)) 7 < 471t (6.6)

Therefore the first term in (6.5) is at most
FlagB ((Ze, €0)*)* < |flaiy /272, (6.7)
The second term in (6.5) is bounded by
[ Flaiw (1= €)% < | flo s w A 2102, (6.8)
Put (6.7) and (6.8) into (6.5) and sum over i to conclude

S PAfN@ < [y Y i + D11

< ea(a, 7)|f Bt/

a,i,W)\?/z te/?

Put this bound into (6.4) to derive (6.3) and hence complete the proof of the required
inequalities.

Set g = 1 and use (5.20) to prove the final inclusions. 0
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Proposition 6.2. Assume \; > cy4? for all i and some ¢; > 0. Then S® is an algebra
and (2.6) and (2.7) are valid.

Proof. We verify the hypothesis of Lemma 2.4. If Z; is as in the previous proof, by (6.6)

E°(1X: —E"(X)[") = ZE ((Zt, €)*)

An elementary calculation shows the above is at most c3v/t and so the result follows now
from Lemma 2.4. ad

Finally, we present a norm that is equivalent to S¢ in the finite dimensional case.

Define F(Qur) — f()]
) — T
\flpe = ti%% tta/g .

(6.9)

The letter F' stands for “flow”, as what we have here is a weighted Holder seminorm along
the flow Q:x. Note (); is deterministic:

Qir = Q¢ ( szez) = Z e Mbze;.
Define

[fllre = Ifllc + |f]pe. (6.10)

Recall 7, is the projection of H onto the subspace spanned by {e1,...,€,}. In the next
result we effectively reduce to the finite-dimensional case by considering functions which
only depend on the first d coordinates.

Proposition 6.3. There exist positive ¢; and c2 depending on (v, d) such that for any
measurable f : H — R satisfying f = f oy,

callfllse <N fllre < call fllse

Proof. Let Z; be the Gaussian vector introduced in the previous proof. Then, using (6.6),

we have

P f(z) — f(2)| < |E(f(Qux+ Z) — f(Qix))| + | f(Qezx) — f(z)]
< |fleaE (|raZ®) + |f|Fata/2
< ta/2 |f‘0a (d,y—l)a/2 + |f|Fa (611)
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and the left hand inequality is established.
Turning to the right hand inequality we have,

F(Qu) = f(@)] = |(Puf (@) = £(2)) = (B (F(Quz + Z)) ~ F(Qu)
< |flsat®? + | floE (|maZe|®)
<1972 {50 + callFllsn (dy™)*2].
where in the last line we have used (5.20) and (6.6) again. This together with a further
application of (5.20) give the right hand inequality. O
The following gives a relationship between S and C'®.

Proposition 6.4. We have

[flse <1 D | Flak + [ flre

k
Proof. Asin (6.11),

|Pif (@) = f(2)] < [Ef(Qur + Z4) — [(Qer)| + [f(Qur) — f(2)].

The second term on the right is bounded by |f|zat®/2, so we need to bound [E f(y+ Z;) —
f(y)|, where we write y for Q.x. Replacing f(-) by f(-) — f(y), without loss of generality
we may assume f(y) = 0. Define random variables Y; by

(Yi(w), €5) = (¥ + Ze(w), €)1 (j<i) + (¥, €)1 (j>i)-

Then -
Efly+ Z)| <D E|f(Y:) — f(Yioy)]
i=1

< flasE(Zs, ).

=1
Using the calculation in (6.7), this is turn is bounded by

dIf

(2

which gives the proposition. O
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7. Relationship between norms: super-Markov chains.
In [BP] Holder norm estimates were proved for the operator

d
Lf(x)= Z[%%Diif(x) +b;D; f ()]

operating on CZ(R%). Here v = (y1,...,7a) € (0,00)% and b = (by,...,bs) € R%. The
estimates were with respect to the norm defined by

d
Ifllog = 1fllee + D 1F

=1

a,t,w

where

|f|a,i,w — sup |f('7j + h’;;x) - f(.’L‘)|$;1/2
h>0,z€[0,00)

Set C¢ ={f € Cy(RL) : ||fllca < co}. In [BP] this norm was essentially forced on us in
order to get the estimates we needed. The Holder norm estimates analogous to Corollary
5.7, but for || f|/ca, are derived in [BP] and make up a considerable portion of that paper.
So in this section we content ourselves with showing that the C norm is equivalent to the
S° norm for this operator.

Let P; denote the semigroup associated with £ and E* denote expectation with
respect to the associated Markov process (X¢, ¢t > 0) in R‘i, starting at x € R‘}r. More
precisely under P? X is the unique (in law) process such that Xy = z and

MI(t) = F(X,) — f(z) - / LF(X,)ds

is a 0(X,, s < t)-martingale for all f € CZ(R%). If d = 1, let P*(X, € dy) = 7 (z, dy)
and write pi(z;, dy;) for p}*" (x4, dy;).
We will need some results proved in [BP]. The first lemma is elementary.

Lemma 7.1.
(a) For each p > 0 there exists a constant c, such that if r > 0, then

00 Zr—l
/ 2 —r[Po—e ?dz < cp(rP/? + 1).
0

I(r)

(b) Let N be a Poisson random variable with parameter w and let r > 0. Then

E [N_TI(NZD] <c(1Aw™).

Proof. See Lemma 3.2 (a) and Lemma 3.3 (a) in [BP]. 0
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Lemma 7.2. Let (P;) be as above.
(a) Let d =1 and t > 0. If f : R — R is bounded and measurable, then

k+3 S 1 dz
P, T _e—m/vt / zyt)e i — —
(Pof) () 7t fz) Ck+1+2) T(k+2)Iqt
e [ e
0 vt
o0 —1
dz
-1 e_‘”/w/ zyt)e A
A S T
e © _,dz
—1(b=0)€ /7tf(0)/(; € %

The series converges uniformly in x on compacts in [0, 00) for all t > 0.
(b) If f € C2(R), then for allt > 0, P,f € CZ(RL). Moreover there is a ¢ > 0 such
that

”(Ptf)z”oo + ||.’171(Ptf)“||oo < Ca\f|a,¢(%t)°‘/2_1.

Proof. (a) See Lemmas 4.1(a) and 4.5(a) of [BP] and note the continuity assumed there
is not needed for this result.
(b) See Propositions 5.2, and 5.1(a) in [BP]. 0

Remark 7.3. A measurable function on R% satisfying || f||ca < 0o need not be continuous
on 8Ri and so we have added the continuity of f in our definition of C as was done in
[BP]. It may be more in the spirit of our definition of S* to drop the continuity condition
for C2 and this can be easily done. If f : (0,00)% — R satisfies || f|lca < oo (the norm is
extended to such functions in the obvious way), then Lemma 2.2 of [BP] shows that f has
a unique continuous extension to R% which is Holder («/2) continuous and is necessarily
in Cg. In view of Proposition 7.6 below, functions in S* will have the same property, i.e.,
are continuous when redefined in the necessary manner on 8]1{{{.

Lemma 7.4. Let f be a bounded Borel function on RL. If ¢ > 0 then D;P,f(z) is a

continuous function in z; satisfying

[DiPf ()] < ex[(yitas) 72 A (7it) "Ml Flloo

for some constant c;.

Proof. Let #; = (z1,...,%—1,Tit1,-.-,%q) € R‘_li__l for xz € R‘j_ and define
F% (yy) /Hpt(arg,dyg f().
J#i
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Set s = «;t for a fixed ¢ > 0. Then use Lemma 7.2(a) to see

D;P.f(z) = D; / Fo (y;)pl (a1, dy)

0 —z. /s X;/S k S N L, Zk:—i—(bi/’yi) k+(b‘/’h‘)—1 dz
=yt lf') / e e Gy e Rl v (e | B )
k=1 Y (k+ (bi/7:) +1)  T(k+ (b:/%))
zbi/’Yi dz

+e_z"/3/ F%(z8)e? —
A V(O ZAES I
s Z(bi/'Yi)_l dz

T(bi/v) s

If ar, = ax(Z;) is the integral in the above summation over k, then

g s *_dz
— L, =0)e $’/SF$’(0)/() et

R e el U CTA I
axl <I1F ”00/0 © Tkt Oi/w)  Ek+Gi/n) s
<eall flloo ( (K + (b /%)) 2 + 1) ( + (bi/ ) '™

<2¢a|| flloo (k + (bs/7i)) /2571,

where Lemma 7.1(a) is used in the second inequality. It is now easy to see that the series
in (7.1) converges uniformly for z; in a compact set and so D; P, f(z) is continuous in z;.
Moreover this bound, (7.1) and the elementary bound in Lemma 7.1(b) also show that

> (zi/s —1/9 — . _
Dibuf(@)| < ) e L ol ool + (bef10) 257 4+ 2757 f o~
<ca(LA (@i/s)” 1/2)||f||oos_1+2e—”“/3||f||
Since e~%i/% < 1 A (x;/s)~/2, the required result follows. O

Lemma 7.5. If f is a bounded Borel function on R‘i, then

t(a=1)/2
[DiPef (z)| < e1() N 1£]lse;
where ¢y depends only on c.
Proof. This follows from the previous result, exactly as in the proof of Lemma 2.2. O

Proposition 7.6. Let f be a bounded Borel function on Ri. Then

Flaio < v, 2|1 f |l se
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Proof. If h > 0, then Lemma 7.4, the fundamental theorem of calculus and Lemma 7.5
show

h
Pf(x+ hes) — Pof () :‘/O DiPof(z + Ie;)dR!

z;+h
§C2t(a_1)/2’)’i_1/2/ y_l/zdy||f||5a

<eat @2 () T2 £ 50

We also have

[Pif (z) = f(z)] < ||f |5t/

The above two inequalities imply
[f @+ hes) = F(2)] < (262 + cat @™ D2 () "2R)|| £ s
We optimize by setting ¢t = (c3/4)h?(z;7v;)~1, and so

1f(z + hei) — f(2)] < es(@)y, 7|\ f]|se-

Recall the definition of |f|gse from (2.1).
Proposition 7.7. If f € Cy(R%), then |f|ge < c1(a) 0, ((0:/%) + D% f i
Proof. We may assume without loss of generality that f € CS. Let € > 0. Knowing

P.f € CZ(R%) from Lemma 7.2 (b)and the fact that we are working with a solution to the
martingale problem for £ implies

Pf@) - Paf@) = | [ RLPp) @

= ‘ EPs+sf($)d3‘

0
t
< / LP,f(2)|ds.

Use the upper bounds in Proposition 7.2(b) to see that

t
a/2—1
a,i,w/ S / ds
€

a/2
a,i,wt / .

d
Pof(@) = Pof(@)] < ca ) (b P 4973 f
=1

d

<z (14 bi/vi) " f

=1
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Now let € | 0 to complete the proof. ad

Theorem 7.8. Assume (0 <e <~y < K andb; < K fori=1,...,d, forsomee <1< K.
There are constants ¢ and co(c) such that for all f € Cy(RL),

d
1 max |floiw < |flse < e2(K/) Y |Flaiw

=1

and therefore there are constants cg and c4, depending on €, K and «, such that
c3d™ [ fllog < Ifllse < callflleg
for all f € Cyp(R%).
Proof. This is immediate from Propositions 7.6 and 7.7. O
Remark 7.9. Let D denote differentiation with respect to ¢, define
I £llge = I flloo + sup [|DP; flloot*~*/2),
>0
and introduce
G* = {f € Cy(RL) : DP,f(z) exists and is continuous in ¢ > 0 for all z, || f||ge < 0o}.

The proof of Proposition 7.6 can be easily modified to show C§ C G* and

d
Ifllee < e > (0 +bifv)ve? f

=1

aisw + || flloo

for all f € C2. A trivial integration shows G* C {f € C,(RL) : || f||se < oo} and
Ifllse < %H fllge. Combine these observations with Theorem 7.8 to conclude C% = G* =
S*N (Y and for €, K as in Theorem 7.7 there are cy and c3 such that

_ 2
cad | fllog <[ flls« < =l fllae < esllflle-
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