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We consider measure-valued processes Xt that solve the follow-
ing martingale problem: For a given initial measure X0, and for all
smooth, compactly supported test functions ϕ,

Xt(ϕ) = X0(ϕ) +
1

2

∫ t

0

Xs(∆ϕ) ds+ θ

∫ t

0

Xs(ϕ) ds−
∫ t

0

Xs(Lsϕ) ds+Mt(ϕ).

Here Ls(x) is the local time density process associated with Xt, and
Mt(ϕ) is a martingale with quadratic variation [M(ϕ)]t =

∫ t
0
Xs(ϕ

2) ds.
Such processes arise as scaling limits of SIR epidemic models. We
show that there exist critical values θc(d) ∈ (0,∞) for dimensions
d = 2, 3 such that if θ > θc(d), then the solution survives forever
with positive probability, but if θ < θc(d), then the solution dies out
in finite time with probability 1. For d = 1 we prove that the solu-
tion dies out almost surely for all values of θ. We also show that in
dimensions d = 2, 3 the process dies out locally almost surely for any
value of θ, that is, for any compact set K, the process Xt(K) = 0
eventually.
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1. Introduction.

1.1. Epidemic models and their continuum limits. The use of stochastic processes to
model epidemics can be traced to McKendrick (1926) and Kermack and McKendrick (1927),
who proposed a simple continuous-time, mean-field model of an SIR (for susceptible-infected-
removed or susceptible-infected-recovered) epidemic. The corresponding discrete-time model
(known variously as the Reed-Frost or the chain-binomial model – see Daley and Gani
(1999) for background) was proposed several years later, in 1928, by Reed and Frost in
lectures at Johns Hopkins University. In these models, an infected individual remains infected
for a certain period of time, during which he/she can transmit the disease to susceptible
individuals, and then recovers, after which he/she is immune to further infection. Both
models are mean-field models: the rate of infection transmission is the same for all pairs of
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infected and susceptible members of the population. The Reed-Frost model is of particular
interest not only because of its use in modeling epidemics and epidemic-like processes but
because of its close relation to the Erdös-Renyi random graph model. In particular, given a
realization of an Erdös-Renyi graph, whose vertices are marked either S or I, a realization
of the Reed-Frost process can be obtained by defining In, the infected set at time n, to
be the set of all vertices at (graph) distance n from the set I. The union of the connected
components of the Erdös-Renyi graph that contain vertices in the set I = I0 consists of all
individuals ever infected during the course of the epidemic.

Spatial versions of the above models have a rich history in both the mathematical and
biological literature. Bailey (1967) considered a spatial version of the Reed-Frost model
and Mollison (1977) is a good source of information about a range of related stochastic
spatial models. Cox and Durrett (1988) prove a shape theorem for a related continuous
time/discrete space model in two dimensions which is clearly similar in spirit to our main
theorems below on survival and local extinction for a continuum model in two and three
dimensions.

The SIR models differ qualitatively from SIS and SIRS models, such as the stochastic
logistic model, in that the progress of the epidemic depends on an exhaustible resource
which is gradually consumed. This leads to interesting critical behavior, as was discovered
by Martin-Löf (1998) and Aldous (1999). Martin-Löf proved, in particular, that at criticality
(when the probability of transmission from an infected to a susceptible individual is p =
pc = 1/N , where N is the size of the population) then as N → ∞, after suitable scaling,
the total number of individuals ever infected converges in law to the first passage time of a
Wiener process to a parabolic boundary. Dolgoarshinnykh and Lalley (2006) subsequently
showed that for suitable initial conditions the Kermack-McKendrick epidemic process, after
rescaling, converges weakly as N → ∞ to a continuous-time process It that satisfies the
stochastic differential equation

dIt = (λIt − ItRt) dt+
√
It dWt where(1.1)

dRt = It dt.

The proof can easily be adapted to show that the Reed-Frost process has the same limit. The
parameter λ ∈ R represents the transmission rate of the disease: it is related to the infected-
susceptible transmission probability p in the Reed-Frost model by p = 1/N + λ/N4/3. It is
not difficult to see (using well known facts about Feller’s diffusion) that for any value of λ
the process It defined by (1.1) is eventually absorbed at 0.

The subject of this paper is a stochastic partial differential analogue of the system (1.1)
that arises as a scaling limit of a spatial version of the Reed-Frost process proposed by Lalley
(2009) as a crude model for an epidemic in a geographically stratified population. In this
model, populations of size N (“villages”) are located at each lattice point of Zd; the rules of
transmission are the same as in the Reed-Frost model, except that infectious contacts are
permitted only for infected-susceptible pairs in the same or neighboring villages. (The model
is described in more detail in Section 2.2 below.) Large-population (N →∞) limit theorems
for near-critical versions of these spatial SIR processes were proved for d = 1 in Lalley (2009)
and for d = 2, 3 in Lalley and Zheng (2010). The limit processes are now continuous finite
measure-valued processes X = (Xt)t≥0; for each time t, the random measure Xt represents
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the infected set (more precisely, its distribution in space), and Rt =
∫ t

0 Xs ds the recovered
set. The dynamics of the model are specified by the following martingale problem. For any
Radon measure µ on Rd and any integrable or non-negative measurable function ϕ : Rd → R,
write µ(ϕ) or 〈µ, ϕ〉 for the integral

∫
ϕdµ. Then for any initial mass distribution X0 = µ

and any test function ϕ ∈ C2
c (Rd),

(1.2) Xt(ϕ) = µ(ϕ) +
1

2

∫ t

0
Xs(∆ϕ) ds+ θ

∫ t

0
Xs(ϕ)ds−

∫ t

0
Xs (Lsϕ) ds+Mt(ϕ).

Here C2
c (Rd) stands for the space of compactly supported twice differentiable with contin-

uous second derivative functions on Rd, Mt(ϕ) is a continuous martingale with quadratic
variation [M(ϕ)]t =

∫ t
0 Xs(ϕ

2) ds, and Lt(x) is the Sugitani local time density process of X,
that is, for each t ≥ 0 the function Lt(x) is the density of the occupation measure Rt.
(Throughout this article, unless otherwise specified, the martingale Mt(ϕ) in a martingale
problem such as (1.2) will be a martingale relative to the minimal right continuous filtration
of the process X, i.e., FXt := ∩u>tσ(Xs, s ≤ u)). Dawson’s Girsanov formula (Section 2.1
below) implies that on a suitable probability space there exists a solution to (1.2), that solu-
tions are unique in law, and that the law is absolutely continuous on finite time intervals with
respect to the law of super-Brownian motion (see the definition below in Subsection 1.4).
However, because the Sugitani local time process Lt depends on the entire past of the spatial
epidemic Xt, solutions Xt will not generally be Markov (although the vector-valued process
(Xt, Lt) will be). Henceforth, we shall call a measure-valued processes X satisfying (1.2) a
spatial epidemic process with transmission rate θ and initial mass distribution µ.

The martingale problem (1.2) is a natural spatial analogue of the stochastic differential
equation (1.1). In both problems, the key qualitative feature is a “resource depletion” term:
in (1.1), it is the integral

∫ t
0 IsRs ds, whereas in the martingale problem (1.2) it is the

integral
∫ t

0 Xs (Lsϕ) ds. It seems likely that processes Xt governed by (1.2) – or similar
equations incorporating depletion terms – should also arise as continuum limits of models for
various other physical (combustion), chemical (reaction-diffusion), and biological processes
(foraging) in which there is an exhaustible resource upon which the process depends. In fact,
Mueller and Tribe (2011) have suggested (see their Remark at the end of Section 6) that
they should also occur as scaling limits of certain stochastic reaction-diffusion systems.

1.2. Main results: survival. A measure-valued process X survives if Xt(1) > 0 for all
t > 0; it dies out, or becomes extinct, if Xt = 0 for large enough t. For processes governed by
equation (1.2), the question of whether or not there is survival or extinction is of fundamental
importance. Mueller and Tribe (2011) (see again the Remark at the end of Section 6) have
conjectured that there is a critical value θc = θc(d) ∈ (0,∞) for the transmission rate below
which extinction is certain and above which survival has positive probability. Our main
result states that under a mild restriction on the initial measure µ this is true in dimensions
d = 2 and d = 3, but that in d = 1 extinction is certain at all values of the parameter θ.
The restriction on the initial measure is as follows:

Assumption 1.1. The measure µ has compact support and finite total mass, and when
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d = 2 or 3, its convolution µ ∗ qt with the integrated Gauss kernel

(1.3) qt(x) =

∫ t

0
ps(x) ds, where pt(x) =

e−|x|
2/2t

(2πt)d/2
,

is jointly continuous in (t, x) ∈ [0,∞)× Rd.

Theorem 2 of Sugitani (1989) asserts that in dimensions d = 2 and d = 3 a super-
Brownian motion with initial mass distribution µ satisfying Assumption 1.1 has a local time
density process Lt(x) that is jointly continuous in t ≥ 0 and x ∈ Rd. Since the law of
a spatial epidemic X is absolutely continuous relative to that of super-Brownian motion,
spatial epidemics must also have jointly continuous local time processes in d = 2, 3. In
dimension d = 1, the existence and continuity of the local time process follows from the
fact that the state of a super-Brownian motion at any time t is absolutely continuous with
respect to Lebesgue measure, with a jointly continuous density. Thus, the equation (1.2)
makes sense in all dimensions d ≤ 3, and so henceforth we assume that d ≤ 3.

Theorem 1.2. There exist critical values θc = θc(2) > 0 and θc = θc(3) > 0 such that
the following is true: If d = 2 or d = 3 and X is a spatial epidemic process in Rd with
transmission rate θ and initial mass distribution µ satisfying Assumption 1.1, then
(a) if θ < θc then X dies out almost surely, but
(b) if θ > θc then X survives with positive probability.

If X is a spatial epidemic in R1 with any transmission rate θ and any finite initial mass
distribution µ then X dies out almost surely.

Thus, in dimensions 2 and 3 a spatial epidemic can survive if the transmission rate is
sufficiently high. However, since the process feeds on a substrate which is gradually consumed
in infected areas, it is natural to conjecture that the epidemic should survive in a transient
wave which sweeps through space. The following result partly establishes the validity of this
picture.

Theorem 1.3. Let X be a spatial epidemic with arbitrary transmission rate θ ∈ R and
initial mass distribution satisfying Assumption 1.1. For any compact set K ⊂ Rd, with
probability one,

(1.4) Xt(K) = 0 eventually.

Consequently, with probability one the local time Lt(x) at any point x is eventually
constant. Since the local time Lt(x) is jointly continuous in its arguments, it follows that
L∞(x) := limt→∞ Lt(x) is finite and continuous in x almost surely.

1.3. Proof strategy and heuristics. The proofs of Theorems 1.2–1.3 are rather techni-
cal, largely because of difficulties that will arise in carrying out comparison arguments for
measure-valued processes defined by stochastic partial differential equations in which the
entire histories of the solutions (e.g., local time density) influence the coefficients. However,
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the ideas behind the results can be explained, at least roughly, in simple terms. Consider
first the assertion of global extinction in one dimension. If the epidemic process X were
to survive with positive probability, then on this event its total mass Xt(1) would diverge
to ∞, since otherwise the process would be presented with infinitely many opportunities
to become extinct (see Lemma 2.15). In addition, by a large deviations calculation on a
dominating super-Brownian motion with drift θ (see Pinsky (1995)), there exists c < ∞
such that Supp(Xt) ⊂ [−ct, ct]d for all large t. Therefore, for d = 1, on the event of survival
and for large t, the average value of Lt(·) must satisfy

(2ct)−1

∫ ct

−ct
Lt(x) dx = (2ct)−1‖Lt‖1 = (2ct)−1

∫ t

0
Xs(1) ds→∞.

If (1.2) were valid for the function ϕ ≡ 1 (it is only assumed for compactly supported
functions), then it would follow that for large t the drift term in (1.2) for the total massXt(1)
would eventually turn (very) negative, making it impossible for Xt(1) to remain positive.
The formal proof in Section 4.3 makes this heuristic argument precise.

A local variation of this argument (which is harder to justify rigorously – see Section 7)
explains the strong local extinction asserted in Theorem 1.3. We will show that in order for
Xt(K) > 0 to occur at indefinitely large times, for some ball B centered at the origin, it
must be the case that Xt(3B) integrates to ∞. This, however, would imply that the local
time in 2B \B would grow indefinitely, eventually making the drift in the equation (1.2) for
Xt(B) negative.

A different line of argument makes it at least plausible that in dimensions d ≥ 2 the epi-
demic X might survive with positive probability when the transmission rate θ is sufficiently
large. If θ is large, then equation (1.2) implies that when the infection first enters a region K
of space it will, at least for a while, grow at least as fast as a super-Brownian motion with
a large constant drift. Thus, with high probability, the total mass Xt(K) will become large
long before the local time Lt becomes appreciable in K. In particular, for a cube K, if the
size Xt(K) of the infected set reaches a certain threshold before the local time exceeds a
fraction of this level, then the epidemic will have high probability of spreading to neighbor-
ing cubes quickly, and the infection in these cubes will have similarly high probability of
spreading to neighboring cubes, and so on. Since high-density oriented site percolation in
dimensions d ≥ 2 has infinite clusters, with positive probability, it should then follow that
the epidemic will reach infinitely many cubes with positive probability. It will take some
work to implement this plan. This is done in Section 5 after some important groundwork is
laid in Sections 2 and 3.

For the extinction assertion of Theorem 1.2 we will adapt the corresponding argument of
Mueller and Tribe (1994). For small θ > 0 it is possible to rescale X so that the total mass
process can be dominated by a subcritical branching process which dies out. The actual
implementation of this idea is carried out in a slightly different manner in Section 6 (see
Proposition 6.1). A key observation, used here and elsewhere in this work, is that if the
initial state is split up into pieces, then one can couple the epidemics so that the survival
probability is dominated by the sum of the survival probabilities corresponding to the pieces
(see Lemma 2.19).
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1.4. Epidemics with suppression. Our results extend to a somewhat larger class of measure-
valued processes that incorporate location-dependent local suppression. Let K : Rd → R+

be a bounded, continuous (or, more generally, piecewise continuous), nonnegative function;
call this the suppression rate. A spatial epidemic with local suppression rate K, transmission
rate θ, branching rate γ > 0, and inhibition parameter β ≥ 0 is a solution to the martingale
problem (MP )θ,β,γµ,K

(1.5) Xt(ϕ) = µ(ϕ) +

∫ t

0
Xs (∆ϕ/2 + θϕ−Kϕ− βLs(X)ϕ) ds+

√
γMt(ϕ), ϕ ∈ C2

c (Rd),

where Xt is a continuous finite measure-valued process, Mt(ϕ) is a continuous martingale
with quadratic variation [M(ϕ)]t =

∫ t
0 Xs(ϕ

2) ds and Lt(x) is the local time density of Xt.
When K ≡ 0 and β = θ = 0 and γ = 1, a process X satisfying (1.5) is a super-Brownian
motion; more generally, when K ≡ 0 and β = 0, it is a super-Brownian motion with drift θ
and branching rate γ; and when β = 0 it is a super-Brownian motion with killing, with local
killing rate K, drift θ and branching rate γ. Theorems 1.2 and 1.3 extend to all processes
governed by (1.5) with β > 0; the critical values θc will depend on the parameters, but not on
the suppression rate function K if we restrict K to be compactly supported. In the interests
of simplicity we shall prove our main results only in the case K ≡ 0. However, solutions of
the martingale problem (1.5) will be needed in the proofs of the main results even in the
special case K ≡ 0 as they will arise naturally in the Markov property of solutions to (1.2).

1.5. Relations with scaling laws for contact processes. As noted above, in SIR epidemics,
unlike SIS and SIRS epidemics, the population of susceptible individuals is gradually
depleted during the course of the epidemic. It is this that accounts for the depletion term
−
∫ t

0 Xs (Lsϕ) ds in the martingale problem (1.2), which in turn is responsible for the local
extinction asserted in Theorem 1.3. Spatial models of SIS and SIRS lead to measure-valued
processes with different qualitative behavior. One such model that has been studied in some
detail is the long-range contact process, cf. Bramson et al. (1989), Mueller and Tribe (1994),
Durrett and Perkins (1999). In this model, only one individual, who can be either infected
or susceptible, inhabits each lattice point, but infectious contact is allowed at distances up
to L (usually the `∞ metric is used). Scaling limits obtain for the limiting regime L → ∞
(see Mueller and Tribe (1995) and Durrett and Perkins (1999) for details). Bramson et al.
(1989) determined the long-range functional dependence of the critical value λc(L) on L
(but not the precise constants): in dimension d = 1, they showed that for large L,

(1.6) 0 < cL−2/3 ≤ λc(L)− 1 ≤ CL−2/3.

The long-conjectured (but still unresolved) link between the discrete and continuum settings
in d = 1 is that

(1.7) λc(L)− 1 ∼ θcL−2/3.

Durrett and Perkins (1999) established weak convergence of long-range contact processes
to a super-Brownian motion in dimensions d ≥ 2, while for d = 1 Mueller and Tribe (1995)
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showed that the scaling limit of the long-range contact process is governed by the stochastic
PDE

(1.8)
∂u

∂t
=
u′′

6
+ θu− u2 +

√
2uẆ .

In this equation the local time density in the third integral of (1.2) is replaced by the
density, ut, of Xt. This reflects the fact that in the contact (and other SIS) processes, the
susceptible population is depleted locally by the current size of the infected set. The results
of Durrett and Perkins (1999) show this effect induces a killing term with a known constant
rate. Mueller and Tribe (1994) showed that there is a phase transition in equation (1.8) in
that there is positive probability of survival for θ above a critical θc > 0 and a.s. extinction
below it. By contrast, the martingale problems (1.2) have solutions in up to 3 dimensions,
whereas (1.8) only makes sense in one spatial dimension (since super-Brownian motion has
the property that the mass distributions Xt at positive times are absolutely continuous only
in dimension 1).

The discrete SIR models underlying our continuous models are described in Section 2.2
below. The analogue to (1.6) in this discrete setting is also described in Section 2.2.

1.6. Plan of the paper. The remainder of the paper is devoted to the proofs of Theorems
1.2–1.3. The plan is as follows. In Section 2 we discuss existence and uniqueness of solutions
to a class of martingale problems including (1.2), weak convergence of certain discrete pro-
cesses to spatial epidemics, and basic comparison principles. In Section 3 we discuss some
regularity properties of (supercritical) super-Brownian motions and their local time densi-
ties. In Sections 4.2 and 4.3 we prove that the critical values θc in dimensions 2 and 3 do
not depend on the initial mass distributions, and we prove that spatial epidemics in R1 die
out almost surely at all values of the transmission rate θ. In Section 5 we prove that spatial
epidemics in dimensions 2 and 3 can survive if the transmission rate θ is sufficiently high;
and in Section 6 we prove that at low values of θ extinction is certain. We prove a weak
form of local extinction in Section 4.1, and finally, in Section 7, we prove Theorem 1.3.

Standing Notation. For any a ≥ 0, [a] stands for its integer part. For any Borel subset
D ⊆ Rd, let M(D) be the space of finite Borel measures on D, equipped with the weak
topology, and let Mc(D) be the subset consisting of all measures with compact support
in D. These spaces are partially ordered in a natural way: we write µ ≤ ν to mean that for
all nonnegative, bounded functions ϕ,∫

ϕdµ ≤
∫
ϕdν.

For a measure µ ∈M(D) and a nonnegative measurable function f : D → R+, we shall con-
tinue to use the shorthand notations µ(f) or 〈µ, f〉 to denote the integral of f against µ and
also write |µ| for µ(1), the total mass of µ. Let Cb(Rd) be the space of bounded and continuous
functions on Rd, endowed with the sup-norm topology, and let Cc(Rd) be the space of com-
pactly supported continuous functions on Rd. Furthermore, for any x = (x1, . . . , xd) ∈ Rd
and any r > 0, let Qr(x) = [x1−r/2, x1 +r/2)× . . .× [xd−r/2, xd+r/2) be the (half-closed,
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half-open) cube of side length r centered at x, and, for notational ease, Q(x) := Q1(x).
Finally, let Cp(Rd,R+) be the space of non-negative piecewise constant functions on Rd
satisfying the following conditions: each such function is supported by ∪iQ(xi) for finitely
many xi ∈ Zd and is constant on each cube.

Conventions. Throughout the paper, C, c, C1, etc. denote generic constants whose values
may change from line to line. The notation Yn = oP (f(n)) means that Yn/f(n) → 0 in
probability; and Yn = OP (f(n)) means that the sequence |Yn|/f(n) is tight. Also, for any
a, b ∈ R, a ∧ b := min(a, b) and a ∨ b := max(a, b). Finally, we use a “local scoping rule” for
notation: Any notation introduced in a proof is local to the proof, unless otherwise indicated.

2. Preliminaries on the epidemic processes.

2.1. Dawson’s Girsanov Theorem; existence and uniqueness. Existence and uniqueness
of solutions (in the weak sense) to a class of martingale problems similar to (1.5) was
established in Mueller and Tribe (2011) using Dawson’s Girsanov theorem. Existence in the
special case K ≡ 0, θ = 0 was also proved in Lalley (2009) and Lalley and Zheng (2010),
by weak convergence methods, which extend trivially to the general case. Nevertheless,
since Dawson’s Girsanov formula will be of crucial importance in many of the arguments
to follow, we begin by reviewing the essential facts. We first state a variant of Dawson’s
Girsanov Theorem (Theorem IV.1.6 in Perkins (2002)) tailored to our needs.

Let Ω = D([0,∞);Mc(Rd)) be the canonical path space for compactly supported measure-
valued processes, with coordinate maps Xt : Ω → Mc(Rd) and associated filtration F =
(FXt )t≥0. Fix a probability measure P on (Ω,FX∞), and suppose that there is a linear mapping
ψ 7→ (Mt(ψ))t≥0 from the space C2

c (Rd) to the space of F−adapted, continuous martingales
such that M0(ψ) = 0 and such that M(ψ) has quadratic variation [M(ψ)]t =

∫ t
0 〈Xs, ψ

2〉 ds.
This mapping extends to an orthogonal martingale measure dM(s, x) (see Walsh (1986)).
For any previsible×Borel process B : R+ ×Ω×Rd → R, we say that B is L2−admissible if

(2.1)
∫ t

0
〈Xs, B

2
s 〉 ds <∞ for all t ≥ 0 P − almost surely.

If B is L2−admissible, then the stochastic integrals

(2.2)
∫ t

0

∫
Rd
Bs(x) dM(s, x)

exist and constitute a continuous, F−adapted local martingale with quadratic variation
process

∫ t
0 〈Xs, B

2
s 〉 ds. Consequently, for each γ > 0, the process

(2.3) EBt = exp

(
1
√
γ

∫ t

0

∫
Rd
Bs(x) dM(s, x)− 1

2γ

∫ t

0
〈Xs, B

2
s 〉 ds

)
,

is a continuous local martingale.
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10 S.LALLEY, E.PERKINS, AND X.ZHENG

Lemma 2.1. (Dawson’s Girsanov Theorem) Let P be a probability measure on (Ω,F∞)
such that under P the coordinate process (Xt)t≥0 satisfies the following martingale problem:
For some uniformly bounded L2−admissible integrand A, for all ψ ∈ C2

c (Rd),

(2.4) Xt(ψ) = X0(ψ) +
α

2

∫ t

0
〈Xs,∆ψ〉 ds+

∫ t

0
〈Xs, Asψ〉 ds+

√
γMP

t (ϕ),

whereMP
t (ψ) is a continuous FXt -martingale with quadratic variation [MP (ψ)]t =

∫ t
0 Xs(ψ

2) ds.

(a) Suppose that Q is another probability measure on (Ω,FX∞) such that under Q the coor-
dinate process (Xt)t≥0 satisfies the martingale problem

(2.5) Xt(ψ) = X0(ψ) +
α

2

∫ t

0
〈Xs,∆ψ〉 ds+

∫ t

0
〈Xs, (As +Bs)ψ〉 ds+

√
γMQ

t (ψ),

for all ψ ∈ C2
c (Rd), where B is a uniformly bounded L2−admissible integrand and MQ

t (ψ)
is a continuous martingale (under Q) with quadratic variation [MQ(ψ)]t =

∫ t
0 Xs(ψ

2) ds.
Suppose also that the restrictions of P and Q to the σ−algebra FX0 are equal. Then for each
t < ∞ the measures P and Q on FXt are mutually absolutely continuous, with likelihood
ratio

(2.6)
dQ

dP

∣∣∣∣
FXt

=EBt .

In particular, Q is uniquely determined on FX∞ by the martingale problem (2.5).

(b) Conversely, if Q is the probability measure determined by the likelihood ratios (2.6), then
under Q the process X satisfies the martingale problem (2.5).

We next apply the above to prove that the martingale problem (1.5) is well-posed. Recall
that for each x ∈ Rd, Qr(x) stands for the cube of side length r centered at x, and Q(x) =
Q1(x). For any continuous path Xt valued inMc(Rd), define

L(t,X, x) = Lt(X,x) = LXt (x) = lim sup
ε↓0

∫ t
0 Xs(Qε(x)) ds

εd
.

When there is no confusion, we shall suppress the dependence on X and abbreviate Lt(X,x)
as Lt(x). If Xt is an adapted process on the filtered space (Ω,F) then L(t,X, x) is nonnega-
tive, nondecreasing in t, and P×Bd− measurable, where Bd is the Borel σ-field on Rd and P
is the previsible σ-field. If X has a local time density, L(t,X, x) will be a jointly measurable
version of it.

Theorem 2.2. Let µ ∈ Mc(Rd) satisfy Assumption 1.1 and let K ∈ Cp(Rd,R+). For
any fixed θ ∈ R and γ > 0, denote by Pµ = P θ,0,γµ,0 the law of a super-Brownian motion with
initial mass distribution µ, drift θ, and branching rate γ.
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A PHASE TRANSITION FOR MEASURE-VALUED SIR 11

(a) If X solves the martingale problem (1.5) with initial value X0 = µ then the law Pµ,K :=

P θ,β,γµ,K of X on the canonical path space is unique and given by

(2.7)
dPµ,K
dPµ

∣∣∣∣
FXt

= EBt where B(s, ω, x) = −(K(x) + βL(s,X, x))

and dM(s, x) is the orthogonal martingale measure under Pµ. Conversely, if Pµ,K is the
probability measure specified by (2.7) then under Pµ,K the coordinate process Xt satisfies the
martingale problem (1.5).

(b) The mapping (µ,K) 7→ Pµ,K is jointly measurable with respect to the appropriate Borel
fields.

(c) Under Pµ,K the local time process Lt(x) is jointly continuous in (t, x) and almost surely
is the density of the occupation measure Rt =

∫ t
0 Xs ds.

(d) Under the measure Pµ,K the process (X,L) is strong Markov, that is, for any FXt -stopping
time τ ,

Pµ,K(Xτ+· ∈ A|Fτ ) = PXτ ,K+βLτ (A) almost surely on {τ <∞} for all A ∈ FX∞.

(e) For any pair K,K ′ of suppression rate functions, the probability measures Pµ,K and
Pµ,K′ are mutually absolutely continuous on FXt , with likelihood ratio

dPµ,K′

dPµ,K

∣∣∣∣
FXt

= exp

{
1
√
γ

∫ t

0

∫ (
K(x)−K ′(x)

)
dMK(s, x)

− 1

2γ

∫ t

0

∫ (
K(x)−K ′(x)

)2
Xs(dx)ds

}
,(2.8)

where dMK(s, x) is the orthogonal martingale measure under Pµ,K .

Remark 2.3. Assertion (b) guarantees that ifX0 andK0 are random and FX0 −measurable
then the random probability measure PX0,K0 is FX0 −measurable. Similarly, if Xτ and Kτ

are FXτ −measurable then PXτ ,Kτ is FXτ −measurable. Moreover, since PX0,K0 is a regular
conditional distribution on the canonical path space given FX0 , it follows from (d) that
the strong Markov property holds when the initial condition X0 and the suppression rate
function K0 are random.

Remark 2.4. Since the local time density Lt is not uniformly bounded on finite time
intervals, the exponential process EBt is not a priori a martingale. Part of the assertion of
the theorem is that in fact EBt is a martingale, and hence that (2.7) defines a probability
measure on FXt .

imsart-aop ver. 2011/05/20 file: phase_transition_SIR.tex date: February 5, 2013



12 S.LALLEY, E.PERKINS, AND X.ZHENG

Proof of Theorem 2.2. (a) First we claim that any solution Xt to martingale prob-
lem (1.5) has the property that its local time density LXt (x, ω) is bounded in (t, x) for t in
finite intervals and for every t <∞ has compact support in x for almost every ω. This follows
because on some probability space a version ofXt can be coupled with a super-Brownian mo-
tion Xt with drift θ and branching rate γ such that Xt ≥ Xt for all t ≥ 0 almost surely. See
Proposition IV.1.4 in Perkins (2002) which we apply with D = 0, Ct(ϕ) =

∫ t
0 Xs(L

X
s ϕ) ds,

and only to the first coordinate of the pair of processes considered there. To apply the above
result we need to show that t→ Ct is a continuousM(Rd)-valued process. For ϕ ∈ C2

c (Rd),
Ct(ϕ) is continuous by the martingale problem. It is easy to extend the martingale prob-
lem to ϕ = 1 by taking limits and the continuity of t → Ct(1) follows. This establishes
the required continuity. Since super-Brownian motion has a continuous local time process
with compact support in any finite time interval, by Sugitani’s theorem, it follows that the
process X also has a local time density LXt (x) with the advertised properties.

Unfortunately, we cannot directly apply the previous lemma to conclude (2.7), because LXt
is not uniformly bounded in ω. To circumvent this problem we use a localization argument.
Fix 0 < b <∞, and consider the exponential process EBt∧τ(b), where

τ(b) = inf{t : max
x
|Bt(x)| ≥ b}.

By Lemma 2.1, the process EBt∧τ(b) is a martingale, and so under the probability measure Qb

specified by equation (2.7) (with the stopped exponential martingale as the likelihood ratio)
the process X satisfies the martingale problem (1.5) with K(x) + βL(s,X, x) replaced by
its stopped value. But the preceding paragraph implies that for each t, Qb(τ(b) ≤ t)→ 0 as
b→∞, i.e., limb→∞Eµ(EBt∧τ(b)1τ(b)≤t) = 0. Therefore

Eµ(EBt ) ≥ Eµ(EBt 1τ(b)>t) = Eµ(EBt∧τ(b)1τ(b)>t)

= Eµ(EBt∧τ(b))− Eµ(EBt∧τ(b)1τ(b)≤t)→ 1.

On the other hand, by Fatou’s lemma, Eµ(EBt ) ≤ 1, and so Eµ(EBt ) = 1. It follows that
EBt is a martingale under Pµ and that under the probability measure defined by (2.7) the
process X satisfies the martingale problem (1.5).
(b, c) These are easy consequences of (a), the continuity of µ→ Pµ, and Sugitani’s theorem.
(d) It suffices to consider a finite-valued τ . By (c), the local time Lt is the occupation density
of Xt under Pµ,K , so it follows that

Lτ+t(X,x) = Lτ (X,x) + Lt(Xτ+·, x) for all (t, x) almost surely.

If Q(ω) is a regular conditional probability for Xτ+· given Fτ , then it follows easily from this
that almost surely under Q(ω) the coordinate process satisfies the martingale problem (1.5)
with K replaced by K + Lτ . Therefore, by the uniqueness in law of solutions, Q(ω) =
PXτ (ω),K(ω)+βLτ (ω) almost surely. The strong Markov property now follows.
(e) This follows immediately from (a).

In the course of proving (a) we have also established the following:
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Proposition 2.5. Let Xt be a solution of the martingale problem (1.5) where µ and K
are as in Theorem 2.2. Then on some probability space a version of X can be coupled with a
dominating super-Brownian motion X, with the same initial mass distribution µ, and drift
θ, so that Xt ≥ Xt for all t ≥ 0 a.s. We will call X the super-Brownian motion envelope.

Remark 2.6. Lemma 2.1 holds equally well on the larger space of continuous M(Rd)
-valued paths (as in Perkins (2002)). The proof of Theorem 2.2 also holds on this larger space
if one starts with compactly supported initial conditions. That is, the solutions necessarily
have compact supports for all t by the domination in (a). This slightly strengthens the
uniqueness part and may be used implicitly below without further comment. The main
reason for restricting to compactly supported measures is the use of Proposition 2.9 below
in the proof of our main result Theorem 1.2.

2.2. Discrete epidemic models. Measure-valued processes that satisfy the martingale
problem (1.2) arise naturally as weak limits of discrete, finite-population stochastic models
of spatial epidemics. Here we describe one such class of models, following Lalley (2009) and
Lalley and Zheng (2010). Several of the couplings we shall develop later in the paper involv-
ing measure-valued epidemics will be constructed by first building corresponding couplings
for discrete epidemics, then using the weak convergence of the discrete to the measure-valued
processes to prove that they extend to the measure-valued setting.

The discrete SIR-d epidemic models take place in populations of size N located at each of
the sites of the integer lattice Zd. We shall call N the village size. Each of the N individuals
(or particles) at a site x ∈ Zd may at any time be either susceptible, infected, recovered, or
removed. Infected individuals remain infected for one unit of time, and then recover, after
which they are immune to further infection. The rules governing the transmission of infection
are as follows: at each time i = 1, 2, . . . , for each pair (ix, sy) of an infected individual located
at x and a susceptible individual at y, ix infects sy with probability pN (x, y), where

(2.9) pN (x; y) = pθN (x; y) =
1 + θ/Nα

(2d+ 1)N
if |y − x| ≤ 1 and = 0 otherwise,

where |z| is the Euclidean norm of z and

α = α(d) = 2/(6− d)

is the critical exponent, see Theorem 1 in Lalley (2009) and Theorem 2 in Lalley and Zheng
(2010). For the SIR-d model with village size N , define

XNi (x) : = set of infected particles at x at time i; XN
i (x) := |XNi (x)|;

KN (x) : = set of removed particles at x (at time 0); KN (x) := |KN (x)|;
RNn (x) : = set of recovered particles at x at time n; RNn (x) := |RNn (x)|; and

XNi : = ∪xXNi (x), KN := ∪xKN (x), and RNn := ∪xRNn (x).

Theorem 1.2 and Proposition 2.9 below suggest, after an interchange of limits, that the
critical infection probability pc(N) for the SIR model satisfy

(2.10) 0 < cN−α ≤ (2d+ 1)N · pc(N)− 1 ≤ CN−α for large N and d = 2, 3.
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14 S.LALLEY, E.PERKINS, AND X.ZHENG

This would be consistent with the result (1.6) for the long-range contact process. Whether or
not there is a stronger relation (as in (1.7)) involving the exact constants θc in Theorem 1.2
is another interesting open question.
The Standard Construction. We now describe a way to construct this process using

a percolation structure. Connections between SIR epidemics and bond percolation go back
at least to Mollison (1977) (see p. 322) in the continuous setting and were used extensively
by Cox and Durrett (1988), again in the continuous time setting. The construction we use
is a modification of the constructions in Lalley (2009) and Lalley and Zheng (2010). We
shall call this the Standard Construction. The percolation structure is a random graph with
vertex set Zd × {1, 2, . . . , N}; the vertex (x, i) represents the ith individual (or particle) in
the “village” Vx situated at location x ∈ Zd. For each pair (x, i) and (y, j) of vertices whose
spatial locations differ by at most 1 (that is, |x−y| ≤ 1) a pN−coin toss determines whether
or not there is an edge between (x, i) and (y, j). (As is often the case in such constructions,
it is useful, for comparison purposes, to assume that these coin tosses are realized using
independent Uniform-[0, 1] random variables.) Thus, the resulting random graph G = GN
has edges only between vertices in the same or neighboring villages.

The spatial epidemic is defined by a deterministic algorithm on the random graph G.
Since the village size N is fixed in this algorithm, we shall omit all superscripts N in
the specification of the algorithm. The colors green, blue, red, and black will be used to
denote susceptible, infected, recovered, and removed vertices in each generation. For the
0th generation, designate K(x) vertices at location x as black ; the set of black vertices will
not change during the course of the epidemic. Next, color X0(x) vertices in Vx blue, and all
remaining vertices green. (Thus, in generation 0 there are no red vertices.) Now define a time
evolution as follows. In generation n+ 1, the set Xn+1(x) of blue vertices will consist of all
vertices that were green in generation n and were connected by edges of the random graph
to blue vertices (that is, vertices in Xn = ∪yXn(y)). Finally, all vertices that were blue in
generation n become red in generation n+ 1, and remain red in all subsequent generations
(that is, Rn+1(x) = Rn(x) ∪ Xn(x)).

The virtue of this construction is that all quantities of interest can easily be described
in terms of the geometry of the random graph G′ = G \ K obtained by deleting all black
vertices from G. The set Xn(x) consists of all vertices at site x at distance n in the graph G′
from the set of vertices that were colored blue in generation 0. Similarly, the set Rn(x)
consists of all vertices at site x at distance < n from the blue vertices in generation 0. The
set R∞ of vertices that are ever infected during the course of the epidemic is the union of
the connected clusters of the blue vertices of generation 0 in G′. It is immediately obvious
from this that the recovered sets Rn(x) are non-increasing in the initial condition K(·), and
non-decreasing in X0(·) and the transmission parameter θ.

Denote by

(2.11) Pn = (Pn(x, y))x,y∈Zd = (Pn(y − x))x,y∈Zd

the transition probability kernel of the simple random walk on Zd, that is, Pn = P ∗ Pn−1 is
the nth convolution power of the one-step transition probability kernel given by

(2.12) P1(x, y) = 1/(2d+ 1) for |y − x| ≤ 1,
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and let σ2 = 2/(2d + 1) be the variance of the distribution P1(0, ·). Let Gn(x, y) be the
associated Green’s function

Gn(x, y) :=
∑

1≤i<n
Pi(x, y), Gn(x) := Gn(0, x),

and for any finite measure µ on Zd denote by µGn(x) = (µ ∗ Gn)(x) the convolution of µ
with Gn.

Next, we explain the re-scaling of the discrete epidemics that gives weak convergence to
the measure-valued epidemics determined by the martingale problem (1.5).

Definition 2.7. The Feller-Watanabe scaling operator FN scales mass by 1/Nα and
space by 1/

√
Nασ2, that is, for any finite Borel measure µ on Rd and any test function ϕ,

(2.13) 〈ϕ,FNµ〉 = N−α
∫
ϕ(x/

√
Nασ2)µ(dx).

Definition 2.8. The Sugitani scaling operator SN scales mass by 1/Nα(2−d/2) and space
by 1/

√
Nασ2, that is, for any function f ,

(2.14) (SNf)(x) =
f(
√
Nασ2 x)

Nα(2−d/2)
.

When the function f is only defined for x ∈ Zd, define (SNf)(x) for x ∈ Zd/[
√
Nασ2] as

above and extend it to a continuous function on Rd by a suitable piecewise linear interpo-
lation.

The following weak convergence theorem is a slight variant of the main results in Lalley
(2009) and Lalley and Zheng (2010).

Proposition 2.9. Assume that d ≤ 3, and suppose that the initial configurations µN :=
XN

0 and KN are both supported by finitely many integer sites and are such that for some
measure µ satisfying Assumption 2.10 below and some K ∈ Cp(Rd,R+), the following con-
ditions are satisfied, where =⇒ denotes weak convergence on the respective spaces:
(a) if d = 1, then µN (

√
Nασ2 ·)/

√
Nα are supported by a common compact interval, and

(after linear interpolation to be continuous functions on R)

(2.15)
µN (
√
Nασ2 x)√
Nα

=⇒ X0(x) ∈ Cc(R);

(b) if d = 2 or 3, then

FNµN =⇒ µ,(2.16)

SN (µN ∗G[Nαt]) =⇒ µ ∗ qt ∈ Cb([0,∞)× Rd),(2.17)

where the second convergence is in D([0,∞);Cb(Rd)); and
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16 S.LALLEY, E.PERKINS, AND X.ZHENG

(c) in all dimensions,

(2.18) KN (x) = [Nα(2−d/2) ·K(x/[
√
Nασ2])], for all x ∈ Zd.

Then we have the following weak convergence

(2.19) (FNXN
[Nαt],SNR

N
[Nαt]) =⇒ (Xt, Lt(x))

in D([0,∞);Mc(Rd))×D([0,∞);Cb(Rd)), where the limit process X has initial configuration
X0 = µ, solves (1.5) with γ = 1, β = 1, θ as in (2.9), and suppression rate K, and Lt(x) is
its local time density process.

Assumption 2.10. The finite measure µ has compact support. When d = 1, µ has a
density X0(x) ∈ Cc(R), and for d = 2, 3 for some Cµ > 0, µ satisfies

(2.20) sup
x∈Rd

µ(B(x, r)) ≤

{
Cµ(log 1/r)−3 if d = 2,

Cµ r (log 1/r)−2 if d = 3,
for all r ∈ (0, 1].

Remark 2.11. It is easy to see that Assumption 2.10 implies Assumption 1.1. Take the
case d = 3 for example. For any (tn, xn)→ (t, x), we want to show that

∫
y qtn(y−xn) dµ(y)→∫

y qt(y − x) dµ(y). Since µ({x}) = 0, we have

qtn(y − xn)→ qt(y − x) for µ-a.a. y,

and hence it suffices to show that {qtn(y − xn)} is uniformly integrable with respect to µ,
which in turn reduces to show

lim
δ→0

sup
n

∫
|y−xn|≤δ

qtn(y − xn) dµ(y) = 0.

To see this, let M(r) = µ(B(xn, r)) for r ≥ 0. The elementary bound qt(z) ≤ C|z|−1 and an
integration by parts lead to

(2.21)

∫
|y−xn|≤δ

qtn(y − xn) dµ(y) ≤ C
∫
|y−xn|≤δ

|y − xn|−1 dµ(y)

= C

∫ δ

0
r−1dM(r)

= Cr−1M(r)|δ0 + C

∫ δ

0
r−2M(r) dr

≤ C(log(1/δ))−2 + C

∫ δ

0
r−1(log(1/r))−2 dr,

which goes to 0 as δ → 0. A similar argument applies for d = 2.

Remark 2.12. For any µ ∈ Mc(Rd) and any fixed θ ∈ R, γ > 0, by Theorems III.4.2
and III.3.4. in Perkins (2002), if X is a super-Brownian motion with initial mass distribu-
tion µ, drift θ, and branching rate γ, then Assumption 2.10 is satisfied by Xt for all t > 0
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almost surely. Furthermore, for any K ∈ Cp(Rd,R+) and β > 0, by the absolute continuity
between the laws P θ,0,γµ,0 and P θ,β,γµ,K , the same is true for a spatial epidemic with initial mass
distribution µ, local suppression rate K, transmission rate θ, branching rate γ and inhibition
parameter β.

Remark 2.13. For µ satisfying Assumption 2.10 there are rescaled counting measure
µN satisfying the hypotheses of the above theorem and hence Proposition 2.9 implies, among
other things, that for any suppression rate function K ∈ Cp(Rd,R+), the measure-valued
epidemic process X satisfying (1.5) is a weak limit of appropriately scaled discrete SIR
epidemics. When d = 1, for each x ∈ Z/

√
Nασ2, let µN (x

√
Nασ2) = [

√
Nα ·X0(x)]. Then

(2.15) is obvious. When d = 2 or 3, the required sequence {µN} satisfying (2.16) and (2.17)
can be built as follows. Recall that for each x ∈ Zd, Q(x) stands for the (half-closed, half-
open) unit cube centered at x. Rd can hence be decomposed as a non-overlapping union of
Q(x)’s for x ∈ Zd, and so for any y ∈ Rd, we can find a unique x ∈ Zd such that y ∈ Q(x),
and with a slight abuse of notation, denote such an x by [y]. Next, let {Xi} be a sequence
of i.i.d. random variables with probability distribution µ/|µ|, and let

µN =

[Nα·|µ|]∑
i=1

δ
[Xi
√
Nασ2]

.

(Note that α < 1 and on each integer site there are N vertices, so for all N large enough,
µN can be realized as a counting measure on the graph Zd × {1, 2, . . . , N}.) One can then
show that {µN} satisfies (2.16) and (2.17) almost surely. In fact, (2.16) holds trivially by
the strong law of large numbers (SLLN), the uniform continuity of test functions, and the
simple bound

(2.22)

∣∣∣∣∣ [Xi

√
Nασ2]√
Nασ2

−Xi

∣∣∣∣∣ ≤ 1√
Nασ2

, for all i.

The verification of (2.17) is given in the Appendix.

Remark 2.14. The arguments of Lalley (2009) and Lalley and Zheng (2010) are based
on the fact that each of the discrete SIR epidemics has law absolutely continuous with
respect to the law of a critical branching random walk with the same initial condition. The
Radon-Nikodym derivatives can be written explicitly as products, and these can be shown to
converge to exponentials of the form EBt appearing in (2.7). Since branching random walks,
after rescaling, converge to super-Brownian motions, it follows that the rescaled discrete
SIR epidemics converge to processes related to super-Brownian motion by (2.7), that is,
processes that solve the martingale problem (1.2).

Routine modifications of these arguments can be used to establish weak convergence for a
variety of discrete processes similar to or related to the discrete SIR epidemics constructed
above. In particular, the convergence (2.19) can be extended to joint weak convergence for
coupled SIR epidemics with suitable initial conditions. For example, let µN,A, µN,B be initial
conditions satisfying the hypotheses (2.15)–(2.17), and let XN,A,XN,B,XN be discrete SIR
epidemics all constructed using the same percolation structure GN , with the same initially
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18 S.LALLEY, E.PERKINS, AND X.ZHENG

removed sets KN (x), in such a way that the sets XN,A0 (x) and XN,B0 (x) are non-overlapping,
with cardinalities µN,A(x) and µN,B(x), and such that

(2.23) XN0 (x) = XN,A0 (x) ∪ XN,B0 (x).

Then after rescaling, the processes XN,A, XN,B, and XN converge jointly in law to (depen-
dent) measure-valued epidemics XA

t , X
B
t , and Xt, with initial mass distributions µA, µB,

and µA + µB, respectively, whose local time densities satisfy

(2.24) LAt ∨ LBt ≤ Lt ≤ LAt + LBt .

(The arguments that follow will not rely in an essential way on this joint convergence,
however. All that is needed is that subsequences converge jointly, as this is enough to guar-
antee the existence of coupled measure-valued processes satisfying the same monotonicity
properties (such as (2.24)). Joint convergence along subsequences follows trivially from the
weak convergence of marginals, since this implies joint tightness.)

2.3. Comparison lemmas. The construction of the measure-valued spatial epidemic pro-
cess as the weak limit of discrete epidemics and the Girsanov formulas (2.7)–(2.8) lead to
a number of basic comparison principles that will be used in the proof of Theorem 1.2. We
formulate these as couplings, in which two epidemic processes (or super-Brownian motions)
are constructed on a common probability space in such a way that various functionals of the
processes (e.g., the limiting local time densities L∞(x)) are ordered.

Lemma 2.15. Suppose that Xt has law P θ,1,γµ,K for some K ∈ Cp(Rd,R+) and some initial
condition µ that satisfies Assumption 1.1. Then

P (X survives) = P

(
lim
t→∞

∫
Rd
Lt(x) dx =∞

)
= P ( lim

t→∞
|Xt| =∞).

Proof. This uses the existence of a coupling between the measure-valued epidemic Xt

and its super-Brownian motion envelope (Proposition 2.5). If Zs := |Xs| is the total mass at
time s, then limt→∞

∫
Rd Lt(x) dx =

∫∞
0 Zs ds. Because Zs is continuous and 0 is an absorbing

state (e.g. by the strong Markov property in Theorem 2.2), if
∫∞

0 Zs ds =∞ then Xt must
survive. On the other hand, if lim inft→∞ Zt <∞, then there exists M ∈ N and an infinite
sequence of stopping times τn →∞ such that

(2.25) τn+1 ≥ τn + 1, and Zτn ≤M.

Consider the time period [τn, τn + 1]. By the strong Markov property and the existence of
a monotone coupling between a spatial epidemic and its super-Brownian motion envelope,
the process Zt+τn is dominated by Feller diffusion with drift θ and initial total mass less
than M . This dies out in the next one unit of time with positive probability, independent
of n, hence so does Xt+τn for t ≤ 1. It follows that with probability 1, if X survives then
limt→∞ Zt =∞. As the latter trivially implies

∫∞
0 Zs ds =∞, the proof is complete.
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Lemma 2.16. Fix θ < θ∗ and γ > 0. For any initial mass distribution µ that satisfies
Assumption 2.10 and any K ∈ Cp(Rd,R+), there exist on some probability space epidemic
processes (X,X∗) ∈ D([0,∞);Mc(Rd))2 with laws P θ,1,γµ,K and P θ

∗,1,γ
µ,K and local time densities

Lt, L
∗
t , respectively, such that almost surely, for every t ≥ 0,

(2.26) Lt ≤ L∗t .

Proof. This follows from the weak convergence result (2.19) and the Standard Con-
struction. Recall that in the standard construction of the discrete SIR epidemics, the evo-
lution is determined by the random graph G′ in which edges are present with probabilities
pN (x; y) = pθN (x; y) given by (2.9). These probabilities are increasing in θ. Consequently,
it is possible (using auxiliary Uniform-[0,1] random variables) to simultaneously construct
random graphs G′ and G′∗ with percolation probabilities pθN (x; y) and pθ∗N (x; y), respectively,
in such a way that the edge set of G′ is contained in that of G′∗. This forces

Rn(x) ⊆ R∗n(x) for all n ≥ 0 and x ∈ Zd,

and hence also Rn(x) ≤ R∗n(x). This inequality will be preserved upon taking weak limits,
so we obtain (2.26).

Remark 2.17. It follows immediately from (2.26) and Lemma 2.15 that

(2.27) P (X survives) ≤ P (X∗ survives).

Lemma 2.18. Let K,K∗ ∈ Cp(Rd;R+) be suppression rate functions such that K ≤ K∗.
Then for any µ satisfying Assumption 2.10, there exist spatial epidemics (X,X∗) ∈ D([0,∞);Mc(Rd))2

with marginal laws P θ,1,γµ,K and P θ,1,γµ,K∗ and local time densities Lt, L∗t , respectively, such that
almost surely,

(2.28) Lt ≥ L∗t for all t ≥ 0,

and P (X survives) ≥ P (X∗ survives).

Proof. The existence of the coupling follows directly from the weak convergence (2.19)
and the Standard Construction, because in this construction, increasing the removed sets K
decreases the sizes of the connected components. The assertion about survival probabilities
follows from (2.28), by Lemma 2.15.

Lemma 2.19. Let µ0, ν0 be initial mass distributions satisfying Assumption 2.10, and
µ = µ0 + ν0. Then on some probability space there exist epidemic processes (X,X1, X2) ∈
D([0,∞);Mc(Rd))3, with initial conditions µ, µ0, and ν0 and marginal laws P θ,1,γµ,0 , P θ,1,γµ0,0

,
and P θ,1,γν0,0

respectively, such that

(2.29) max(L1
t (x), L2

t (x)) ≤ Lt(x) ≤ L1
t (x) + L2

t (x), for all t ≥ 0 and x ∈ Rd.

Consequently,

P (X survives) ≤ P (X1 survives) + P (X2 survives) and(2.30)

P (X survives) ≥ P (Xi survives), for each i = 1, 2.(2.31)
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Proof. This follows by the same argument as the preceding lemma (see Remark 2.14).

Lemma 2.19 describes the effect of adding infected mass at time 0. The next lemma
concerns the effect of introducing additional infected mass at a time t∗ > 0 after the epidemic
has already begun. Let µ, µ0, ν0 be initial mass distributions satisfying the hypotheses of
Lemma 2.19. Say that X∗t is a measure-valued epidemic with immigration at time t∗ if it
satisfies the following martingale problem: For all ϕ ∈ C2

c (Rd),

(2.32) X∗t (ϕ) = µ0(ϕ) + 1[t∗,∞)(t)ν0(ϕ)

+

∫ t

0
X∗s (∆ϕ/2 + θϕ−Kϕ− βL∗sϕ) ds+

√
γM∗t (ϕ),

whereM∗t is a continuous martingale with quadratic variation [M∗(ϕ)]t =
∫ t

0 X
∗
s (ϕ2) ds and

L∗ = LX
∗ is the local time density of X∗. Existence and uniqueness of solutions to (2.32)

follows from Theorem 2.2 and the Markov property.

Lemma 2.20. Let µ0, ν0 be initial mass distributions satisfying Assumption 2.10, and
µ = µ0 + ν0. On some probability space there exist a solution Xt to (1.5) with initial mass
distribution µ and a solution X∗t to (2.32) such that

(2.33) LXt ≥ LX
∗

t ∀ t ≥ 0 and LX∞ = LX
∗
∞ .

Proof. This is by discrete approximation, using the Standard Construction of the dis-
crete SIR epidemics. On each percolation structure G = GN , we construct a pair of epidemics.
The first, denoted by X = XN , is constructed using initially infected sets X0(x) = XN0 (x)
such that both (2.16) and (2.17) hold. The second, denoted by Y = YN , has initially infected
sets Y0(x) ⊆ X0(x) such that after Feller-Watanabe rescaling the initial mass distributions
converge to µ0 (see Remark 2.13 in Section 2.2). This second epidemic Y has spontaneous
new infections at time [Nαt∗]: in particular, all individuals in the sets

X0 \ Y0 := ∪x (X0(x) \ Y0(x))

who are not yet recovered become infected. Thus, the time evolution of the epidemic Yn
is determined by the random graph G′ := G \ ∪xK(x) as follows: (1) For n < [Nαt∗], the
recovered set RYn consists of all vertices at graph distance < n from the initially infected set
∪xY0(x). (2) For n ≥ [Nαt∗], the set RYn consists of all vertices v such that either the graph
distance of v from ∪xY0(x) is < n, or the graph distance of v from X0 \Y0 is < n− [Nαt∗].

From the construction above and the Standard Construction described earlier, it is clear
that

(2.34) for all n ≥ 0, RXn ⊇ RYn , and RXn ⊆ RYn+[Nαt∗]
.

Set

Y N
t = FN |Y[Nαt]| and RY,Nt = SN |RY[Nαt]|,

where FN and SN are the Feller-Watanabe and Sugitani rescaling operators.
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Claim 2.21. The vector-valued process (Y N , RY,N ) converges weakly to a process (X∗, L∗)
such that X∗ solves the martingale problem (2.32), and L∗ = LX

∗ is the local time density
of X∗.

By passing to a subsequence, if necessary, it follows from Proposition 2.9, the above Claim,
and (2.34) that

LX
∗

t ≤ LYt ≤ LX
∗

t+t∗ for all t ≥ 0 a.s.

This clearly implies (2.33).

Proof of the Claim (Sketch). This is done by following the likelihood ratio strategy
described in Remark 2.14. As used in Lalley (2009) and Lalley and Zheng (2010), this
strategy was based on the fact that each discrete SIR epidemic considered had law absolutely
continuous with respect to the law of a critical branching random walk with the same initial
condition. The bulk of the proof consisted of showing that the likelihood ratios converged
in law, under the branching random walk measure, to the Radon-Nikodym derivative of a
measure-valued epidemic relative to the law of super-Brownian motion. For the processes
considered in this claim, the appropriate comparison processes are not standard branching
random walks, but rather branching random walks with immigration in which new particles
are introduced at times [Nαt∗] in such a way that after Feller-Watanabe rescaling the mass
distributions of these new particles converge to ν0. The laws of these processes converge,
after rescaling, to the law of super-Brownian motion with immigration at time t∗, that is, a
process Y ∗ satisfying the martingale problem (2.32) with β = 0 and K = 0. (This follows
easily from the standard convergence theorem for critical branching random walks, because
the effect of the immigration is simply to superimpose an independent branching random
walk shifted in time by [Nαt∗].)

Consider the likelihood ratios for the law of the epidemic process Y N relative to that of
the corresponding branching random walk with immigration. These are products of factors
indexed by (discrete) times t and lattice sites x ∈ Zd (see Lalley (2009), eqn. (53)). For
t ≤ [Nαt∗] the factors are exactly the same as in the case where there is no immigration.
Beginning with time t = [Nαt∗], new factors are introduced; these indicate the relative
likelihood ratios for the newly introduced immigrants and their offspring. Under the law of
the branching random walks with immigration the immigrants and their offspring evolve
independently of the progeny of the original (time 0) particles. Using this fact, one can
show, in much the same manner as in Lalley (2009) and Lalley and Zheng (2010), that the
likelihood ratios converge weakly (under the branching random walk with immigration laws)
to the Radon-Nikodym derivative of the process X∗ relative to super-Brownian motion with
immigration. In carrying out this final step, the main hurdle is showing that in the epidemics
with immigration, the numbers of individuals in the sets X0 \ Y0 who are infected prior to
time [Nαt∗] is of order OP (1). Here is a brief synopsis of the argument: Since the local time
densities, after rescaling, converge, the maximum number of recovered individuals at time
[Nαt∗] at any site is of order OP (Nα(2−d/2)). Consequently, because X0 \Y0 has cardinality
on the order Nα, the number of individuals in X0 \ Y0 infected prior to time [Nαt∗] is of
order

(2.35) O(Nα)× OP (Nα(2−d/2))

N
= OP (1),
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since α = 2/(6− d).

This completes the proof of Lemma 2.20.

In the proof of Theorem 1.2 it will be necessary to compare the evolution of a measure-
valued epidemic X with a coupled process in which additional infected mass is introduced
at a random time. Say that X∗t is a measure-valued epidemic with immigration at time τ if
it satisfies the following martingale problem : For all ϕ ∈ C2

c (Rd),

(2.36) X∗t (ϕ) = µ0(ϕ) + 1[τ,∞)(t)ν0(ϕ)

+

∫ t

0
X∗s (∆ϕ/2 + θϕ−Kϕ− βL∗sϕ) ds+

√
γM∗t (ϕ),

where τ is a finite stopping time relative to the filtration FX∗ ,M∗t is a continuous martingale
with quadratic variation [M∗(ϕ)]t =

∫ t
0 X

∗
s (ϕ2) ds, and L∗ = LX

∗ is the local time density.

Lemma 2.22. Let µ0, ν0 be initial mass distributions satisfying Assumption 2.10, and µ =
µ0+ν0. Then on some probability space there exist epidemics (Xt, X

∗
t ) ∈ D([0,∞);Mc(Rd))2

such that (1) Xt solves the martingale problem (1.5) with initial value X0 = µ; (2) X∗t solves
the martingale problem (2.36); and (3)

(2.37) LXt ≥ LX
∗

t , for all t ≥ 0 and LX∞ = LX
∗
∞ .

Proof. By the usual continuity (weak convergence) arguments, it suffices to prove this
for stopping times τ that take values in a finite set. By a routine induction on the cardinality
of this finite set, it suffices to consider stopping times that take values in a two-element set
{0, t∗}. For such stopping times, the result follows from Lemma 2.20, since this can be
applied conditionally on F0.

Now the results of Lemmas 2.18, 2.19, and 2.22 can be combined, allowing us to couple
the measure-valued epidemic X with a measure-valued process X∗ in which the infected
mass is decreased and the suppression rate increased at a random time τ . Here we will use
the strong Markov property (Theorem 2.2(c)) and Remark 2.3. The process X∗ will satisfy
the following martingale problem: for every ϕ ∈ C2

c (Rd),
(2.38)
X∗t (ϕ) =
µ0(ϕ) +

∫ t

0
X∗s

(
∆ϕ/2 + θϕ−Kϕ− βLX∗s ϕ

)
ds+

√
γM∗t (ϕ), for all t < τ,

Yτ (ϕ) +

∫ t

τ
X∗s

(
∆ϕ/2 + θϕ−K∗τϕ− βLX

∗
s ϕ

)
ds+

√
γ(M∗t (ϕ)−M∗τ (ϕ)), for all t ≥ τ,

where LX∗s is the local time density and
(i) τ is a finite FX∗-stopping time;
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(ii) Yτ is an FX∗τ−−measurable random measure satisfying Yτ ≤ X∗τ− + ν0;
(iii) K∗τ is an FX∗τ −measurable random element of Cp(Rd,R+) satisfying K∗τ ≥ K; and
(iv) M∗t (ϕ) is an FX∗-continuous martingale with quadratic variation [M∗(ϕ)]t =

∫ t
0 X

∗
s (ϕ2) ds.

Proposition 2.23. Let µ0, ν0 be initial mass distributions satisfying Assumption 2.10,
and µ = µ0 + ν0. Then there exist epidemics (Xt, X

∗
t ) ∈ D([0,∞);Mc(Rd))2 such that

(i) Xt solves the martingale problem (1.5) with initial value X0 = µ;
(ii) X∗t satisfies the martingale problem (2.38); and
(iii) the local time densities of X and X∗ satisfy

LXt ≥ LX
∗

t for all t ≥ 0.

This proposition can be used iteratively, using the strong Markov property and standard
arguments, so as to allow immigration and increases in the suppression rate K∗ at increasing
stopping times 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · <∞. The associated martingale problem is as follows:
for every ϕ ∈ C2

c (Rd), and for all τi ≤ t < τi+1,
(2.39)

X∗t (ϕ) = µi(ϕ)

+

∫ t

τi

X∗s (∆ϕ/2 + θϕ−K∗i ϕ− β(Ls(X
∗)− Lτi(X∗))ϕ) ds+

√
γ(M∗t (ϕ)−M∗τi(ϕ)),

where
(i) for each i = 1, 2, . . ., µi and νi are FX∗τi−−measurable random measures satisfying

Assumption 2.10 and such that

µi + νi ≤ X∗τi− + νi−1;

(ii) K∗0 ≡ 0, and K∗i ∈ Cp(Rd,R+) is, for each i, an FX∗τi −measurable random function
such that

K∗i ≥ K∗i−1 + β(Lτi(X
∗)− Lτi−1(X∗)); and

(iii) M∗t is a continuous FX∗−martingale with quadratic variation [M∗(ϕ)]t =
∫ t

0 X
∗
s (ϕ2) ds.

The existence of a solution to this martingale problem follows from the strong Markov
property (Theorem 2.2 (d)). Proposition 2.23 and a standard induction argument now yield
the following comparison result.

Proposition 2.24. Let µ0, ν0 be initial mass distributions satisfying Assumption 2.10,
and µ = µ0 + ν0. Then on some probability space there exist measure-valued processes X
and X∗ such that (i) X solves the martingale problem (MP )θ,β,γµ,0 specified in (1.5); (ii) X∗

solves the martingale problem (2.39); and (iii) the corresponding local time processes satisfy

LXt ≥ LX
∗

t for all t ≥ 0.

2.4. The Sandwich Lemma. The discrete SIR-d process XN is naturally associated with
a branching envelope. This is a nearest-neighbor branching random walk X

N
n with initial
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condition X
N
0 = XN

0 and offspring distribution Bin((2d + 1)N, pθN (0, 0)) that dominates
XN
n , that is, such that for each n ≥ 0 and x ∈ Zd,

XN
n (x) ≤ XN

n (x).

See Section 1.6 of Lalley (2009) for details concerning the construction. Since branching ran-
dom walks, after Feller-Watanabe rescaling, converge weakly to super-Brownian motions, the
vector-valued processes (XN , X

N
), similarly rescaled, have marginals that converge weakly.

It follows that after rescaling the laws of the vector-valued processes (XN , X
N

) are tight.
Hence, any subsequence has a weakly convergent subsequence, and the limit process (X,X)
must satisfy Xt ≤ Xt. The component processes X and X of any such weak limit must
be a measure-valued epidemic (that is, a solution of the martingale problem (1.5) with
γ = 1) and a super-Brownian motion with drift θ, respectively. This gives another proof of
Proposition 2.5. Next is a result which also gives a lower bound on the epidemic process.

Lemma 2.25. For any measure µ ∈ Mc(Rd) satisfying Assumption 2.10, any κ > 0,
θ ∈ R, and any function K ∈ Cp(Rd,R+) there exist, on some probability space, measure-
valued processes X,X,X with common initial state X0 = X = X = µ such that

Xt ≤ Xt ≤ Xt for all t ≤ τ,

where
τ = inf

{
t ≥ 0 :

(
max
x

K(x)
)

+
(

max
x

LXt (x)
)
≥ κ

}
,

with the following laws:
(i) Xt is a spatial epidemic with local suppression rate K, transmission rate θ, branching

rate γ = 1 and inhibition parameter β = 1 ;
(ii) Xt is a super-Brownian motion with drift θ; and
(iii) Xt is a super-Brownian motion with drift θ − κ.

The proof will once again be based on discrete approximations. We shall build approx-
imating discrete epidemic processes that satisfy the analogous sandwich relationship. The
construction makes use of the following lemma. First, observe that in a discrete SIR epi-
demic, when two infected individuals simultaneously attempt to infect the same susceptible
individual, all but one of the attempts fail; call such an occurrence a collision. (Hence, for ex-
ample, when three infected individuals simultaneously attempt to infect the same susceptible
individual, then the number of collisions would be

(
3
2

)
= 3.)

By slightly modifying the proof of Lemma 9 in Lalley and Zheng (2010), in particular, by
noticing that the statement right above equation (62) therein also holds for the way that we
count the number of collisions here, we get the following

Lemma 2.26 (A slight variant of Lemma 9 and equations (62) – (64) in Lalley and Zheng
(2010)). For each pair (n, x) ∈ N×Zd, let ΓNn (x) be the number of collisions at site x and
time n in the SIR-d epidemic with village size N . Assume that the hypotheses (2.16)-(2.17)
of Proposition 2.9 are satisfied. Then for any fixed T ≥ 0,

(2.40) E
∑

n≤NαT

∑
x

ΓNn (x) = o(Nα).
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A direct consequence of the previous lemma is that if we define a Modified SIR process
in the following way:

Modified SIR process: At any site/time (x, t), each particle produces Bin((N −KN (y)−
RNt (y)), pθN (x, y)) number of offspring at neighboring sites y, where RNk (y) =

∑
i<kX

N
i (y),

then the Modified SIR process can be constructed together with the original SIR process,
in much the same way as for the branching envelope with the original SIR process, such
that: (1) the Modified SIR process always dominates the original SIR process; and (2) the
discrepancy Dt(x) ≥ 0 between them at site x and time t satisfies

(2.41) max
t≤NαT

∑
x

Dt(x) = oP (Nα).

Therefore after the Feller-Watanabe scaling as in Proposition 2.9, the modified SIR process
will converge to the same limit as in Proposition 2.9.

(To show (2.41), observe that if we let Dn :=
∑

xDn(x), and D̃n = Dn/(1 + θ/Nα)n,
then D̃n is a sub-martingale: E(D̃n+1|Fn) ≥ D̃n, with the inequality due to collisions at
generation n+ 1. Further note that for any T > 0,

E(D̃[NαT ]) ≤
E
∑

n≤NαT

(
(1 + θ/Nα)[NαT ]−n ·

∑
x ΓNn (x)

)
(1 + θ/Nα)[NαT ]

= O

E
 ∑
n≤NαT

∑
x

ΓNn (x)

 = o(Nα).

(2.41) then follows from the Doob’s martingale inequality.)
We now prove Lemma 2.25.

Proof of Lemma 2.25. We shall build approximating particle systems that satisfy the
analogous sandwich relationship. Choose XN

0 and KN such that (2.16)∼(2.18) are satis-
fied. The super-solution X

N
t (x) is a nearest-neighbor branching random walk with initial

configuration XN
0 and such that at any site/time (x, t), each particle at site x produces

Bin(N, pθN (x, y)) number of offspring at neighboring sites y. By Watanabe’s Theorem, XN

converges to the desired X. As noted above, the Modified SIR XN
t will approximate Xt.

Define the stopping time

τN = min
{
t ≥ 0 :

(
max
x

KN (x)
)

+
(

max
x

RNt (x)
)
≥ κN (α(2−d/2))

}
.

We may assume that κ > supxK(x) (or the result is trivial). The sub-solution XN
t (x) is

a nearest-neighbor branching random walk with initial configuration XN
0 and such that at

any site/time (x, t), each particle at x produces Bin([N − κNα(2−d/2)], pθN (x, y)) number of
offspring at neighboring sites y. By Watanabe’s Theorem XN converges weakly to the super-
Brownian motion X. It is clear that before time τN , the three processes XN

(x), XN (x) and
XN (x) can be built on a common probability space such that

XN
t ≤ XN

t ≤ X
N
t for all t ≤ τN .
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By Skorokhod’s representation theorem and Proposition 2.9 we may assume lim infN τ
N ≥ τ

a.s. Here we use maxxK
N (x)/N (α(2−d/2)) → maxxK(x) and the fact that there is a greater

than or equal to sign in the definition of τ . By taking limits in the above, along a subsequence
if necessary to get joint convergence, we complete the proof.

2.5. Scaling. It will be necessary, in some of the arguments to follow, to rescale time
and/or space. When a super-Brownian motion, or more generally a solution to the martingale
problem (1.5) is rescaled, its diffusion rate may change, that is, the Laplacian in (1.5) may
be multiplied by a constant α. The resulting martingale problem is as follows:
(2.42)

Xt(ϕ) = X0(ϕ)+
α

2

∫ t

0
Xs(∆ϕ) ds+θ

∫ t

0
Xs(ϕ) ds−

∫ t

0
(Xs(Kϕ)+βXs (Lsϕ)) ds+

√
γ Mt(ϕ),

where α, β, γ > 0 and θ ∈ R are constants, K ∈ Cp(Rd,R+), and Mt(ϕ) is a continuous
martingale with quadratic variation [M(ϕ)]t =

∫ t
0 Xs(ϕ

2) ds. As usual, Lt is the local time
density of the process X. We shall refer to this martingale problem as (MP )θ,β,γ,αµ,K and
continue to write (MP )θ,β,γµ,K if α = 1.

Lemma 2.27. Let X solve the martingale problem (MP )θ,β,γ,αµ,K . For any constants a, b, c > 0,
define a new measure-valued process U by

(2.43) Ut(ψ) = c

∫
x
ψ(bx)Xat(dx), for all bounded measurable ψ on Rd.

Then Ut solves the martingale problem (MP )θ
′,β′,γ′,α′

µ′,K′ with parameters

θ′ = aθ, β′ =
a2bdβ

c
, γ′ = acγ, α′ = ab2α, K ′(x) = aK(x/b),

and initial measure defined by
∫
ψ(x)µ′(dx) = c

∫
ψ(bx)µ(dx). The local time densities

L = LX and LU are related by

(2.44) LUs (x) =
c

abd
Las

(x
b

)
, for all x, t.

Proof. This is by routine calculations.

Remark 2.28. Based on the above result, one can show that by choosing a, b and c
appropriately, the scaling as in (2.43) would transform the martingale problem (MP )θ,β,γ,αµ,0

into (MP )θ
′,1,1,1
µ′,0 ; in other words, the model is a one parameter model.

3. Preliminaries on (supercritical) super-Brownian motions. In this section we
present some regularity results for super-Brownian motions and their local times. The results
are only of interest, and only will be used, for d > 1 and so we assume d = 2 or 3 throughout
this Section.
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3.1. Uniform regularity of super-Brownian motions. In this and the following subsection,
let Yt = Y µ

t be a (driftless) super-Brownian motion with initial state Y0 = µ, and let
Pµ = P 0,0,1

µ,0 be its law. Denote by Br(y) the open Euclidean ball in Rd centered at y of
radius r, and for any measure µ ∈M(Rd), define

(3.1) D(µ, r) = sup{µ(Br(y)) : y ∈ Rd}.

For any function ϕ and any measure µ ∈M(Rd), set µϕ = µ∗ϕ, where ∗ denotes convolution.
In particular, for any t ≥ 0,

(µpt)(x) =

∫
pt(x− y)µ(dy), and (µqt)(x) =

∫ t

0

∫
ps(x− y)µ(dy) ds,

where pt and qt are the Gauss kernel and the integrated Gauss Kernel in (1.3) respectively.
For r ∈ (0, 1] let

h(r) =

√
r log

1

r
, and ϕ(r) = r2

(
1 + log

1

r

)2
.

Finally, for T, r0, Ci > 0 introduce the event

GT (r0; C1, C2) = {D(Yt, r) ≤ C1 (D(µpt, C2r) + ϕ(r)) for all r ≤ r0 and t ≤ T} .

The following lemma is an easy consequence of the proof of Theorem 4.7 in Barlow et al.
(1991).

Lemma 3.1. If K ≥ 1 there are constants C1, C2 > 0 (depending on K), and for any
T > 0 there is an r0(K,T ) ∈ (0, 1] such that for all λ ≥ 1 and any µ with |µ| = λ,

(3.2) Pµ

(
GT

(
r0e
−λ; C1, C2

))
≥ 1− e−Kλ.

Proof. This is a quantitative version of Theorem 4.7 of Barlow et al. (1991). The proof
of that result shows for K ≥ 1 there are constants C1, C2, C3 ≥ 1 such that for all λ ≥ 1,
T > 0, n ∈ N and µ with |µ| = λ,

(3.3) Pµ(GT (h(2−n);C1, C2)c) ≤ C3(T + 1)(λ+ 1)2−Kn + C3λ2−Kn ≤ C3(2T + 3)λ2−Kn.

Here one has to chase constants a bit to check that the constant c2.2 in the proof of the
above Theorem in Barlow et al. (1991) may be taken to be as large as you like at the cost
of our C2 and their c4.2 being large. The latter can then be handled in the key bound in the
proof of Theorem 4.7 in Barlow et al. (1991) by taking our C1 large enough. Now choose
n0 ≥ 2 in N so that

(3.4) C3(2T + 3)2−Kn0 ≤ e−Kλλ−1 < C3(2T + 3)2−Kn0+K .

The above definition implies

h(2−n0) = 2−n0/2(n0 log 2)1/2 ≥
(

e−Kλλ−1

2KC3(2T + 3)

)1/(2K)

[2 log 2]1/2 ≥ r0(K,T )e−λ,
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where in the last inequality we used the simple fact that for all λ,K ≥ 1, λ−1/(2K) ≥ λ−1 ≥
exp(−λ/2)/2. Therefore (3.3) and (3.4) imply that

Pµ(GT (r0e
−λ;C1, C2)c) ≤ e−Kλ.

To formulate the next result we introduce the following

Definition 3.2. For any positive constants A, λ, and r0, with r0 ≤ 1, and any measure
µ ∈M(Rd), we say that µ is (A, λ, r0)−admissible if

D(µ, r) ≤ Ar2
(
λrd−2 +

(
1 + log

1

r

)2)
≡ ψ(r) for all r ≤ r0e

−λ.

Corollary 3.3. For any fixed K ≥ 1 and T > 0, there exist positive constants A =
A(K,T ) and r0 = r0(K,T ) ≤ 1, such that for all λ ≥ 1 and µ with |µ| = λ,

(3.5) Pµ (YT is (A, λ, r0)-admissible) ≥ 1− e−Kλ.

Proof. This follows from Lemma 3.1 by noticing that

D(µpT , C2r) ≤ C4(T )λ rd.

3.2. Local time densities of super-Brownian motions. Recall (equation (1.3)) that pt(x)
and qt(x) are the Gauss kernel and the integrated Gauss kernel, respectively.

Lemma 3.4. Suppose that µ ∈ M(Rd) satisfies |µ| = λ and is (A, λ, r0)−admissible for
some constants A and r0. For any 0 ≤ β < 2− d/2 and any fixed T > 0, define

(3.6) Ξ1(T ) := max
x

(µqT ) (x), and Ξ2(T ) := max
x

∫ T

0

∫
s−β/2ps(x− y) µ(dy) ds.

Then there exists a constant A′ = A′(A, r0, T, β) > 0 such that for both i = 1, 2 and for all
λ ≥ 1,

(3.7) Ξi(T ) ≤ κd(λ) :=

{
A′λ2 when d = 2

A′λ2eλ when d = 3.

Proof. We shall only prove the result for Ξ1(T ); the proof for Ξ2(T ) is similar. Let
r̃0 = r0e

−λ. We first deal with the integral for t ∈ [r̃
8/3
0 , T ]: to do so, for any fixed x ∈ Rd

we cover Rd with balls Bi of radius r̃0 and with center of distance di = k r̃0 to x for some
k ∈ Z≥0. Then for any t > 0,

(2π)d/2(µpt)(x) =

∫
t−d/2 exp

(
−|x− y|

2

2t

)
µ(dy)

≤
∑
i

∫
y∈Bi

t−d/2 exp

(
−min(0, di − r̃0)2

2t

)
µ(dy).
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The balls can be chosen in such a way that for any k ≥ 3 there are at most C(k − 2)d−1

balls with center of distance kr̃0 to x. It is then easy to see that there exist constants Ci
such that ∫

t−d/2 exp

(
−|x− y|

2

2t

)
µ(dy)

≤C1t
−d/2ψ(r̃0) + C2

∞∑
k=3

t−d/2 exp

(
−(k − 1)2r̃2

0

2t

)
· (k − 2)d−1ψ(r̃0)

≤C1t
−d/2ψ(r̃0) + C2ψ(r̃0)

∫ ∞
1

t−d/2ad−1 exp

(
−a

2r̃2
0

2t

)
da

≤C1ψ(r̃0)t−d/2 + C3ψ(r̃0)r̃−d0

≤

{
C1ψ(r̃0)t−1 + C3(λ+ (1 + log(1/r̃0))2) when d = 2

C1ψ(r̃0)t−3/2 + C3(λ+ (1 + log(1/r̃0))2/r̃0) when d = 3.

Therefore ∫ T

r̃
8/3
0

∫
t−d/2 exp

(
−|x− y|

2

2t

)
µ(dy) dt

≤

{
C4ψ(r̃0)(log T + log(1/r̃0)) + C3T (λ+ (1 + log(1/r̃0))2) when d = 2

C4ψ(r̃0)r̃
(−4/3)

0 + C3T (λ+ (1 + log(1/r̃0))2/r̃0) when d = 3.

which can be bounded by κd(λ) for all λ ≥ 1 for an appropriate choice of A′. Now we deal
with the integral for t ∈ [0, r̃

8/3
0 ]:∫ r̃

8/3
0

0

∫
t−d/2 exp

(
−|x− y|

2

2t

)
µ(dy) dt

=

∫ r̃
8/3
0

0

(∫
|x−y|≤t3/8

+

∫
|x−y|>t3/8

)
t−d/2 exp

(
−|x− y|

2

2t

)
µ(dy) dt

≤
∫ r̃

8/3
0

0
t−d/2ψ(t3/8) dt+ λ

∫ r̃
8/3
0

0
t−d/2 exp

(
− 1

2t1/4

)
dt

≤C5 + C6λ.

The following lemma is implicit in Sugitani (1989).

Lemma 3.5. Suppose that µ ∈ M(Rd) and for all t > 0, Ξ1(t) < ∞, and for some
0 < β < 2− d/2 and all t > 0, Ξ2(t) <∞, where Ξ1 and Ξ2 are defined in (3.6). Define

Zt(x) = Lt(x)− (µqt)(x).

Then for any T > 0, there exist constants η0 = η0(β, T ) > 0, Ci = Ci(β, T ) > 0 such that
for all 0 ≤ η < η0 and t ≤ T ,

(3.8) Eµ exp

(
η(Zt(a)− Zt(b))
|a− b|β

)
≤ exp (C1Ξ2(2t) · η) , for all 0 < |a− b| ≤ 2;
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and

(3.9) Eµ exp (η Zt(a)) ≤ exp (C2Ξ1(2t) · η) , for all a ∈ Rd.

Proof. The second claim (3.9) follows from Lemma 3.4 in Sugitani (1989).
To prove (3.8), following (3.34) in Sugitani (1989), for a random variable X we say that

E exp(ηX) = exp

( ∞∑
n=1

cnη
n

)
holds formally if for all k ≥ 1, E|X|k <∞ and

EXk =

dk
(

exp
(∑k

n=1 cnη
n
))

dηk

∣∣∣∣∣∣
η=0

.

By (3.38), (3.45) and (3.48) in Sugitani (1989), we have formally

(3.10) Eµ exp(η(Zt(a)− Zt(b))) = exp

(
2
∞∑
n=2

(η
2

)n
〈µ, νn(t, ·)〉

)
,

where for n ≥ 2, and x ∈ Rd,

(3.11) |νn(t, x)| ≤ bn · |a− b|nβ t2−(d+β)/2

∫ 2t

0
s−β/2(ps(a− x) + ps(b− x)) ds,

and {bn} are defined inductively as follows:

b1 = C4 > 0; bn = C5

n−1∑
k=1

bkbn−k.

Using the proof of Lemma 3.4 in Sugitani (1989), if we let f(η) =
∑∞

n=1 bnη
n, then for some

δ > 0,

(3.12) f(η)− C4η = C5f(η)2; f(η) =
1−
√

1− 4C4C5η

2C5
≤ Cη for 0 ≤ η ≤ δ.

This shows that
∑

n bnη
n has a positive radius of convergence, and the formal equation (3.10)

is indeed an equation when η is sufficiently close to 0 because the Taylor series for the analytic
function on the right-hand side is given by the left-hand side. Relation (3.8) then follows
easily from the upper bounds (3.11) and (3.12).

Corollary 3.6. Under the assumptions of the previous lemma, for any fixed T > 0,
there exist constants η0 = η0(β, T ) > 0, Ci = Ci(β, T ) > 0 such that for all 0 < η < η0,

(3.13) Eµ exp

(
η|LT (a)− LT (b)|

|a− b|β

)
≤ 2 exp (C1Ξ2(2T ) η) , for all 0 < |a− b| ≤ 2;

and

(3.14) Eµ exp (ηLT (a)) ≤ exp (C2Ξ1(2T ) η) , for all a ∈ Rd.
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Proof. Relation (3.14) follows easily from (3.9). As for (3.13), by (3.8) and the elemen-
tary inequality e|x| ≤ ex + e−x,

Eµ exp

(
η|LT (a)− LT (b)|

|a− b|β

)
≤ 2 exp (C1Ξ2(2T )η) · exp

(
η|(µqT )(a)− (µqT )(b)|

|a− b|β

)
By (3.44) in Sugitani (1989) we have for all x, y and t > 0,

|pt(x)− pt(y)| ≤ c(β)t−β/2|x− y|β(p2t(x) + p2t(y)),

and so

|(µqT )(a)− (µqT )(b)| ≤ C|a− b|β
∫ T

0

∫
x
t−β/2(p2t(a− x) + p2t(b− x))µ(dx) ds

≤ C|a− b|βΞ2(2T ).

Lemma 3.7. Suppose that Υ(x) is an almost surely continuous random field on Rd such
that for some η > 0 and β > 0,

(3.15)

E exp

(
η|Υ(a)−Υ(b)|
|a− b|β

)
≤ C1, for all 0 < |a− b| ≤

√
d; and

E exp (ηΥ(a)) ≤ C2, for all a ∈ Rd.

Let ML = maxa∈QL(0) Υ(a) (QL(0) is the cube of side length L centered at 0). Then for all
L ∈ N and m ≥ 0,

(3.16) P (ML ≥ m) ≤ (C1e
2d/β + C2)Ld exp

(
− ηm

1 + γ

)
,

where γ = 8dβ/2. In particular, for any K > 0, there exists C > 0, depending only on K,
C1, C2 and β, such that for all L ≥ 1 and λ ≥ 1,

(3.17) P

(
ML ≥ C

λ+ logL

η

)
≤ e−Kλ.

Proof. The inequality (3.17) follows by plugging C λ+logL
η as m into (3.16) and noticing

that when C is large enough, the factor exp
(
− Cλ

2(1+γ) −
C logL

1+γ

)
would be smaller than

[(C1e
2d/β + C2)Ld]−1 for all λ, L ≥ 1. Furthermore, it suffices to prove (3.16) for L = 1 as

the results then follow trivially by dividing QL(0) into unit cubes. We apply Lemma 1 of
Garsia (1972) with p(u) = uβ , Ψ(u) = exp

(
η|u|
dβ/2

)
, Q1 = Q1(0) and

B =

∫
Q1

∫
Q1

exp

(
η|Υ(x)−Υ(y)|
|x− y|β

)
dxdy.
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It is easy to check that this B satisfies the hypothesis of Lemma 1 in the above reference.
That result, or more precisely (10) in the proof, implies

M1 ≤ Υ(0) + 8

∫ 1

0
Ψ−1

(
B

u2d

)
d(uβ)

≤ Υ(0) +
γ

η

[
log(B) + 2d

∫ 1

0
log(1/u) d(uβ)

]
= Υ(0) +

γ

η
[log(B) + (2d/β)].

Therefore for x ≥ 0,

P (M1 ≥ (1 + γ)x) ≤ C2 exp(−ηx) + P (log(B) ≥ ηx− (2d/β))

≤ C2 exp(−ηx) + E(B) exp((2d/β)− ηx)

= (C2 + C1e
2d/β)e−ηx,

which is (3.16) for L = 1, and where (3.15) is used to see that E(B) ≤ C1.

Combining Lemma 3.4, Corollary 3.6 and Lemma 3.7 we obtain the following for the local
time L of the super-Brownian motion Yt.

Proposition 3.8. For any T > 0, M > 0, K > 0, A > 0 and r0 > 0 there exists a con-
stant A′′, depending only on (T,M,K,A, r0), so that for all λ ≥ 1 and all (A, λ, r0)−admissible
µ ∈M(Rd) satisfying |µ| = λ, the local time, LT (x), of the super-Brownian motion Y µ

t sat-
isfies

Pµ

(
max
|x|≤Meλ

LT (x) ≥ A′′λ κd(λ)

)
≤ e−Kλ,

where κd(λ) is defined in (3.7).

Proof. By Lemma 3.4 and Corollary 3.6, for any fixed 0 ≤ η < η0, if we let η(λ) =
η/κd(λ), then for some fixed C1 and C2, for all λ ≥ 1, the assumptions (3.15) hold for the
random field LT (x) and 0 < β < 2 − d/2 by replacing η with η(λ). The conclusion then
follows from (3.17).

3.3. Local time densities of supercritical super-Brownian motions. In this and the fol-
lowing subsection Yt = Y µ

t is a super-Brownian motion with drift one starting at an initial
state µ, let P 1

µ = P 1,0,1
µ,0 be its law. Further denote by P 0

µ = P 0,0,1
µ,0 the law of a (driftless)

super-Brownian motion starting at µ. By Lemma 2.1 we have

dP 1
µ

dP 0
µ

∣∣∣∣∣
FYt

:= Φt = exp

(
M0
t (1)− 1

2

∫ t

0
|Ys| ds

)
,

where M i denote the martingale measure under P iµ, i = 0, 1, and therefore

(3.18) M0
t (1) = M1

t (1) +

∫ t

0
|Ys| ds.
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Lemma 3.9. For any K ≥ 1, T > 0, λ ≥ 1 and µ ∈M(Rd) with |µ| = λ,

(3.19) E0
µ

(
ΦT · 1(ΦT≥eKλ)

)
≤ 5eT

K
.

Proof. Using (3.18) we see the above expectation equals

E0
µ

ΦT · 1(
M0
T−

1
2

∫ t
0 |Ys|ds≥Kλ

) =P 1
µ

(
M1
T (1) +

1

2

∫ t

0
|Ys|ds ≥ Kλ

)

≤
4E1

µ

(
(M1

T (1))2
)

K2λ2
+
E1
µ

(∫ T
0 |Ys| ds

)
Kλ

=
4λ(eT − 1)

K2λ2
+
λ(eT − 1)

Kλ
≤ 5eT

K
.

Proposition 3.10. For any fixed T > 0 and any ε > 0, there exist constants A =
A(T, ε) > 0 and r0 = r0(T, ε) ∈ (0, 1] such that for all λ ≥ 1 and all µ with |µ| = λ,

(3.20) P 1
µ (YT is (A, λ, r0)-admissible) ≥ 1− ε.

Proof. Let GT,λ denote the event in (3.20). For T, ε as above choose K = K(ε, T ) ≥ 2
so that

10eT

K
+ e−K/2 < ε,

and then choose A and r0 as in Corollary 3.3 for this choice of K and T , so that they depend
ultimately on T and ε. Then the previous Lemma and Corollary 3.3 imply that

P 1
µ(GcT,λ) = E0

µ(ΦT · 1GcT,λ)

≤ E0
µ(ΦT · 1(ΦT≥eλK/2)) + eλK/2P 0

µ(GcT,λ)

≤ 10eT /K + e−λK/2 < ε,

where the choice of K is used in the last inequality.

The same reasoning, but now using Proposition 3.8 in place of Corollary 3.3, gives the
following:

Proposition 3.11. For any positive constants T , M and ε, A > 0 and r0 > 0 there
exists a constant A′′, depending only on (T,M, ε,A, r0), so that for all λ ≥ 1 and all
(A, λ, r0)−admissible µ ∈ M(Rd) satisfying |µ| = λ, the local time, LT (x), of Y µ

t satis-
fies

P 1
µ

(
max
|x|≤Meλ

LT (x) ≤ A′′λ κd(λ)

)
≥ 1− ε.
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3.4. Propagation of supercritical super-Brownian motions. We continue to let Yt = Y µ
t

be a super-Brownian motion with drift one starting at µ, and let P 1
µ denote its law. Recall

that for x ∈ Zd, Qr(x) denotes the cube of side length r centered at x, and Q(x) := Q1(x).

Lemma 3.12. For any T ≥ 1 and ε > 0, there exists a constant M = M(T, ε) > 0 such
that for any λ ≥ e and any µ satisfying |µ| = λ and Supp(µ) ⊆ Q(0), we have

P 1
µ

(
Supp (Y [0, T ]) ⊆ QM√log λ(0)

)
≥ 1− ε.

Proof. This is a direct consequence of Theorem A in Pinsky (1995).

Write N (0) = {x ∈ Zd : ||x||1 = 1} for the nearest neighbors of the origin in Zd. Fix a T
sufficiently large such that

(3.21) min
x∈N (0)

min
y∈Q(0)

eT
(
1Q(x) ∗ pT

)
(y) ≥ 2,

where pt(x) is the Gauss kernel in (1.3), and ∗ denotes convolution.

Lemma 3.13. For any ε > 0 and T as above, there exists λ0 = λ0(T, ε) > 0 such that
for any µ satisfying Supp(µ) ⊆ Q(0) and |µ| = λ ≥ λ0,

P 1
µ (YT (Q(x)) ≥ λ for all x ∈ N (0)) ≥ 1− ε.

Proof. By a well-known moment formula (see, e.g., Exercise II.5.2 in Perkins (2002)),
together with the assumption that Supp(µ) ⊆ Q(0) and (3.21), for any x ∈ N (0),

EYT (Q(x)) = eT 〈µ,1Q(x) ∗ pT 〉 ≥ 2|µ| = 2λ,

and

Var(YT (Q(x))) ≤ e2T 〈µ,
∫ T

0

(
1Q(x) ∗ p(T−s)

)2 ∗ ps ds〉.
Consequently, by the Chebyshev inequality,

P (YT (Q(x)) ≤ λ) ≤P
(
|YT (Q(x))− EYT (Q(x))| ≥ 1

2
EYT (Q(x))

)
≤

4e2T 〈µ,
∫ T

0

(
1Q(x) ∗ p(T−s)

)2 ∗ ps ds〉
(2λ)2

≤CTλ−1.

The conclusion follows.

4. A weak form of local extinction and its consequences.
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4.1. A weak form of local extinction. Let Vd = πd/2/Γ(1 + d/2) be the volume of a unit
d-dimensional ball.

Proposition 4.1. There exists κ < ∞ such that for any θ ∈ R, γ > 0, and K ∈
Cp(Rd,R+), if X solves (MP )θ,1,γµ,K and µ satisfies Assumption 1.1, then for any N ≥ 1,

(4.1) E〈L∞,1BN (0)〉 ≤
2|µ|

κ+ 2θ+
+ Vd(κ+ 2θ+)(N + 1)d,

and

(4.2) E〈L2
∞,1BN (0)〉 ≤ 4|µ|+ Vd(κ+ 2θ+)2(N + 1)d.

Proof. First, observe that there exists κ > 0 such that for any N ≥ 1 there exists a
function ϕ = ϕN ∈ C2 such that

(4.3) |∆ϕ| ≤ κ√ϕ and 1BN (0) ≤ ϕ ≤ 1BN+1(0).

For example, set ϕ(x) = ψ(|x|) where ψ = ψN : R → [0, 1] is a smooth, even function
bounded above and below by the indicators of [−N − 1, N + 1] and [−N,N ], monotone
on [−N − 1,−N ] (and therefore also on [N,N + 1]), and such that (for instance) ψ(x) =
(x+N + 1)4 for x ∈ [−N −1,−N −1/2]. Because ϕ ∈ C2

c (Rd), the martingale identity (1.5)
applies (with β = 1), so after taking expectations we obtain

E〈Xt, ϕ〉 = 〈µ, ϕ〉+
1

2
E〈Lt,∆ϕ〉+ θE〈Lt, ϕ〉 − E〈Lt,Kϕ〉 − E

∫ t

0
〈Xs, Lsϕ〉 ds.

A routine integration by parts shows that∫ t

0
〈Xs, Lsϕ〉 ds =

1

2
〈L2

t , ϕ〉.

Since |∆ϕ| ≤ κ√ϕ and 〈Xt, ϕ〉 ≥ 0, it follows that

−2〈µ, ϕ〉 ≤ κE〈Lt,
√
ϕ〉+ 2θ+E〈Lt, ϕ〉 − E〈L2

t , ϕ〉(4.4)

≤ (κ+ 2θ+)E〈Lt,
√
ϕ〉 − E〈L2

t , ϕ〉
≤ (κ+ 2θ+)E〈Lt,

√
ϕ〉 − (V −1

d (N + 1)−d) (E〈Lt,
√
ϕ〉)2 ,

the last by Cauchy-Schwartz and the fact that ϕ has support contained in BN+1(0). This
clearly gives an upper bound on E〈Lt,

√
ϕ〉 that is independent of t. In fact, (4.4) implies

that(
E〈Lt,

√
ϕ〉 − 1

2
Vd(N + 1)d(κ+ 2θ+)

)2

≤ 1

4
(Vd(N + 1)d)2(κ+ 2θ+)2 + 2〈µ, ϕ〉Vd(N + 1)d

≤
(

1

2
Vd(N + 1)d(κ+ 2θ+) +

2〈µ, ϕ〉
(κ+ 2θ+)

)2

,
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and hence

E〈Lt,
√
ϕ〉 ≤ 1

2
Vd(N + 1)d(κ+ 2θ+) +

(
1

2
Vd(N + 1)d(κ+ 2θ+) +

2〈µ, ϕ〉
(κ+ 2θ+)

)
= Vd(κ+ 2θ+)(N + 1)d +

2µ(ϕ)

κ+ 2θ+
.

Letting t→∞ yields

(4.5) E〈L∞,
√
ϕ〉 ≤ Vd(κ+ 2θ+)(N + 1)d +

2µ(ϕ)

κ+ 2θ+
.

Relation (4.1) follows, since √ϕ bounds the indicator function of BN (0). Finally, by the
second inequality in (4.4),

E〈L2
∞, ϕ〉 ≤ 2|µ|+ (κ+ 2θ+)E〈L∞,

√
ϕ〉.

Relation (4.2) follows from (4.5).

Remark 4.2. The above Proposition easily shows that each of the terms on the right-
hand side of (1.2) converges a.s. as t → ∞. Therefore Xt(ϕ) converges a.s. as t → ∞ and
clearly the limit must be 0 by the above. This shows that Xt(K) approaches 0 as t → ∞
for all compact sets K a.s. Our Theorem 1.3 asserts a much stronger result, namely that
Xt(K) = 0 for large enough t a.s.

4.2. Universality of the critical values θc. For any µ satisfying Assumption 2.10, if X
solves (1.2) with θ ≤ 0, then P (X survives) = 0 because X is dominated by a critical
super-Brownian motion (by Proposition 2.5), which goes extinct almost surely (see, e.g.,
Eqn (5.7) in Feller (1951) or (II.5.12) in Perkins (2002)). Lemma 2.16 and Remark 2.17
therefore imply that for any such µ and any function K ∈ Cp(Rd;R+) there is a critical value
θc(µ,K) ∈ [0,∞] so that a spatial epidemic X with suppression rate K and transmission
parameter θ (see (1.5)) survives with positive probability if θ > θc(µ,K) and with zero
probability if θ < θc(µ,K).

Proposition 4.3. The critical value θc(µ,K) depends only on the dimension d and not
on the choice of 0 6= µ satisfying Assumption 1.1 or K ∈ Cp(Rd;R+).

Proof. In this argument θ will be fixed and γ = 1, so we suppress the dependence
of the laws P θ,1,γµ,K on θ and γ. By Theorem 2.2, for any measure µ ∈ Mc(Rd) satisfying
Assumption 1.1 and any two suppression rate functions K,K ′ ∈ Cp(Rd;R+), the laws Pµ,K
and Pµ,K′ are mutually absolutely continuous on FXt , with Radon-Nikodym derivative (2.8).
Since K and K ′ both have compact support, inequality (4.2) of Proposition 4.1 implies that
the integrals in the likelihood ratio converge, so that

lim
t→∞

(
dPµ,K′

dPµ,K

)
Ft

:= Y
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exists and is positive Pµ,K−almost surely. Hence, by Fatou’s lemma,

Pµ,K′(X survives) = lim
t→∞

Pµ,K′(|Xt| > 0) ≥ Eµ,K
(
Y 1{X survives}

)
.

It follows that if X survives with positive Pµ,K probability then it also survives with Pµ,K′
probability. Reversing the roles of K and K ′ shows that the reverse is also true. Therefore,
the critical value θ(µ,K) does not depend on K.

To complete the proof, it suffices, in view of the preceding paragraph, to prove that if X
survives with positive probability under Pµ,0 then it survives with positive probability under
Pν,0 for ν 6= 0. By the Markov property (Theorem 2.2 (d)),

Pµ,0(X survives) = Eµ,0(PX1,L1(X survives)),

and similarly for Pν,0. By the argument of the preceding paragraph,

PX1,L1(X survives) > 0 ⇐⇒ PX1,0(X survives) > 0,

so for both ω = µ and ω = ν,

Pω,0(X survives) > 0 ⇐⇒ Eω,0(PX1,0(X survives)) > 0.

But the laws of X1 under Pµ,0 and Pν,0 are mutually absolutely continuous. (This can be
seen as follows. First, by the absolute continuity results in Evans and Perkins (1991) (see,
for example Theorem III.2.2 in Perkins (2002)), if Pµ and Pν are the laws of super-Brownian
motions with initial conditions µ and ν, then the distributions of X1 under Pµ and Pν are
mutually absolutely continuous. Second, by Theorem 2.2 (a), for any initial measure ω the
measures Pω and Pω,0 are mutually absolutely continuous.) Therefore,

Pµ,0(X survives) > 0 ⇐⇒ Pν,0(X survives) > 0.

Note that the above arguments do not require µ to satisfy the stronger Assumption 2.10,
instead just the original Assumption 1.1.

4.3. Extinction in dimension one.

Proposition 4.4. If d = 1 then for every θ ∈ R and every initial measure µ that
satisfies Assumption 1.1, the solution Xt of the martingale problem (1.2) dies out almost
surely.

Proof. First, by Proposition 2.5, on some probability space there is a version of the
process X and a super-Brownian motion X with drift θ such that X0 = X0 = µ and
Xt ≤ Xt for all t ≥ 0.

By a result of Pinsky (1995), there is a positive constant C = Cθ < ∞ such that almost
surely the support of the random measureX is eventually contained in the interval [−Ct,Ct].
Since X dominates X, the same is true for X. Now by Lemma 2.15, on the event that X

imsart-aop ver. 2011/05/20 file: phase_transition_SIR.tex date: February 5, 2013



38 S.LALLEY, E.PERKINS, AND X.ZHENG

survives, the total mass of the measure Xt must diverge. Because this mass is (eventually)
contained in [−Ct,Ct], it follows from L’Hospital’s rule that on the event of survival, the
occupation density process Lt(x) must satisfy

1

t

∫ Ct

−Ct
Lt(x) dx =

1

t

∫ t

0
|Xu| du −→∞.

Hence, if there is positive probability of survival then

1

t
E

∫ Ct

−Ct
Lt(x) dx −→∞.

But this contradicts (4.1) in Proposition 4.1.

5. Proof of survival when d = 2 or 3. In this section we prove that in dimensions
2 and 3, for all sufficiently large values of the transmission rate θ, spatial epidemics –
that is, solutions of the martingale problem (1.2) – survive with positive probability. By
Proposition 4.3, the critical value θc for survival in dimensions d = 2, 3 does not not depend
on the initial mass distribution µ, hence it suffices to prove that for some finite measure µ
there is positive probability of survival. The proof will make use of an auxiliary 3−dependent
site percolation process: this will be constructed in such a way that if percolation occurs with
positive probability then the epidemic must survive with positive probability. We will show
that by taking θ sufficiently large, we can make the density of the site percolation arbitrarily
close to 1. Since percolation occurs with positive probability in a site percolation process
when the density is near 1 (see, e.g., Theorem 4.1 of Durrett (1995)), it will follow that for
large values of θ the epidemic process will survive with positive probability. We refer the
reader to Chapter 4 of Durrett (1995) for terminology and a general framework for such
comparison arguments.

5.1. Scaled process. We assume d = 2 or 3 throughout this section. Let Xt be a spatial
epidemic process with transmission rate θ and initial mass distribution µ, that is, a solution
to the martingale problem (1.2). It will be convenient to work with a rescaled version of the
spatial epidemic defined as follows: for any θ > 0,

Ut(ψ) = θXt/θ(ψ(
√
θ ·)), for all ψ ∈ C2

c (Rd).

The effect of this rescaling is described by Lemma 2.27: in particular, Ut satisfies the martin-
gale problem (MP )1,β,1

µ̃,0 with β = θ(d−6)/2 and µ̃ defined by
∫
ψ(x) dµ̃(x) = θ

∫
ψ(
√
θx) dµ(x).

For notational ease, we will use the notation

(5.1) β = β(θ) = θ(d−6)/2

in this section, and we will drop the tilde on the initial measure µ. We will show that when
θ is sufficiently large, for a suitable initial condition µ, the process U survives with positive
probability.
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5.2. Sandwich Lemma. By Lemma 2.25, a spatial epidemic process can be bounded
below and above by super-Brownian motions with different drift terms up to the time that
its local time density exceeds some threshold. We now explain how the result of Lemma 2.25
translates to the rescaled processes.

For any µ ∈ Mc(Rd) satisfying Assumption 2.10, and any function K ∈ Cp(Rd,R+),
let U be a solution of the martingale problem (MP )1,β,1

µ,K , i.e., the spatial epidemic with
transmission rate 1, branching rate 1, inhibition parameter β, local suppression rate K, and
initial mass distribution µ. In addition, for any fixed constant κ > 0, let U t and U t be
super-Brownian motions with drift 1 and drift 1− β · κ respectively. Denote by M t and M t

the orthogonal martingale measures associated with U t and U t, respectively.

Lemma 5.1. Versions of the processes U , U and U , all with the same initial condition µ,
can be built on a common probability space in such a way that

U t ≤ Ut ≤ U t for all t ≤ τ,

where
τ = inf

{
t ≥ 0 :

(
max
x

K(x)
)

+
(

max
x

βLt(U, x)
)
≥ βκ

}
.

Proof. This follows by first rescaling U , U and U as in Lemma 2.27 so that the β
parameter becomes 1 and the drift parameters (or transmission rates) of U and U become
θ(1 − βκ) and θ, respectively. Then one may apply Lemma 2.25 to the rescaled process.
Finally undoing the scaling leads to the required conclusion.

By Lemma 2.1(a), the law of U is absolutely continuous with respect to that of U , and
the likelihood ratio on Ft is

(5.2) LRκ
t = exp

{
−βκM t(1)− β2κ2

2

∫ t

0
|U s| ds

}
.

5.3. Percolation probability estimates. Recall thatQr(x) denotes the cube of side length r
centered at x, and, as before, we abbreviate Q(x) := Q1(x). The auxiliary site percolation
processes will be constructed by partitioning the space Rd into cubes Q(x) of side length 1
centered at lattice points x ∈ Zd, and then using the behavior of the superprocesses in the
cube Q(x) to determine whether the site x will be occupied or not in the auxiliary percolation
process. Roughly, a site x will be occupied if, within a certain fixed amount of time T <∞,
the measure-valued process U started from a certain initial mass distribution supported by
Q(x) manages to generate a sufficiently large total mass in each of the adjacent cubes Q(y)
while simultaneously not accumulating too much local time. The objective of this section is
to develop estimates that will allow us to conclude that if θ is large (hence β is small), then
x is occupied with high probability.

Define the grid Γ to be Z2
+ when d = 2 and Z2

+ × {0} when d = 3, where Z2
+ := {x =

(x1, x2) ∈ Z2 : xi ≥ 0, i = 1, 2}. For x, y ∈ Γ, we say that

(5.3) x ≺ y

{
if ||x||1 < ||y||1 or
||x||1 = ||y||1 and x1 < y1.
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Here ||x||1 :=
∑

i |xi| is the `1-norm. This defines a total order on Γ, and so the points of
the lattice can be enumerated as 0 = x(1) ≺ x(2) ≺ . . .. The notation x � y is understood
as x ≺ y or x = y. Define A(x) to be the set of y ∈ Γ such that x ≺ y and ||x − y||1 = 1.
In other words, when d = 2, for any (x1, y1) ∈ Z2

+, A((x1, y1)) = {(x1, y1 + 1), (x1 + 1, y1)};
and similarly for d = 3. We shall call any y ∈ A(x) an “immediate offspring” of x, and x an
“immediate predecessor” of y.

Fix T so large that (3.21) holds. For any ε > 0, let A(ε) = A(T, ε) and r0(ε) = r0(T, ε)
be the constants specified in Proposition 3.10. For any measure-valued process X with local
time density Lt(X), and for any x ∈ Γ, M > 0, χ > 0, λ > 0 and ε > 0, define the following
events:

(5.4)



F 1(M ;X,x) = {Supp(LT (X)) ⊆ QM (x)};
F 2(χ;X) = {max

y
LT (X, y) ≤ χ};

F 3(X,x) = {XT (Q(y)) ≥ |X0|, for all y ∈ A(x)};
F 4(ε;X) = {XT is (A(ε/4), |X0|, r0(ε/4))-admissible}.

Observe that these events depend on the choice of T . For brevity we will write

F
1
(M) = F 1(M ;U, 0), F

2
(χ) = F 2(χ;U), F

3
= F 3(U, 0), and F 4

(ε) = F 4(ε;U).

Define functions

(5.5) fd(θ) =

{
θ1/2 when d = 2

log θ when d = 3,

and

(5.6) M̃ = M̃(M, θ) = [M
√

log fd(θ) + 1], and χ = χ(A′′, θ) = A′′fd(θ)κd(fd(θ)),

where κd(·) is the function defined in (3.7).

Lemma 5.2. For any ε0 > 0 , there exist positive constants θ0,M and A′′, depending only
on T and ε0, such that if θ > θ0 then for any initial measure µ supported by Q(0), of total
mass |µ| = fd(θ) and (A(ε0/4), fd(θ), r0(ε0/4))-admissible, the super-Brownian motion U t
with drift 1 and initial mass distribution µ satisfies

(5.7) P
(
F

1
(M̃) ∩ F 2

(χ) ∩ F 3 ∩ F 4
(ε0)

)
≥ 1− ε0.

Proof. This is a direct consequence of Lemma 3.12, Proposition 3.11, Lemma 3.13, and
Proposition 3.10. More specifically, by Lemma 3.12, there exists constant M = M(T, ε0)

such that P (F
1
(M̃)) ≥ 1− ε0/4. Moreover, by Proposition 3.11 with ε = ε0/4, there exists

A′′ such that P (F
2
(χ)) ≥ 1 − ε0/4. (Note that by Proposition 3.11, A′′ only depends on

(T,M, ε0, A, r0), and in our case the M , A and r0 all only depend on (T, ε0), so ultimately
A′′ only depends on (T, ε0).) Next, by Lemma 3.13, there exists θ0 > 0 such that for any
θ > θ0,

(5.8) P (F
3
) ≥ 1− ε0/4.
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Finally, by Proposition 3.10, as long as θ is such that fd(θ) ≥ 1, P (F
4
(ε0)) ≥ 1− ε0/4.

The next result explains the choice of fd(θ).

Corollary 5.3. For any positive constants θ,M and A′′, let U t = U θ,κt be the super-
Brownian motion with drift 1− βκ and initial mass distribution µ, where

(5.9) κ = M̃2χ = [M
√

log fd(θ) + 1]2 ·A′′fd(θ)κd(fd(θ)).

Then for any ε0 ∈ (0, 1), there exists θ0 > 0 such that if θ > θ0 and if the initial condition µ
is supported by Q(0) and of total mass |µ| = fd(θ), then

(5.10) P
(
F 3(U, 0)

)
≥ 1− 3ε0/2.

Proof. Let F 5(ε0) = {LRκT ≤ 1+ε0} for the likelihood ratio LRκt defined in (5.2). Using
the fact that M t(1) = M t(1)− βκ

∫ t
0 |U s|ds, we have

EU (LRκT · 1(F 5(ε0))c)

= PU
(
−βκMT (1)− (β2κ2/2)

∫ T

0
|U s|ds ≥ log(1 + ε0)

)
= PU

(
−βκMT (1) + (β2κ2/2)

∫ T

0
|U s|ds ≥ log(1 + ε0)

)
.(5.11)

Here and below we use EU and PU (EU and PU , resp.) to indicate that the expectation
and probability are taken with respect to the law of U (U, resp.). Since for any s ≥ 0,
EU (|U s|) = |U0|e(1−βκ)s (see, e.g., Eqn (5.4) in Feller (1951)), we have that

EU
∫ T

0
|U s| ds ≤ fd(θ)

∫ T

0
es ds ≤ CT fd(θ).

This and the definitions of β (in (5.1)), κ and fd imply that EU (β2κ2
∫ T

0 |U s| ds) = o(1) as θ
goes to infinity. Since βκMT (1) has square function β2κ2

∫ T
0 |U s| ds, we see from the above

that both terms inside the PU -probability in (5.11) approach 0 in probability as θ → ∞.
It follows that there exists θ0 > 0 such that for any θ > θ0, EU (LRκT · 1(F 5(ε0))c) < ε0.
Therefore by (5.8), the complement of the event F 3(U, 0) has probability bounded above by

ε0 + EU
(
LRκT · 1{LRκT≤1+ε0} · 1(F

3
)c

)
≤ ε0 + (1 + ε0) · ε0

4
≤ 3ε0

2
.

Combining the sandwich lemma (Lemma 5.1) and the previous two results we obtain
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Proposition 5.4. For any ε0 > 0 there exist positive constants θ0,M,A′′ such that,
for any θ > θ0, any initial condition µ satisfying the hypotheses of Lemma 5.2, and any
K ∈ Cp(Rd,R+) such that

K(x) + βχ · 1Q
M̃

(0)(x) ≤ βκ, for all x ∈ Rd,

the process U solving (MP )1,β,1
µ,K satisfies

(5.12) P
(
F 1(M̃ ;U, 0) ∩ F 2(χ;U) ∩ F 3(U, 0) ∩ F 4(ε0;U)

)
≥ 1− 3ε0,

where the events F i (i = 1, 2, 3, 4) are defined as in (5.4) by replacing X with U and x
with 0.

Proof. On the event F 1
(M̃) ∩ F 2

(χ),

LT (U, x) ≤ χ · 1Q
M̃

(0)(x).

Therefore by the assumption on K and Lemma 5.1,

U t ≤ Ut ≤ U t, for all t ≤ T on F
1
(M̃) ∩ F 2

(χ).

The required bound now follows from Lemma 5.2, Corollary 5.3 and an elementary argument.

5.4. Proof of survival.

Proposition 5.5. For some finite measure µ and some θ <∞, if Ut solves (MP )1,β,1
µ,0

with β = θ(6−d)/2, then
P (U survives) > 0.

Proof. Fix a T so that (3.21) holds. Fix ε0 > 0 small enough such that any 3-dependent
oriented site percolation process on Z2

+ with density at least (1−6ε0) has positive probability
of percolation. For this ε0, let θ > θ0, where θ0 is as in Proposition 5.4. Then choose a
measure µ so that it satisfies the hypotheses of Lemma 5.2 with ε0 specified as above. Let
Lt(x) denote the local time density of U , and let L∞(x) = limt→∞ Lt(x) for all x ∈ Rd. By
Lemma 3.12 and (a scaled version of) Proposition 2.5, almost surely,

L∞ is not compactly supported =⇒ U survives.

It therefore suffices to show that L∞ is not compactly supported with positive probability.
To do so, we will specify an algorithm that produces a (random) set Ω consisting of integer
sites such that
(i) L∞(Q(x)) > 0 for all x ∈ Ω; and
(ii) Ω is infinite with positive probability.
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The set Ω will be the connected cluster containing the origin in a 3−dependent site perco-
lation process with density ≥ 1− 6ε0.

Let us first give an overview of the algorithm. Recall that the grid Γ is defined to be Z2
+

when d = 2 and Z2
+ × {0} when d = 3. Initially all sites x ∈ Γ are designated vacant (that

is, Ω = ∅). Our algorithm relies on the comparison in Proposition 2.24. Starting from the
origin, following the total order 0 = x(1) ≺ x(2) ≺ · · · on Γ introduced in (5.3), we shall
define stopping times τi, random measures µi, νi and suppression rates K∗i . Proposition 2.24
allows us to couple U with another process U∗, which, on any time interval between two
successive stopping times, is a usual spatial epidemic process. The set Ω will be determined
by U∗. Proposition 2.24 ensures that LUt ≥ LU

∗
t , which will be used to ensure property (i).

Depending on how U∗ behaves for t ∈ [τi−1, τi], we may change the status of site x = x(i)
from vacant to occupied, and add x to the set Ω. Roughly speaking, this will be done if
and only if the spatial epidemic U∗t for t ∈ [τi−1, τi] succeeds in (1) putting enough mass in
adjacent cubes at time τi; and (2) accumulating only a small amount of local time. On the
event that the status of site x is changed to occupied, for each successor y ∈ A(x) we will
be able to extract a “nice” mass distribution µy in such a way that if a spatial epidemic is
initiated by µy then it will have high probability of making the two events (1) and (2) occur;
in other words, so that site y will also be added to Ω with high probability. By keeping this
probability above the percolation threshold we will ensure that the random set Ω consisting
of all the occupied sites will be infinite with positive probability.

We now introduce some notation. In addition to θ0, assume M,A′′ are as in Propo-
sition 5.4, so that (5.12) holds. In the algorithm, we will repeatedly use stopping rules
τ = τ(Y ; `;R) defined as follows: for a measure-valued process Y ∈ C([0,∞);Mc(Rd)) with
local time LYt , a threshold ` > 0, and a region R ⊆ Rd,

(5.13) τ(Y ; `;R) := inf{t : max
x

LYt (x) ≥ ` or Supp(LYt ) 6⊆ R} ∧ T.

We will also repeatedly use the notation F 1, . . . , F 4 as introduced in (5.4) to define the
so-called “good events”. For notational ease, for each i = 1, 2, . . ., associated with site x(i)
in the above overview, we write U it = U∗t+τi−1

for t ≥ 0 (i.e., the process U∗ shifted and
restricted to t ≥ τi−1), and

(5.14) Gi = F 1(M̃ ;U i, x(i)) ∩ F 2(χ;U i) ∩ F 3(U i, x(i)) ∩ F 4(ε0;U i).

The event Gi will be called a “good” event. In plain language, ignoring the technical restric-
tion F 4, on such a good event, before time T , the spatial epidemic U i has not accumulated
local time density more than χ · 1Q

M̃
(x(i)), and in the meanwhile, at time T , it spreads at

least |U i0| amount of mass in all the cubes Q(y) for y ∈ A(x(i)).
Now we describe our algorithm in detail. In order to apply Proposition 2.24, we need to

define four sequences: random measures µi, νi, suppression rate functions K∗i and stopping
times τi. The random measures µi and νi will be defined through an auxiliary random
measure sequence wi. The suppression rate functions K∗i will be deterministic functions as
follows: K∗0 ≡ 0, and for i ≥ 1,

(5.15) K∗i = βχ ·
i∑

j=1

1Q
M̃

(x(j)).
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Observe that for each i, K∗i is a summation of moving windows, and is bounded by βκ

everywhere (recall that κ is defined in (5.9) and note each point is covered by at most M̃2

cubes of the form Q
M̃

(xj) for centers in our 2-dimensional grid).
We start with site x(1) = 0. The τ0, µ0 and ν0 are all deterministic: τ0 = 0, µ0 = µ and

ν0 = 0. Let τ1 = τ(U1;χ,Q
M̃

(x(1))). By Proposition 5.4, the good event G1 occurs with
probability ≥ 1− 3ε0. Observe also that τ1 > 0 almost surely and τ1 = T on G1. If the good
event G1 occurs, then we change the status of site 0 to be occupied. Further define

(5.16) w1 =


∑

z∈A(x(1))

|µ|
U∗τ1−(Q(z))

· U∗τ1−(· ∩Q(z)), if G1 occurs;

0, otherwise.

We now work with site y = x(i) for i ≥ 2. We proceed according to whether the site y is
an immediate offspring of some occupied site or not.
Case I. Site y is an immediate offspring of some occupied site. Define

(5.17) (µi−1, νi−1) = (wi−1(· ∩Q(y)), wi−1(· ∩Q(y)c)) .

Then µi−1 is a measure supported byQ(y), of total mass |µ| = fd(θ), and (A(ε0/4), fd(θ), r0(ε0/4))-
admissible. Let τi = τi−1 + τ(U i;χ,Q

M̃
(y)). By Proposition 5.4 (with an apparent spa-

tial translation), the good event Gi occurs with probability ≥ 1 − 3ε0. Observe also that
τi − τi−1 = T on Gi. If the good event Gi occurs, then we change the status of site y to
occupied. Moreover, according to whether Gi occurs or not, we define wi as follows:

(5.18) wi =


νi−1 +

∑
z∈Ã(y)

|µ|
U∗τi−(Q(z))

· U∗τi−(· ∩Q(z)), if Gi occurs;

νi−1, otherwise.

where
Ã(y) = {z ∈ A(y) : z /∈ A(u) for u which is occupied and ≺ y}.

Case II. Site y is not an immediate offspring of any occupied site. Then we set (µi−1, νi−1) =
(0, wi−1), τi = τi−1, and wi = wi−1.

In either case at time τi we proceed to site x(i+ 1).
It is easy to see that such defined µi, νi,K

∗
i and τi satisfy the conditions of Proposi-

tion 2.24, and therefore the processes U and U∗ can be coupled such that

LUt ≥ LU
∗

t , for all t ≥ 0.

Now if we let Ω be the set of all occupied sites, then by the algorithm above, for any
x = x(i) ∈ Ω,

LU
∗
∞ (Q(x)) ≥ LU∗τi (Q(x))− LU∗τi−1

(Q(x)) > 0,

and hence Ω satisfies the condition (i).
We now show that Ω is infinite with positive probability. Define a site percolation on Γ as

follows: for each x ∈ Γ, if x is occupied, then we let ξ(x) = 1 if both y ∈ A(x) are occupied,
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and = 0 otherwise; if x is vacant, then we let ξ(x) be a Bernoulli(1− 6ε0) random variable
that is independent of everything else.

We know that the origin is occupied with positive probability. We claim that on the event
that the origin is occupied, Ω contains the collection of sites reachable from the origin. We
may assume that ξ(0) = 1 since otherwise we are done. But when 0 is occupied, ξ(0) = 1
implies that both y ∈ A(0) are occupied. By induction the conclusion follows.

It remains to show that the above defined site percolation is a 3-dependent site percolation
with density at least (1 − 6ε0), i.e., we need to show that for any n ≥ 1 and any 1 ≤ i1 <
. . . < in such that ||x(ij)− x(ik)||1 ≥ 3,

P (ξ(x(ij)) = 0 for all j = 1, . . . , n) ≤ (6ε0)n.

Since when a site x is vacant, ξ(x) is a Bernoulli(1 − 6ε0) random variable independent of
everything else, we need only to show

(5.19) P (ξ(x(ij)) = 0 for all j = 1, . . . , n | all x(ij)’s are occupied) ≤ (6ε0)n.

Let us first consider the n = 1 case. When x := x(i1) is occupied, by construction, each
y ∈ A(x) is occupied with probability at least 1 − 3ε0, hence the probability that both
y ∈ A(x) are occupied is at least 1− 6ε0. (5.19) follows.

In general, for each m ≥ 0, we define Gm to be the σ-algebra generated by {U∗t :
0 ≤ t ≤ τm}. Then for each i ≥ 1, the good event Gi is measurable with respect to
Gi, and hence the Bernoulli random variable ξ(x(i)) is measurable with respect to G` where
` is the index of the second y ∈ A(x(i)). Now since x(ij)’s are at least distance 3 from each
other, if we let `j be the index of the second y ∈ A(x(ij)), then

`j < `n − 2, for all j < n.

Hence by further conditioning on G`n−2, (5.19) reduces to the n = 1 case and hence holds.

6. Proof of extinction when d = 2 or 3. As the title suggests we shall assume d = 2
or 3 throughout this Section.

6.1. Scaled process.

Proposition 6.1. Suppose Ut is such that for each ψ ∈ C2
c (Rd),

(6.1) Ut(ψ) = U0(ψ)+
α

2

∫ t

0
Us(∆ψ) ds+ε

∫ t

0
Us(ψ) ds−β

∫ t

0
Us
(
LUt · ψ

)
ds+
√
γMt(ψ),

where Mt(ψ) is a martingale with quadratic variation [M(ψ)]t =
∫ t

0 Us(ψ
2) ds. There exist

positive constants ε0 and ζ such that if the initial condition U0 belongs to the class

(6.2) C := {µ satisfying Assumption 2.10, Supp(µ) ⊆ Q(0), and |µ| = 2},

and the positive parameters α, ε, β and γ satisfy Assumption 6.2 below, then

P (U dies out) = 1.
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Assumption 6.2.

ε ≤ β

2 · 3d
, max

(
ε,
α

γ
,

√
ε

γ

)
≤ ε0, and min

(
β

ε2
,
β2

ε3γ
,

1

γ
,
β

γ

)
≥ ζ.

We denote by Pα,ε,β,γµ the law of Ut satisfying (6.1) with U0 = µ ∈ C. Then we can
rephrase the conclusion of Proposition 6.1 as

pα,ε,β,γ = 0,

where

(6.3) pα,ε,β,γ := sup
µ∈C

Pα,ε,β,γµ (U survives).

When there is no confusion about the initial configuration µ, we omit µ and write Pα,ε,β,γ

and sometimes just write P . Note that Pα,ε,0,γ denotes the law of a Dawson-Watanabe
process without any local time killing, and Pα,0,0,γ the law of driftless Dawson-Watanabe
process. By (a scaled version of) Proposition 2.5 we see that when β > 0,

(6.4) Uα,ε,β,γ . Uα,ε,0,γ ,

where Uα,ε,β,γ has law Pα,ε,β,γµ , Uα,ε,0,γ has law Pα,ε,0,γµ and the above notation means we
can define versions of these processes on the same space with Uα,ε,β,γt ≤ Uα,ε,0,γt for all t ≥ 0
almost surely. Furthermore, by Lemma 2.1, the laws Pα,ε,0,γµ and Pα,0,0,γµ are related to each
other via the likelihood ratio

(6.5)
dPα,ε,0,γµ

dPα,0,0,γµ

(U)

∣∣∣∣∣
Ft

= exp

(
ε
√
γ
Mt(1)− ε2

2γ

∫ t

0
|Us| ds

)
.

We introduce the following notation:

Vt = |Ut|; τ3 = inf{t : Supp(LUt ) 6⊆ Q3(0)},

and for any continuous real valued process X and any c ∈ R, we let Tc(X) be the hitting
time:

Tc(X) = inf{t : Xt = c}.

Finally, define τ to be the first time that Vt hits 0 or 4 or that Ut exits Q3(0), i.e.,

(6.6) τ = T0(V ) ∧ T4(V ) ∧ τ3.

Lemma 6.3. τ <∞ almost surely.

Proposition 6.4. There exist constants ε0 and ζ such that if the parameters α, ε, β
and γ satisfy Assumption 6.2, then

(6.7) sup
µ∈C

Pα,ε,β,γµ (Vτ > 0) <
1

2 · 3d
:= pc.
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We will prove these results in the next sub-Section. Proposition 6.4 is analogous to
Lemma 2.3.1 in Mueller and Tribe (1994). Once we have the Proposition, we can prove
Proposition 6.1 by constructing a sub-critical branching process as in Mueller and Tribe
(1994), or more directly as follows.

Proof of Proposition 6.1. Suppose that the positive parameters α, ε, β and γ satisfy
the assumption of Proposition 6.4. Let

r1 :=
supµ∈C P

α,ε,β,γ
µ (Vτ > 0)

pc
< 1.

By the definition (6.3) of pα,ε,β,γ , we can find a µ ∈ C such that

(6.8) Pα,ε,β,γµ (U survives) ≥ 1 + r1

2
pα,ε,β,γ .

Let Ut satisfy (6.1) with U0 = µ. For this U , at time τ , on the event that Vτ > 0, Uτ is
contained in Q3(0) with total mass no greater than 4. We can then decompose it into no
more than 2× 3d parts:

Uτ =
∑̀
i=1

U iτ , ` ≤ 2× 3d,

each of whom has support contained in a unit cube, total mass at most 2, and satisfies
Assumption 2.10. To see this last property, the domination in (6.4), the absolute continuity
in (6.5), and the finite propagation speed of the super-Brownian motion (see, e.g., Theorem
III.1.3 in Perkins (2002)) show that it suffices to prove that if U is the super-Brownian motion
with law Pα,0,0,γµ , then Uτ satisfies Assumption 2.10 a.s. The last claim follows directly from
Theorem III.3.4. in Perkins (2002).

By the Markov property of the joint process (U,LU ) (see Theorem 2.2(d)), Lemma 2.15,
and (a scaled version of) Lemma 2.18,

Pα,ε,β,γµ (U survives) ≤ E
(
1(Vτ>0) · P

α,ε,β,γ
Uτ

(U survives)
)
.

Here we are “throwing away” the killing due to LUτ . By Lemma 2.19 and translation invari-
ance, the right-hand side is bounded above by

E

(
1(Vτ>0) ·

∑̀
i=1

Pα,ε,β,γ
U iτ

(U survives)

)
≤ P (Vτ > 0) · E

(∑̀
i=1

pα,ε,β,γ

)
≤ r1p

α,ε,β,γ .

Combining this with the previous inequality and (6.8) we get

1 + r1

2
pα,ε,β,γ ≤ r1p

α,ε,β,γ ,

hence pα,ε,β,γ = 0.

imsart-aop ver. 2011/05/20 file: phase_transition_SIR.tex date: February 5, 2013



48 S.LALLEY, E.PERKINS, AND X.ZHENG

6.2. Proof of Lemma 6.3 and Proposition 6.4. In the arguments below, Ut is a process
satisfying (6.1) with a fixed initial condition µ ∈ C. The bounds in Lemmas 6.6 – 6.9 below
hold for all µ ∈ C, and hence will lead to the uniform bound in Proposition 6.4.

First we note that Vt = |Ut| satisfies the following SDE for some Brownian motion W :

(6.9) dVt = εVt dt− βUt(LUt ) dt+
√
γ
√
Vt dWt.

By an integration by parts,

β

∫ t

0
Us(L

U
s ) ds =

β

2

∫
(LUt (x))2 dx.

When t ≤ τ3, by Cauchy-Schwartz we get that

(6.10)
β

2

∫
(LUt (x))2 dx ≥ β

2
· 1

3d

(∫
LUt (x) dx

)2

= pcβ

(∫ t

0
Vs ds

)2

.

We now prove Lemma 6.3.

Proof of Lemma 6.3. Suppose otherwise P (τ =∞) > 0, in particular, P (τ3 =∞) > 0.
By (6.9) and (6.10), on the event {τ3 =∞},

(6.11) Vt ≤ 2 + ε

∫ t

0
Vs ds− pcβ

(∫ t

0
Vs ds

)2

+
√
γ

∫ t

0

√
Vs dWs, for all t ≥ 0.

Define a sequence of stopping times {ri} by r0 = 0 and for i ≥ 0,

ri+1 =

{
ri + 1 if Vri+1 ≤ 2,

inf{t ≥ ri + 1 : Vt = 2} otherwise.

Claim 6.5. For all i, ri <∞ almost surely

Suppose for some i, ri < ri+1 = ∞. Then Vt > 2 for all t ≥ ri + 1. Therefore (6.11) shows
that on {τ3 =∞} the continuous martingale √γ

∫ t
0

√
V s dWs approaches +∞ as t→∞, an

event of probability zero. This proves the claim.
For each i Proposition 2.5 allows us to bound Vt above on [ri, ri + 1] by a Feller diffusion

with drift ε and initial value 2 which does hit 0 in the next one unit of time with probability
q > 0. This shows P (V hits 0 on [ri, ri + 1]|Fri) ≥ q > 0 and we therefore conclude that V
will hit 0 almost surely, again a contradiction to our supposition.

Next we prove Proposition 6.4. Define a continuous random time change
η :
[
0,
∫ T0(V )

0 Vs ds
]
→ [0, T0(V )] by

(6.12) ηt = inf

{
r :

∫ r

0
Vs ds = t

}
,
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and let Ṽt = Vηt . Then Ṽt satisfies

Ṽt = 2 + εt− β
∫ ηt

0
Us(L

U
s ) ds+

√
γBt, for t ≤

∫ T0(V )

0
Vs ds,

where Bt =
∫ ηt

0

√
Vs dWt for t ≤

∫ T0(V )
0 Vs ds and may be extended, if necessary, to a

standard Brownian motion. If

(6.13) Yt = 2 + εt− pcβt2 +
√
γBt.

then by (6.10)

(6.14) Ṽt ≤ Yt for t ≤
∫ τ3∧T0(V )

0
Vs ds,

since the upper bound on t implies ηt ≤ τ3.
We want to bound P (Vτ > 0) where τ is defined in (6.6). Using the comparison above,

noting that by Lemma 6.3 τ <∞ almost surely, we get that

P (Vτ > 0)

≤P (τ3 < T0(V ), τ3 < T4(V )) + P (τ = T4(V ))

≤P (τ3 < 1/(4ε)) + P (1/(4ε) ≤ τ3 ≤ T0(V )) + P (T4(V (· ∧ τ3)) < T0(V ))

≤P (τ3 < 1/(4ε)) + P (T1(V ) ≤ 1/(8ε) and T0(V ) ≥ 1/(4ε))(6.15)
+ P (T0(Y ) > 1/(8ε)) + P (T4(Y ) < T0(Y )),

where in the last line we used that

P (T1(V ) > 1/(8ε), T0(V ) ≥ 1/(4ε) and τ3 ≥ 1/(4ε)) ≤ P (T0(Y ) > 1/(8ε)).

This holds because V0 = 2, and hence on the event on the left-hand side∫ τ3∧T0(V )

0
Vs ds ≥

∫ 1/(8ε)

0
Vs ds ≥ 1/(8ε),

which implies η1/(8ε) ≤ 1/(8ε), and by (6.14), for all t ≤ 1/(8ε), Yt ≥ Ṽt = Vηt > 0 (since
T0(V ) ≥ 1/(4ε)). Proposition 6.4 will be proved if we can show that all four probabilities in
(6.15) are small.

Lemma 6.6. There exists a constant C > 0 such that

P (τ3 ≤ 1/(4ε)) ≤ C
√
α

γ
exp

(√
ε

8γ

)
+ 2
√
ε exp

(
2
√
ε

γ

)
.

Proof. By the domination (6.4), it suffices to show the lemma for Pα,ε,0,γ , which is then
analogous to Lemma 2.1.9 in Mueller and Tribe (1994) where the conclusion for the d = 1
case is proved. We give here a slightly simpler proof for all d ≤ 3.
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Following Mueller and Tribe (1994) and using (6.5), we get that

Pα,ε,0,γ(τ3 ≤ 1/(4ε))(6.16)

≤Eα,0,0,γ
(
1{τ3≤1/(4ε)∧T

ε−1/2 (V )} · exp

(
ε
√
γ
Mτ3(1)− ε2

2γ

∫ τ3

0
Vs ds

))
+ Pα,ε,0,γ(Tε−1/2(V ) < 1/(4ε))

≤
√
Pα,0,0,γ(τ3 ≤ 1/(4ε))

·

√
Eα,0,0,γ

(
exp

(
2ε
√
γ
Mτ3(1)− ε2

γ

∫ τ3

0
Vs ds

)
· 1{τ3≤1/(4ε)∧T

ε−1/2 (V )}

)
(6.17)

+ Pα,ε,0,γ(Tε−1/2(V ) <∞).

A scale function (see, e.g., Proposition VII.3.2 and Exercise VII.3.20 in Revuz and Yor
(1999)) for V when β = 0 is given by s(x) = γ(1− exp(−2εx/γ))/(2ε) and so

Pα,ε,0,γ(Tε−1/2(V ) <∞) =
s(2)− s(0)

s(ε−1/2)− s(0)
=

1− exp(−4ε/γ)

1− exp(−2
√
ε/γ)

≤ 4ε/γ

(2
√
ε/γ) exp(−2

√
ε/γ)

= 2
√
ε exp(2

√
ε/γ).(6.18)

We will use Theorem 1 of Iscoe (1988) to bound Pα,0,0,γ(τ3 ≤ 1/(4ε)) ≤ Pα,0,0,γ(τ3 <∞).
To do so, we make another scaling: let

Ũt(ψ) =
Ut

(
ψ
(√

2
α x
))

γ
, for all ψ ∈ C2

c (Rd),

then by Lemma 2.27 Ũt satisfies the assumptions of Theorem 1 in Iscoe (1988), and

Ut(Q
c
3(0)) > 0⇐⇒ Ũt

(
Qc

3
√

2
α

(0)

)
> 0.

Hence by Theorem 1 in Iscoe (1988) and the fact that U0 ∈ C,

(6.19) Pα,0,0,γ(τ3 <∞) ≤
Ũ0

(
u

((
3
2

√
2
α

)−1

·
))

(
3
2

√
2
α

)2 ≤ Cu
(

2

3
e1

)
· α
γ
,

where e1 is a unit vector and u(x) is the unique positive (radial) solution of the singular
elliptic boundary value problem

∆u(x) = u2(x), x ∈ B(0, 1); and u(x)→∞ as |x| → 1.
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Next denote by λ = 2ε√
γ . Since Z(t) = exp

(
λMt(1)− λ2

2

∫ t
0 Vs ds

)
is a supermartingale

(being a non-negative local martingale),

Eα,0,0,γ
(

exp

(
2ε
√
γ
Mτ3(1)− ε2

γ

∫ τ3

0
Vs ds

)
· 1{τ3≤1/(4ε)∧T

ε−1/2 (V )}

)
= Eα,0,0,γ

(
Z(τ3 ∧ (4ε)−1) exp

(
λ2

4

∫ τ3

0
Vs ds

)
· 1{τ3≤1/(4ε)∧T

ε−1/2 (V )}

)
≤ exp

(
λ2

4
· 1

4ε3/2

)
Eα,0,0,γ(Z0)

= exp

(√
ε

4γ

)
,(6.20)

where optional sampling is used in the next to last line. Now insert (6.18), (6.19), and (6.20)
into (6.16) to complete the proof.

Lemma 6.7. There exists a constant C > 0 such that

P (T1(V ) ≤ 1/(8ε) and T0(V ) ≥ 1/(4ε)) ≤ C ε
γ
.

Proof. Recall that Vt satisfies (6.9). Applying Proposition 2.5 again, on {T1(V ) < ∞}
we may define an FT1(V )+t-adapted solution V of

V t = 1 + ε

∫ t

0
V s ds+

√
γ

∫ t

0

√
V s dW

′
s,

where W ′ is an FT1(V )+t-Brownian motion and V t ≥ VT1(V )+t for all t ≥ 0, almost surely on
{T1(V ) <∞}. Therefore

P (T1(V ) ≤ 1/(8ε) and T0(V ) ≥ 1/(4ε)) ≤ P (T0(V ) ≥ 1/(8ε)).

By Exercise II.5.3. in Perkins (2002) the last term equals

1− exp

(
−2ε

γ(1− e−1/8)

)
≤ 2ε

γ(1− e−1/8)
.

Recall that Y is defined in (6.13).

Lemma 6.8. There exist constants C1, C2 > 0 such that for all βε−2 ≥ 20000 and
0 < ε ≤ 1/4,

P (T0(Y ) > 1/(8ε)) ≤ C1 exp

(
−C2

β2

ε3γ

)
.
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Proof. Assume β, ε are as above and recall that pc = (1/2)3−d.

P (T0(Y ) > 1/(8ε)) ≤ P (Y1/(8ε) > 0)

= P

(
B1/(8ε) ≥

1
√
γ

(
pc
64
· βε−2 − 2− 1

8

))
≤ P

(
B1 ≥

√
8ε pc
64

1
√
γ

(
βε−2 − 10000

))

≤ P

(
B1 ≥

√
8ε pc
128

1
√
γ
· (βε−2)

)
.

The result follows.

Lemma 6.9. There exists C > 0 such that if ε ≤ min (1/2, pcβ), then

P (T4(Y ) < T0(Y )) ≤ C exp

(
− 1

8γ

)
+ exp

(
−2pc

β

γ

)
.

Proof. Recall that Yt satisfies

Yt = 2 + εt− pcβt2 +
√
γBt.

Hence if we define Ỹt by
Ỹt = 2 + εt+

√
γBt,

then Yt ≤ Ỹt. Note also that

P (T4(Y ) < T0(Y )) ≤ P (T3(Ỹ ) ≤ 1) + P (T3(Ỹ ) ≥ 1, T4(Y ) < T0(Y )).

We first estimate P (T3(Ỹ ) ≤ 1):

(6.21)

P (T3(Ỹ ) ≤ 1) = P (max
t≤1

(εt+
√
γBt) ≥ 1)

≤ P
(

max
t≤1

Bt ≥
1− ε
√
γ

)
≤ C exp

(
− 1

8γ

)
provided that ε ≤ 1/2, where C > 0 is some constant independent of ε and γ.

We now work with P (T3(Ỹ ) ≥ 1, T4(Y ) < T0(Y )). Define

Y t = Y1 − pcβt+
√
γBt,

where Bt = Bt+1 −B1. If ε ≤ pcβ and t ≥ 1, then

Yt = Y1 + ε(t− 1)− pcβ(t2 − 1) +
√
γBt−1

= Y1 + (t− 1)[ε− pcβ(t+ 1)] +
√
γBt−1

≤ Y1 + (t− 1)[pcβ − 2pcβ] +
√
γBt−1

= Y t−1.
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Furthermore, since Yt ≤ Ỹt, on the event {T3(Ỹ ) ≥ 1}, Y1 ≤ 3 and T4(Y ) > 1. Therefore

P (T3(Ỹ ) ≥ 1, T4(Y ) < T0(Y )) ≤ P
(
3− pcβt+

√
γBt hits 4 before 0

)
.

The latter probability can be explicitly calculated using scale functions: if we let

s(x) =

∫ x

0
exp

(∫ y

0

2pcβ

γ
dz

)
dy =

γ

2pcβ

(
exp

(
2pcβ

γ
x

)
− 1

)
,

then

P

(
3− pcβ

2
· t+

√
γB̄t hits 4 before 0

)
=
s(3)− s(0)

s(4)− s(0)
=

exp
(

2pcβ
γ · 3

)
− 1

exp
(

2pcβ
γ · 4

)
− 1

≤ exp

(
−2pc

β

γ

)
.

Proof of Proposition 6.4. The hypotheses of the above four Lemmas are satisfied
under Assumption 6.2 for small enough ε0 and large enough ζ. The bounds obtained in all
four Lemmas can also be made as small as we like, again by taking ε0 small enough and ζ
large enough. By inserting these bounds into (6.15), we obtain Proposition 6.4.

6.3. Proof of extinction for the original equation. By Proposition 4.3 and Proposition 6.1,
in order to show extinction for Xt defined by the original equation (1.2), it suffices to show
that when θ > 0 is sufficiently small, there exists a scaling as in Lemma 2.27 such that the
parameters in the scaled equation satisfy Assumption 6.2. This is the content of the next
lemma.

Lemma 6.10. For any fixed constants 0 < ε0 < ζ, for all θ > 0 sufficiently small, there
exist a scaling of X, as in Lemma 2.27 with K = 0, such that the parameters in the scaled
equation satisfy Assumption 6.2.

Proof. By Lemma 2.27 we want to find positive constants a, b and c such that

(6.22) α = ab2, ε = aθ, β =
a2bd

c
, and γ = ac

satisfy Assumption 6.2. We will only look at power functions, i.e.,

a = θx, b = θy, and c = θz,

and show that for appropriate (real) choices of x, y and z, Assumption 6.2 is satisfied provided
that θ is sufficiently small. We have that

α = θx+2y, ε = θ1+x, β = θ2x+dy−z, and γ = θx+z.
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Looking back at the conditions in Assumption 6.2, we see that it is sufficient that
1 + x > 2x+ dy − z,
1 + x > 0, x+ 2y − (x+ z) > 0, (1 + x)/2− (x+ z) > 0

(2x+ dy − z)− 2(1 + x) < 0, 2(2x+ dy − z)− 3(1 + x)− (x+ z) < 0,

x+ z < 0, 2x+ dy − z − (x+ z) < 0,

i.e., 
1 + z > x+ dy,

x > −1, 2y > z, 1− x > 2z

dy − z < 2, 2dy < 3z + 3

x+ z < 0, x+ dy < 2z.

There is an abundance of choices, for example, x = −3/4 and y = z = 1/2 will do.

7. A strong form of local extinction. Theorem 1.3 is a direct consequence of Propo-
sition 4.4 and the following result.

Theorem 7.1. Assume that d = 2 or d = 3. If the initial mass distribution µ satisfies
Assumption 1.1, then for any value of θ the epidemic Xt (the solution to the martingale
problem (1.1)) dies out locally, that is, with probability one, for every compact subset K ⊂ Rd,

(7.1) Xt(K) = 0 for large enough t.

The remainder of this section will be devoted to the proof of this theorem. Observe at
the outset that it suffices to show that the property (7.1) holds when K is a ball of radius
% = %(θ) > 0 centered at a point with rational coordinates, because any compact K is
covered by finitely many such balls. Moreover, it suffices to consider only balls centered
at the origin, because the initial mass distribution µ can always be re-centered. Thus, our
objective is to prove that the epidemic dies out in K = B%(0).

7.1. Re-infection at large times . The proof of Theorem 7.1 will have three parts: First,
we will show that (7.1) could fail only if the ball B%(0) were re-infected from outside the
ball B3%(0) at indefinitely large times. Second, we will show (in Section 7.2 below) that
boundedness of EL∞(B3%(0)), by Proposition 4.1, implies that the mean mass flux through
the sphere of radius 2% is finite. Finally, we will show (in Section 7.3) the finite total mean
mass flux through the sphere of radius 2% will imply that reinfection of B%(0) from outside
B3%(0) at arbitrarily large times cannot occur.

To give precise meaning to the notions of “re-infection from outside” and “mass flux
through a boundary” we must bring in the historical process H associated with the spatial
epidemicX. (For a rigorous development of the basic theory, for Dawson-Watanabe processes
without interaction, see Dawson and Perkins (1991), for interactive processes including our
setting see Perkins (1995), and for an overview of both see Perkins (2002)). Recall that for
each time t the state Ht is a random measure on the space of continuous paths C([0, t],Rd)
that projects to Xt via the time−t evaluation mapping. As in the above references, for w ∈
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C := C([0,∞),Rd) we set wt(·) = w(·∧t) and identify C([0, t],Rd) with {w ∈ C([0,∞),Rd) :
w = wt}.

Theorem 5.11(a) of Perkins (1995) gives a version of Dawson’s Girsanov Theorem for
historical processes. It is then easy to adapt the proof of Theorem 2.2 to see that The-
orem 5.11(a) of Perkins (1995) will apply with the drift function g there equal to θ −
LXs (ws). This gives a solution Ht to a well-posed historical martingale problem so that
Xt(ϕ) =

∫
ϕ(wt)Ht(dw) is the unique solution to (1.2). It also shows that the law of H is

absolutely continuous to the law of the historical process associated with super-Brownian
motion on the filtration up to time t, for each t > 0.

For a fixed % > 0 let

η(w) = η%(w) = inf{t ≥ 0 : |wt| ≥ 3%}

be the exit time of the path w from the interior of B3%(0). At time t color the path (ws)s≤t
red if η ≤ t and otherwise color it blue. This gives a decomposition

(7.2) Ht(·) = HR
t (·) +HB

t (·) := Ht(· ∩ {η ≤ t}) +Ht(· ∩ {η > t}).

Projecting via the time−t evaluation we obtain the decomposition

Xt(·) = XR
t (·) +XB

t (·) := HR
t (wt ∈ ·) +HB

t (wt ∈ ·).

Proposition 7.2. For each value θ ∈ R there exists % = %(θ) > 0 such that for any
initial mass distribution µ satisfying Assumption 1.1, the process HB in the red/blue decom-
position (7.2) will die out with probability one.

Proof. Arguing as in Proposition IV.1.4 of Perkins (2002), but using historical processes,
one can construct our historical epidemic process H and the historical process H for a drift-θ
super-Brownian motion, X, on a common probability space so that H0 = H0 and Ht ≤ Ht

for all t ≥ 0. We decompose H = H
R

+ H
B as in (7.2), thus inducing a corresponding

decomposition, X = X
R

+ X
B. Then XB will be the drift-θ superprocess associated with

Brownian motion killed when it exits the interior of B3%(0). Therefore if Qx is Wiener
measure starting at x and η% is also the corresponding exit time for the Brownian path, then
for t > 0,

(7.3) E(|XB
t |) = eθt

∫
Qx(t < η%)dµ(x) ≤ eθt|µ|Q0(t < η%).

(A careful proof of this could use the appropriate version of Proposition 7.4(c) below with
η% in place of τk and H in place of H.) For % > 0 sufficiently small (how small will depend
on θ) this expectation decays exponentially with t, by elementary estimates on the transition
kernel for killed Brownian motion. (In particular, 3% > 0 must be small enough that the
first eigenvalue of −∆/2 with Dirichlet boundary conditions on ∂B3%(0) is strictly greater
than θ.)

It remains to show that the exponential decay of E|XB
t | implies that XB dies out almost

surely. Let Zt denote a Feller branching process with drift θ. For n ∈ N, the fact that the
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total mass process |XB| is dominated by the total mass process without killing on ∂B3%(0)
implies

P (|XB
n+1| > 0) ≤ E(P

X
B
n

(|XB
1 | > 0)) ≤ E(P|XB

n |
(Z1 > 0)) = E

[
1− exp

(−2θ|XB
n |

1− e−θ
)]

≤ C(θ)E(|XB
n |),(7.4)

where Exercise II.5.3 of Perkins (2002) is used in the next to last line. The exponential decay
in the mean on the right-hand side now shows that HB, and hence the smaller HB, dies out
a.s. by a Borel-Cantelli argument.

For future reference we state a time shifted version of the above. Let T > 0, define

(7.5) σT = inf{t ≥ T : |wt| ≥ 3%},

and for t ≥ T set
HB,T
t (·) = Ht(· ∩ {σT > t}).

Proposition 7.3. For µ, θ and %(θ) as in Proposition 7.2, the process HB,T will die
out with probability one.

Proof. One proceeds just as above but conditional on the past up to T , Ht, t ≥ T
will be the historical process associated with a drift-θ super-Brownian motion starting at
HT = HT .

Assume for the remainder of the proof that % = %(θ) > 0 is small enough that the
conclusions of Propositions 7.2 and 7.3 hold. Then for any fixed T ≥ 0, all mass in the
spatial epidemic Xt will eventually be descended from the mass in XT outside of B3%(0).
This obviously implies that if local extinction (7.1) fails for K = B%(0) then the ball B%(0)
must be re-infected by mass from outside B3%(0) at arbitrarily large times.

7.2. Finite mass flux. We will control the re-infections of B%(0) from outside B3%(0)
by bounding the total “mass flux” (to be made precise below) through ∂B2%(0). For any
continuous path w in Rd define ν0 < τ1 < ν1 < · · · to be the successive times of passage
between the spheres ∂B3%(0) and ∂B2%(0) (that is, ν0 is the first hitting time of B3%(0), τ1

the first hitting time of ∂B2%(0) after ν0, and so on). Now for each k = 1, 2, . . . define Hk
t

to be an associated historical process in which historical mass frozen at time τk is collected
as τk occurs for τk < t. For general superprocesses these are the historical random measures
constructed by Dynkin (1991) (Theorem 1.5) using log Laplace equations. We will follow
Theorem 2.23 and Remark 2.25 of Perkins (1995) which gives a recipe for their construction
and associated stochastic analysis, using historical stochastic calculus, and does so in a more
general interactive framework which includes our spatial epidemic processes.
C2
b (Rd) denotes the space of bounded continuous functions on Rd with bounded continuous

partials of order 2 or less.
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Proposition 7.4. For each k ∈ N, there is a non-decreasing continuous M(C)-valued
process, Hk, and hence an associated random measure on [0,∞)× C (also denoted by Hk),
satisfying Hk

0 = 0 and the following properties:
(a) w = wτk , τk(w) = t, and so wt ∈ ∂B2%(0), for Hk − a.a. (t, w) a.s.
(b) If ψ is a bounded measurable function on C, then with probability 1 for all t ≥ 0,∫

ψ(wτk)1(t>τk)Ht(dw) =

∫ t

0

∫
ψ(wτk)1(s>τk) dM

H(s, w)

+

∫ t

0

∫
ψ(wτk)1(s>τk)[θ − LXs (ws)]Hs(dw)ds+Hk

t (ψ),

where MH is the orthogonal martingale measure associated with H.
(c) If Xk

t (·) =
∫ t

0

∫
1(wτk∈·)H

k(ds, dw) and ϕ ∈ C2
b (Rd), then with probability 1 and for all

t ≥ 0,∫
ϕ(wt)1(t>τk)Ht(dw) =

∫ t

0

∫
ϕ(ws)1(s>τk) dM

H(s, w)

+

∫ t

0

∫
1(s>τk)

[∆ϕ

2
(ws) + ϕ(ws)(θ − LXs (ws))

]
Hs(dw)ds

+Xk
t (ϕ).

(d) For any fixed t ≥ 0 and bounded Borel ψ : C → R, if

An(t, ψ) =
∞∑
i=1

1(i2−n<t)

∫
ψ(wτk)1((i−1)2−n≤τk<i2−n)Hi2−n(dw),

then An(t, ψ) → Hk
t (ψ) in probability as n → ∞. If An also denotes the measure on

[0,∞)× C associated with An(t+, ψ), there is a subsequence {nj} so that Anj |[0,T ]×C → Hk

inM([0, T ]× C) for all T > 0 a.s.

Proof. The above result is implicit in Remark 2.25 in Perkins (1995) and carried out
for the total mass in Theorem 2.23 of the same reference. We will sketch how the latter
construction is easily extended to the measure-valued process Hk.

Let ψ ≥ 0 be a bounded Borel function on C and in the setting of Theorem 2.23 in Perkins
(1995), set

(7.6) C(t, ω, w) = ψ(wτk)1(t>τk(w)).

The above setting includes our historical epidemic process with the function ĝ on page 9 of
this reference equal to θ − LXs (ω,ws) and the integrator Z0 on page 12 given by

dZ0(s, w) = dMH(s, w) + θHs(dw)ds− LXs (ws)Hs(dw)ds.

Therefore for ψ fixed, Theorem 2.23 in Perkins (1995) implies (b) and the first conclusion
in (d) for some non-decreasing left-continuous process Hk

t (ψ) satisfying Hk
0 (ψ) = 0. To
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derive (c) from (b) (with ψ(w) = ϕ(wτk)) we need to show that∫
(ϕ(wt)− ϕ(wτk))1(t>τk)Ht(dw) =

∫ t

0

∫
(ϕ(ws)− ϕ(wτk))1(s>τk) dZ

0(s, w)

+

∫ t

0

∫
∆ϕ

2
(ws)1(s>τk)Hs(dw)ds,

and this follows easily from the historical stochastic calculus in Chapter 2 of Perkins (1995).
Consider next the continuity of Hk

t (ψ) in t for ψ ≥ 0 bounded and Borel. By (IV.48) of
Dellacherie and Meyer (1982), it suffices to show that if Tn ↓ T are bounded (Ft)-stopping
times, then

lim
n→∞

E(Hk
Tn(ψ)−Hk

T (ψ)) = 0.

Arguing as in (2.44) of Perkins (1995) this reduces to showing

(7.7) lim
n→∞

E(HTn(T ≤ τk < Tn)) = 0,

and

(7.8) lim
n→∞

E(Hs(τk = T )) = 0 for each s > 0.

We consider only (7.7) as the proof of (7.8) will then be clear. Using the weak continuity
of H one easily sees that
(7.9)

lim sup
n→∞

E(HTn(T ≤ τk < Tn)) ≤ E(HT (|wT | = 2%, τk ≤ T )) ≤ E(HT (|wT | = 2%)1(0<T )),

where we used τk(w) > 0. Theorem III.5.1 of Perkins (2002) and our absolute continuity
of X with respect to super-Brownian motion show that

(7.10) P (Ht(|wt| = 2%) > 0 for some t > 0) ≤ P (Xt(∂B2%(0)) > 0 for some t > 0) = 0.

This implies the right-hand side of (7.9) is zero and so (7.7) is proved, thus giving the
continuity of Hk

t (ψ) for each ψ as above.
Next we construct Hk as a measure-valued process. Choose a countable determining class

D of bounded continuous functions on C containing the constant 1. For each ψ ∈ D there is
a subsequence {nj} so that

(7.11) sup
t≤T
|Anj (t, ψ)−Hk

t (ψ)| = 0 for all T > 0 a.s.

This holds by the first part of (d), monotonicity in t and the a.s. continuity of the limit.
By diagonalization we assume the same subsequence works for all ψ ∈ D. It is then easy to
check that Anj |[0,T ]×C

w→Hk|[0,T ]×C as finite measures on [0, T ] × C for all T > 0. Formally
we may use Jakubowski’s theorem (Theorem II.4.1 of Perkins (2002)) and the fact that
the required compact containment condition follows easily from the modulus of continuity
for the historical paths of super-Brownian motion (Theorem III.1.3 of Perkins (2002)) and
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the usual absolute continuity argument. Implicit in the above notation is the fact that the
limiting random measure Hk is related to the processes Hk(ψ) constructed earlier by∫ t

0

∫
ψ(w)Hk(ds, dw) = Hk

t (ψ) for all t ≥ 0 a.s.

This gives the existence of the required process Hk satisfying properties (b)-(d).
We have τk(w) ≤ t, w = w(· ∧ τk), and so wt ∈ ∂B2%(0) for An(dt, dw)-a.s., and taking

weak limits in n we obtain (a) except with τk ≤ t Hk-a.s. To see that τk = t Hk-a.s., it
suffices to fix t ≥ ε > 0 and show Hk((t− ε, t]×{τk < t− ε}) = 0 a.s. This is easily derived
from (b) with ψ = 1(τk<t−ε) and a bit of historical stochastic calculus.

We may repeat the above construction with minor changes for the stopping times νk in
place of τk and so obtain continuous non-decreasing M(C)-valued processes {Ĥk : k ∈ N}
and their projections {X̂k : k ∈ N} which areM(Rd)-valued processes supported on ∂B3%(0).
We identify Xk and X̂k with the corresponding random measure on [0,∞)× Rd.

For future reference we state a truncated version of Proposition 7.4(c). For t ≥ T > 0
define

X̂k,T (·) =

∫ t

T

∫
1(wνk∈·) 1(T≤τk)Ĥ

k(ds, dw).

Proposition 7.5. If T > 0 and ϕ ∈ C2
b (Rd), then with probability 1 for all t ≥ T :∫

ϕ(wt)1(T≤τk<t)Ht(dw)(7.12)

=

∫ t

T

∫
1(T≤τk<s)ϕ(ws)dM

H(s, w)

+

∫ t

T

∫
1(T≤τk<s)

[∆ϕ

2
+ ϕ(θ − LXs )

]
(ws)Hs(dw)ds+ (Xk

t −Xk
T )(ϕ),

∫
ϕ(wt)1(T≤τk,νk<t)Ht(dw)(7.13)

=

∫ t

T

∫
1(T≤τk,νk<s)ϕ(ws)dM

H(s, w)

+

∫ t

T

∫
1(T≤τk,νk<s)

[∆ϕ

2
+ ϕ(θ − LXs )

]
(ws)Hs(dw)ds+ X̂k,T

t (ϕ).

Proof. For (7.12) start with Proposition 7.4(b) with ψ(wτk) = ϕ(wτk)1(T≤τk) and then
proceed as in the derivation of (c) above. The fact that τk = s for Hk-a.a (s, w) is used to
get the form of the final term. The proof of (7.13) is similar.

The total flux measure on [0,∞) × ∂B2%(0) is Xτ =
∑∞

k=1X
k and similarly we define

Xν =
∑∞

k=1 X̂
k on [0,∞)×B3%(0). At present these measures may be infinite.
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As was already noted, our plan is to control the re-infections of B%(0) from outside B3%(0)
by bounding the total flux, |Xτ |, through ∂B2%(0). We next bound this flux in L1 as a
consequence of Proposition 4.1 and Proposition 7.4(c) above.

Color a path w yellow at time t iff τk < t ≤ νk, for some k ≥ 1, that is, iff at time t w
is engaged in an excursion from ∂B2%(0) to ∂B3%(0). Let HY

t be the restriction of Ht to the
yellow paths at time t, that is, HY

t (A) =
∫

1A(w)
[∑∞

k=1 1(τk<t≤νk)

]
Ht(dw), and let XY

t be
the corresponding time-t projection.

Proposition 7.6. E(|Xτ |) <∞ and E(|Xν |) <∞.

Proof. We only prove the first conclusion as the proof of the second is similar.
By differencing the decompositions in Proposition 7.4(c) for times τk and νk we see that

for ϕ ∈ C2
b (Rd),∫
ϕ(wt)1(τk<t≤νk) dHt(w)(7.14)

=

∫ t

0

∫
ϕ(ws)1(τk<s≤νk) dM

H(s, w)

+

∫ t

0

∫
1(τk<s≤νk)

(∆ϕ

2
(ws) + ϕ(ws)(θ − LXs (ws))

)
Hs(dw)ds+Xk

t (ϕ)− X̂k
t (ϕ).

Let 0 ≤ ϕ0 ≤ 1 be as above with support in the interior of B3%(0) and so that ϕ0 = 1 on
B2%(0). Then X̂k

t (ϕ0) = 0 and Xk
t (ϕ0) = |Xk

t | for all k, t. Take expectations in the above
with ϕ = ϕ0 and then sum over k to conclude that

E(XY
t (ϕ0)) = E

(∫ t

0

∫
∆ϕ0

2
(ws) + ϕ0(ws)[θ − LXs (ws)]H

Y
s (dw)ds

)
+ E(Xτ ([0, t]× C).

Rearrange the above and use XY
t ≤ Xt and then (1.2) to see that

E(Xτ ([0, t]× C)) ≤ E(Xt(ϕ0)) + E
(∫ t

0
Xs

( |∆ϕ0|
2

+ ϕ0(LXs + θ−)
)
ds
)

≤ µ(ϕ0) + E(〈LXt , |∆ϕ0|+ ϕ0θ
+〉).

The right-hand side remains bounded as t→∞ by Proposition 4.1 and so the result follows.

7.3. Local extinction. Recall that η(w) = η%(w) is the exit time of w from the interior of
B3%(0). For any path w ∈ C, if η ≤ t and |wt| < 2%, then for some k ≥ 1, τk < t ≤ νk. That
is, if you exit from the interior of B3%(0) before time t and at time t are back in the interior
of B2%(0), then t must fall in one of the excursions from ∂B2ρ(0) to ∂B3ρ(0). Therefore if
ϕ1 ∈ C∞c (Rd), takes values in [0, 1], has support in B(3/2)%(0), and ϕ1 = 1 on B%(0), and
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T > 0, then for all t ≥ T ,

Xt(ϕ1) =

∫
ϕ1(wt)1(t<η)Ht(dw) +

∞∑
k=1

∫
ϕ1(wt)1(τk<t≤νk)Ht(dw)

= XB
t (ϕ1) +

∞∑
k=1

∫
ϕ1(wt)1(τk<T≤t≤νk)Ht(dw)

+

∞∑
k=1

∫
ϕ1(wt)1(T≤τk<t≤νk)Ht(dw)

:= XB
t (ϕ1) + X̂Y,T

t (ϕ1) +XY,T
t (ϕ1).

We have decomposed XY according to whether or not the kth return to B2%(0) occurs before
time T or after it.

We have already shown (Proposition 7.2) that XB dies out a.s. Recall the σT defined
in (7.5). Clearly τk < T ≤ t ≤ νk implies σT > t for Ht-a.a. w for all t ≥ T a.s. (recall
(7.10)), and so by Proposition 7.3,

X̂Y,T
t (ϕ1) ≤

∫
ϕ1(wt)H

B,T
t (dw) = 0 for large t a.s. for each T > 0.

Therefore to complete the proof of Theorem 7.1 it suffices to show the following:

Proposition 7.7. limT→∞ P (XY,T
t (ϕ1) > 0 for some t ≥ T ) = 0.

To prove this result we first recall a standard method used to compute hitting probabilities
for a super-Brownian motion Xt with drift θ. For λ > 0 let U(t, x) = Uλ(t, x) be the unique
non-negative solution of

(7.15)
∂U

∂t
=

∆

2
Ut + θUt − U2

t /2 + λϕ1, U0 ≡ 0,

which is bounded on [0, T ] × Rd for all T (e.g., see Theorem II.5.11(b) in Perkins (2002)).
The duality for superprocesses (e.g., see Theorem II.5.11(c) in Perkins (2002)) implies that
for all initial measures ν,

Eν

(
exp
(
−λ
∫ t

0
Xs(ϕ1) ds

))
= exp(−ν(Uλt )).

It follows that Uλ(t, x) increases as λ, t→∞ to a Borel function U∞(x) ≥ 0 satisfying

(7.16) Pν(Xs(ϕ1) > 0 for some s ≥ 0) = 1− exp(−ν(U∞)).

Next use the fact that X propagates locally at a finite rate (see Theorem III.1.3 of Perkins
(2002)) and dies out in small time with high probability if |X0| is small (recall (7.4)), to see
that for ε small,

sup
|x|≥2%

Pεδx(Xs(ϕ1) > 0 for some s ≥ 0) ≤ 1

2
.
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It therefore follows from (7.16) that

(7.17) sup
|x|≥2%

U∞(x) = C% <∞.

Proof of Proposition 7.7. Fix T > 0. By differencing the decompositions in Propo-
sition 7.5, we have for ϕ ∈ C2

b (Rd), with probability 1 for all t ≥ T ,

∫
ϕ(wt)1(T≤τk<t≤νk)Ht(dw)

(7.18)

=

∫ t

T

∫
1(T≤τk<s≤νk)ϕ(ws)dM

H(s, w)

+

∫ t

T

∫
1(T≤τk<s≤νk)

[∆ϕ

2
+ ϕ(θ − LXs )

]
(ws)Hs(dw)ds+ [Xk

t −Xk
T ](ϕ)− X̂k,T

t (ϕ).

Fix u > T . Arguing as in Proposition II.5.7 of Perkins (2002) it is easy to extend (7.18) to
time-dependent test functions on [0, u]×Rd, including V (t, x) = Uλ(u− t, x) (see also The-
orem II.5.11(b) of Perkins (2002) for the regularity of the above V ). One gets an additional
term involving ∂V

∂t , and so with the above choice of V , the equation (7.15) shows that the
function in the square brackets in the second integral in (7.18) becomes

∂V

∂s
+

∆V

2
+ θVs − LXs Vs =

V 2
s

2
− λϕ1 − LXs Vs.

Therefore for T ≤ t ≤ u,∫
Vt(wt)1(T≤τk<t≤νk)Ht(dw)

=

∫ t

T
Vs(ws)1(T≤τk<s≤νk) dM

H(s, w) +

∫ t

T

∫
1(T≤τk<s≤νk)

×
[V 2

s

2
− λϕ1 − LXs Vs

]
(ws)Hs(dw)ds+

∫ t

T

∫
Vs(x)[Xk − X̂k,T ](ds, dx).

Rearrange the above and sum over k (using Proposition 7.6) to see that ifXν,T =
∑∞

k=1 X̂
k,T
t ,

then for T ≤ t ≤ u,

XY,T
t (Vt) +

∫ t

T
λXY,T

s (ϕ1)ds

(7.19)

= MY,T
t (V ) +

∫ t

T
XY,T
s

(V 2
s

2
− LXs Vs

)
ds+

∫ t

T

∫
Vs(x)[Xτ (ds, dx)−Xν,T (ds, dx)],

where MY,T
t (V ) is a continuous martingale, starting at 0 at time T , and satisfying

〈MY,T (V )〉t =
∫ t

0 X
Y,T
s (V 2

s )ds. Using Proposition 7.6 we see the last term is continuous
in t and it then follows easily that each of the terms in (7.19) is continuous. Now apply
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Ito’s lemma to exp
(
−XY,T

t (Uλu−t)−λ
∫ t
T X

Y,T
s (ϕ1)ds

)
and take expectations at t = u, where

Vu = U0 = 0 and note that XY,T
T ≡ 0 to deduce that

E
(

1− exp
(
−λ
∫ u

T
XY,T
s (ϕ1)ds

))
= E

(∫ u

T
exp
(
−XY,T

t (Uλu−t)− λ
∫ t

T
XY,T
s (ϕ1)ds

)
×
∫
Uλu−t(x)[Xτ (dt, dx)−Xν,T (dt, dx)− LXt (x)XY,T

t (dx)dt]
)
.

Let u, λ ↑ ∞ and drop the last two negative terms to show that
(7.20)

P
(∫ ∞

T
XY,T
s (ϕ1)ds > 0

)
≤ E

(∫ ∞
T

∫
U∞(x)Xτ (dt, dx)

)
≤ C%E(Xτ ([T,∞)× Rd)).

The bound (7.17) on U∞ for |x| ≥ 2% is used in the last inequality. If we sum (7.18) over k
we may argue as in the analysis of (7.19) to see that XY,T

t (ϕ1) is continuous in t. This and
the fact that the upper bound in (7.20) approaches zero as T →∞ by Proposition 7.6 imply
the required result.

A. Appendix: Proof of (2.17) for d = 2, 3. The main step is to show that for any
fixed t > 0,

lim
ε→0

lim sup
N

max
x∈Zd/

√
Nασ2

∑[Nα·|µ|]
i=1 1|x−Xi|≤ε G[Nαt](x

√
Nασ2 − [Xi

√
Nασ2])

Nα(2−d/2)
= 0.

The result would then follow easily by using the monotonicity in t, the SLLN and the local
central limit theorems. Using the inequality (19) in Lemma 2 of Lalley and Zheng (2010)
one can show that

G[Nαt](y) ≤ C1N
α(1−d/2)qN (y/

√
Nασ2) for all N and all y ∈ Zd,

where qN (x) =
∫ t/b

1/(bNα) ps(x) ds for x ∈ Rd, and b > 0 and C1 = C1(b) > 0 are both
constants. Hence it suffices to show

lim
ε→0

lim sup
N

max
x∈Zd/

√
Nασ2

∑[Nα·|µ|]
i=1 1|x−Xi|≤ε q

N (x− [Xi

√
Nασ2]/

√
Nασ2)

Nα
= 0.

Let h(r) = 1/r when d = 3, and h(r) = log(1/r) when d = 2. Routine calculations show
that there exists a constant C2 > 0 such that for all 0 6= |x| small and for all N sufficiently
large,

(A.1) 1/C2 h(|x|) ≤ qN (x) ≤ C2(h(|x|) ∧ h(N−α/2)).

It follows that there exists C3 > 0 such that for all ε > 0 small enough, for all N large
enough, for all |z| ≤ 2ε,

(A.2) qN (z) ≤ C3 q
N (v), for all |v − z| ≤ 1/

√
Nασ2.

imsart-aop ver. 2011/05/20 file: phase_transition_SIR.tex date: February 5, 2013



64 S.LALLEY, E.PERKINS, AND X.ZHENG

Combining this with the bound (2.22) we see that it suffices to show

(A.3) lim
ε→0

lim sup
N

sup
x∈Rd

QNε (x) = 0, where QNε (x) :=

∑[Nα·|µ|]
i=1 1|x−Xi|≤ε q

N (x−Xi)

Nα
.

Next, for each j = 1, . . . , [Nα|µ|], let

Q̂Nε (j) = N−α
[Nα|µ|]∑
i=1,i 6=j

1|Xi−Xj |≤εh(|Xi −Xj |) ∧ h(N−α/2).

Lemma A.1. There is a C4 so that for all ε small enough and all N large enough

sup
x∈Rd

QNε (x) ≤ C4

[
max

j≤[Nα|µ|]
Q̂N2ε(j) +

h(N−α/2)

Nα

]
.

Proof. The upper bound in (A.1) shows that for ε small enough and N large enough
(which is assumed in the rest of this proof),

QNε (x) ≤ C2N
−α

[Nα|µ|]∑
i=1

1|x−Xi|≤εh(|x−Xi|) ∧ h(N−α/2).

Fix x ∈ Rd and choose j ∈ {1, . . . , [Nα|µ|]} so that |Xj − x| = min1≤i≤[Nα|µ|] |Xi− x|. Then

|Xi −Xj | ≤ |Xi − x|+ |x−Xj | ≤ 2|Xi − x|,

and so, |x−Xi| ≤ ε implies |Xi −Xj | ≤ 2ε, and therefore,

(A.4) QNε (x) ≤ C2N
−α

[Nα|µ|]∑
i=1

1|Xi−Xj |≤2ε

[
h(|Xi −Xj |/2) ∧ h(N−α/2)

]
.

We may assume ε ≤ 1/4. It follows that in the above summation h(|Xi−Xj |/2) ≤ 2h(|Xi−
Xj |) for d = 2 and this is obvious for d = 3. Therefore by (A.4),

QNε (x) ≤ 2C2

[
Q̂N2ε(j) +

h(N−α/2)

Nα

]
,

where we have separated out the i = j term in the summation on the right-hand side of
(A.4). The result follows with C4 = 2C2 upon taking the max over j on the right.

Therefore to show (A.3), it suffices to establish

(A.5) lim
ε→0

lim sup
N

max
1≤j≤[Nα|µ|]

Q̂Nε (j) = 0.

Let Cµfd(r) denote the function arising on the right-hand side of (2.20). Let rn = 2−n

and define
Mn,j = #{i 6= j : |Xi −Xj | ≤ rn}.
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If KN = [Nα|µ|]− 1 and

pn(x) = P (|X1 − x| ≤ rn) ≤ Cfd(rn)

(by (2.20)), then conditional on Xj ,Mn,j is binomial(KN , pn(Xj)). Therefore a square func-
tion inequality for martingales (see Theorem 21.1 in Burkholder (1973)) implies that for any
q > 0 there is a C ′q so that
(A.6)
E(|Mn,j−KNpn(Xj)|q |Xj) ≤ C ′q

(
(KNpn(Xj)(1−pn(Xj)))

q/2+1
)
≤ Cq

(
Nαq/2fd(rn)q/2+1

)
.

Choose n0 so that rn0 ≤ N−α/2 < rn0−1 and define ΛN to be the complement of

n0⋃
n=1

{
max

j≤[Nα|µ|]
|Mn,j −KNpn(Xj)| > Nαfd(rn)

}
.

Use (A.6) and Markov’s inequality, and then fd(r)−1 ≤ c(log(1/r))3r−1 for r ∈ (0, 1/2]
to see that

P (ΛcN ) ≤ c
n0∑
n=1

Nα|µ| ·N−qαfd(rn)−q
(
Nαq/2fd(rn)q/2 + 1

)
≤ cNα(1−q)

n0∑
n=1

(
Nαq/2fd(rn)−q/2 + fd(rn)−q

)
≤ cNα(1−q)

n0∑
n=1

(
Nαq/2r−q/2n (log(1/rn))3q/2 + r−qn (log(1/rn))3q

)
.

Recalling the choice of n0 we can bound the above by

cNα(1−q)(log(1/rn0))3q
(
Nαq/22n0q/2 + 2n0q

)
≤ cNα(1−q)(logN)3q

(
N3αq/4 +Nαq/2

)
≤ cNα(1−(q/4))(logN)3q.

So choose q large enough so that α(1− (q/4)) < −2 to conclude that for all N large enough,

(A.7) P (ΛcN ) ≤ CN−2.

Now for 1
2 > ε ≥ N−α/2 choose n1 ∈ {2, . . . , n0} so that 2−n1 ≤ ε < 21−n1 . On ΛN , for
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1 ≤ j ≤ [Nα|µ|] we have (use h(r)fd(r) = Cµ log(1/r)−2)

Q̂Nε (j) = N−α
[Nα|µ|]∑
i=1,i 6=j

1|Xi−Xj |≤ε

(
h(|Xi −Xj |) ∧ h(N−α/2)

)

≤ c
(Mn0,j

Nα
h(N−α/2) +

n0−1∑
n=n1−1

Mn,j

Nα
h(rn+1)

)
≤ c
(KN

Nα
pn0(Xj)h(N−α/2) + fd(rn0)h(N−α/2)

+

n0−1∑
n=n1−1

(KN

Nα
pn(Xj)h(rn) + fd(rn)h(rn)

))

≤ c
(
fd(rn0)h(rn0) +

n0−1∑
n=n1−1

fd(rn)h(rn)
)

≤ c
n0∑

n=n1−1

(log 1/rn)−2

≤ cn−1
1 ≤ c(log 1/ε)−1.(A.8)

By (A.7), the Borel-Cantelli Lemma and (A.8) we conclude that with probability 1 for all
N large enough we have

max
1≤j≤[Nα|µ|]

Q̂Nε (j) ≤ c(log 1/ε)−1 for N−α/2 ≤ ε < 1/2.

This implies (A.5) and we are done.
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