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Abstract

Abstract: We give a sufficient conditions for uniqueness in law for the
stochastic partial differential equation

∂u

∂t
(x, t) = 1

2

∂2u

∂x2
(x, t) + A(u(·, t))Ẇx,t,

where A is an operator mapping C[0, 1] into itself and Ẇ is a space-
time white noise. The approach is to first prove uniqueness for the
martingale problem for the operator

Lf(x) =
∞∑

i,j=1

aij(x)
∂2f

∂x2
(x)−

∞∑
i=1

λixi
∂f

∂xi
(x),

where λi = ci2 and the aij is a positive definite bounded operator in
Toeplitz form.
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1 Introduction

Our goal is to obtain a uniqueness in law result for parabolic stochastic partial
differential equations (SPDEs) of the form

∂u

∂t
= 1

2

∂2u

∂x2
(x, t) + A(u(·, t))(x)Ẇx,t, x ∈ [0, 1], t ≥ 0, (1.1)

where Ẇ is a space-time white noise on [0, 1] × [0,∞), suitable boundary
conditions are imposed at 0 and 1, and A is an appropriate operator from
C[0, 1] to C[0, 1] which is bounded above and away from zero. A common
approach to (1.1) (see, e.g., Chapter 3 of Walsh [16]) is to convert it to a
Hilbert space-valued stochastic differential equation (SDE) by setting

Xj(t) = 〈ut, ej〉,

where {ej} is a complete orthonormal sequence of eigenfunctions for the
Laplacian (with the above boundary conditions) on L2[0, 1] with eigenvalues
{−λj}, ut(·) = u(·, t), and 〈·, ·〉 is the usual inner product on L2[0, 1]. This
will convert the SPDE (1.1) to the `2-valued SDE

dXj(t) = −λjX
j(t)dt+

∑
k

σjk(Xt)dW
j
t , (1.2)

where {W j} are i.i.d. one-dimensional Brownian motions, σ(x) =
√
a(x),

L+(`2, `2) is the space of positive definite bounded self-adjoint operators on
`2, and a : `2 → L+(`2, `2) is easily defined in terms of A (see (1.3) below).
(1.2) has been studied extensively (see, for example, Chapters 4 and 5 of
Kallianpur and Xiong [10] or Chapters I and II of Da Prato and Zabczyk [7])
but, as discussed in the introduction of Zambotti [18], we are still far away
from any uniqueness theory that would allow us to characterize solutions to
(1.1), except of course in the classical Lipschitz setting.

There has been some interesting work on Stroock-Varadhan type unique-
ness results for equations such as (1.2). These focus on Schauder estimates,
that is, smoothing properties of the resolvent, for the constant coefficient
case which correspond to infinite-dimensional Ornstein-Uhlenbeck processes,
and produce uniqueness under appropriate Hölder continuity conditions on
a. For example Zambotti [18] and Athreya, Bass, Gordina and Perkins [1]
consider the above equation and Cannarsa and Da Prato [6] considers the
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slightly different setting where there is no restorative drift but (necessarily)
a trace class condition on the driving noise. Cannarsa and Da Prato [6] and
Zambotti [18] use clever interpolation arguments to derive their Schauder
estimates. However, none of the above results appear to allow one to es-
tablish uniqueness in equations arising from the SPDE (1.1). In [18] a is
assumed to be a small trace class perturbation of a constant operator (see
(9) and (10) of that reference) and in [6] the coefficient of the noise is essen-
tially a Hölder continuous trace class perturbation of the identity. If we take
ej(y) = exp(2πijy), j ∈ Z (periodic boundary conditions) and λj = 2π2j2,
then it is not hard to see that in terms of these coordinates the corresponding
operator a = (ajk) associated with the SPDE (1.1) is

ajk(x) =

∫ 1

0

A(u(x))(y)2e2πi(j−k)y dy, j, k ∈ Z, (1.3)

where u =
∑

j xjej. In practice we will in fact work with cosine series
and Neumann boundary conditions and avoid complex values – see (10.7) in
Section 10 for a more careful derivation. Note that a is a Toeplitz matrix,
that is, ajk depends only on j − k. In particular ajj(x) =

∫ 1

0
A(u(x))(y)2 dy

and a(x) will not be a trace class perturbation of a constant operator unless
A itself is constant. In [1] this restriction manifests itself in a condition (5.3)
which in particular forces the α-Hölder norms |aii|Cα to approach zero at a
certain rate as i→∞; a condition which evidently fails unless A is constant.

Our main results for infinite-dimensional SDEs (Theorems 2.1 and 10.1
below) in fact will use the Toeplitz form of a (or more precisely its near
Toeplitz form for our cosine series) to obtain a uniqueness result under an
appropriate Hölder continuity condition on a. See the discussion prior to
(3.3) in Section 3 to see how the Toeplitz condition is used. As a result these
results can be used to prove a uniqueness in law result for the SPDE (1.1)
under a certain Hölder continuity condition on A(·) (see Theorem 2.3 and
Theorem 2.4).

There is a price to be paid for this advance. First, the Hölder continuity
of a in the ek direction must improve as k gets large, that is, for appropriate
β > 0

|aij(y + hek)− aij(y)| ≤ κβk
−β|h|α. (1.4)

Secondly, we require α > 1/2. Finally, to handle the off-diagonal terms of a,

3



we assume that for appropriate γ > 0,

|aij(x)| ≤
κγ

1 + |i− j|γ
. (1.5)

To handle the SPDE, these conditions on the aij translate to assumptions
on A. The operator A will have two types of smoothness. The more inter-
esting type of smoothness is the Hölder continuity of the map u 7→ A(u).
In order that (1.4) be satisfied, we require Hölder continuity of the map
u 7→ A(u) of order α > 1/2 and with respect to a weak Wasserstein norm
involving sufficiently smooth test functions (see (2.10) in Theorem 2.3 and
(10.19) in Theorem 2.4). The other type of smoothness is that of A(u)(x) as
a function of x. In order that the aij satisfy (1.5), we require that A map
C[0, 1] into a bounded subset of Cγ for sufficiently large γ.

A consequence of the fact that A must be Hölder continuous with respect
to a weak Wasserstein norm is that A(u)(x) cannot be a Hölder continuous
function of point values u(x+xi, t), i = 1, . . . , n but can be a Hölder continu-
ous function of 〈u, φi〉, i = 1, . . . , n, for sufficiently smooth test functions as in
Corollary 2.6. One can of course argue that all measurements are averages of
u and so on physical grounds this restriction could be reasonable in a number
of settings. Although dependence on point values is not a strong feature of
our results, it is perhaps of interest to see what can be done in this direction.
Let {ψε : ε > 0} be a C∞ compactly supported even approximate identity
so that ψε ∗ h(x) → h(x) as ε→ 0 for any bounded continuous h. Here ∗ is
convolution on the line as usual. Let f : Rn → [a, b] (0 < a < b < ∞) be
Hölder continuous of index α > 1

2
and x1, . . . , xn ∈ [0, 1]. Then a special case

of Corollary 2.7 implies uniqueness in law for (1.1) with Neumann boundary
conditions if

A(u)(y) = ψδ ∗ (f(ψε ∗ u(x1 + ·), . . . , ψε ∗ u(xn + ·)))(y), (1.6)

where u(y) is the even 2-periodic extension of u to R. As δ, ε ↓ 0 the above
approaches

Ã(u)(y) = f(u(x1 + y), . . . , u(xn + y)). (1.7)

Proving uniqueness in (1.1) for A = Ã remains unresolved for any α < 1
unless n = 1 and x1 = 0. In this case and for the equation (1.1) on the
line, Mytnik and Perkins [13] established pathwise uniqueness, and hence
uniqueness in law for A(u)(y) = f(u(y)) when f is Hölder continuous of
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index α > 3/4, while Mueller, Mytnik and Perkins [12] showed uniqueness
in law may fail in general for α < 3/4. These latter results are infinite-
dimensional extensions of the classical pathwise uniqueness results of Yamada
and Watanabe [17] and a classical example of Girsanov (see e.g. Section V.26
of [14]), respectively. As in the finite-dimensional case, Mytnik and Perkins
[13] does not require any non-degeneracy condition on f but is very much
confined to the diagonal case in which A(u)(y) depends on u(y). In particular
this result certainly cannot deal with A as in (1.6).

Due to the failure of standard perturbation methods to produce a unique-
ness result for (1.2) which is applicable to (1.1), we follow a different and
more recent approach used to prove well-posedness of martingale problems,
first for jump processes in Bass[2], for uniformly elliptic finite dimensional
diffusions in Bass and Perkins [5], and recently for a class of degenerate
diffusions in Menozzi [11]. Instead of perturbing off a constant coefficient
Ornstein-Uhlenbeck operator, the method perturbs off of a mixture of such
operators. Further details are provided in Section 3.

We have not spent too much effort on trying to minimize the coefficients β
and γ appearing in (1.4) and (1.5), and it would be nice to either get rid of γ
altogether or produce examples showing some condition here is needed. Our
current hypothesis in Theorems 2.1 and 2.3 require γ →∞ as α ↓ 1/2. Do the
results here remain valid if the strengthened Hölder conditions (1.4), or (for
the SPDE), (2.10) or (2.13), are replaced with standard Hölder continuity
conditions? Are there examples showing that α > 1/2 is needed (with or
without these additional regularity conditions on A) for uniqueness to hold
in (1.1)? Most of the motivating examples for [13] from population genetics
and measure-valued diffusions had a Hölder coefficient of α = 1/2. (The
counter-examples in [12] are for A(u)(x) = |u(x)|(3/4)−ε and so do not satisfy
our non-degeneracy condition on A.)

The main existence and uniqueness results for (1.2) and (1.1) are stated
in Section 2. Section 3 contains a more detailed description of our basic
method using mixtures of Ornstein-Uhlenbeck densities. Section 4 collects
some linear algebra results and elementary inequalities for Gaussian densities,
and Section 5 presents Jaffard’s theorem and some useful applications of it.
The heavy lifting is done in Sections 6 and 7 which give bounds on the
mixtures of Ornstein-Uhlenbeck process and their moments, and the second
order derivatives of these quantities, respectively. Section 8 then proves the
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main estimate on smoothing properties of our mixed semigroup. The main
uniqueness result for Hilbert space-valued SDEs (Theorem 2.1) is proved in
Section 9. Finally Section 10 proves the slightly more general uniqueness
result for SDEs, Theorem 10.1, and uses it to establish the existence and
uniqueness results for the SPDE (1.1) (Theorem 2.3 and Theorem 2.4) and
then some specific applications (Corollaries 2.6 and 2.7).

We often use c1 for constants appearing in statements of results and use
c2, c

′
2, c3, c

′
3 etc. for constants appearing in the proofs.

Acknowledgment. We would like to thank K. Gröchenig, M. Neumann,
and V. Olshevsky for acquainting us with the theorem of Jaffard and related
work and M. Neumann for additional help with some of the linear algebra.

2 Main results

We use Dif for the partial derivative of f in the ith coordinate direction and
Dijf for the corresponding second derivatives. We denote the inner product
in Rd and the usual inner product in L2[0, 1] by 〈·, ·〉; no confusion should
result.

Let us say f ∈ T 2
k if there exists an fk ∈ C2

b (Rk) such that f(x) =
fk(x1, . . . , xk) and we let T 2,C

k be the set of such f where fk is compactly
supported. Let T 2 = ∪kT 2

k be the class of functions in C2
b (`2) which de-

pend only on countably many coordinates. We let Xt(ω) = ω(t) denote the
coordinate maps on C(R+, `

2).

We are interested in the Ornstein-Uhlenbeck type operator

Lf(x) =
∞∑
i=1

∞∑
j=1

aij(x)Dijf(x)−
∞∑
i=1

λixiDif(x), (2.1)

for f ∈ T 2. Here {λi} is a sequence of positive numbers satisfying

κλi
2 ≤ λi ≤ κ−1

λ i2 (2.2)

for all i = 1, 2, . . ., where κλ is a fixed positive finite constant. We assume
throughout that a is a map from `2 to L+(`2, `2) so that there exist 0 < Λ0 ≤
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Λ1 <∞ satisfying

Λ0|w|2 ≤ 〈a(x)w,w〉 ≤ Λ1|w|2 for all x,w ∈ `2. (2.3)

Later on we will suppose there exist γ > 1 and a constant κγ such that

|aij(x)| ≤
κγ

1 + |i− j|γ
(2.4)

for all x ∈ `2 and all i, j. We will also suppose there exist α ∈ (1
2
, 1], β > 0

and a constant κβ such that for all i, j, k ≥ 1 and y ∈ `2,

|aij(y + hek)− aij(y)| ≤ κβ|h|α(1 + k)−β for all h ∈ R, (2.5)

where ek is the unit vector in the xk direction.

Recall that aij is of Toeplitz form if aij depends only on i− j.

A probability P on C(R+, `
2) satisfies the martingale problem for L start-

ing at v ∈ `2 if P(X0 = v) = 1 and

M f (t) = f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a martingale under P for each f ∈ T 2.

Our main theorem on countable systems of SDEs, and the theorem whose
proof takes up the bulk of this paper, is the following.

Theorem 2.1 Suppose α ∈ (1
2
, 1], β > 9

2
−α, and γ > 2α/(2α−1). Suppose

the aij satisfy (2.3), (2.4), and (2.5) and that the aij are of Toeplitz form.
Let v ∈ `2. Then there exists a solution to the martingale problem for L
starting at v and the solution is unique.

It is routine to derive the following corollary from Theorem 2.1.

Corollary 2.2 Let {W i}, i = 1, 2, . . . be a sequence of independent Brown-
ian motions. Let σij be maps from `2 into R such that if

aij(x) = 1
2

∞∑
k=1

σik(x)σkj(x),
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then the aij satisfy the assumptions of Theorem 2.1. Then the `2-valued
continuous solution to the system of SDEs

dX i
t =

∞∑
j=1

σij(Xt) dW
j
t − λiX

i
t dt, i = 1, 2, . . . , (2.6)

is unique in law.

Uniqueness in law has the usual meaning here. If there exists another
process X with the same initial condition and satisfying

dX
i

t =
∞∑

j=1

σij(X t) dW
j

t − λiX
i

t dt,

where {W} is a sequence of independent Brownian motions, then the joint
laws of (X,W ) and (X,W ) are the same.

We now turn to the stochastic partial differential equation (SPDE) that
we are considering:

∂u

∂t
(x, t) = 1

2

∂2u

∂x2
(x, t) + A(ut)(x) Ẇx,t, x ∈ [0, 1], (2.7)

where ut(x) = u(x, t) and Ẇx,t is an adapted space-time Brownian motion
on [0, 1]× R+ defined on some filtered probability space (Ω,F ,Ft, P ). Here
A maps continuous functions on [0, 1] to continuous functions on [0, 1]. We
impose Neumann boundary conditions at the endpoints. Following Chapter
3 of [16], this means that a continuous C[0, 1]-valued adapted process t →
u(t, ·) is a solution to (2.7) if and only if

〈ut, ϕ〉 = 〈u0, ϕ〉+

∫ t

0

〈us, ϕ
′′/2〉 ds+

∫ t

0

∫
ϕ(x)A(us)(x) dWx,s (2.8)

for all t ≥ 0. whenever ϕ ∈ C2[0, 1] satisfies ϕ′(0) = ϕ′(1) = 0. Solutions to
(2.7) are unique in law if and only if for a given u0 ∈ C[0, 1] the laws of any
two solutions to (2.7) on C(R+, C[0, 1]) coincide.

We specialize our earlier notation and let ek(x) =
√

2 cos(kπx) if k ≥ 1,
and e0(x) ≡ 1, so that {ek} is a complete orthonormal system for L2[0, 1].
Here is our theorem for SPDEs. It is proved in Section 10 along with the
remaining results in this section.
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Theorem 2.3 Assume

un → u in C[0, 1] implies ‖A(un)− A(u)‖2 → 0. (2.9)

Suppose there exist

α ∈
(1

2
, 1
]
, γ >

2α

2α− 1
, β >

((9

2

)
− α

)
∨
( γ

2− γ

)
,

and also positive constants κ1, κ2 and κ3 such that for all u ∈ C[0, 1],

‖A(u+ hek)− A(u)‖2 ≤ κ1|h|α(k + 1)−β for all k ≥ 0, h ∈ R, (2.10)

0 < κ2 ≤ A(u)(x) ≤ κ−1
2 , for all x ∈ [0, 1], (2.11)

and
|〈A(u)2, ek〉| ≤

κ3

1 + (k + 1)γ
for all k ≥ 0. (2.12)

Then for any u0 ∈ C([0, 1]) there is a solution of (2.7) and the solution is
unique in law.

Here the existence of the solution is in the sense of weak existence.

To give a better idea of what the above conditions (2.10) and (2.12) entail
we formulate some regularity conditions on A(u) which will imply them.

For δ ∈ [0, 1) and k ∈ Z+, ‖u‖Ck+δ has the usual definition:

‖u‖Ck+δ =
k∑

i=0

‖u(i)‖∞ + 1(δ>0) sup
x 6=y;x,y∈[0,1]

|u(k)(y)− u(k)(x)|
|y − x|δ

,

where u(i) is the ith derivative of u and we consider the 0th derivative of u to
just be u itself. Ck is the usual space of k times continuously differentiable
functions equipped with ‖ · ‖Ck and Ck+δ = {u ∈ Ck : ‖u‖Ck+δ < ∞} with
the norm ‖u‖Ck+δ .

If f ∈ C([0, 1]) let f be the extension of f to R obtained by first reflecting
to define an even function on [−1, 1], and then extending to R as a 2-periodic
continuous function. That is, f(−x) = f(x) for 0 < x ≤ 1 and f(x + 2) =
f(x) for all x. In order to be able to work with real valued processes and
functions, we introduce the space

Cζ
per = {f ∈ Cζ([0, 1]) : f ∈ Cζ(R)},
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that is, the set of f whose even extension to the circle of circumference 2 is
in Cζ . A bit of calculus shows that f ∈ Cζ

per if and only if f ∈ Cζ([0, 1]) and

f (k)(0) = f (k)(1) = 0 for all odd k ≤ ζ. Such f will be even functions, and
consequently their Fourier coefficients (considered on the interval [−1, 1]) will
be real.

The following theorem is a corollary to Theorem 2.3.

Theorem 2.4 Suppose there exist

α ∈
(1

2
, 1
]
, γ >

2α

(2α− 1)
, β >

(( 9

2α

)
− 1
)
∨
( γ

α(2− γ)

)
,

and also positive constants κ1, κ2 and κ3 such that for all u, v continuous on
[0, 1],

‖A(u)− A(v)‖2 ≤ κ1 sup
ϕ∈Cβ

per,‖ϕ‖
Cβ≤1

|〈u− v, ϕ〉|α, (2.13)

0 < κ2 ≤ A(u)(x) ≤ κ−1
2 , x ∈ [0, 1], (2.14)

and
A(u) ∈ Cγ

per and ‖A(u)‖Cγ ≤ κ3. (2.15)

Then for any u0 ∈ C([0, 1]) there is a solution of (2.7) and the solution is
unique in law.

Note that (2.13) is imposing Hölder continuity in a certain Wasserstein
metric.

Remark 2.5 The above conditions on α, β and γ hold if γ > 2α
2α−1

∨ 14
5
, and

β > 9
2α
− 1.

As a consequence of Theorem 2.4, we give a class of examples. Let α ∈
(1

2
, 1]. Suppose n ≥ 1 and ϕ1, . . . , ϕn are functions in Cβ

per for β > 9
2α
− 1.

Suppose f : [0, 1] × Rn → [0,∞) is bounded above and below by positive
constants, and f as a function of the first variable is in Cγ

per for γ > 2α
2α−1

∨ 14
5

and satisfies supy1,...,yn
‖f(·, y1, . . . , yn)‖γ ≤ κ. Assume also that f is Hölder

continuous of order α with respect to its second through (n+ 1)st variables:

|f(x, y1, . . . , yi−1, yi + h, yi+1, . . . , yn)− f(x, y1, . . . , yi−1, yi, yi+1, . . . , yn)|
≤ c|h|α, for 1 ≤ i ≤ n,

where c does not depend on x, y1, . . . , yn.
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Corollary 2.6 With f and ϕ1, . . . , ϕn as above, let

A(u)(x) = f(x, 〈u, ϕ1〉, . . . , 〈u, ϕn〉).

Then a solution to (2.7) exists and is unique in law.

A second class of examples can be built from convolution operators. If f ,
g are real-valued functions on the line, f ∗g is the usual convolution of f and
g.

Corollary 2.7 Assume ψ : R → R+ and φ1, φ2, . . . φn : R → R are even C∞

functions with compact support and ψ is not identically 0. Suppose also that
for some 0 < a ≤ b <∞ and some α ∈ (1/2, 1], f : Rn → [a, b] satisfies

|f(x)− f(x′)| ≤ cf‖x− x′‖α
∞ for all x, x′ ∈ Rn. (2.16)

If
A(u)(x) = ψ ∗ (f(φ1 ∗ u(·), . . . , φn ∗ u(·)))(x), (2.17)

then there is a solution to (2.7) and the solution is unique in law.

3 Overview of proof

In this section we give an overview of our argument. For most of this
overview, we focus on the stochastic differential equation (1.2) where a is
of Toeplitz form, that is, aij depends only on i − j. This is where the diffi-
culties lie and puts us in the context of Theorem 2.1.

Assume we have a K ×K matrix a that is of Toeplitz form, and we will
require all of our estimates to be independent of K. Define

Mzf(x) =
K∑

i,j=1

aij(z)Dijf(x)−
K∑

i=1

λixiDif(x),

where λi satisfies (2.2). Let pz(t, x, y) be the corresponding transition prob-
ability densities and let rz

θ(x, y) be the resolvent densities. Thus Lf(x) =
Mxf(x).
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We were unable to get the standard perturbation method to work and
instead we used the method described in [5]. The idea is to suppose there
are two solutions P1 and P2 to the martingale problem and to let Sif =
E i

∫∞
0
e−θtf(Xt) dt. Some routine calculations show that Si(θ − L)f = f,

and so S∆(θ − L)f = 0, where S∆ is the linear functional S1 − S2. If

f(x) =

∫
ry
θ(x, y)g(y) dy

were in the domain of L when g is C∞ with compact support, we would have

(θ − L)f(x) =

∫
(θ −My)ry

θ(x, y)g(y) dy +

∫
(My −Mx)ry

θ(x, y)g(y) dy

= g(y) +

∫
(My −Mx)ry

θ(x, y)g(y) dy.

Such f need not be in the domain of L, but we can do an approximation to
get around that problem.

If we can show that∣∣∣ ∫ (My −Mx)ry
θ(x, y)g(y) dy

∣∣∣ ≤ 1
2
‖g‖∞, (3.1)

for θ large enough, we would then get

|S∆g| ≤ 1
2
‖S∆‖ ‖g‖∞,

which implies that the norm of the linear functional S∆ is zero. It is then
standard to obtain the uniqueness of the martingale problem from this.

We derive (3.1) from a suitable bound on∫ ∣∣∣(My −Mx)py(t, x, y)
∣∣∣ dy. (3.2)

Our bound needs to be independent of K, and it turns out the difficulties
are all when t is small.

When calculating Dijp
y(t, x, y), where the derivatives are with respect to

the x variable, we obtain a factor e−(λi+λj)t (see (7.1)), and thus by (2.2),
when summing over i and j, we need only sum from 1 to J ≈ t−1/2 instead of
from 1 to K. When we estimate (3.2), we get a factor t−1 from Dijp

y(t, x, y)
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and we get a factor |y − x|α ≈ tα/2 from the terms aij(y) − aij(x). If we
consider only the main diagonal, we have J terms, but they behave somewhat
like sums of independent mean zero random variables, so we get a factor√
J ≈ t−1/4 from summing over the main diagonal where i = j ranges from

1 to J . Therefore when α > 1/2, we get a total contribution of order t−1+η

for some η > 0, which is integrable near 0. The Toeplitz form of a allows us
to factor out aii(y)− aii(x) from the sum since it is independent of i and so
we are indeed left with the integral in y of∣∣∣∣∣

J∑
i=1

Diip
y(t, x, y)

∣∣∣∣∣ . (3.3)

Let us point out a number of difficulties. All of our estimates need to be
independent of K, and it is not at all clear that∫

RK

py(t, x, y) dy

can be bounded independently of K. That it can is Theorem 6.3. We replace
the aij(y) by a matrix that does not depend on yK . This introduces an error,
but not too bad a one. We can then integrate over yK and reduce the situation
from the case where a is a K ×K matrix to where it is (K − 1) × (K − 1)
and we are now in the (K − 1)× (K − 1) situation. We do an induction and
keep track of the errors.

From (3.3) we need to handle∫ ∣∣∣ J∑
i=1

Diip
y(t, x, y)

∣∣∣ dy,
and here we use Cauchy-Schwarz, and get an estimate on∫ J∑

i,j=1

Diip
y(t, x, y)Djjp

y(t, x, y) dy.

This is done in a manner similar to bounding
∫
py(t, x, y) dy, although the

calculations are of course more complicated.

We are assuming that aij(x) decays at a rate at least (1+ |i−j|)γ as |i−j|
gets large. Thus the other diagonals besides the main one can be handled in
a similarly manner and γ > 1 allows us to then sum over the diagonals.
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A major complication that arises is that Dijp
y(t, x, y) involves a−1 and

we need a good off-diagonal decay on a−1 as well as on a. An elegant linear
algebra theorem of Jaffard gives us the necessary decay, independently of the
dimension.

To apply the above, or more precisely its cousin Theorem 10.1, to the
SPDE (1.1) with Neumann boundary conditions, we write a solution u(·, t)
in terms of a Fourier cosine series with random coefficients. Let en(x) =√

2 cos(πnx) if n ≥ 1, and e0(x) ≡ 1, λn = n2π2/2 and define Xn(t) =
〈u(·, t), en〉. Then it is easy to see that X = (Xn) satisfies (1.2) with

ajk(x) =

∫ 1

0

A(u(x))2(y)ej(y)ek(y) dy, x ∈ `2(Z+),

where u(x) =
∑∞

0 xnen. We are suppressing some issues in this overview,
such as extending the domain of A to L2. Although (ajk) is not of Toeplitz
form it is easy to see it is a small perturbation of a Toeplitz matrix and sat-
isfies the hypotheses of Theorem 10.1. This result then gives the uniqueness
in law of X and hence of u.

4 Some linear algebra

Define gr = rI, where I is the identity matrix and let E(s) be the diago-
nal matrix whose (i, i) entry is e−λis for a given sequence of positive reals
λ1 ≤ · · · ≤ λm. Given an m×m matrix a, let

a(t) =

∫ t

0

E(s) aE(s) ds (4.1)

be the matrix whose (i, j) entry is

aij(t) = aij
1− e−(λi+λj)t

λi + λj

.

Note limt→0 aij(t)/t = aij, and we may view a as a′(0).

Given a nonsingular matrix a, we use A for a−1. When we write A(t),
this will refer to the inverse of a(t). Given a matrix b or gr, we define
B,Gr, b(t), gr(t), B(t), and Gr(t) analogously. If r = 1 we will write G for G1

and g for g1.
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Let ‖a‖ be the usual operator norm, that is, ‖a‖ = sup{‖aw‖ : ‖w‖ ≤ 1}.
If C is a m ×m matrix, recall that the determinant of C is the product of
the eigenvalues and the spectral radius is bounded by ‖C‖. Hence

| detC| ≤ ‖C‖m. (4.2)

If a and b are non-negative definite matrices, we write a ≥ b if a− b is also
non-negative definite. Recall that if a ≥ b, then det a ≥ det b and B ≥ A.
This can be found, for example, in [8, Corollary 7.7.4].

Lemma 4.1 Suppose a is a matrix with a ≥ gr. Then a(t) ≥ gr(t).

Proof. Using (4.1),

a(t) =

∫ t

0

E(s) aE(s) ds ≥
∫ t

0

E(s) gr E(s) ds = gr(t).

Lemma 4.2 Suppose a ≥ gr. Then det a(t) ≥ det gr(t).

Proof. By Lemma 4.1, a(t) ≥ gr(t), and the result follows.

For arbitrary square matrices a we let

‖a‖s = max{sup
i

∑
j

|aij|, sup
j

∑
i

|aij|}.

Schur’s Lemma (see e.g., Lemma 1 of [9]) states that

‖a‖ ≤ ‖a‖s. (4.3)

As an immediate consequence we have:

Lemma 4.3 If a is a m×m matrix, then

|〈x, ay〉| ≤ ‖x‖ ‖ay‖ ≤ ‖x‖ ‖y‖‖a‖s.
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Lemma 4.4 For all λi, λj,( 2λi

1− e−2λit

)1/2(1− e−(λi+λj)t

λi + λj

)( 2λj

1− e−2λjt

)1/2

≤ 1. (4.4)

Proof. This is equivalent to∫ t

0

e−(λi+λj)s ds ≤
(∫ t

0

e−2λis ds
)1/2(∫ t

0

e−2λjs ds
)1/2

and so is immediate from Cauchy-Schwarz.

Define
ã(t) = G(t)1/2a(t)G(t)1/2,

so that
ãij(t) = Gii(t)

1/2aij(t)Gjj(t)
1/2. (4.5)

Let Ã(t) be the inverse of ã(t), that is,

Ã(t) = g(t)1/2A(t)g(t)1/2. (4.6)

A calculus exercise will show that for all positive λ, t,

1 + λt

2t
≤ 2λ

1− e−2λt
≤ 2(1 + λt)

t
. (4.7)

Lemma 4.5 If a be a positive definite matrix with gΛ1 ≥ a ≥ gΛ0, and

Λ0(t) = Λ0

(1− e−2λmt

2λm

)
, Λ1(t) = Λ1

(1− e−2λ1t

2λ1

)
,

then for all t > 0,

gΛ1 ≥ ã(t) ≥ gΛ0 gΛ1(t) ≥ a(t) ≥ gΛ0(t).

Proof. Our definitions imply

〈ã(t)x, x〉 = 〈G(t)1/2

∫ t

0

E(s)aE(s) dsG(t)1/2x, x〉

=

∫ t

0

〈aE(s)G(t)1/2x,E(s)G(t)1/2x〉 ds

≥ Λ0

∫ t

0

〈E(s)G(t)1/2x,E(s)G(t)1/2x〉 ds,
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by the hypotheses on a. The right side is

Λ0

∫ t

0

∑
i

e−2λis
2λi

1− e−2λit
|xi|2 ds = Λ0‖x‖2.

The upper bound is similar. The bounds on a(t) are a reformulation of
Lemma 4.1 and the analogous upper bound.

Lemma 4.6 Let a and b be positive definite matrices with gΛ1 ≥ a, b ≥ gΛ0.
Then

‖ã(t)− b̃(t)‖ ≤ ‖ã(t)− b̃(t)‖s ≤ ‖a− b‖s, (4.8)

‖Ã(t)− B̃(t)‖ ≤ Λ−2
0 ‖a− b‖s, (4.9)

and for all w,w′,

|〈w, (Ã(t)− B̃(t))w′〉| ≤ Λ−2
0 ‖w‖‖w′‖‖a− b‖s. (4.10)

Proof. The first inequality in (4.8) follows from (4.3). The second inequality
holds since

‖ã(t)− b̃(t)‖s

= ‖G(t)1/2(a(t)− b(t))G(t)1/2‖s

= sup
i

∑
j

Gii(t)
1/2
(1− e(λi+λj)t

λi + λj

)
Gjj(t)

1/2|aij − bij|

≤ sup
i

∑
j

|aij − bij| = ‖a− b‖s,

where Lemma 4.4 is used in the last line and symmetry is used in the next
to last line.

Turning to (4.9), we have

‖Ã(t)− B̃(t)‖ = ‖Ã(t)(̃b(t)− ã(t))B̃(t)‖
≤ ‖Ã(t)‖‖B̃(t)‖‖b̃(t)− ã(t)‖. (4.11)

The lower bound on ã(t) (and hence b̃(t)) in Lemma 4.5 implies that

‖Ã(t)‖‖B̃(t)‖ ≤ Λ−2
0 .

Use this and (4.8) in (4.11) to derive (4.9). (4.10) is then immediate.
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Lemma 4.7 Let a and b be positive definite matrices with gΛ1 ≥ a, b ≥ gΛ0,
and set θ = Λ−1

0 m‖a− b‖s. Then∣∣∣det b̃(t)

det ã(t)
− 1
∣∣∣ ≤ θeθ.

Proof. We write

det b̃(t)

det ã(t)
= det(̃b(t)Ã(t)) = det(I + (̃b(t)Ã(t)− I)) (4.12)

= det(I + (̃b(t)− ã(t))Ã(t)).

Clearly
‖I + (̃b(t)− ã(t))Ã(t)‖ ≤ ‖I‖+ ‖b̃(t)− ã(t)‖ ‖Ã(t)‖. (4.13)

Use the lower bound on ã(t) in Lemma 4.5 to see that ‖Ã(t)‖ ≤ Λ−1
0 , and

then use (4.8) in the above to conclude that

‖I + (̃b(t)− ã(t))Ã(t)‖ ≤ 1 + Λ−1
0 ‖a− b‖s.

Hence from (4.12) and (4.2) we have the bound∣∣∣det b̃(t)

det ã(t)

∣∣∣ ≤ ‖I + (̃b(t)− ã(t))Ã(t)‖m

≤
(
1 + Λ−1

0 ‖a− b‖s

)m

≤ eΛ
−1
0 m‖a−b‖s .

Observe that ã(t) and b̃(t) are positive definite, so det ã(t) and det b̃(t) are
positive real numbers. We now use the inequality ex ≤ 1 + xex for x > 0 to
obtain

det b̃(t)

det ã(t)
≤ 1 + θeθ.

Reversing the roles of a and b,

det ã(t)

det b̃(t)
≤ 1 + θeθ,
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and so,

det b̃(t)

det ã(t)
≥ 1

1 + θeθ
≥ 1− θeθ.

Let us introduce the notation

Qm(w,C) = (2π)−m/2(detC)1/2e−〈w,Cw/2〉, (4.14)

where C is a positive definite m×m matrix, and w ∈ Rm.

Proposition 4.8 Assume a, b are as in Lemma 4.7. Set

θ = Λ−1
0 m‖a− b‖s and φ = Λ−2

0 ‖w‖2‖a− b‖s.

For any M > 0 there is a constant c1 = c1(M) so that if θ, φ < M , then∣∣∣Qm(w, Ã(t))

Qm(w, B̃(t))
− 1
∣∣∣ ≤ c1(φ+ θ).

Proof. Using the inequality

|ex − 1| ≤ |x|e(x+), (4.15)

we have from Lemma 4.6,∣∣∣e−〈w,( eA(t)− eB(t))w〉/2 − 1
∣∣∣ ≤ φeφ.

Using the inequalities

|1−
√
x| ≤ |1− x|, x ≥ 0,

and
|xy − 1| ≤ |x| |y − 1|+ |x− 1|, x, y ≥ 0,

the proposition now follows by Lemmas 4.6 and 4.7 with
c1 = eM(1 +MeM)1/2.

We note that if a, b are m×m matrices satisfying supi,j |aij − bij| ≤ δ, we
have the trivial bound

‖a− b‖s ≤ mδ. (4.16)
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Lemma 4.9 Suppose a is a (m+ 1)× (m+ 1) positive definite matrix, A is
the inverse of a, B is the m×m matrix defined by

Bij = Aij −
Ai,m+1Aj,m+1

Am+1,m+1

, i, j ≤ m. (4.17)

Let b be the m×m matrix defined by bij = aij, i, j ≤ m. Then b = B−1.

Proof. Let δij be 1 if i = j and 0 otherwise. If i, j ≤ m, then

m∑
k=1

bikBkj =
m∑

k=1

aikAkj −
m∑

k=1

aik
Ak,m+1Aj,m+1

Am+1,m+1

=
m+1∑
k=1

aikAkj − ai,m+1Am+1,j −
m+1∑
k=1

aik
Ak,m+1Aj,m+1

Am+1,m+1

+ ai,m+1
Am+1,m+1Aj,m+1

Am+1.m+1

= δij −
δi,m+1Aj,m+1

Am+1,m+1

= δij.

The last equality holds because i ≤ m.

5 Jaffard’s theorem

We will use the following result of Jaffard (Proposition 3 in [9]). Throughout
this section γ > 1 is fixed.

Proposition 5.1 Assume b is an invertible K ×K matrix satisfying
‖b‖ ≤ Λ1, ‖B‖ ≤ Λ−1

0 , and

|bij| ≤
c1

1 + |i− j|γ
for all i, j,

where B = b−1. There is a constant c2, depending only on c1, γ, Λ0 and Λ1,
but not K, such that

|Bij| ≤
c2

1 + |i− j|γ
for all i, j.
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The dependence of c2 on the given parameters is implicit in the proof in
[9].

We now suppose that a is a positive definite K ×K matrix such that for
some positive Λ0,Λ1,

gΛ1 ≥ a ≥ gΛ0 . (5.1)

We suppose also that (2.4) holds. Our estimates and constants in this section
may depend on Λi and κγ, but will be independent of K, as is the case in
Proposition 5.1.

Recall a(t) and ã(t) are defined in (4.1) and (4.5), respectively, and A(t)

and Ã(t), respectively, are their inverses.

Lemma 5.2 For all t > 0,

|ãij(t)| ≤
κγ

1 + |i− j|γ
for all i, j.

Proof. Since

Gii(t) =
2λi

1− e−2λit
,

then

ãij(t) =
( 2λi

1− e−2λit

)1/2

aij

(1− e−(λi+λj)t

λi + λj

)( 2λj

1− e−2λjt

)1/2

.

Using (2.4) and Lemma 4.4, we have our result.

Lemma 5.3 There exists a constant c1, depending only on κγ, Λ0 and Λ1,
so that

|Ãij(t)| ≤
c1

1 + |i− j|γ
.

Proof. This follows immediately from Lemma 4.5, Lemma 5.2, and Jaffard’s
theorem (Proposition 5.1).

We set

L(i, j, t) =
(1 + λit

t

)1/2(1 + λjt

t

)1/2

.

The proposition we will use in the later parts of the paper is the following.
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Proposition 5.4 There exists a constant c1, depending only on κγ, Λ0 and
Λ1, such that

(2Λ1)
−1L(i, i, t)1(i=j) ≤ |Aij(t)| ≤ L(i, j, t)

( c1
1 + |i− j|γ

)
.

Proof. Since ã(t) = G(t)1/2a(t)G(t)1/2, then

a(t) = g(t)1/2ã(t)g(t)1/2,

and hence
A(t) = G(t)1/2Ã(t)G(t)1/2.

Therefore

Aij(t) =
( 2λi

1− e−2λit

)1/2

Ãij(t)
( 2λj

1− e−2λjt

)1/2

. (5.2)

The upper bound now follows from Lemma 5.3 and (4.7).

For the left hand inequality, by (5.2) and the lower bound in (4.7) it suffices
to show

Ãii(t) ≥ Λ−1
1 , (5.3)

and this is immediate from the uniform upper bound on ã(t) in Lemma 4.5.

6 A Gaussian-like measure

Let us suppose K is a fixed positive integer, 0 < Λ0 ≤ Λ1 <∞, and that we
have a K ×K symmetric matrix-valued function a : RK → RK×K with

Λ0

K∑
i=1

|yi|2 ≤
K∑

i,j=1

aij(x)yiyj ≤ Λ1

K∑
i=1

|yi|2, x ∈ RK , y = (y1, . . . , yK) ∈ RK .

It will be important that all our bounds and estimates in this section will
not depend on K. We will assume 0 < λ1 ≤ λ2 ≤ · · · ≤ λK satisfy (2.2). As
usual, A(x) denotes the inverse to a(x), and we define

aij(x, t) = aij(x)

∫ t

0

e−(λi+λj)s ds,
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and then A(x, t) to be the inverse of a(x, t). Let ã(x, t) and Ã(x, t) be defined
as in (4.5) and (4.6), respectively. When x = (x1, . . . , xK), define x′ =
(x′1, . . . , x

′
K) by

x′i = e−λitxi,

and set w = y − x′. For j ≤ K, define πj,x : RK → RK by

πj,x(y) = (y1, y2, . . . , yj, x
′
j+1, . . . , x

′
K),

and write πj for πj,x if there is no ambiguity. Recall that

QK(w,A(y, t)) = (2π)−K/2(detA(y, t))1/2 exp
(
− 〈w,A(y, t)w〉/2

)
. (6.1)

The dependence of A on y but not x is not a misprint; y → QK(y−x′, A(y, t))
will not be a probability density. It is however readily seen to be integrable;
we show more below.

The choice ofK in the next result is designed to implement a key induction
argument later in this section.

Lemma 6.1 Assume K = m + 1 and a(y) = a(πm(y)), that is, a(y) does
not depend on ym+1. Let b(y) be the m ×m matrix with bij(y) = aij(y) for
i, j ≤ m, and let B(y) be the inverse of b(y). Then for all x,
(a) we have ∫

Qm+1(w,A(y)) dym+1 = Qm(w,B(y)).

(b) If y1, . . . , ym are held fixed, Qm+1(w,A(y))/Qm(w,B(y)) equals the den-
sity of a normal random variable with mean

µ(y1, . . . , ym) = −
∑m

i=1wiAi,m+1(y)

Am+1,m+1(y)

and variance σ2(y1, . . . , ym) = (Am+1,m+1(y))
−1.

Proof. Lemma 4.9 and some algebra show that

m+1∑
i,j=1

(yi − x′i)(yj − x′j)Aij(y) =
m∑

i,j=1

(yi − x′i)(yj − x′j)Bij(y) (6.2)

+ Am+1,m+1(y)|ym+1 − x′m+1 − µ|2.
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Let C(y) be the (m+ 1)× (m+ 1) matrix such that
Cij(y) = Bij(y), i, j ≤ m;

Ci,m+1(y) = 0, i ≤ m;

Cm+1,j(y) = Am+1,j(y), j ≤ m+ 1.

If rowi(D) denotes the ith row of a matrix D, note that

rowi(C(y)) = rowi(A(y))− 1(i≤m)
Ai,m+1

Am+1,m+1

rowm+1(A(y)).

Therefore detC(y) = detA(y) > 0, and it follows that

detA(y) = detC(y) = Am+1,m+1(y) detB(y). (6.3)

Part (a) now follows from (6.2), (6.3), and evaluating the standard Gaus-
sian integral. Part (b) is then immediate from (6.2) and (6.3).

Let B0 = 8 log(Λ1/Λ0) + 4 log 2 and for B > 0 let

SB,K = SB = {z ∈ RK : ‖z‖2 < BΛ1K}. (6.4)

Recalling that w = y − x′, we will often use the further change of variables

w′ = G(t)1/2w = G(t)1/2(y − x′). (6.5)

Note that when integrating QK(w′, A(y, t)) with respect to w′, y is an implicit
function of w′.

Lemma 6.2 (a) For any p ≥ 0 there is a cp = cp(Λ1) such that if B ≥ B0

and F is a K ×K symmetric matrix-valued function of w with GΛ0 ≥ F ≥
GΛ1, then ∫

Sc
B

‖w‖2pQK(w,F ) dw ≤ cpK
pe−BK/16.

(b) For all x,∫
Sc

B

‖w′‖2pQK(w′, Ã(y, t)) dw′ ≤ cpK
pe−BK/16.
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Proof. (a) We have GΛ0 = (Λ1/Λ0)GΛ1 , and so

QK(w,F ) ≤ (2π)−K/2(detGΛ0)
1/2e−〈w,GΛ1

w〉/2 (6.6)

=
(Λ1

Λ0

)K/2

QK(w,GΛ1).

Let Zi be i.i.d. mean zero normal random variables with variance 1 and
let

Yi =
√

Λ1Zi.

From (6.6) we have∫
Sc

B

‖w‖2pQK(w,F ) dw ≤
(Λ1

Λ0

)K/2
∫

Sc
B

‖w‖2pQK(w,GΛ1) dw.

The right hand side is the same as(Λ1

Λ0

)K/2

E
[( K∑

i=1

Λ1|Zi|2
)p

;
K∑

i=1

Λ1|Zi|2 ≥ BΛ1K
]

≤
(Λ1

Λ0

)K/2

(Λ1)
pE
[( K∑

i=1

|Zi|2
)p

;
K∑

i=1

|Zi|2 ≥ BK
]

≤
(Λ1

Λ0

)K/2

(Λ1)
p
[
E (
( K∑

i=1

|Zi|2
)2p]1/2

×
[
E exp

( K∑
i=1

|Zi|2/4
)]1/2

e−BK/8

≤ cpK
p
[(Λ1

Λ0

)1/2

E (exp(|Z1|2/4))1/2e−B/8
]K
.

Since E e|Z1|2/4 =
√

2, our choice of B shows that the above is at most

cpK
p exp(−BK/16).

(b) By Lemma 4.5, gΛ0 ≤ ã(y, t) ≤ gΛ1 , so GΛ0 ≥ Ã(y, t) ≥ GΛ1 . Hence
(b) follows from (a).

For m ≤ K we let am(y, t), respectively ãm(y, t), be the m × m matri-
ces whose (i, j) entry is aij(πm,x′(y), t), respectively ãij(πm,x′(y), t). We use

Am(y, t) and Ãm(y, t) to denote their respective inverses.
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The main theorem of this section is the following.

Theorem 6.3 Suppose (2.5) holds with β > 3−α. Let w′ = G(t)1/2(y−x′).
Then there exists a constant c1 depending on α, β, κβ, p, Λ0, and Λ1 but not
K, such that for all t > 0 and x ∈ R:

(a) For all 1 ≤ j ≤ K,∫
RK

|w′
j|2pQK(w′, Ã(y, t)) dw′

≤ c1

[∫
Rj

|w′
j|2pQj(w

′, Ãj(y, t)) dw′ + 1
]
.

(b) ∫
RK

QK(w′, Ã(y, t)) dw′ ≤ c1,

and ∫
RK

QK(y − x′, A(y, t)) dy ≤ c1.

Remark 6.4 This is one of the more important theorems of the paper. In
the proof of (a) we will define a geometrically decreasing sequence K0, ..., KN

with K0 = K and KN = j and let Cm be the expression on the right-hand
side of (a) but with Km in place of K and ÃKm in place of Ã. We will bound
Cm inductively in terms of Cm+1 by using Lemma 6.2 and Proposition 4.8.
This will give (a) and reduce (b) to the boundedness in the K = 1 case,
which is easy to check.

Proof of Theorem 6.3. All constants in this argument may depend on
α, β, κβ,Λ0,Λ1, and p. Let K0, K1, . . . , KN be a decreasing sequence of pos-
itive integers such that K0 = K, KN = j, and 5

4
≤ Km/Km+1 ≤ 4 for each

0 ≤ m < N .

Let

Cm =

∫
|w′

j|2pQKm(w′, ÃKm(y, t)) dw′. (6.7)
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Our plan is to bound Cm inductively over m. Write

Cm =

∫
Sc

B0,Km

|w′
j|2pQKm(w′, ÃKm(y, t)) dw′

+

∫
SB0,Km

|w′
j|2pQKm(w′, ÃKm(y, t)) dw′

= I1 + I2. (6.8)

Assume m < N . We can bound I1 using Lemma 6.2 and conclude

I1 ≤ cpK
p
me

−B0Km/16 ≤ c′pe
−B0Km/17. (6.9)

Turning to I2, we see that by our hypothesis on a, we have

|aKm
ij (y, t)−aKm

ij (πKm+1(y), t)|

≤ κβ

Km∑
k=Km+1+1

|wk|αk−β

= κβ

Km∑
k=Km+1+1

|w′
k|αgkk(t)

α/2k−β

≤ c1(t
α/2 ∧K−α

m )‖w′‖α
[ Km∑

k=Km+1+1

k−2β/(2−α)
](2−α)/2

.

In the last line we use Hölder’s inequality and also the bound

gkk(t) =

∫ t

0

e−2λks ds ≤ t ∧ (2λk)
−1 ≤ c2(t ∧ k−2), (6.10)

by (2.2). We also used the geometric decay of the {Km}.
If w′ ∈ SB0,Km so that ‖w′‖α ≤ (B0Λ1Km)α/2, some elementary arithmetic

shows there is a constant c3 so that

|aKm
ij (y, t)− aKm

ij (πKm+1(y), t)| ≤ c3(t
α/2 ∧K−α

m )Kα/2
m [K1−(2β/(2−α))

m ](2−α)/2

≤ c3(t
α/2 ∧K−α

m )K1−β
m . (6.11)

Set δ = c3K
1−β−α
m . We now apply Proposition 4.8 for w′ ∈ SB0,Km with

a = aKm(y, t) and b = aKm(πKm+1(y), t). In view of (4.16) and (6.11), we
may take

θ = Λ−1
0 K2

mδ and φ = Λ−2
0 Λ1B0K

2
mδ,
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so that
θ ∨ φ ≤ c3K

3−β−α
m ≤ c3.

Proposition 4.8 shows that for w′ ∈ SB0,Km ,∣∣∣ QKm(w′, ÃKm(y, t))

QKm(w′, ÃKm(πKm+1(y), t))
− 1
∣∣∣ ≤ c4K

3−β−α
m . (6.12)

Therefore we have

I2 ≤ (1 + c4K
3−β−α
m )

∫
|w′

j|2pQKm(w′, ÃKm(πKm+1(y), t)) dw
′.

Recall m + 1 ≤ N so that j ≤ Km+1. Integrate over w′
Km

using Lemma
6.1, then over w′

Km+1 using Lemma 6.1 again, and continue until we have
integrated over w′

Km+1+1 to see that∫
|w′

j|2pQKm(w′, ÃKm(πKm+1(y), t)) dw
′ = Cm+1, (6.13)

and hence
I2 ≤ (1 + c4K

3−β−α
m )Cm+1. (6.14)

This and (6.9) together show that (6.8) implies that for 0 ≤ m < N ,

Cm ≤ c′pe
−B0Km/17 + (1 + c4K

3−β−α
m )Cm+1. (6.15)

This and a simple induction imply

C0 ≤ exp
(
c4

N−1∑
m=0

K3−β−α
m

)
CN (6.16)

+ c′p

N−1∑
m=0

e−B0Km/17 exp
(m−1∑

`=1

c4K
3−β−α
`

)
≤ c5(p)[CN + 1],

since β > 3− α. Part (a) follows.

For (b), we may apply (a) with p = 0 and j = 1 to get∫
QK(w′,Ã(y, t)) dw′ (6.17)

≤ c6

[∫ ∞

−∞
Q1(w

′, Ã1(y, t)) dw + 1
]
.
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Recall from Lemma 4.5 that the scalar Ã1(y, t) satisfies (Λ1)
−1 ≤ |Ã1(y, t)| ≤

(Λ0)
−1 and so the above integral is at most(Λ1

Λ0

)1/2
∫
Q1(w,Λ1t) dw = (Λ1/Λ0)

1/2.

The first bound in (b) follows from this and (6.17). Using the change of
variables w′ = G(t)1/2w, we see that the second integral in (b) equals the
first.

Proposition 6.5 Under the hypotheses of Theorem 6.3,∫
QK(y − x′, AK(y, t)) dy → 1

as t→ 0, uniformly in K and x.

Proof. We will use the notation of the proof of Theorem 6.3 with j = 1,
p = 0, and t < 1. Using the change of variables w′ = G(t)1/2(y − x′), it
suffices to prove ∫

QK(w′, ÃK(y, t)) dw′

converges to 1 uniformly as t→ 0.

We define a decreasing sequence K0, . . . , KN as in the proof of Theorem
6.3 with K0 = K and KN = 1, we let

Cm(t) =

∫
QKm(w′, ÃKm(y, t)) dw′,

we let R > 0 be a real number to be chosen later, and we write

|C0(t)− 1| ≤ |CN(t)− 1|+
N−1∑
m=0

|Cm(t)− Cm+1(t)|. (6.18)

We will bound each term on the right hand side of (6.18) appropriately, and
that will complete the proof.
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Using (6.13) and with SB,K defined by (6.4), we write

|Cm(t)− Cm+1(t)|

≤
∫

Sc
R,Km

[QKm(w′, ÃKm(y, t)) +QKm(w′, ÃKm(πKm+1(y), t))] dw
′

+

∫
SR,Km

∣∣∣ QKm(w′, ÃKm(y, t))

QKm(w′, ÃKm(πKm+1(y), t))
− 1
∣∣∣

×QKm+1(w
′, ÃKm(πKm+1(y), t)) dw

′

= J1(t) + J2(t).

By Lemma 6.2(a),
J1(t) ≤ c1e

−c2RKm .

Choose 0 < η < β−(3−α) and note that (6.11) implies there exists c2 = c2(R)
such that

|aKm
ij (y, t)− aKm

ij (πKm+1(y), t)| ≤ c2t
ηK1−β−α+η

m ≡ δ.

Follow the argument in the proof of Theorem 6.3 with this value of δ to see
that

J2(t) ≤ c2t
η/2K3−β−α+η

m

∫
QKm+1(w

′, ÃKm+1(y, t)) dw′

= c2t
η/2K3−β−α+η

m Cm+1(t)

≤ c3t
η/2K3−β−α+η

m .

We used the uniform boundedness of Cm+1 from Theorem 6.3 for the last
inequality.

A very similar argument shows that∣∣∣CN(t)−
∫
Q1(w

′, Ã1(x′, t)) dw
∣∣∣ ≤ c4e

−c4R + c5t
α/2,

where c5 depends on R. For example, in bounding the analog of J2(t), we
may now take δ = c6R

αtα/2 by adjusting the argument leading up to (6.11).

Now use that Q1(w
′, Ã(x′, t)) is the density of a normal random variable, so

that
∫
Q1(w

′, Ã(x′, t)) dw′ = 1. Substituting in (6.18), we obtain

|CN(t)− 1| ≤ c4e
−c4R + c5t

α/2 +
N−1∑
m=0

[c1e
−c2RKm + c3t

η/2K3−β−α+η
m ]

≤ c7e
−c7R + c8(t

α/2 + tη/2);
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c8 depends on R but c7 does not. For the second inequality recall that
3 − β − α + η < 0 and the Km were chosen in the proof of Theorem 6.3 so
that 5

4
≤ Km/Km+1 ≤ 4. Given ε > 0, choose R large so that c7e

−c7R < ε
and then take t small enough so that c8(t

α/2 + tη/2) < ε.

Corollary 6.6 Assume the hypotheses of Theorem 6.3. For any p ≥ 0 there
exists c1 = c1(p) > 0 such that∫

‖w′‖2pQK(w′, Ã(y, t)) dw ≤ c1K
p

for all t > 0.

Proof. Bound the above integral by∫
Sc

B0

‖w′‖2pQK(w′, Ã(y, t)) dw′ + (B0Λ1K)p

∫
SB0

QK(w′, Ã(y, t)) dw′.

The first term is at most cpK
pe−B0K/16 by Lemma 6.2. The integral in the

second term is at most c1 by Theorem 6.3 (b). The result follows.

Lemma 6.7 If r > 0, γ > 1, then there exists c1 = c1(r, γ) such that for all
N ,

N∑
m=1

mr

1 + |m− k|γ
≤ c1

[
N (1+r−γ)+ + 1(γ=1+r) logN + kr

]
.

Proof. The above sum is bounded by

c2

[ N∑
m=1

(m− k)r

1 + |m− k|γ
+ kr

N∑
m=1

1

1 + |m− k|γ
]
.

The first term is at most c3
∑N

n=1 n
r−γ and the second term is at most c4k

r.
The result follows.

For the remainder of this subsection, except for Theorem 6.12, we take
p ≥ 1/2, α > 1/2, γ > 3/2, β > (2 − α/2 + p) ∨ (3 − α), and assume (2.4)
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holds. With a bit of additional work the condition on γ may be weakened to
γ > 1 but in Section 8 we will need stronger conditions on γ so we made no
attempt to optimize here.

For p ≥ 1/2 define

‖f(w)‖2p =
[ ∫

|f(w′)|2pQj(w
′, Ã(y, t)) dw′

]1/2p

,

the L2p norm of f .

We start with a rather crude bound. We write Ãw′ for Ã(y, t)w′.

Lemma 6.8 There exists c1 such that for all 1 ≤ k ≤ j ≤ K,

‖(Ãw′)k‖2p ≤ c1j
1/2.

Proof. By (2.4) and Lemma 5.3 we have

‖(Ãw′)k‖2p ≤ c2

∥∥∥ j∑
m=1

|w′
m|

1 + |m− k|γ
∥∥∥

2p

≤ c3

j∑
m=1

( 1

1 + |m− k|γ
)
‖w′

m‖2p.

We can use Corollary 6.6 with K = j to bound ‖w′
m‖2p by

‖(‖w′‖)‖2p ≤ c4j
1/2.

The bound follows.

Lemma 6.9 Assume there exists c1 > 0 such that∫
|(Ã(y, t)w′)k|2pQj(w

′, Ã(y, t)) dw′ ≤ c1 (6.19)

for all j ≥ k ≥ ((j/2) ∨ 2) and t > 0. Then there is a constant c2, so that
for all 1 ≤ j ≤ K and all t > 0,∫

|w′
j|2pQK(w′, Ã(y, t)) dw′ ≤ c2. (6.20)
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Proof. If z = Ã(y, t)w′, then by Lemma 5.2

‖w′
j‖2p =

∥∥∥ j∑
k=1

ãjkzk

∥∥∥
2p

(6.21)

≤
j∑

k=1

κγ

1 + |k − j|γ
‖zk‖2p.

Use Lemma 6.8 to bound ‖zk‖2p for k ≤ (j/2)∨ 1 and (6.19) to bound it for
k > (j/2) ∨ 1. This leads to

‖w′
j‖2p ≤ c3

[ bj/2c∨1∑
k=1

j−γj1/2 +

j∑
k=dj/2e∨2

( 1

1 + |k − j|γ
)]

≤ c4,

where γ > 3/2 is used in the last line. This gives (6.20).

To establish (6.19) we argue in a way similar to that of Theorem 6.3. For
j ≥ k, as in (6.19), define π : Rj → Rj by

π(y1, . . . , yj) = (y1, . . . , yk−1, x
′
k, yk+1, . . . , yj)

and
b(y, t) = a(π(y), t), B(y, t) = A(π(y), t).

As usual
b̃(y, t) = G(t)1/2b(y, t)G(t)1/2

with inverse
B̃(y, t) = g(t)1/2B(y, t)g(t)1/2.

Lemma 6.10 There exists c1 such that for all K ≥ j ≥ k ≥ j/2 > 0,∫
|(B̃w′)k|2p[Qj(w

′, Ã(y, t))−Qj(w
′, B̃(y, t))] dw ≤ c1.

Proof. As usual, w′ = G(t)1/2(y − x′). If j, k are as above, then by (2.5)
and (6.10)

|amn(y, t)− bmn(y, t)| ≤ κβ|wk|αk−β

≤ c2‖w′‖αk−α−β (6.22)
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by (6.10) and k ≥ 2. So for w′ ∈ SB0,j we can use k ≥ j/2 to conclude

|amn(y, t)− bmn(y, t)| ≤ c3k
−α/2−β,

and therefore using k ≥ j/2 again,

‖a(y, t)− b(y, t)‖s ≤ 2c3k
1−α/2−β.

For w′ ∈ SB0,j we may therefore apply Proposition 4.8 with

θ + φ ≤ c4k
2−α/2−β ≤ c4. (6.23)

It follows from Proposition 4.8 and the first inequality in (6.23) that∣∣∣Qj(w
′, Ã(y, t))

Qj(w′, B̃(y, t))
− 1
∣∣∣ ≤ c5k

2−α/2−β for w′ ∈ SB0,j. (6.24)

By our off-diagonal bound (2.4) and Lemma 5.3 we have

|B̃km| ≤ c6(1 + |k −m|γ)−1, (6.25)

and so (the constants below may depend on p)

|(B̃w′)k|2p ≤
∣∣∣ j∑

m=1

B̃2
km

∣∣∣p‖w′‖2p (6.26)

≤ c7‖w′‖2p.

Use (6.24) and (6.26) to bound the required integral by∫
Sc

B0

|(B̃w′)k|2pQj(w
′, Ã(y, t)) dw

+

∫
SB0

|(B̃w′)k|2pQj(w
′, B̃(y, t)) dw′ c5k

2−α/2−β

≤ c7

∫
Sc

B0

‖w′‖2pQj(w
′, Ã(y, t)) dw′

+ c8k
2−α/2+p−β

∫
SB0

Qj(w
′, B̃(y, t)) dw.

The first term is at most cpj
pe−B0j/16 by Lemma 6.2, and the last term is

bounded by c9k
2−α/2+p−β, thanks to Theorem 6.3. Adding the above bounds

gives the required result because β ≥ 2− α/2 + p.
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Lemma 6.11 There exists a constant c1 such that for all j ≥ k ≥ (j/2)∨ 2,∫
|((Ã− B̃)w′)k|2pQj(w

′, Ã(y, t)) dw′ ≤ c1.

Proof. We use

‖Ã− B̃‖ = ‖Ã(̃b− ã)B̃‖ ≤ ‖Ã‖ ‖b̃− ã‖ ‖B̃‖.

Lemma 4.5 implies
‖B̃‖ ‖Ã‖ ≤ Λ−2

0 ,

and Lemma 4.6 and (6.22) show that

‖b̃− ã‖ ≤ ‖b− a‖s ≤ c2‖w′‖αk1−β−α.

These bounds give∫
|((Ã(y, t)− B̃(y, t))w′)k|2pQj(w

′, Ã(y, t)) dw′

≤
∫
‖Ã(y, t)− B̃(y, t)‖2p‖w′‖2pQj(w

′, Ã(y, t)) dw′

≤ c3k
2p(1−β−α)

∫
‖w′‖2p(1+α)Qj(w

′, Ã(y, t)) dw′.

By Corollary 6.6 this is at most c4k
p(3−2β−α), which gives the required bound

since β > 3− α ≥ (3− α)/2.

Theorem 6.12 Assume (2.4) for some γ > 3/2 and (2.5) for some α > 1/2
and

β > (2− α/2 + p) ∨ (7
2
− α/2) ∨ (3− α).

Let p ≥ 0. Let w′ = G(t)1/2(y − x′). Then there is a c1 = c1(p) such that for
all i ≤ j ≤ K, t > 0, and x ∈ RK,∫

|w′
j|2pQK(w′, Ã(y, t)) dw′ ≤ c1, (6.27)

and ∫
|wj|2pQK(w,A(y, t)) dw ≤ c1

tp

(1 + λjt)p
≤ c1t

p. (6.28)

35



Proof. Consider (6.27). First assume p ≥ 1/2. As β > 3−α, Theorem 6.3(a)
allows us to assume K = j. Lemma 6.9 reduces the proof to establishing
(6.19) in Lemma 6.9 for j and k as in that result, so assume j ≥ k ≥ (j/2)∨2.
Lemmas 6.10 and 6.11 imply that∫

|(Ã(y, t)w′)k|2pQj(w
′, Ã(y, t)) dw′ (6.29)

≤ c2

[ ∫
|Ã(y, t)− B̃(y, t))w′)k|2pQj(w

′, Ã(y, t)) dw′

+

∫
|(B̃(y, t)w′)k|2pQj(w

′, Ã(y, t)) dw′
]

≤ c3

[
1 +

∫
|(B̃(y, t)w′)k|2pQj(w

′, B̃(y, t)) dw′
]

≡ c4[1 + I].

To evaluate the integral I, note that

I =

∫
|B̃kk(y, t)|2p ·

∣∣∣w′
k +

∑
m6=k

B̃km(y, t)w′
m

B̃kk(y, t)

∣∣∣2p

×Qj(w
′, B̃(y, t)) dw′.

Changing the indices in Lemma 6.1 with ã and b̃ playing the roles of a and
b, respectively, we see that provided we hold the coordinates ŵ = (w′

j)j 6=k

fixed, if ŷ = (yj)j 6=k and B̂(ŷ, t) is the inverse of (̃bmn(y, t))m6=k,n6=k, then

Qj(w
′, B̃(y, t))/Qj−1(ŵ, B̂(ŷ, t)) dw′ as a function of w′

k is the density of a
normal random variable with mean

µ = −
∑
m6=k

B̃km(y, t)

B̃kk(y, t)

and variance σ2 = B̃kk(y, t)
−1. So if we integrate over w′

k, Lemma 6.1 implies

I =

∫
|B̃kk(y, t)|pcpQj−1(ŵ, B̂(ŷ, t)) dŵ

≤ cp

∫
Qj−1(ŵ, B̂(ŷ, t)) dŵ,
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where we used Lemma 5.3 in the last line. Finally we use Theorem 6.3(b) to
bound the above integral by c′p. Put this bound into (6.29) to complete the
proof of (6.27) when p ≥ 1/2.

For p < 1/2, we write∫
|w′

j|2pQK(w′, Ã(y, t)) dw′ ≤
∫

(1 + |w′
j|)QK(w′, Ã(y, t)) dw′

and apply the above and Theorem 6.3(b).

The change of variables w′ = G(t)1/2w shows that∫
|wj|2pQj(w,A(y, t)) dw = gjj(t)

p

∫
|w′

j|2pQj(w
′, Ã(y, t)) dw′.

Now use (4.7) for λj > 0 and gjj(t) = t if λj = 0, to see that

gjj(t) ≤
2t

1 + λjt
.

This and (6.27) now give (6.28).

7 A second derivative estimate

We assume 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λK satisfies (2.2) for all i ≤ K. Our goal in
this section is to bound the second derivatives

DjkQK(y − x′, A(y, t)) =
∂2

∂xj∂xk

QK(y − x′, A(y, t))

uniformly in K. Here a(y, t) and A(y, t) = a(y, t)−1 are as in Section 6, and
we assume (2.5) for appropriate β and (2.4) for γ > 3/2 throughout. The
precise conditions on β will be specified in each of the results below. The
notations Am, Ãm, Ã from Section 6 are also used.

A routine calculation shows that for j, k ≤ K,

DjkQK(y − x′, A(y, t)) = e−(λj+λk)tSjk(w,A(y, t)) (7.1)

×QK(w,A(y, t)),
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where w = y − x′ and for a K ×K matrix A,

Sjk = Sjk(w,A) =
( K∑

n=1

Ajnwn

)( K∑
n=1

Aknwn

)
− Ajk

= (Aw)j(Aw)k − Ajk.

We use the same notation if A is an m×m matrix for m ≤ K, but then our
sums are up to m instead of K.

We will need a bound on the L2 norm of a sum of second derivatives. The
usual change of variables w′ = G(t)1/2(y − x′) will reduce this to bounds on

IK
jk` =

∫
RK

Sj,j+`Sk,k+`(w
′, Ã(y, t))QK(w′, Ã(y, t)) dw′.

These bounds will be derived by induction as in Theorem 6.3 and so we
introduce for m ≤ K,

Im
jk` =

∫
Rm

Sj,j+`Sk,k+`(w
′, Ãm(y, t))Qm(w′, Ãm(y, t)) dw′.

As the argument is more involved than the one in the proof of Theorem
6.3, to simplify things we will do our induction from m to m − 1 rather
than using geometric blocks of variables. This leads to a slightly stronger
condition on β in Proposition 7.6 below than would otherwise be needed.

If A is an m×m matrix, we set Aij = 0 if i or j is greater than m. This
means, for example, that Sjk(w,A) = 0 if j ∨ k > m. In what follows x is
always fixed, all bounds are uniform in x, and when integrating over w′

j, we
will be integrating over yj = yj(w

′
j) as well.

Since w′ = G(t)1/2w we have from (6.11)

|wn| = gnn(t)1/2|w′
n| ≤

{
c1(
√
t ∧ (n−1))|w′

n| if n ≥ 2

c1
√
t|w′

n| if n = 1.
(7.2)

Lemma 7.1 Assume β > 5
2
. There exists c1 such that for all m, j, k > 0

and ` ≥ 0 satisfying (j ∨ k) + ` ≤ m ≤ K and m ≥ 2,∫
|Sj,j+`Sk,k+`(w

′, Ãm(y, t))− Sj,j+`Sk,k+`(w
′, Ãm(πm−1(y), t))|

×Qm(w, Ãm(y, t)) dw′

≤ c1m
5/2−β−α.
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Proof. Let j, k, ` and m be as above. The pointwise bound on Ãm in Lemma
5.3 implies

|Sk,k+`(w
′, Ãm(y, t))| (7.3)

≤ c2

[ m∑
n=1

m∑
ν=1

(1 + |n− k|γ)−1(1 + |ν − k − `|γ)−1|w′
n| |w′

ν |

+ (1 + `γ)−1
]
,

and so
|Sk,k+`(w

′, Ãm(y, t))| ≤ c3(‖w′‖2 + 1). (7.4)

The triangle inequality gives

|Sj,j+`(w
′, Ãm(y, t))− Sj,j+`(w

′, Ãm(πm−1(y), t))| (7.5)

≤ |((Ãm(y, t)− Ãm(πm−1(y), t))w
′)j| |(Ãm(y, t)w′)j+`|

+ |(Ãm(πm−1(y), t)w
′)j| |((Ãm(y, t)− Ãm(πm−1(y), t))w

′)j+`|
+ |Ãm

j,j+`(y, t)− Ãm
j,j+`(πm−1(y), t)|.

By (4.9) in Lemma 4.6, for i ≤ m,

|(Ãm(y, t)−Ãm(πm−1(y), t)w
′)i| (7.6)

≤ ‖Ãm(y, t)− Ãm(πm−1(y), t)‖ ‖w′‖
≤ Λ−2

0 ‖ãm(y, t)− ãm(πm−1(y), t)‖s ‖w′‖

≤ Λ−2
0

m∑
j=1

κβ|wm|αm−β‖w′‖

≤ c4‖w′‖ |w′
m|αm1−β−α,

where (7.2) and m ≥ 2 are used in the last line.

Lemma 5.3 implies that for i ≤ m,

|(Ãm(y, t)w′)i| ≤ c5

m∑
ν=1

(1 + |ν − i|γ)−1|w′
ν |, (7.7)

and (4.10) together with the calculation in (7.6) implies

|Ãm(y, t)j,j+` − Ãm(πm−1(y), t)j,+`| ≤ Λ−2
0 ‖am(y, t)− am(πm−1(y), t)‖s

(7.8)

≤ c6|w′
m|αm1−β−α,
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as in (7.6) above.

Now use (7.6), (7.7), and (7.8) in (7.5) and then appeal to (7.4) to conclude
that∫

|Sj,j+`(w
′, Ãm(y, t))− Sj,j+`(w

′, Ãm(πm−1(y), t))| |Sk,k+`(w
′, Ãm(y, t))|

×Qm(w′, Ãm(y, t)) dw′ (7.9)

≤ c7m
1−β−α

{∫
(‖w′‖2 + 1) |w′

m|αQm(w′, Ãm(y, t)) dw′

+
m∑

ν=1

(
(1 + |ν − j|γ)−1 + (1 + |ν − j − `|γ)−1

)
×
∫
|w′

ν ||w′
m|α[‖w′‖3 + ‖w′‖]

}
Qm(w′, Ãm(y, t)) dw′

There are several integrals to bound but the one giving the largest contribu-
tion and requiring the strongest condition on β will be

I =

∫
|w′

ν | |w′
m|α ‖w′‖3Qm(w′, Ãm(y, t)) dw′.

Apply Hölder’s inequality for triples with p = 1+α
1−ε

, q = 1+α
α(1−ε)

and r = ε−1

to conclude

I ≤
[∫

|w′
ν |pQm(w′, Ãm(y, t)) dw′

]1/p[∫
|w′

m|αqQm(w′, Ãm(y, t)) dw′
]1/q

×
[∫

‖w′‖3rQm(w′, Ãm(y, t)) dw′
]1/r

≤ c8m
3/2.

Here we used Corollary 6.6, Theorem 6.12 and the fact that β > 5/2 means
the hypotheses of this last result are satisfied for ε small enough. The other
integrals on the right-hand side of (7.9) lead to smaller bounds and so the
left-hand side of (7.9) is at most c9m

5/2−β−α. A similar bound applies with
the roles of j and k reversed, and so the required result is proved.
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Lemma 7.2 Assume β > 2−(α/2). There exists c1 such that for all j, k, `,m
as in Lemma 7.1 and satisfying 2 ≤ m,∫

|Sj,j+`Sk,k+`(w
′, Ãm(πm−1(y), t))|

× |Qm(w′, Ãm(y, t))−Qm(w′, Ãm(πm−1(y), t))| dw′

≤ c1m
2−(α/2)−β.

Proof. Recall that B0 is as in Lemma 6.2. Use (7.4) on Sc
B0,M and (7.3) on

SB0,m to bound the above integrand by

c2

[ ∫
Sc

B0,m

(‖w′‖4 + 1)[Qm(w′, Ãm(y, t)) +Qm(w′, Ãm(πm−1(y), t))] dw
′

+

∫
SB0,m

[( m∑
n=1

m∑
ν=1

(1 + |n− k|γ)−1(1 + |ν − k − `|γ)−1|w′
n| |w′

ν |
)

+ 1
]

×
∣∣∣ Qm(w′, Ãm(y, t))

Qm(w′, Ãm(πm−1(y), t))
− 1
∣∣∣Qm(w′, Ãm(πm−1(y), t))

]
dw′
]

= c2(I1(t) + I2(t)).

By Lemma 6.2,

I1(t) ≤ c3m
2e−B0m/16 ≤ c4e

−B0m/17.

We bound I2(t) as in the proof of Theorem 6.3 but with m in place of Km.
This requires some minor changes. Now for w′ ∈ SB0,m the δ coming from
(6.11) is less than or equal to

c5|w′
m|αm−β−α ≤ c6m

−α/2−β,

and
φ ∨ θ ≤ c7m

2−α/2−β ≤ c7.

So for w′ ∈ SB0.m, applying Proposition 4.8 as before, we get∣∣∣ Qm(w′, Ãm(y, t))

Qm(w′, Ãm(πm−1(y), t))
− 1
∣∣∣ ≤ c8m

2−α/2−β,
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and therefore

I2(t) ≤ c8m
2−α/2−β

∫ [( m∑
n=1

m∑
ν=1

(1 + |n− k|γ)−1(1 + |ν − k − `|γ)−1

× |w′
n| |w′

ν |
)

+ 1
]
Qm(w′, Ãm(πm−1(y), t)) dw

′

≤ c9m
2−α/2−β,

where Theorem 6.12 and Cauchy-Schwarz are used in the last line. The lower
bound on β shows the hypotheses of Theorem 6.12 are satisfied. Combining
the bounds on I1(t) and I2(t) completes the proof.

Note that if Z is a standard normal random variable, then E [(Z2−1)2] = 2.

Lemma 7.3 If j, k, `,m are as in Lemma 7.1 and for w′ ∈ Rm,

rm−1w
′ = (w′

1, . . . , w
′
m−1),

then∫
Sj,j+`Sk,k+`(w

′, Ãm(πm−1(y), t))
Qm(w′, Ãm(πm−1(y), t))

Qm−1(rm−1w′, Ãm−1(y, t))
dw′

m

=
{
Sj,j+`Sk,k+`(w

′, Ãm−1(y, t))1((j∨k)+`≤m−1)

}
(7.10)

+
{

[Ãm
jm(πm−1(y), t)(Ã

m−1(y, t)rm−1w
′)j+`

+ Ãm
j+`,m(πm−1(y), t)(Ã

m−1(y, t)rm−1w
′)j]

× [Ãm
km(πm−1(y), t)(Ã

m−1(y, t)rm−1w
′)k+`

+ Ãm
k+`,m(πm−1(y), t)(Ã

m−1(y, t)rm−1w
′)k]

× Ãm
mm(πm−1(y), t)

−1
}

+
{

2(Ãm
jmÃ

m
j+`,mÃ

m
kmÃ

m
k+`,m)(πm−1(y), t)Ã

m
mm(πm−1(y), t)

−2
}

= V 1(j, k, `,m) + V 2(j, k, `,m) + V 3(j, k, `,m).

Proof. We apply Lemma 6.1 with m in place of m + 1 and ãm(πm−1(y), t)
playing the role of a(y). Then under

Gm(y, t) =
Qm(w′, Ãm(πm−1(y), t))

Qm−1(rm−1w′, Ãm−1(y, t))
, (7.11)
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w′
m has a normal distribution with mean

µ = −
m−1∑
i=1

Ãm
mi(πm−1(y), t)w

′
i

Ãm
mm(πm−1(y), t)

and variance σ2 = Ãm
mm(πm−1(y), w

′)−1. Set ŵ′
m = wm − µ,

Rm
j =

m−1∑
i=1

Ãm
ji(πm−1(y), t)w

′
i, j ≤ m,

Rm−1
j =

m−1∑
i=1

Ãm−1
ji (y, t)w′

i, for j ≤ m− 1, Rm−1
m = 0,

and Cj = Ãm
mj(πm−1(y), t), j ≤ m.

Lemma 4.9 with a = ãm(πm−1(y), t) and m in place of m− 1 gives

Ãm
ji(πm−1(y), t) = Ãm−1

ji (y, t) + CjCiσ
2, j, i ≤ m,

where we recall that by convention Ãm−1
ji (y, t) = 0 if i or j is greater than

m− 1. Therefore
Rm

j = Rm−1
j − Cjµ, j ≤ m,

and so for j, k, `,m as in the lemma,

Sj,j+`Sk,k+`(w
′, Ãm(πm−1(y), t))

= [(Rm
j + Cjw

′
m)(Rm

j+` + Cj+`w
′
m)− Ãm

j,j+`(πm−1(y), t))]

× [(Rm
k + Ckw

′
m)(Rm

k+` + Ck+`w
′
m)− Ãm

k,k+`(πm−1(y), t))]

= [(Rm−1
j + Cjŵ

′
m)(Rm−1

j+` + Cj+`ŵ
′
m)− Ãm−1

j,j+`(y, t)− CjCj+`σ
2]

× [(Rm−1
k + Ckŵ

′
m)(Rm−1

k+` + Ck+`ŵ
′
m)− Ãm−1

k,k+`(y, t)− CkCk+`σ
2].

Rearranging terms, we see that the above equals

[Rm−1
j Rm−1

j+` − Ãm−1
j,j+`(y, t)

+ ŵ′
m(CjR

m−1
j+` + Cj+`R

m−1
j ) + (|ŵ′

m|2 − σ2)CjCj+`] (7.12)

×[Rm−1
k Rm−1

k+` − Ãm−1
k,k+`(y, t) + ŵ′

m(CkR
m−1
k+` + Ck+`R

m−1
k )

+ (|ŵ′
m|2 − σ2)CkCk+`]

= (Rm−1
j Rm−1

j+` − Ãm−1
j,j+`(y, t))(R

m−1
k Rm−1

k+` − Ãm−1
k,k+`(y, t))

+ |ŵ′
m|2(CjR

m−1
j+` + Cj+`R

m−1
j )(CkR

m−1
k+` + Ck+`R

m−1
k )

+ (|ŵ′
m|2 − σ2)2CjCj+`CkCk+` + off-diagonal terms.
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When we multiply each off-diagonal term by Gm(y, t) and integrate over w′
m,

we get zero. This is because the conditional normal distribution of w′
m under

Gm(y, t) implies that each of∫
ŵ′

mGm(y, t) dw′
m,∫

(|ŵ′
m|2 − σ2)Gm(y, t) dw′

m, and∫
(ŵ′

m)(|ŵ′
m|2 − σ2)Gm(y, t) dw′

m

equals zero.

Now integrate the remaining terms on the right hand side of (7.12) with

respect to Gm(y, t) dw′
m, noting that Rm−1

i , Ci, and Ãm−1
ij do not depend on

w′
m. Use the fact that∫

|ŵ′
m|2Gm(y, t) dw′

m = σ2 = Ãm(πm−1(y), t)
−1

and ∫
(|ŵ′

m|2 − σ2)2Gm(y,m) dw′
m = 2σ4 = 2Ãm(πm−1(y), t)

−2

to obtain the desired expression. In particular note that

(Rm−1
j Rm−1

j+` − Ãm−1
j,j+`(y, t))(R

m−1
k Rm−1

k+` − Ãm−1
k,k+`(y, t))

= Sj,j+`Sk,k+`(rm−1w
′, Ãm−1(y, t))1((j∨k)+`≤m−1).

We treat V 2 and V 3 in (7.10) as error terms and so introduce

E1(j, k, `,m) =

∫
Rm−1

|V 2(j, k, `,m)| dw′,

E2(j, k, `,m) =

∫
Rm−1

|V 3(j, k, `,m)| dw′,

and
E(j, k, l,m) = E1(j, k, `,m) + E2(j, k, `,m).

We are ready for our inductive bounds on the integral Im
jk`, defined at the

beginning of this section.
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Proposition 7.4 Assume β > 7
2
− α. There exists c1 such that for all

integers j, k, ` such that 1 ≤ j ≤ k ≤ k + ` ≤ K,

IK
jk` ≤ c1(k + `)(7/2)−α−β +

K∑
m=(k+`)∨2

E(j, k, `,m).

Proof. If K ≥ m ≥ 2∨ (k+ `), we can combine Lemmas 7.1, 7.2 and 7.3 to
see that

Im
jk` ≤ Im−1

jk` 1(k+`≤m−1) + c2m
5/2−β−α + c3m

2−α/2−β + E(j, k, `,m).

Therefore by induction

IK
jk` ≤ I

1∨(k+`−1)
jk` 1(k+`≤1∨(k+`−1)) + c4

K∑
m=2∨(k+`)

m(5/2)−β−α (7.13)

+
K∑

m=2∨(k+`)

E(i, j, k, `).

The first term in the above is I1
1101(k+`=1). For m = 1, Ã1(y, t) is a scalar

and an argument similar to that in (b) of Theorem 6.3 shows that

I1
110 =S11(w

′, Ã1(y, t))2Q1(w
′, Ã1(y, t))dw′ (7.14)

≤c5
∫

(1 + ‖w′‖4)Q1(w
′, Ã1(y, t))dw′ (by (7.4))

≤c6.

Use (7.14) to bound the first term in (7.13) and then bound the second
terms in the obvious manner to complete the proof.

To use the above bound we of course will have to control the E(j, k, `,m)’s.
If ζ > 0, set

J = Jζ(t) = d(ζ log(t−1 + 1))/t)1/2e. (7.15)

Lemma 7.5 Assume β > 3 − (α/2). There exists a c1 such that for all
0 ≤ ` ≤ K, ∑

1≤j≤k≤Jζ(t)

K∑
m=2∨(k+`)

E(j, k, `,m) ≤ c1Jζ(t).
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Proof. We consider E1(j, k, `,m). There is a product giving rise to four
terms, all of which are handled in a similar way. We consider only

E1
1(j, k, `,m)

=

∫
Rm−1

|Ãj+`,m(πm−1(y), t)(Ã
m−1(y, t)w′)jÃk+`,m(πm−1(y), t)

× (Ãm−1(y, t)w′)k|Ãm
mm(πm−1(y), t)

−1Qm−1(w
′, Ãm−1(y, t)) dw′,

as this is the worst term. Use the upper bound on Ãm
ij and the lower bound

on Ãm
ii from Lemma 5.3 to see that

E1
1(j, k, `,m) ≤ c2(1 + |m− j − `|γ)−1(1 + |m− k − `|γ)−1

×
m−1∑
n=1

m−1∑
ν=1

(1 + |n− j|γ)−1(1 + |ν − k|γ)−1

×
∫
|wν | |w′

ν |Q(w′, Ãm−1(y, t)) dw′.

An application of Cauchy-Schwarz and Theorem 6.12 shows that for our value
of β the last integral is bounded by c3. This leads to

E1
1(j, k, `,m) ≤ c4(1 + |m− j − `|γ)−1(1 + |m− k − `|γ)−1.

Now sum over j,m, and k in that order to see that

∑
1≤j≤k≤J

K∑
m=2∨(k+`)

E1
1(j, k, `,m)

≤
J∑

k=1

K∑
m=k+`

k∑
j=1

(1 + |m− j − `|γ)−1(1 + |m− k − `|γ)−1c4

≤
J∑

k=1

K∑
m=k+`

(1 + |m− k − `|γ)−1c5

≤ c6J.

The other terms making up E1(j, k, `,m) are bounded in a similar manner.
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Consider now E2(j, k, `,m). Again the upper and lower bounds in Lemma
5.3 and Theorem 6.3(b) imply that for j ≤ k ≤ k + ` ≤ m,

E2(j, k, `,m) ≤ c7(1 + |m− j|γ)−1(1 + |m− k|γ)−1(1 + |m− j − `|γ)−1

× (1 + |m− k − `|γ)−1

≤ c7(1 + |m− j − `|γ)−1(1 + |m− k − `|γ)−1.

Again sum over j then m and then k to see∑
1≤j≤k≤J

K∑
m=2∨(k+`)

E2(j, k, `,m) ≤ c8J.

Combining the above bounds gives the required result.

Proposition 7.6 Assume β > 9
2
− α. There exists c1 so that for any 0 ≤

` ≤ J ,∫ ( J∑
j=1

e−λjt−λj+`tSj,j+`(y − x′, A(y, t))
)2

QK(y − x′, A(y, t)) dy

≤ c1Jt
−2.

Proof. As usual we set w = g(t)1/2w′, which leads to

Sj,j+`(w,A(y, t)) = Sj,j+`(g(t)
1/2w′, A(y, t))

= Gjj(t)
1/2Sj,j+`(w

′, Ã(y, t))Gj+`,j+`(t)
1/2.

Let Hi(t) = e−λitGii(t)
1/2, so that

0 ≤ Hi(t) =
(∫ t

0

e2λi(t−s) ds
)−1/2

≤ t−1/2. (7.16)

The integral we have to bound now becomes∫ ( J∑
j=1

Hj(t)Sj,j+`(w
′, Ã(y, t))Hj+`(t)

)2

×QK(w′, Ã(y, t)) dw′

=
J∑

j,k=1

Hj(t)Hk(t)Hj+`(t)Hk+`(t)I
K
jk`.
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Now use the upper bound on Hi, Lemma 7.5, Proposition 7.4 for j ≤ k, and
symmetry in (j, k) to bound the above by

c2t
−2
{ ∑

j≤k≤J

[
(k + `)(7/2)−β−α +

K∑
m=2∨(k+`)

E(j, k, `,m)
]}

≤ c3t
−2J [`(9/2)−β−α + 1]

where Lemma 7.5 and the condition on β are used in the last line.

We need a separate (and much simpler) bound to handle the absolute
values of DjkQK(y − x′, A(y, t)) for j ∨ k ≥ Jζ(t).

Lemma 7.7 Assume β > 3− α
2
. There exists c1 such that for all i, j, k ≤ K

and p ≥ 0, ∫
|w′

i|2p|Sjk(w
′, Ã(y, t))|QK(w′, Ã(y, t)) dw′ ≤ c1.

Proof. By (7.3) the above integral is at most

c2

∫ ( m∑
n=1

m∑
ν=1

(1 + |n− j|γ)−1(1 + |ν − k|γ)−1|w′
n| |w′

ν |+ 1
)

× |w′
i|2pQK(w′, Ã(y, t)) dw′.

Now apply Theorem 6.12 and Cauchy-Schwarz to obtain the required bound.

The proof of the following is left to the reader.

Lemma 7.8 There exists a constant c1 so that for all θ > 0, r ≥ 1,∑
|j|+|k|≥r

e−θj2

e−θk2 ≤ c1
θ
e−θr2/4.

Proposition 7.9 Assume β > 3− α
2
. There exists c1 such that for all i, j, k

and p ∫
RK

|wi|2p|DjkQK(y − x′, A(y, t))| dy ≤ c1t
−1+p.
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Proof. As in the proof of Proposition 7.6, if Hi(t) = e−λitGii(t)
1/2, then the

substitution w = g(t)1/2w′ leads to∫
|wi|2p|DjkQK(y − x′, A(y, t))| dy

=

∫
|wi|2pe−(λj+λk)t|Sjk(w,A(y, t))|QK(w,A(y, t)) dw

≤ tpHj(t)Hk(t)

∫
|w′

i|2p|Sjk(w
′, Ã(y, t))|QK(w′, Ã(y, t)) dw′

≤ c2t
pHj(t)Hk(t),

the last by Lemma 7.7.

A bit of calculus shows that

Hj(t) =
(∫ t

0

e2λj(t−s) ds
)−1/2

≤ e−λjt/2t−1/2.

Proposition 7.10 Assume β > 3 − α
2
. There are constants ζ0 and c1 such

that if ζ ≥ ζ0 and J = Jζ(t), then

K∑
j=1

K∑
k=1

1(j∨k>J)

∫
RK

|DjkQK(y − x′, A(y, t))| dy ≤ c1(t+ 1)−2.

Proof. Using Proposition 7.9, the sum is at most

c2

K∑
j=1

K∑
k=1

1(j∨k>J)e
−(λj+λk)t/2t−1 ≤ c2

K∑
j=1

K∑
k=1

1(j∨k>J)e
−c3(j2+k2)tt−1

≤ c4e
−c4J2tt−2.

Lemma 7.8 is used in the last line, and (2.2) and j ∨ k > J ≥ 1 are used in
the next to the last line. The above bound is at most

c5(t
−1 + 1)−c4ζt−2.

Now take ζ0 = 2/c4 to complete the proof.
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8 Main estimate

We assume now that a satisfying (2.3) is also of Toeplitz form. For a point
v in `2 define v′k = e−λktvk and, abusing our earlier notation slightly, define
πk = πk : `2 → `2 by

πk(x) = (xi, . . . , xk, 0, 0, . . . ).

For 1 ≤ i, j ≤ K we let

aK
|i−j|(x) ≡ aK

ij (x) = aij(πK(x)), aK
ij (x, t) = aK

ij (x)

∫ t

0

e−(λi+λj)sds, x ∈ `2,

and let AK(x, t) be the inverse of aK(x, t). We will apply the results of
Sections 6 and 7 to these K ×K matrices. We will sometimes write xK for
(x1, . . . , xK), and when convenient will identify πK(x) with xK . It will be
convenient now to work with the notation

NK(t, x, y) = QK(πK(y − x′), AK(y, t)), (8.1)

so that
NK(t, x, y) = NK(t, πK(x), πK(y)), x, y ∈ `2. (8.2)

As before DijNK(t, x, y) denotes second order partial derivatives in the x
variable.

Our goal in this section is to prove the following:

Theorem 8.1 Assume (aij(y)) satisfies (2.5) and (2.4) for all i, j, k ∈ N,
for some α ∈ (1

2
, 1], β > 9

2
− α, and γ > 2α

2α−1
. Then there is a c1 > 0 and

η1 = η1(α, γ) > 0 so that for all x ∈ `2, K ∈ N, and t > 0,∫
RK

∣∣∣ ∞∑
i,j=1

[aK
ij (x)− aK

ij (y)]DijNK(t, x, y)
∣∣∣ dyK (8.3)

≤ c1t
−1+η1(1 + ‖x‖α

∞).

Proof. Note first that by (8.2) DijNK = 0 if i ∨ j > K and so by the
symmetry of a(x) and the Toeplitz form of a, the integral we need to bound
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is

I ≡
∫

RK

∣∣∣ K∑
i=1

K∑
j=1

(aK
ij (x)− aK

ij (y))DijNK(t, x, y)
∣∣∣ dyK

≤2

∫
RK

∣∣∣K−1∑
`=1

K∑
j=1

(aK
` (x)− aK

` (y))Dj+`,jNK(t, x, y)
∣∣∣ dyK

+

∫
RK

|aK
0 (x)− aK

0 (y)|
∣∣∣ K∑
j=1

DjjNK(t, x, y)
∣∣∣ dyK .

Now let J = Jζ(t) where ζ is as in Proposition 7.10. If j > J or ` ≥ J then
clearly i = j + ` > J , so that

I ≤ 2

∫ J−1∑
`=0

|aK
` (x)− aK

` (y)|
∣∣∣ J∑
j=1

Dj+`,jNK(t, x, y)
∣∣∣ dyK (8.4)

+
K∑

i=1

K∑
j=1

1(i∨j≥J)

∫
|(aK

ij (x)− aK
ij (y))DijNK(t, x, y)| dyK

= 2I1 + I2.

Proposition 7.10 implies that

I2 ≤ 2Λ1c2(t+ 1)−2. (8.5)

Recalling that x′k = e−λktxk, we can write

I1 ≤
J−1∑
`=0

∫
|aK

` (x′)− aK
` (y)|

∣∣∣ J∑
j=1

Dj,j+`NK(t, x, y)
∣∣∣ dyK

+
J−1∑
`=0

|aK
` (x)− aK

` (x′)|
∫ ∣∣∣ J∑

j=1

Dj,j+`NK(t, x, y)
∣∣∣ dyK (8.6)

≡I1,1 + I1,2. (8.7)

Let

dα,β(x, y) =
K∑

n=1

|xn − yn|αn−β. (8.8)
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By (2.5) and (2.4),

|aK
` (x′)− aK

` (y)| ≤ c3 min((1 + `γ)−1, dα,β(x′, y)). (8.9)

Therefore by (7.1)

I1,1 =
J−1∑
`=0

∫
|aK

` (x′)− aK
` (y)|

∣∣∣ J∑
j=1

exp(−(λj + λj+l)t)

× Sj,j+`(πK(y − x′), AK(y, t))
∣∣∣NK(t, x, y) dyK (8.10)

≤c4
J−1∑
`=0

[∫ (
(1 + `γ)−2 ∧ dα,β(x′, y)2

)
NK(t, x, y) dyK

]1/2

×
[∫ ( J∑

j=1

exp(−(λj + λj+`)t)Sj,j+`(πK(y − x′), AK(y, t))
)2

×NK(t, x, y) dyK

]1/2

≤c5
(J−1∑

`=0

(
(1 + `γ)−1 ∧

[∫ ( K∑
n=1

|x′n − yn|2αn−β
)
NK(t, x, y) dyK

]1/2))
×
√
Jt−1.

In the last line we used Proposition 7.6 on the second factor and the Cauchy-
Schwarz inequality on the sum in the first factor and then Theorem 6.3(b)
to bound the total mass in this factor. Next use Theorem 6.12 with p = α
to conclude that ∫

|x′n − yn|2αNK(t, x, y) dyK ≤ c6t
α.

It now follows from (8.10) and the choice of J that I1,1 is at most

c7

{J−1∑
`=0

((1 + `γ)−1 ∧ (tα/2))
}(

log
(1

t
+ 1
))1/4

t−5/4

≤ c8

{ J∑
`=1

(`−γ ∧ tα/2)
}(

log
(1

t
+ 1
))1/4

t−5/4. (8.11)
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By splitting the above sum up at ` = bt−α/2γc we see that

J∑
`=1

(`−γ ∧ tα/2) ≤ c9

(
tα/2
)(γ−1)/γ

. (8.12)

Using this in (8.11), we may bound I1,1 by

c10

(
log
(1

t
+ 1
))1/4

t(α(γ−1)/2γ)−5/4 ≤ c11t
−1+η, (8.13)

for some η = η(α, γ) > 0 because γ > 2α
2α−1

.

Turning to I1,2, note that

dα,β(x′, x) =
K∑

n=1

|xn|α|1− e−λnt|αn−β

≤ ‖x‖α
∞t

α

∞∑
n=1

λα
nn

−β

≤ c12‖x‖α
∞t

α, (8.14)

where (2.2) and β − 2α > 1 are used in the last line. Therefore (8.9) now
gives

|aK
` (x′)− aK

` (x)| ≤ c13 min((1 + `γ)−1, ‖x‖α
∞t

α). (8.15)

As in (8.10) we now get (again using Proposition 7.6)

I1,2 ≤
J−1∑
`=0

c13 min((1 + `γ)−1, ‖x‖α
∞t

α)

×
[∫ ( J∑

j=1

e−(λj+λj+`)tSj,j+`(πK(y − x′), AK(y, t))
)2

NK(t, x, y) dyK

]1/2

≤ c14
√
Jt−1

J−1∑
`=0

min((1 + `γ)−1, ‖x‖α
∞t

α). (8.16)

Now use (8.12) with ‖x‖α
∞t

α in place of tα/2 to conclude that

I1,2 ≤ c15

(
log
(1

t
+ 1
))1/4

t−5/4(‖x‖α
∞t

α)(γ−1)γ ≤ c16(‖x‖α
∞ + 1)t−1+η (8.17)
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for some η = η(α, γ) > 0 because γ > 2α
2α−1

> 4α
4α−1

.

Finally use the above bound on I1,2 and the bound on I1,1 in (8.13) to
bound I1 by the right-hand side of (8.3). Combining this with the bound on
I2 in (8.5) completes the proof.

For R > 0 let pR : R → R be given by pR(x) = (x∧R)∨ (−R) and define
a truncation operator τR : `2 → `2 by (τRx)n = pR(xn). Define aR by

aR(x) = a(τRx). (8.18)

Clearly aR(x) = a(x) whenever ‖x‖∞ ≡ supn |xn| ≤ R. We write aK,R for
the K ×K matrix (aR)K .

Lemma 8.2 For any λ ≥ 0 and t, R > 0, supx∈R |pR(x)−pR(xe−λt)| ≤ Rλt.

Proof. Assume without loss of generality that x > 0 and set x′ = e−λtx. If
x′ ≥ R, pR(x) = pR(x′) = R, and if x ≤ R, then

|pR(x)− pR(x′)| = |x− x′| = (1− e−λt)x ≤ λtR.

Finally if x′ < R < x, then

|pR(x)− pR(x′)| = R− x′ = R− e−λtx ≤ R(1− e−λt) ≤ λtR.

Lemma 8.3 If a satisfies (2.3), (2.5), and (2.4) and is of Toeplitz form, then
for any R > 0, aR satisfies the same conditions with the same constants.

Proof. This is elementary and so we only consider (2.5). For this note that

|aR
ij(y + hek)− aR

ij(y)| ≤ κβ|pR(xk + h)− pR(xk)|αk−β

≤ κβ|h|αk−β,

as required.
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Corollary 8.4 Assume the hypotheses of Theorem 8.1. Then for all x ∈ `2,
K ∈ N and R, t > 0,∫

RK

∣∣∣ ∞∑
i,j=1

[aK,R
ij (x)− aK,R

ij (y)]DijNK(t, x, y)
∣∣∣ dyK (8.19)

≤ c1t
−1+η1(1 +Rα).

Proof. We use the notation in the proof of Theorem 8.1. By Lemma 8.3
and the proof of Theorem 8.1 it suffices to show that we have

I1,2 ≤ c2(R
α + 1)t−1+η (8.20)

instead of (8.17). We have by Lemma 8.2

dα,β(τRx
′, τRx) =

K∑
n=1

|pR(xn)− pR(e−λntxn)|αn−β

≤
K∑

n=1

(Rλnt)
αn−β

≤ (Rt)αc3

K∑
n=1

n2α−β

≤ c4R
αtα. (8.21)

The fact that β − 2α > 1 is used in the last line. Now use (8.21) in place
of (8.14) and argue exactly as in the proof of (8.17) to derive (8.20) and so
complete the proof.

9 Uniqueness

In this section we prove Theorem 2.1. Recall the definitions of T 2
k and T 2,C

k

and the definition of the martingale problem for the operator L from Section
2. Throughout this section we assume the hypotheses of Theorem 2.1 are in
force.
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Lemma 9.1 There exists c1 so that for all x, y ∈ `2,

‖a(x)− a(y)‖ ≤ ‖a(x)− a(y)‖s ≤ c1|x− y|α/2.

Proof. We need only consider the second inequality by (4.3). Our hypothe-
ses (2.5) and (2.4) imply

|aij(x)− aij(y)| ≤ min
( 2κγ

1 + |i− j|γ
, κβ

∑
k

|xk − yk|αk−β
)

≤ c2(1 + |i− j|−γ/2)
(∑

k

|xk − yk|αk−β
)1/2

.

We have γ > 2 and 2β > 2− α by (2.5), and so∑
j

|aij(x)− aij(y)| ≤ c3

(∑
k

|xk − yk|αk−β
)1/2

≤ c3

(∑
k

|xk − yk|2
)α/4(∑

k

k−2β/(2−α)
)(2−α)/4

≤ c4‖x− y‖α/2.

Proposition 9.2 For each v ∈ `2 there is a solution to the martingale prob-
lem for L starting at v.

Proof. This is well known and follows, for example from the continuity of a
given by Lemma 9.1 and Theorem 4.2 of [1].

We turn to uniqueness. Let LR(x) be defined in terms of aR analogously
to how L is defined in terms of a.

Lemma 9.3 For any R > 0 and v ∈ `2 there is a unique solution to the
martingale problem for LR starting at v.
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Proof. By Lemma 8.3 and Proposition 9.2 we only need show uniqueness.

We fix R > 0 and for K ∈ N define

Mx
Kf(z) =

∑
i,j≤K

aR
ij(x)Dijf(z)−

∑
j≤K

λjzjDjf(z).

Note that if f ∈ T 2
k and K ≥ k, then

LRf(x) = Mx
Kf(x). (9.1)

Let
γK(dy) = m(dy1) · · ·m(dyK)δ0(dyK+1)δ0(dyK+2) · · · ,

where m is Lebesgue measure on R and δz is point mass at z. Define ‖f‖C0 =
supz |f(z)|.

Suppose P1,P2 are two solutions to the martingale problem for LR started
at some fixed point v. For θ > 0 and f bounded and measurable on `2, let

Si
θf = E i

∫ ∞

0

e−θtf(Xt) dt, i = 1, 2,

and S∆f = S1
θf − S2

θf . Set

Γ = sup
‖f‖C0

≤1

|S∆f |.

Note
Γ <∞ (9.2)

by the definition of Si
θf .

If f ∈ T 2, we have

f(Xt)− f(X0) = M f (t) +

∫ t

0

LRf(Xs) ds

where M f is a martingale under each Pi. Taking expectations, multiplying
both sides by θe−θt, and integrating over t from 0 to ∞, we see that

f(v) = Si
θ(θf − LRf).

Now take differences in the above to get

S∆(θf − LRf) = 0. (9.3)
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Next let g ∈ T 2,C
k and for K ≥ k set

fεK(x) =

∫
eθε

∫ ∞

ε

e−θtNK(t, x, y)g(y) dt γK(dy).

Since NK(t, x, y) is smooth in x, bounded uniformly for t ≥ ε and NK(t, x, y)
depends on x only through πK(x), we see that fεK ∈ T 2

K .

If we write

WεK(x, y) = eθε

∫ ∞

ε

e−θtNK(t, x, y) dt, (9.4)

then

fεK(x) =

∫
WεK(x, y)g(y) γK(dy).

Holding y fixed and viewing NK(t, x, y) and WεK(x, y) as functions of x, we
see by Kolmogorov’s backward equation for the Ornstein-Uhlenbeck process
with diffusion matrix (aij(y))i,j≤K that

MπK(y)
K NK(t, x, y) =

∂

∂t
NK(t, x, y).

Alternatively, one can explicitly calculate the derivatives. Differentiating
under the integral in (9.4) gives

(θ −MπK(y)
K )WεK(x, y) = NK(ε, x, y). (9.5)

By (9.1) for all x and K ≥ k

(θ − LR)fεK(x) = (θ −Mx
K)fεK(x) (9.6)

=

∫
(θ −MπK(y)

K )WεK(x, y)g(y) γK(dy)

−
∫

(MπK(x)
K −MπK(y)

K )WεK(x, y)g(y) γK(dy)

−
∫

(Mx
K −MπK(x)

K )WεK(x, y)g(y) γK(dy)

= g(x) +
[ ∫

NK(ε, x, y)g(y) γK(dy)− g(x)
]

−
∫

(MπK(x)
K −MπK(y)

K )WεK(x, y)g(y) γK(dy)

−
∫

(Mx
K −MπK(x)

K )WεK(x, y)g(y) γK(dy)

= g(x) + I1(ε,K, x) + I2(ε,K, x) + I3(ε,K, x).
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We used (9.5) in the third equality.

For x ∈ `2 fixed we first claim that

I1(ε,K, x) → 0 (9.7)

boundedly and uniformly in K ≥ k as ε → 0. By virtue of Proposition 6.5,
it suffices to show ∫

NK(ε, x, y)[g(y)− g(x)] γK(dy) → 0

boundedly and pointwise as ε → 0, uniformly in K ≥ k. The boundedness
is immediate from Theorem 6.3. Since g ∈ T 2

k , given η there exists δ such
that |g(y) − g(x)| ≤ η if |πk(y − x)| ≤ δ, and using Theorem 6.3, it suffices
to show ∫

{y:
Pk

i=1 |yi−xi|2≥δ2}
NK(ε, x, y) γK(dy) → 0

pointwise as ε → 0, uniformly in K. Since e−λiεxi → xi for i ≤ k as ε → 0,
it suffices to show (recall yK = (y1, . . . , yK))∫

{y:
Pk

i=1 |yi−x′i|2≥δ2/2}
NK(ε, x, y) dyK → 0 (9.8)

as ε→ 0 uniformly in K ≥ k. By Theorem 6.12 the above integral is at most∫ k∑
i=1

|y − x′i|2

δ2/2
NK(ε, x, y) dyK ≤ c1kε

δ2/2

and (9.7) is established.

Next we claim that for each ε > 0

lim
K→∞

sup
x
|I3(ε,K, x)| = 0. (9.9)

Since t ≥ ε in the integral defining Wε(x, y) we can differentiate through the
integral and conclude that

|I3(ε,K, x)| (9.10)

≤
∫ ∞

ε

e−θ(t−ε)
∑

i,j≤K

|aR
ij(x)− aR

ij(πK(x))| ‖g‖C0

×
∫

RK

e−(λi+λj)t|Sij(w,A
K(y, t))|Q(w,AK(y, t))dw dt.
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As in the proof of Proposition 7.6, the substitution w′ = G(t)1/2w shows that
the integral over RK in (9.10) equals∫

RK

Hi(t)Hj(t) |Sij(w
′, ÃK(y, t)|QK(w′ÃK(y, t)) dw′ ≤ c2t

−1, (9.11)

where (7.16) and Lemma 7.7 are used in the above. By (2.5) we have∑
i,j≤K

|aR
ij(x)− aR

ij(πK(x))| ≤
∑

i,j≤K

∑
`>K

κβ|pR(x`)|α`−β (9.12)

≤ κβK
2Rα

∑
`>K

`−β

≤ c3R
αK3−β.

Use (9.11) and (9.12) in (9.10) to get

|I3(ε,K, x)| ≤
∫ ∞

ε

e−θ(t−ε)c4t
−1RαK3−β dt

≤ c4θ
−1ε−1RαK3−β,

which proves (9.9) by our hypothesis on β.

Finally for I2, we use Corollary 8.4 and multiply both sides of (8.19) by
e−θ(t−ε), and then integrate over t from ε to ∞ to obtain by Fubini

|I2(ε,K, x)| (9.13)

=
∣∣∣ ∫

y∈RK

(MπK(x)
K −MπK(y)

K )
[
eθε

∫ ∞

ε

e−θtNK(t, ·, y)g(y) dt
]
(x)γK(dy)

∣∣∣
≤ 1

4
‖g‖C0 ,

for all ε ∈ (0, 1) andK ≥ k, provided we choose θ > θ0 ≥ 1, where θ0 depends
on R and the c1 and η1 of Theorem 8.1. This implies that for θ > θ0,

sup
ε∈(0,1),K≥k

|S∆(I2(ε,K, ·))| ≤ 1
2
Γ‖g‖C0 . (9.14)

Using (9.3) and (9.6) for K ≥ k, we have

|S∆g| ≤ |S∆(I1(ε,K, ·))|+ |S∆(I2(ε,K, ·))|+ |S∆(I3(ε,K, ·))|.
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Now let K →∞ and use (9.9) and (9.14) to conclude that

|S∆g| ≤ lim sup
K→∞

|S∆(I1(ε,K, ·))|+ lim sup
K→∞

|S∆(I2(ε, k, ·))|

≤ lim sup
K→∞

|S∆(I1(ε,K, ·))|+ 1
2
Γ‖g‖C0 .

Then letting ε→ 0 and using (9.7), we obtain

|S∆g| ≤ 1
2
Γ‖g‖C0 ,

provided g ∈ T 2,C
k . By a monotone class argument and the fact that S∆

is the difference of two finite measures, we have the above inequality for
g ∈ T . The σ-field we are using is generated by the cylindrical sets, so
another application of the monotone class theorem leads to

|S∆g| ≤ 1
2
Γ‖g‖C0

for all bounded g which are measurable with respect to σ(∪jTj). Taking the
supremum over all such g bounded by 1, we obtain

Γ ≤ 1
2
Γ.

Since Γ <∞ by (9.2), then Γ = 0 for every θ > θ0.

This proves that S1
θf = S2

θf for every bounded and continuous f . By the
uniqueness of the Laplace transform, this shows that the one-dimensional
distributions of Xt are the same under P1 and P2. We now proceed as in [15,
Chapter 6] or [3, Chapter 5] to obtain uniqueness of the martingale problem
for LR.

We now complete the proof of the main result for infinite-dimensional
stochastic differential equations from the introduction.

Proof of Theorem 2.1. We have existence holding by Proposition 9.2.
Uniqueness follows from Lemma 9.3 by a standard localization argument;
see [4, Section 6].

To derive Corollary 2.2 from Theorem 2.1 is completely standard and is
left to the reader.
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10 SPDEs

Before proving our uniqueness result for our SPDE, we first need need a
variant of Theorem 2.1 for our application to SPDEs. Let λ0 = 0 and now
let

L′f(x) =
∞∑

i,j=0

aij(x)Dijf(x)−
∞∑
i=0

λixiDif(x).

In this case `2 = `2(Z+).

Theorem 10.1 Suppose α, β, γ, and the λi are as in Theorem 2.1 and in
addition β > γ/(γ − 2). Suppose a satisfies (2.3) and a can be written as

aij = a
(1)
ij +a

(2)
ij , where the a

(1)
ij satisfy (2.4) and (2.5) and is of Toeplitz form,

and a
(2)
ij satisfies (2.5) and there exists a constant κ′γ such that

|a(2)
ij (x)| ≤

κ′γ
1 + (i+ j)γ

(10.1)

for all x ∈ `2 and i, j ≥ 0. Then if v ∈ `2, there exists a solution to the
martingale problem for L′ starting at v and the solution is unique in law.

Proof. First, all the arguments of the previous sections are still valid when
we let our indices run over {0, 1, 2, . . .} instead of {1, 2, . . .} provided

(1) we replace expressions like 2λi/(1 − e−2λit) by 1/t when λi = 0, which
happens only when i = 0, and

(2) we replace expressions like n−β by (1 + n)−β.

Existence follows from Theorem 4.2 of [1] as in the proof of Theorem 2.1.

Define NK in terms of a and its inverse A as in (8.1). We prove the follow-
ing analog of (8.19) exactly as in the proof of Corollary 8.4 and Theorem 8.1:∫

RK

∣∣∣ ∞∑
i,j=1

[(a(1))K,R
ij (x)− (a(1))K,R

ij (y)]DijNK(t, x, y)
∣∣∣ dy (10.2)

≤ c1t
−1+η1(1 +Rα).
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Here note that the proof uses the bounds on NK and DijNK from Sections 6
and 7 and the regularity properties of a(1) (which are the same as those of a
in the proof of Theorem 2.1) separately. If we prove the analog of (10.2) with
a(1) replaced by a(2), we can then proceed exactly as in Section 9 to obtain
our theorem. That is, it suffices to fix K and R and to show that for some
c1, η1 > 0,∫

RK

∣∣∣ J∑
i,j=1

[(a(2))K,R
ij (x)− (a(2))K,R

ij (y)]DijNK(t, x, y)
∣∣∣ dy ≤ c1t

−1+η1 . (10.3)

Very similarly to the derivation of (8.15) (see also that of (8.21)), we have

|(a(2))K,R
ij (x)− (a(2))K,R

ij (x′)| ≤ c1 min((1 + i+ j)−γ, Rαtα).

Since α ∈ (1/2, 1] and γ > 2α/(2α−1), then γ > 2. We can choose η2 ∈ (0, 1)
such that γ(1− η2) > 2, and then

|(a(2))K,R
ij (x)− (a(2))K,R

ij (x′)| ≤ c1(1 + i+ j)−γ(1−η2)Rαη2tαη2 .

Using this and Proposition 7.9 with p = 0 and observing that (a(2))K,R sat-
isfies all the hypotheses in Section 7, we conclude that

J∑
i,j=0

∫
|(a(2))K,R

ij (x)− (a(2))K,R
ij (x′)| |DijNK(t, x, y)| dy (10.4)

≤ c2

J∑
i,j=0

(1 + i+ j)−γ(1−η2)tαη2−1.

The condition β > γ/(γ − 2), allows us to find η3 such that γ(1− η3) > 2
and βη3 > 1. Fix i and j for the moment and let dα,β(x, y) be defined as in
(8.8). We write∫

dα,β(x′, y)η3|DijNK(t, x, y)| dy

≤
∫ ∞∑

n=0

|x′n − yn|αη3(n+ 1)−βη3|DijNK(t, x, y)| dy

≤
∞∑

n=0

(n+ 1)−βη3tαη3/2−1

≤ c3t
αη3/2−1,
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using Proposition 7.9. Since

|(a(2))K,R
ij (x′)− (a(2))K,R

ij (y)| ≤ c4 min((1 + i+ j)−γ, dα,β(x′, y)),

then

|(a(2))K,R
ij (x′)− (a(2))K,R

ij (y)| ≤ c4(1 + i+ j)−γ(1−η3)dα,β(x′, y)η3 .

Consequently

J∑
i,j=0

∫
|(a(2))K,R

ij (x′)− (a(2))K,R
ij (y)| |DijNK(t, x, y)| dy (10.5)

≤ c5

J∑
i,j=0

(1 + i+ j)−γ(1−η3) sup
i,j

∫
dα,β(x′, y)η3|DijNK(t, x, y)| dy

≤ c5t
αη3/2−1.

Combining with (10.4) gives (10.3), as required.

Before proving Theorem 2.3, we need the following lemma. Recall that
en =

√
2 cosnπx for n ≥ 1 and e0 ≡ 1.

Lemma 10.2 Suppose f ∈ Cζ
per and ‖f‖Cζ ≤ 1. There exists a constant c1

depending only on ζ such that

|〈f, en〉| ≤
c1

1 + nζ
for all n ∈ Z+.

Proof. Let T be the circle of circumference 2 obtained by identifying ±1 in
[−1, 1]. Since we can extend the domain of f to T so that f is Cζ on T and
cos y = 1

2
(eiy + e−iy), it suffices to show that the Fourier coefficients of a Cζ

function on T decay at the rate |n|−ζ . If ζ = k+ δ for k ∈ Z+ and δ ∈ [0, 1),
[19, II.2.5] says that the nth Fourier coefficients of f (k) is c2|n|k times the nth

Fourier coefficient of f . Writing ĝ for the Fourier coefficients of g, we then
have |f̂(n)| ≤ c3|n|−k|f̂ (k)(n)|. By [19, II.4.1],

|f̂ (k)(n)| ≤ c4|n|−δ.

Combining proves the lemma.
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We now prove Theorem 2.3.

Proof of Theorem 2.3. Our first job will be to use the given A : C[0, 1] →
C[0, 1] to build a corresponding mapping a : `2 → L+(`2, `2), where L+(`2, `2)
is the space of self-adjoint bounded positive definite mappings on `2, so that
a satisfies the hypotheses of Theorem 10.1.

We first argue that A has a unique continuous extension to a map A :
L2[0, 1] → L2[0, 1]. Let S be the space of finite linear combinations of the
{ek}. If u =

∑N
i=0 xiei, v =

∑N
i=0 yiei ∈ S, then by (2.10) and Hölder’s

inequality we have

‖A(u)− A(v)‖2 ≤ κ1

N∑
i=0

|xi − yi|α(i+ 1)−β

≤ κ1‖u− v‖α
2

(
N∑

i=0

(i+ 1)−2β/(2−α)

)(2−α)/2

≤ c1‖u− v‖α
2 ,

because β > 9
2
− α > (2− α)/2. Using (2.9), we have

‖A(u)− A(v)‖2 ≤ c1‖u− v‖α
2 (10.6)

for u, v ∈ C[0, 1]. Therefore A, whose domain is C[0, 1], is a bounded operator
with respect to the L2 norm. Thus there is a unique extension of A to all of
L2. By continuity, it is clear that the extension satisfies (2.10), (2.11) (for
almost every x with respect to Lebesgue measure), and (2.12).

If x = {xj} ∈ `2, let u(x) =
∑∞

j=0 xjej ∈ L2 and define a symmetric

operator on `2 by

ajk(x) =

∫ 1

0

A(u(x))(y)2ej(y)ek(y) dy.

If z ∈ `2, then∑
i,j

ziaij(x)zj =
∑
i,j

∫ 1

0

ziei(y)A(u)(y)2zjej(y) dy

=

∫ 1

0

(∑
i

ziei(y)
)2

A(u)(y)2 dy
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≥ κ2
2

∫ 1

0

(∑
i

ziei(y)
)2

dy

= κ2
2

∞∑
i=0

z2
i ,

using the lower bound in (2.11) and the fact that the ei are an orthonormal
basis. The upper bound is done in the very same fashion, and thus (2.3)
holds.

Using the identity

cosA cosB = 1
2
[cos(A−B) + cos(A+B)],

we see that if i, j ≥ 1,

aij(x) =

∫ 1

0

A(u)(y)2ei(y)ej(y) dy = 2

∫ 1

0

A(u)(y)2 cos(iπy) cos(jπy) dy

=

∫ 1

0

A(u)(y)2 cos((i− j)πy) dy +

∫ 1

0

A(u)(y) cos((i+ j)πy) dy

= a
(1)
ij (x) + a

(2)
ij (x).

If i or j is 0, there is a trivial adjustment of a multiplicative constant. Note
both a(1) and a(2) are symmetric because cosine is an even function, and that
a(1) is of Toeplitz form. Also (2.12) now shows that a(1) satisfies (2.4) and
a(2) satisfies (10.1).

Finally we check (2.5). We have

|a(1)
ij (x+ hek)− a

(1)
ij (x)|2 ≤ |〈A(u+ hek)

2 − A(u)2, ei−j〉|2

≤ ‖A(u+ hek)
2 − A(u)2‖2

2

≤ 4κ−2
2 ‖A(u+ hek)− A(u)‖2

2

≤ 4κ−2
2 κ2

1|h|2α(k + 1)−2β

by (2.11) and (2.10). This establishes (2.5) for a(1) and virtually the same
argument gives it for a(2). Hence a satisfies the hypotheses of Theorem 10.1.

Turning next to uniqueness in law, let u satisfy (2.7) with u0 ∈ C[0, 1]
and define Xn(t) = 〈u(·, t), en〉. The continuity of t→ u(t, ·) in C[0, 1] shows

66



that t → Xt ≡ {Xn(t)} is a continuous `2-valued process. Applying (2.8)
with ϕ = ek, we see that

Xk(t) = Xk(0)−
∫ t

0

k2π2

2
Xk(s) ds+Mk(t),

where Mk(t) is a martingale such that

〈Mj,Mk〉t =

∫ t

0

〈A(us)ej, A(us)ek〉 ds =

∫ t

0

ajk(X(s)) ds. (10.7)

Thus we see that {Xk} satisfies (2.6) with λi = i2π2/2.

Since ut is the L2 limit of the sums
∑n

k=0Xk(t)ek(x) and ut is continuous
in x, then ut is easily seen to be a Borel measurable function of X(t). Thus
to prove uniqueness in law of u, it suffices to prove uniqueness in law of X. It
is routine to show the equivalence of uniqueness in law of (2.6) to uniqueness
of the martingale problem for L. Since the aij satisfy the hypotheses of
Theorem 10.1, we have uniqueness of the martingale problem for L.

Finally, the proof of Theorem 2.3 will be complete once we establish the
existence of solutions to (2.7). We sketch a proof, which follows along stan-
dard lines. Let Xn

t = 〈ut, en〉. By Theorem 10.1 there is a unique continuous
`2-valued solution X to (2.6) with λn = n2π2/2, where a is constructed from
A as above. If

u(s, x) =
∞∑

n=0

Xn(s)en(x), (10.8)

then the continuity of X(t) in `2 shows that the above series converges in
L2[0, 1] for all s ≥ 0 a.s. and s→ u(s, ·) is a continuous L2-valued stochastic
process. It follows from (2.6) that

Xn(t) = 〈u0, en〉+Mn(t)− λn

∫ t

0

Xn(s) ds, (10.9)

where each Mn is a continuous square integrable martingale such that

〈Mm,Mn〉t =

∫ t

0

amn(Xs) ds =

∫ t

0

∫ 1

0

A(us)(y)
2em(y)en(y) dy ds. (10.10)

We next verify that u satisfies (2.8). Let φ ∈ C2[0, 1] satisfy φ′(0) =
φ′(1) = 0. Note that

uN(s, x) ≡
N∑

n=0

Xn(s)en(x) → u(s, x) in L2[0, 1] (10.11)
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as N →∞ for all s ≥ 0 a.s. By (10.9) we have

〈uN
t , φ〉 =

N∑
n=0

〈u0, en〉〈φ, en〉+
N∑

n=0

Mn(t)〈φ, en〉 −
∫ t

0

N∑
n=1

λnX
n(s)〈en, φ〉 ds

(10.12)

= IN
1 (φ) +MN

t (φ) + V N
t (φ).

Parseval’s equality shows that

lim
N→∞

IN
1 (φ) = 〈u0, φ〉. (10.13)

Integrating by parts twice in 〈φ, en〉, and using the boundary conditions of
φ, we find that

V N
t (φ) =

∫ t

0

〈uN
s , φ

′′/2〉 ds.

Now sups≤t ‖uN
s ‖2 ≤ sups≤t ‖us‖2 < ∞ for all t > 0 and so by dominated

convergence we see from the above and (10.11) that

lim
N→∞

V N
t (φ) =

∫ t

0

〈us, φ
′′/2〉 ds for all t ≥ 0 a.s. (10.14)

If N2 > N1, then by (10.10) and (2.11) we have

〈(MN2 −MN1)(φ)〉t =

∫ t

0

∫ 1

0

A(us)(y)
2
( N2∑

n=N1+1

〈en, φ〉en(y)
)2

dy ds

≤ κ−2
2

∫ t

0

∫ 1

0

( N2∑
n=N1+1

〈en, φ〉en(y)
)2

dy ds

= κ−2
2 t

N2∑
n=N1+1

〈en, φ〉2 → 0 as N1, N2 →∞.

It follows that there is a continuous L2 martingale Mt(φ) such that for any
T > 0,

sup
t≤T

|MN
t (φ)−Mt(φ)| → 0 in L2,
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and

〈M(φ)〉t = L1 − lim
N→∞

〈MN(φ)〉t

= L1 − lim
N→∞

∫ t

0

∫ 1

0

A(us)(y)
2
( N∑

0

〈en, φ〉en(y)
)2

dy ds

=

∫ t

0

∫ 1

0

A(us)(y)
2φ(y)2 dy ds.

Since A is bounded, M is an orthogonal martingale measure in the sense of
Chapter 2 of [16] and so is a continuous orthogonal martingale measure in the
sense of Chapter 2 of [16]. This (see especially Theorem 2.5 and Proposition
2.10 of [16]) and the fact that A is bounded below means one can define a
white noise Ẇ on [0, 1]× [0,∞) on the same probability space in the obvious
manner, so that

Mt(φ) =

∫ t

0

∫ 1

0

A(us)(y)φ(y) dWs,y for all t ≥ 0 a.s. for all φ ∈ L2[0, 1].

Therefore we may take limits in (10.12) and use the above, together with
(10.13) and (10.14), to conclude that u satisfies (2.8).

It remains to show that there is a jointly continuous version of u(t, x).
Note first that

Xn(t) = e−λnt〈u0, en〉+

∫ t

0

e−λn(t−s) dMn(s), (10.15)

and so

uN(t, x) =
N∑

n=0

e−λnt〈u0, en〉en(x) +
N∑

n=0

∫ t

0

e−λn(t−s) dMn(s) en(x) (10.16)

≡ ûN(t, x) + ũN(t, x).

Let p(t, x, y) denote the fundamental solution of ∂p
∂t

= 1
2

∂2

∂x2p(t, x, y) with
Neumann boundary conditions, and let Pt be the corresponding semigroup.
By Mercer’s theorem,

p(t, x, y) =
∞∑

n=0

e−λntφn(x)φn(y),

69



where the series converges uniformly on t ≥ ε, x, y ∈ [0, 1] for every ε > 0.
It follows that

ûN
t (x, y) → Ptu0(x) for all t > 0, x ∈ [0, 1].

An easy L2(P) convergence argument using square functions shows there
is a jointly measurable random field {ũ(t, x) : t ≥ 0, x ∈ [0, 1]} so that
ũ(0, ·) ≡ 0 and

ũN(t, x) → ũ(t, x) in L2(P) uniformly in (t, x),

and so for some subsequence

ũNk(t, x) → ũ(t, x) a.s. for each (t, x).

So let N = Nk →∞ in (10.16) to conclude

lim
k
uNk(t, x) = Ptu0(x) + ũ(t, x) a.s. for all t > 0, x ∈ [0, 1].

It now follows easily from (10.11) that

u(t, x) = Ptu0(x) + ũ(t, x) a.a. x, P− a.s. for all t ≥ 0, (10.17)

where the equality holds trivially for all x if t = 0.

Clearly Ptu0(x) is jointly continuous by the continuity of u0, and so we
next show there is a continuous version of ũ(t, x). This is done in a stan-
dard way using Burkholder’s inequality to obtain an appropriate bound on
E (|ũN(t, x)− ũN(s, y)|p), uniformly in N , and then using Fatou’s lemma to
get a corresponding bound for ũ and Kolmogorov’s lemma to obtain a con-
tinuous version of ũ satisfying ũ(0, ·) ≡ 0. After a few initial calculations
using the definition of A, the details become similar to the proof of Corollary
3.4 in [16]. Alternatively, one can derive the mild form of (2.7) from our
L2-valued solution u and compare to (10.17), to conclude that

ũ(t, x) =

∫ t

0

∫ 1

0

p(t− s, x, y)A(us)(y)dWs,y, a.s. for all (t, x),

and then the argument becomes virtually the same as in Corollary 3.4 of [16].

We have shown that there is a jointly continuous process v(t, x) such that

u(t, x) = v(t, x) a.a. x for all t ≥ 0, and v(0, ·) = u0(·), P− a.s.
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Here the continuity in t in L2 of both sides allows us to combine the temporal
null sets. As A has been continuously extended to a map from L2 to L2, we
have A(us) = A(vs) in L2[0, 1] for all s ≥ 0 a.s. and so the white noise integral
in (2.8) remains unchanged if u is replaced by v. It now follows easily that
(2.8) remains valid with v in place of u. Therefore v is the required continuous
C[0, 1]-valued solution of (2.7).

Proposition 10.3 Let α, β, γ > 0.
(a) If

A : C[0, 1] → Cγ
per and sup

u∈C[0,1]

‖A(u)‖Cγ ≤ κ′3, (10.18)

then (2.12) holds for some κ3 depending on κ′3 and γ.

(b) If

‖A(u)− A(v)‖2 ≤ κ′1 sup
ϕ∈C

β/α
per ,‖ϕ‖

Cβ/α≤1

|〈u− v, ϕ〉|α (10.19)

for all u, v continuous on [0, 1], then (2.9) holds and (2.10) holds for some
κ1, depending on κ′1, α and β.

Proof. (a) It follows easily from Leibniz’s formula that

‖A2(u)‖Cγ ≤ cγ‖A(u)‖2
Cγ .

It is also clear that A(u) ∈ Cγ
per implies that the same is true of A(u)2. The

result now follows from Lemma 10.2.

(b) Cauchy-Schwarz shows the left-hand side of (10.19) is bounded above by
κ′1‖u− v‖α

2 and so (2.9) follows. By (10.19) and Lemma 10.2 we have

‖A(u+ hek)− A(u)‖2 ≤ κ′1 sup
ϕ∈C

β/α
per ,‖ϕ‖

Cβ/α≤1

|h|α|〈ek, ϕ〉|α

≤ κ′1|h|α
(
c1(β/α)

1 + kβ/α

)α

≤ κ′1c2(α, β)|h|α(1 + k)−β.
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Proof of Theorem 2.4. This is an immediate consequence of Theorem 2.3
and Proposition 10.3.

Proof of Corollary 2.6. By our assumptions on f , A(u)(x) is bounded
above and below by positive constants, is in Cγ

per, and is bounded in Cγ

norm uniformly in u. By our assumptions on f ,

|A(u)(x)− A(v)(x)| ≤ c1

n∑
j=1

|〈u− v, ϕj〉|α

≤ c2 sup
ϕ∈Cβ

per,‖ϕ‖
Cβ≤1

|〈u− v, ϕ〉|α.

Squaring and integrating over [0, 1] shows that A satisfies (2.13) and we can
then apply Theorem 2.4.

Proof of Corollary 2.7. We verify the hypotheses of Theorem 2.3. Use
(2.17) to define A(u)(x) for all x in the line, not just [0, 1]. It is clear that
for any u ∈ C[0, 1], A(u) is then an even C∞ function on R with period two,
and so in particular

A : C[0, 1] → C∞
per ≡ ∩kC

k
per.

Moreover the kth derivative of A(u)(x) is bounded uniformly in x and u. If
we choose γ and β large enough so that the conditions of Theorem 2.3 are
satisfied, we see from the above and Proposition 10.3(a) that (2.12) holds.

Turning to the boundedness condition (2.11), we have

A(u)(x) ≥ a

∫
ψ(x− y) dy = a‖ψ‖1 > 0,

and the corresponding upper bound is similar.
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For (2.10), note that by the Hölder continuity of f ,

sup
x∈[0,1]

|A(u+ hek)(x)− A(u)(x)|

≤ sup
x∈[0,1]

∣∣∣∫ ψ(x− y)[f(φ1 ∗ (u+ hek)(y), . . . , φn ∗ (u+ hek)(y))

− f(φ1 ∗ u(y), . . . , φn ∗ u(y))] dy
∣∣∣

≤ ‖ψ‖1cf sup
y∈R,j≤n

|h|α|φj ∗ ek(y)|α. (10.20)

In the last inequality we use the linearity of u→ u and ek = ek. Since φj is
smooth with compact support, its Fourier transform decays faster than any
power, and so∣∣∣∣∫ φj(w)e−iw2πx dw

∣∣∣∣ ≤ cβ/α,j(1 + |2πx|)−β/α for all x. (10.21)

Now for k ≥ 0,

|φj ∗ ek(y)| ≤
√

2

∣∣∣∣∫ φj(y − z) cos(2πkz) dz

∣∣∣∣
≤
√

2

∣∣∣∣∫ φj(y − z)ei2πkz dz

∣∣∣∣
=
√

2

∣∣∣∣∫ φj(w)e−i2πkw dw ei2πky

∣∣∣∣
≤
√

2cβ/α,j(1 + k)−β/α,

by (10.21). Use this in (10.20) to obtain (2.10). Finally, the proof of (2.9)
is easy and should be clear from (10.20). The result now follows from Theo-
rem 2.3.
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Mathématique de France, Paris, 2009.

[6] P. Cannarsa and G. Da Prato, Infinite-dimensional elliptic equations
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