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Abstract. A spatially explicit, stochastic Lotka-Volterra model was introduced by Neuhauser and
Pacala in [NP]. A low density limit theorem for this process was proved by the authors in [CP], showing that
certain generalized rescaled Lotka-Volterra models converge to super-Brownian motion with drift. Here we
use this convergence result to extend what is known about the parameter regions for the Lotka-Volterra
process where (i) survival of one type holds, and (ii) coexistence holds.

1. Introduction and Statement of Results. In [NP], Neuhauser and Pacala introduced a
stochastic spatial version of the Lotka—Volterra model for competition between two species. In
[CP], the authors proved that in three or more dimensions these processes, suitably rescaled in
time and space, converge to a super-Brownian motion with drift. In this paper the goal is to ob-
tain information about survival and coexistence for the Lotka—Volterra models from corresponding
information about the limiting super-Brownian motion. This methodology has been successfully
applied before in similar settings, as in [DP], where the long range contact process is treated. See
[D] for a good reference to the general approach. We begin by defining the Lotka—Volterra process.

Following [NP], we let . = {&,t > 0} denote a {0, 1}Zd—valued Feller process, with the
interpretation & (z) = i means there is a plant of species i (i = 0 or 1) at time ¢ at site z € Z¢ (the
d-dimensional integer lattice). When a plant dies it is immediately replaced, and the rate at which
this happens and the type of the new plant incorporates both intraspecific and interspecific effects.
To specify the dynamics precisely, we need a kernel p(z),z € Z¢, and nonnegative interaction
parameters ag,a;. We suppose throughout that p(z,y) = p(y — z) is an irreducible, symmetric
random walk kernel on Z¢, such that p(0) = 0 and > weza T'@ip(x) = §j0° < co. For € € {0, l}Zd
the densities f; = f;(&) = fi(z,€) are defined by

fil@, &) = > ply—o)1{éy) =i},  i=0,1.

y€eZd

AMS 1991 subject classifications. Primary: 60K35, 60G57. Secondary: 60F05, 60J80.
Key words and phrases. Lotka-Volterra, voter model, super-Brownian motion.
Running Title: Lotka-Volterra Models.

1 Supported in part by NSF Grants DMS-024422/DMS-0505439. Part of the research was done while the author
was visiting The University of British Columbia.

2 Supported in part by an NSERC Research grant.

LV2.tex January 25, 2007



We define the Lotka—Volterra rate function c(z,&) by

(1.1) c(z,§) = e1(z,§)1{{(x) = 0} + co(2,£)1{{(z) = 1}
where

a1 (z,8) = filfo + aof1)(z,€) = fi(z,&) + (a0 — 1) f1(=, €)?,

1.2
(-2 cola,€) = fol i + 01 fo) (2,) = ol €) + (a1 — 1) ole. )°.
Here c¢;(z,€) (respectively, co(z,&)) is the infinitesimal rate at which a 1 replaces a 0 (respectively,
a 0 replaces a 1) at location z in state £&. By a standard theorem (see Theorem B3 of [Li99] and
Remark 2.5 below), ¢(z, &) determines a unique, {0, 1}Zd—valued Markov process &;. More precisely
Corollary 2.4 and Proposition 2.1 show the above rates determine a unique {0, 1}Zd—valued Feller
process through the generator described in Proposition 2.1(c) below. We will refer to this process
as the LV (ao, 1) process and let P or P§ denote its law starting at £. Hence if {(z) = 1,
fi(z, &) + a1 fo(z,&) is the death rate of the type 1 plant at z and the other factor fo(z,§) is
the probability that it is immediately colonized by a type 0 plant. Therefore oy represents the
competitive intensity of a “neighbouring” type 0 on a type 1 and 1 is the corresponding intensity
for a “neighbouring” type on its own type. Also p is here playing a dual role both as a dispersal
and competition kernel. Similarly g represents the competitive intensity of a “neighbouring” 1
on a type 0. If oy = a; = 1, the LV (g, 1) process reduces to the well-known voter model (see
[L1] and [L2] for references). Note that o = (1,1) is a special turning point for the model since
a; < 1 means each type fares better in the presence of the other type while o; > 1 means each
type prefers to be surrounded by its own type. Those familiar with [NP] will have noted we have
set their additional fecundity parameter X to be one.

For A C Z% we will use &/ to denote the process with initial state &y given by & (z) = 1 iff

z € A, and will write £ for £°}. Also, it will be convenient to use the notation |£] = 3, <z £(x),
¢ €{0,1}%",

The fundamental questions about &; concern survival and coezistence, which we now define.
For given a = (agp, a1):

(i) Survival occurs if P (|£?| > 0 for all ¢ > 0) > 0.

(ii) 1’s take over if there is survival and P*(&(z) =1 |&| > 0) = 1 as t — oo for all z.
(iii) Coexistence occurs if there is a stationary distribution v for . such that

v({G Y ¢e) =Y (1 - (@) =o}) =1.

Questions of coexistence of types using related systems of sde’s have also been studied by Blath,
Etheridge and Meredith [BEM].

To discuss survival we first recall some basic facts and definitions concerning monotonicity and
coupling from [L1] and [L2]. Let ¢(z,§), é(z, &) be two rate functions which satisfy (2.3) below. This
is a technical condition, satisfied in the cases of interest to us, which by Theorem B3 of [L2] implies
these rates uniquely determine associated {0, 1}Zd—valued Feller processes, ¢£. and fN., respectively,
through the appropriate spin-flip generator described in Proposition 2.1(c) below. Write §~ <¢if
the inequality holds pointwise. Assume

c(z,€) < &, €) when £ < € and €(z) =1,
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and

c(z, &) > &(z,€) when € < € and €(z) =

Given initial conditions & > & in {0, 1}Zd one can then construct both processes &. and €. with
the corresponding initial states so that & > ft for all t > 0 a.s. (see Theorem III.1.5 of [L1]). I
this case we say & stochastically dominates & and write & > &. A special case occurs when ¢ = ¢,
in which case we say ¢ is monotone or attractive (see Theorem II1.2.2 of [L1]).

It follows as a special case of Propositions 8.1 and 8.2 below (although the reader can easily
carry out the required calculation directly now) that if p, = inf{p(z) : p(z) > 0} and a =
1—(2—p.)~! € [3, 3, then LV (ap, 1) is monotone for ap Ay > o and is stochastically increasing
in ag € [@,00) and decreasing in oy € [@, 00). In addition, Proposition 8.2 also implies

(1.3) if 0 <aj <ap, 0<a; <af, and either g Ay > a or ag A o) > a,
then LV (ap, o)) < LV (ag, ay).

The survival and extinction regions for the Lotka-Volterra models are defined as
S = {(ap, 1) : P*(|€)| > 0 for all £ > 0) > 0}
and F = S¢, respectively. For oy > a, let
h(ap) = sup{a; : (g, 1) € S} € [0,00],

where (sup = 0). It follows from the above monotonicity results that h is non-decreasing on
{ag > a : h(agy) > a}, the region in the ag — a; plane to the left of the portion of graph(h) in
[a,00)? is in E and the region below it is in S (see Figure 1). Note that (1.3) is used in these last
two assertions.

slope p.

slope p; !

a 1 Qg

Figure 1

We recall now results of [NP] concerning survival and coexistence. Corollary 1 of [NP] states
that 1’s take over for oy, @y satisfying

—1) ifl-p,<a<
(1.4) a1<{1+ Hao—1) if1-p. <ap<1,
1+p*(0—1) ifag>1.

Similarly, the 0’s take over if

(1.5) a0<{1+p%(a1—1) ifl-—p.<op<1

14+ pe(ar —1) ifag >1
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Their neat proof relies on a stochastic comparison with some biased voter models. If oy > 1 and
- P ~

£,& € {0,1}2" satisfy £ < ¢, then (the second inequality below is the only one requiring a moments
thought)

c1(z,8) = fr(1 + (o — 1) f1)(z,€) > f1(1 + (a0 — D)ps) (=, &) = G (7, ),

and

co(z,€) = folf1+ a1fo)(z,§) < arfo(z,£) = Co(w,§).
Therefore by the discussion above, &(z, €) =0 (z,6)1(€(z) = 0) + éo(z,&)1(E(x) = 1) is the jump
rate of a biased voter model £. satisfying &. < €., where £. is LV (g, a1). If a3 < 1+ (o — 1)ps,
the 1’s have a positive bias for 5 and so the 1’s will take over. In fact infinitely many 1’s will drive
out the 0’s from any bounded set in finite time a.s. (see [BG]). This implies the same conclusion
for £&.. A similar argument goes through for ay < 1, hence giving (1.4). Then (1.5) follows by
interchanging the roles of 0 and 1.
In terms of survival, (1.4) and (1.5) imply (see Figure 1)

1
(1.6) plag —1) <h(ag) =1 < —(ap—1) ifap > 1
D«
1
—(ap —1) <h(ag) =1 <psfap —1) if 1 —py < < 1.
Da

Hence h(1) = 1, as indicated in Figure 1. In fact we know (1,1) € E as the the voter model starting
from a finite configuration will die out in finite time since |{;| is a non-negative martingale. Note
that p, is a highly unstable function of p and so one would not expect the above results to be sharp
even locally near (1,1).

Our first result gives more refined information on the behavior of h(ap) for o near 1 and will
make use of an invariance principle established in [CP] which we now state. Let {BZ,z € Z%}
be a coalescing random walk system: each Bf is a rate 1 random walk on Z¢ with kernel p, with
Bg = z, the walks move independently until they collide, and then move together thereafter. For
finite A C Z% let 7(A) = inf{s : [{B?,z € A}| = 1} be the time at which the particles starting from
A coalesce into a single particle, and write 7(a,b,...) when A = {a,b,...}. Let . be the escape
probability

(1'7) Ye = Z p(e)P(T(O, 6) = OO)

e€Zd

and also define the coalescing probabilities

p= Z p(e)p(e')P(T(e,e') < o00,7(0,€) = ’7’(0,6,) = 00),

e,e' €Z4

6= ple)p(e)P(r(0,e) = 7(0,¢') = c0).

e,e’ €Z4

To describe § and ¢, consider a collection of 3 coalescing random walks, two of which start with
independent initial conditions with law p(-), and the third of which starts at the origin. Then 3 is
the probability that the first two random walks coalesce but neither one of these walks ever meets
the third random walk, and § is this probability plus the probability that there is no coalescing of
any two of the walks. (We will soon be assuming d > 3 so that these probabilities are non-zero.)

Consider now a sequence {¢V, N = 1,2,...} of Lotka-Volterra models on Z? with kernel p and
interaction parameters o satisfying:

(1.8) 1€ < 0o for all N, and 6 = N(a)¥ —1) = 6; € R as N — oo for i = 0, 1.

K2
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Let Mz be the space of finite Borel measures on R%, endowed with the topology of vague conver-
gence. Let Sy = yAd / VN and let X~ denote the M g-valued process defined by

nv_ 1 N
(1.9) Xy = N Z th(w\/N)‘swa

TESN

where J, is the unit point mass at z. We will use Py to denote the law of X~ on D(R*, Mp).
We make the following assumption about the initial states &) :

(1.10) Xy — Xoin Mp as N — co.

The following result is Theorem 1.2 of [CP].

Theorem A. Assume d > 3. If the above assumptions hold, then Py = P;(Ze,e,f as N — oo, the
law of super-Brownian motion started at Xy with branching coefficient 2v,, drift coefficient

(1.11) 0 =0y08— 0.0
and diffusion coefficient o2.
This limiting super-Brownian motion X is the unique M g-valued diffusion satisfying the fol-

lowing martingale problem, where F* = Ny,s;0(Xs : s < u): for all infinitely differentiable
bounded ¢ with bounded partial derivatives,

Mi(9) = X) - Xolo) - [ X, (T02) ds—o0 [ x0)as

is a continuous (F;¥)-martingale, with My(¢) = 0 and predictable square function

(M () = / X, (27,42 ds.

We refer the reader to [P] for a general treatment of super-Brownian motion. For now, we only
point out that if the drift § of this super-Brownian motion X. is positive, and X,(R%) > 0, then
X. has positive probability of survival, meaning

(1.12) P(X,#0forallt>0)=1— e X®)/% 5

(see Exercise I1.5.3 of [P]). This suggests that LV (ap, a1) models with interaction rates sufficiently
close to (1, 1) and satisfying S(ag — 1) — §(a; — 1) > 0 should survive. Our first result, Theorem 1
below, shows that this is indeed the case. As we will be using Theorem A and its refinement and
generalizations, we will assume throughout that

the spatial dimension d is 3 or more.

The extension of Theorem A to the biologically important two-dimensional case will be given in
[CP2]. The extension of the results in this paper to d = 2 is a topic of current research.
To state our result, we let

(1.13) mo = B[4,
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and observe that my < 1, since (recall our earlier verbal description of 8 and §) § = S +
Yee P(e)p(e)P(1(0,e) = 7(0,¢') = 7(e,e’) = 00) > B ford > 3. For 0 < n < myp let S” be
the set of all (ap, 1) € [0,00)?, (g, 1) # (1,1), such that

_ (mo —n)(ag —1) if g >1,

Theorem 1. For 0 < n < my there exists r(n) > 0 such that survival holds for all (g, 1) € S”
such that |ag — 1| < r(n).

We may assume that r(n) is non-decreasing without loss of generality. Taking the union over
7 in Theorem 1, we see that near oy = 1, h is bounded below by a continuous function A which
is differentiable at cp = 1 and satisfies A(1) = 1 and h'(1) = mg (see Figure 2). Hence if h’(1)
exists it must be mg. In a future work with Rick Durrett we will use different arguments to show
this result is locally sharp for ay < 1 and close to 1. In particular we will show that the left-hand
derivative of h at 1 does equal my. It was already conjectured in [NP] (in a slightly different form—
see Conjecture 2 there) that h(ap) = ap for ag > 1, which would imply the right-hand derivative
of h at ag = 1 is 1. This discontinuity in the derivative at oy = 1 can be thought of as a sudden
increase in the survival region as g passes below 1. As this is the regime in which 1’s prefer to be
surrounded by 0’s, it allows for the survival of sparse fractal-like configurations of 1’s which after
rescaling are nicely modeled by the super-Brownian motion arising in Theorem A.

slope my

slope p.

! contained in S

slope 1/p.

1 (&%)

Figure 2: Comparison of lower bounds on S

From Figure 2 we see that Theorem 1 represents a significant increase on the known lower
bound on S from that given by (1.6), at least near (1,1). The increase is most noticeable for
oy < 1 but is also significant for ay > 1. To see this we now compare mgy with p, (note the crude
inequalities in what follows and also that p. will be 0 if p has infinite range):

5= 3wl P(r(e,e!) < 00,7(0,) = 7(0,¢') = o0)
> ipe(eVP(T(o,e) = o)
- S p(e)P(r(0,¢) = o)
> b Z > pep()P(r(0,) = 7(0,¢) = )

= p,0.



Therefore we have my = /8 > p.. In the nearest-neighbour case, p(z) = 2d~*1(||z|]; = 1) and
simulations carried out by David Lubin give the following:

d mo px=1/2d
3 .38 167

4 .20 125

5 .14 1

6 A1 .083

The proof of Theorem 1 uses the comparison with 2 K-dependent oriented percolation described
in Chapter 4 of [D] to interchange the limits N — oo and ¢ — oo. Briefly, the idea is to construct the
Lotka-Volterra process &; and a super-critical oriented percolation process on the same space with
the property that &; “lies above” the percolation process, implying survival. Although this approach
has become a standard tool, there are some subtleties in our implementation of the method. For
example, we make use of some explicit upper bounds on the critical percolation probability for
2K-dependent oriented percolation (see Remark 5.2). One byproduct of our proof of this result is
the following.

Corollary 2. Assume (ap,1) is as in Theorem 1 for some 0 < 1 < mgy. Then there is a
po = po(@o, 1) > 0 such that P(£2(0) = 1) > py for all t > 0.

We also will use a modification of Theorem A (see Theorem C in Section 2 below) to derive
the following quantitative version of Theorem 1.

Corollary 3. For each 0 < n < myg there are c1.15(n),7(n) > 0 such that for all (g, 1) € S™ with
lag — 1| < r(n), the LV(ay, 1) process & satisfies

(1.15) Pa(|§,?\ >0 for allt > 0) > c1.15(n)[|ao — 1| + | — 1| Ar(n)].

A delicate aspect of these results is that one is getting non-trivial lower bounds on survival for
(o, 1) near (1,1), a point at which survival fails.

We turn now to the question of coexistence. As coexistence cannot occur if infinitely many 1’s
(or 0’s) take over with probability one, (1.4) and (1.5) imply that the coexistence region

C = {(ap, 1) : coexistence occurs for LV (ap, 1)}

satisfies .
CN[0,112 C {(ag, 1) €[0,1]*: —(ap—1) < g — 1 < pu(ag — 1)}

*
This result attracted considerable attention as it shows that a stochastic spatial model may reduce
the parameter region for which coexistence holds from that in the corresponding “mean field”
model. The latter is the natural ordinary differential equation model in which space is ignored (see
(1.2) of [NP] but with A = 1 in that work). Here coexistence occurs for all (ag, ;) € (0,1)? as
it is trivial to see there is a stable non-trivial equilibrium point in this parameter regime. It is of
course natural to think that a spatial model would allow for an increased coexistence set, but the
reason for the shrinkage is explained in [NP]-in a spatial model for o; < 1, small colonies of 1’s
focus their positive affects on the nearby 0’s which return the favour by driving them out. It is
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therefore natural to ask how much the coexistence region shrinks and our next result answers this
query for (ag, 1) near (1,1).

It is reasonable to suppose that coexistence might hold for parameter values for which both
0’s and 1’s survive. For 0 < 1 < mg let C"7 be the set of all (ag, 1) € [0,1]? such that

1
mo +1

(ap—1)<a;—1< (mo—n)(apg —1).

Recall that mg < 1 so this sector is non-empty.

Theorem 4. For 0 < n < my there exists r(n) > 0 such that coexistence holds for all (ag, 1) € C"
and 1 — ag < r(n).

Taking a union over 7 in Theorem 4 (again we may assume r(7) is non-decreasing), we see
that C includes a region (1,1) € Cy C [0, 1]? such that

where fy < fi are continuous increasing functions such that fo(1) = f1(1) = 1, f{(1) = 1/mg and
f1(1) = my (see Figure 3). We conjecture that these slopes are sharp.

slope mg*
a

. slope m.
N() coexistence 1 0

slope py

N() coexistence

slope p;

1 Qg

Figure 3

Another consequence of Theorem 4 is that (for d > 3) coexistence holds on the diagonal
ap = a1 = a < 1 for a sufficiently close to 1. By Theorem of 1 of [NP], coexistence also holds along
the diagonal for « sufficiently close to 0 (a point where survival holds by the arguments in [NP]).
This gives some additional support, at least for d > 3, for the conjecture in [NP] that coexistence
occurs on the entire diagonal 0 < a < 1.

The proof of Theorem 4 allows us to say more about coexistence. Let B(£) = [£,£]9NZ% and
if ¢ € [0,1], let {¢d(z) : x € Z?} be iid Bernoulli random variables with P(¢d(z) = 1) = q.

Corollary 5. Assume (g, 1) satisfies the hypotheses of Theorem 4 for some 0 < n < mg, and
& = & for some 0 < g < 1. For any € > 0 there are positive £., t. such that

P ( Z {t(x))/\( Z (1—&(50)))2% >1—¢ forallt>t..

z€B(L:) z€B(L:)



Looking at (1.2), we can consider LV (v, 1) as a particular quadratic perturbation of the voter
model. All of the above results will be derived as special cases of results which apply to a large
class of voter model perturbations including general polynomial perturbations. See Theorem 4.1
for the general version of Theorem 1 and Corollary 3, and Theorem 6.1 for the general version of
Theorem 4. This general setting was introduced in [CP]. For example, it allows one to extend the
above class of Lotka-Volterra models to allow for different competition kernels for each type which
may also be distinct from the dispersal kernel p. More specifically, let p® and p? be arbitrary kernels
on Z? such that p®(0) = p?(0) = 0 and define f?(z,¢), f¢(x, &), for i = 0,1 in the obvious way using
these kernels. The spin-flip rates now become

ci1(x,€) = fi(f§ + ao f)(@,€) = f1 + (a0 — 1) f1f7 (2, )
(1.16) co(x,€) = fo(fi + enf§)(@,€) = fo + (01 — 1) fo f§(z,€)
c(z,€) = ci1(z,6)1(&(z) = 0) + co(,£)1(&(z) = 1).

Our general perturbation results will apply if for some Cy.17 > 0,

(1.17) p°(a) Ap?(a) < Cr.a7p(a) for all a € Z°4.
This condition is needed to ensure monotonicity near (1,1).
Define
B = Z p(e)p®(e')P(r(e, ') < 00, 7(0,€e) = 7(0,€') = c0),
e,e! €Z4
&= > ple)p(e)P(r(0,e) = 7(0,¢') = ).
e,e' €Z4

and also A" and ¢", which are B’ and ¢’ with the roles of p* and p? reversed. Let m} = ﬂ’ /0" and
mg = 8”/§". Then the conclusion of Theorem 1 holds in this more general setting with m{ in place
of my (see Theorem 8.3) and the conclusion of Theorem 4 holds with m,, and my in place of ——

0

and my, respectively (see Theorem 8.5). Here one should note that ,, < my by an elementary

argument (see (8.13)).
A second example we can treat is the (full) Neuhauser-Pacala model with their fecundity
parameter A\. The rate functions in this case are

ML o
A1+ fo Afi+ fo

(In (1.2) A =1). If ap, a1, A are all near 1 we can view these rates as defining a perturbation of
the basic voter model, in this case a non-polynomial perturbation. Nevertheless, our results apply
to this model (at least if p has finite range), and we can prove survival and coexistence in suitable
values of (ap, a1, ) near (1,1,1). We do not include the details here.

The general voter model perturbations are introduced in Section 2 along with the correspond-
ing generalization of Theorem A and a modification of this extension which is used to get the
quantitative lower bound in Corollary 3. In Section 3 we establish a key comparison estimate
(Lemma 3.2) which plays an important role in our comparison with oriented percolation. The gen-
eralized convergence theorem is used in Section 4 to prove the key propagation estimate which will
make our underlying oriented percolation process super-critical. The general version of Theorem 1
is stated as well, along with part of the proof. Section 5 gives the oriented percolation construction
and some standard consequences. The general co-existence results then follow easily in Section 6

ca(z,§) = 5 (fo+afi), co(2,€) = v (fi + a1 fo).
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and the general version of Corollary 3 is established in Section 7. Finally in Section 8 we use
the general results to prove the analogues of the theorems stated above in the setting of distinct
dispersal and competition kernels described above. The above theorems are then derived as special
cases.

2. Construction and Basic Properties. We begin with a construction of {O,l}zd-valued
Markov processes &, which start from initial states &y satisfying |{y] < oo. The construction,
modelled after the one given in Chapter 2 of [D], is useful for coupling purposes.

Assume ¢; : Z¢ x {0, 1}Zd — [0,00),% = 0,1 are bounded, measurable functions, and define ¢
by ¢(z,&) = c1(x,)1(€(x) = 0) + co(z,€)1(€(x) = 1). Assume there is a finite constant Cy 1 such
that

(2.1) Y ei(w,€) < Calé] for all € € {0,1}%".

For A C Z¢ define ¢| 4 € {0, l}zd by f‘A(:v) = {(z) for £ € A and &(x) = 0 otherwise.

Let {N** z € Z%,i = 0,1} be independent Poisson point processes on Ry x R with intensity
ds x du (Lebesgue measure). N will be used to switch the type at x to type i. For s < t and
I' c RY let

(2.2) G([s,t] x I') = o(N®°(A), N> (B), A,B C [s,t] x R4,z € I' N Z%),

and define G{' = G([0,#] x I') and G, = g?d. In practice I’ will be a large open box outside of
which we will freeze the components of our particle system at 0. When translated in space, this will
give us a sub-process with built-in independence for sufficiently spaced initial conditions to which
we can apply known survival results for oriented percolation. The following result constructs our
processes in terms of the Poisson processes N**.

Proposition 2.1. Let & : Z? — {0,1} be random, independent of {N®* : z € Z% i = 0,1}, and
satisfy |€o| < oo a.s. Fix I' C RY such that &y(z) =0 for all z ¢ I', and let F{ = o(&) VGl .

(a) There is a unique FI'-adapted solution, ¢ = £.[0,&,1I'] to

€o(@) + [y [ 1€z (@) = 0)1(u < c1(w, €4_))N"(ds, du)
(SDE)(I") &(x) = — 7 [ 1(€s—(x) = D1(u < oz, &) N (ds,du) VE>0, ifzel,
0 Vt>0, ifz gl

Moreover, || < oo for allt > 0 a.s.

(b) Assume that c(z,&) is monotone. Then
(i) &[0, &0, I'] < &[0, &0, R for all t > 0 a.s.

(ii) Assume &, satisfies the same conditions as o, and let ~§~ [0, &0, I'] denote the corresponding
solution to (SDE)(I'). If &y < &o a.s., then &[0,&p,I'] < &[0,&o,I'] for all t > 0 a.s.

(c) Assume also that c(z, ) satisfies
(23) supzsgpk('xag) _C(x’gu” < o0,
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where £%(z) = 1(z # u)é(z) + 1(z = u)(1 — &(z)). Then £.[0,&, '] is the unique {0,1}2" -valued
Feller process with initial law given by that of &y and whose generator is the closure of

Qf(€) = {OZzem o(z, &) (f(€7) = f(€)) 1{5 ; ﬁ:

on the set of functions f : {0, l}zd — R depending on only finitely many coordinates.

Proof. (a) Let Ty = 0 and

24 A=Y / 10 <l e s, + [ [ s < eollo) V5 (s, )

Then A is a well-defined cadlag increasing process, since if we take the expected value, with respect
to the Poisson processes, of the right side above, (2.1) implies

t t t
/ S 1, £0)ds +/ S 60(@) o loods < / (Cor + [lco]|oo)|Eo]ds < oo for all £ > 0 a.s.
05 05 0

If T} is the first jump time of A. then the existence of a unique F} -adapted solution to (SDE)(I")
(denoted £.) up to and including T} is clear (set it equal to 0 for ¢ > T;). Moreover it is easy to
use (2.1) to check that |{7,| < oo a.s. This allows us to repeat the above argument with &7, in
place of & and N ((Ty,T; +t] x A) in place of N*¢([0,#] x A) to show the existence of a unique
FI'-adapted solution, & to (SDE)(I') up to and including T5, the time of the second jump of

Ay = Z/ / u < e1(z, &, ))N®0(ds, du) + / /53 (u < ||co|loo ) N® 2 (ds, du).

Continuing in this way we may construct a unique F ’—adapted solution up until T, = lim7;,,
where T,, is the nth jump time of A. It remains to show that T,, = o0 a.s. and this follows as in
Lemma 2.1 of [CDP] by bounding 7}, by the nth jump time of a pure birth process.

(b) Define {T;,} as in the proof of (a). Implicit in the above construction is the fact that the jump
times of £.[0, &, I'] and £.]0, &, R%] are included in the set {T},}. Therefore to prove (i) it suffices
to prove

(2.5) 1,10, &, I')(x) < &r,[0, &0, R () a.s. for all z € Z¢ and n € Z,.

We proceed by induction on n. As n = 0 is trivial, assume (2.3) holds for all z and all £ < n. Now
fixxz el

Case 1. &1, _[0,&0, RY(z) = 1 and &7, [0, o, RY](x) = 0: Here we must have that

N ({Tn} x [0, co(z, ér,, - [0, &0, RY))]) =
If £, [0,&0, I')(z) = 1, then since &r, [0, &, I'] < &7, [0, &0, RY] a.s. by induction, monotonicity
implies N ({T},} x [0, co(z,ér,[0,&0,1'])]) = 1. Consequently, we must have &7, [0, &, I'](z) = 0
a.s. If &, _[0,&0, I')(z) = 0, then &1, [0,&0, I'](x) = 0 a.s. because N®? and N*! have no common

jump times a.s.
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Case 2. &1, -[0,&0,I'](z) = 0 and &1, [0, &p, I'](z) = 1: Necessarily,

Nm,o({Tn} X [O,Cl($,an_[O,£0,I’])]) =1

If ér,-[0,&0,R%(z) = 0, then on account of our induction hypothesis and monotonicity, it fol-
lows that c;(z,ér, _[0,&,RY]) > ci(z,ér,_[0,&0,1']). As in Case 1, we obtain the conclusion
&1, [0, &0, RY(z) = 1. If &7, [0,&0, R¥)(x) = 1 this conclusion is trivial as before.

Remaining cases: The conclusion &7, [0, &, I'](z) < &7, [0, &0, RY](x) is trivial for these cases, and
so the proof of (2.5) is complete, and (i) is proved.

The proof of (ii) is similar. We start with the first jump of A + A, where A is defined as in
(2.2), but with &; in place of £y and proceed inductively.

(c) Tt is easy to use the stochastic calculus for Poisson point processes to see that for functions f

depending on only finitely many coordinates, f(&:) — f(&o) — f(f Qf(&s)ds is an f?d—martingale.
The result now follows from Theorem B3 of [L2] and Theorem 1.5.2 of [L1]. O

We note here that the theorems quoted from [L1] and [L2] do not require finiteness of |£g|.

We now apply the above construction to the voter model perturbations of [CP] which generalize
the Lotka-Volterra model. Let Pr be the set of finite subsets of Z¢, and

O(Pp)={v:Pr > R: |yl = Y (4)] < oo},
A€Pr
and for (8,0) € £'(Pr)?, set ||(8,0)|lx = [|Bll1 +1d]l1- For A € Pr, put x(4,,€) = [[.caé(z +e).
For (z,¢) € Z¢ x {0,1}2" and (B, 6) € £*(Pr)?, define

o3 (@) = co(®,€) = fo(@: &) + Y S(A)x(4,,8),

AEPF

(2.6) (2,8 = a1(@,8) = fi(@,6) + Y BlA)x(A,1,8),

A€Pp
C,B,J(.,L.’g) = C(.T,f) = Cl(.’IJ,f)l(f(.’IJ) = O) + CO(.T,f)l(f(.T) = 1) '
This definition should be compared to the rates for the Lotka-Volterra model (1.2). In (1.2) we
consider small |a; — 1|, making LV (o, @1) a (quadratic) perturbation of the voter model. Later
we will be assuming $(A) and §(A) are small and so the above can be viewed as (possibly infinite

degree) polynomial perturbations of the voter model.
For (8,9) € £}(Pr)? we introduce the following conditions:

(P1) There is an ny € N such that S(A) = §(A) = 0 if card(4) = |A| > ns.

For all (x,&) € Z% x {0, 1}Zda

(P2) 0 (z,6) >0
and
(P3)  plz)+ > BAxX(A\{z},0,§) >0 and —p(x)+ »_ 6(A)x(A\{z},0,8) <

12



(P4) There is a constant K4 such that

D 5(A)x(4,0,8) > —Kyfo(0,€) V¢ € {0, 1}2* such that £(0) =
A€Pp

(P5) B(0) = 0.

If S C £(Pr)2, we say (P) holds uniformly on S iff (P1)-(P5) hold for all (3,§) € S with n;
and K, independent of the choice of (8,6) € S

Remark 2.2. (a) Note that the rates in (2.6) are translation invariant. That is, if 7,£(y) = &(z+y),
then ¢%0(z, &) = ¢59(0, 7,.€).
(b) It is not difficult to see that (P3) is implied by the simpler condition: for all z € Z?,

(P3)  p(z)>-B{zh)+ Y BA)T and p(z) >({z}) + Y AT

A:z€A,|A|>1 A:z€A,|A|>1

Here 8(A)~ and §(A)™ are the negative part of 8(A) and positive part of §(A), respectively.

(c) (P4) is used to make comparisons with a biased voter model in [CP]. If {z : p(z) > 0} is finite
then (P4) follows from (P2) and § € £*(Pr) (see Lemma 1.7 of [CP]).

(d) The condition (P5) implies c¢(z,£) = 0 for £ = 0, so that £ = 0 is a trap. The condition that
makes £ = 1 a trap is

(P5)’ Y A=

A€Pg

We will impose this condition in Theorem 6.1.

(e) As in [CP], there is no loss in generality in assuming that S(A) = §(A)
(f) In Section 8 we will show that for LV (a, 1), we may write ¢(z,§) =
holds uniformly on {(8,,04) : o A a1 > %} (see Propostion 8.1).

= 0 1f 0eA.
cParda (g, €) where (P)

Condition (P3) will give monotonicity of the above spin-flip processes.

Proposition 2.3. Assume (3,6) € ¢'(Pr)? satisfy (P1) and (P2). Then c?° is monotone if and
only if (P3) holds.

Proof. For ¢ € {0, l}zd and z € Z¢, define ¢, € {0, 1}Zd by &.(y) = €(y) if y # x and &,(z) =1
We claim that ¢® is monotone if and only if:

(2.7) for all z # 0, ¢(0,&) — ¢0(0,&;) > 0 whenever £(0) =
and ¢1(0,€) — ¢1(0,&,) < 0 whenever £(0) =

Necessity of this condition is obvious. To prove sufficiency, let £ < ¢ satisfy £(0) = 1 and let us
prove that co(0,&) < ¢(0,€). There is a sequence {{,} so that £ =& < &, 1€ and §,41 = (n)a,,
for some x,,, for all n. (2.7) implies

CO(Oag’n) = 60(07 (&n_l)xn—l) < C(](O,é.n_l) <...< C()(O,é'),
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and so it suffices to show that lim,,_, ¢(0,&,) = ¢9(0,&). This, however, is immediate by Domi-
nated Convergence because § € £'(Pp) and )., p(z) = 1 < co. By translation invariance we may
replace the location 0 with an arbitrary z in the above. Similar reasoning shows that {(z) = 0
implies ¢;(z, &) < ¢1(x,€), and the claim is proved. Finally, a simple calculation shows that (2.7)
is equivalent to (P3) under (P1) and (P2). O

Corollary 2.4. Assume (8,0) € ¢*(Pp)? satisfy conditions (P1)—(P3) and (P5). Then all the
conclusions of Proposition 2.1 are valid for the rates ¢®°(z, §).

Proof. The boundedness of ciﬂ % is clear from f,8 € ¢1(Pp). Condition (2.1) follows easily from
8,0 € £*(Pr) and (P5). Condition (P3) implies the monotonicity of the spin-flip system by Propo-
sition 2.3. (P1), (P2) and (B,6) € £}(Pr)?2, easily imply that the rates ¢ satisfy (2.3). Hence,
all parts of Proposition 2.1 apply. O

Remark 2.5. We note that as (2.3) holds, under the hypotheses of Corollary 2.4 we may apply

Theorem B3 of [L2] directly to see that the rates ¢®° determine a unique {0, l}zd-valued Feller
process satisfying the martingale problem in Theorem 2.1(c), which (by Proposition 2.1) we may
construct via (SDE) if |§y| < oo. We call the associated process . a generalized voter model

perturbation and let P#° or Pgo * denote its law on the space of cadlag {0, 1}Zd-valued paths.
Survival and coexistence are defined in this setting, just as in Section 1. As noted in [CP] (see
(1.25) and (1.26)), the LV(ap, 1) is a particular generalized voter model perturbation.

Before proceeding further we state the analogue of Theorem A for these generalized voter model
perturbations. Let (8x,dn), N € N be a sequence in ¢!(Pr)? such that conditions (P1), (P2),
(P4) and (P5) hold uniformly on {(8y,dn) : N € N}, and suppose that for some (3,6) € £}(Pr)?,

(Bn,dn) = (B,6) in £*(Pr)? as N — oo.

. . . BN § .
Let & be the voter model perturbation process with rate function CTN’TN, suppressing dependence

on N. We recall that Sn = Z4/V/N, set £ (z) = én¢(zvV/N), © € SN, and define the M p-valued
process XY by

(2.8) X =5 Y @y
rESN

Let Py denote the law of X~ on D(R*,Mp), and assume the initial states £ satisfy (1.10).
Also, we recall the coalescing random walks B, the coalescing times 7(A), the escape probability
Ve given in (1.7), and define o(A) = P(7(A) < 00), A € Pg. The following result is Corollary 1.6
of [CP].

Theorem B. Assume d > 3. If (1.10) holds, then Py = P;Ze’a’az as N — oo, the law of super-
Brownian motion started at X, with branching coefficient 2., drift coefficient

(2.9) 0= [ﬂ(A)G(A) — (6(4) +4(A))a(AU{0})

A€EPrp
and diffusion coefficient 2.
We also will need a slight variant of Theorem B.
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Theorem C. Assume d > 3, and let {X""" : i < N} be iid copies of XN as in (2.8) but with

X" = L6y and let Py be the law of Y1 X on D(Ry,Mp). Then Py = P27 as
N — oo, the law of super-Brownian motion started at &y with branching coefficient 27y, drift
coefficient 0 given in (2.9), and diffusion coefficient o2.

Remark. There is nothing special about dy. One could assume Xév’i = %5“,11., where Ty ; € Sn

for i < My and X}V = Y Mn Xév o converges to Xo € Mp. The same conclusion then holds
where the limiting super-Brownian motion now starts at Xj.

Proof. The proof of Theorem C involves only minor and obvious changes in the proof of Theorem B
from [CP]. We mention only a few points and use notation from [CP].

As in [CP] one may bound each X,*(1) by X}V"*(1), where X}Y"*(¢) = +3, $(x)EN*(x) and
{f_tN "1 4 < N} are appropriate independent rescaled biased voter models. Using Lemma 4.1 of [CP]
to bound the first and second moment of the biased voter model one sees that

B XN W) < Var(3 X5 (1) + B XN 1)
< S BERN W) + (Y X (1)

< O(T) (X' (1)? + X3'(1))

for all ¢ < T. The above bound and the strong L? inequality for the submartingale (}, X'(1))?)
gives

(2.10) E(sup X{¥(1)?) < C(T, K) for sup X}’ (1) < K.
t<T N

This is the analogue of Proposition 3.3 in [CP].

The key technical bound in [CP] is Lemma 5.1 of that work. Although the term being bounded
is nonlinear in X{¥(1), the proof only uses linear bounds which carry over to our setting without
change. There is even some simplification in the bound on (the analogue of) 73’} in (5.17) of [CP]
as the term X{¥(1)?2 may be replaced by X (1). This is because each of the initial conditions
50 only charges a single site. This then leads to the analogue of the main bound (5.4) with the
smaller term J in place of J2. The proof of the key Proposition 3.4 then goes through as before
now using (2.10). The proof of tightness and identification of the limit points now involve only
trivial modifications. O

3. Comparison Estimates. Let (3,d) € £}(Pr)? satisfy (P1)-(P5) and let I’ be a bounded open

box in RY. For initial £, with |¢y| < oo we may apply Proposition 2.1 with ¢ = ¢#?, obtaining the
solution £.[0, &, I'] of (SDE)(I’), which we will also write as £ , suppressing the dependence on I".

More generally, if £y > 0 and £, € {0, 1}Zd is G;,-measurable such that ‘éto‘ < oo and §, (y)y =0
fory ¢ I', let £(t) = §[t0,§t0,1’](t) be the unique solution of

£,(@) = ¢, (@) + /t / 1€, () = 0)1(u < ex(m,€, ))N=0(ds, du)
(SDE)(tO,I’) / / 1(u SC()(.Z‘,és_))Nm’l(dS,dU), t >, er

ét( , t>t0,$¢]’
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The existence and uniqueness of a o({ to) V G([to,t] x I')-adapted solution to (SDE)(tg,I") follows
by applying Proposition 2.1 with § = ¢ b and the Poisson point processes N2 ([to,to + t] X A)

in place of N®([0,#] x A). Proposition 2.1 (b) (in the above setting) implies that for any ¢y > 0,
whenever éto < &, are both G, -measurable,

(3.1) ét[to,éto,j’] < §t[t0,§t0,Rd] for all t >ty a.s.

Fix 7' > 0 and natural numbers K > 2, L > 1 and N, and define I' = (—KLv/N, KL\/N)?.
These parameters will be chosen with care in the next Section, but for now their particular values
will not be important. [0,7] x I’ will serve as the space-time sets for our oriented percolation
events, defined in Section 5. Given a deterministic initial &, such that &y(z) = 0 for z ¢ I' (and
hence |£y| < ), let £, = ét[O,fo,I’] and & = ét[O,&),Rd] be as defined above, and note that &; is

the (full) generalized voter model process with law Pg) . We define the rescaled processes &N and
&

(3.2) &N (x) =&ne(zVN) zeSn and £ (z)=¢,,(@VN), z€SN,

and their associated measure-valued process

1 1
xN = N Z ¢N(z)6, and XV = N Z é{/\](x)ém
rESN TESN
By Proposition 2.1,
(3.3) ¢ <&V and X[ () < XY (4) for all £ > 0 and nonnegative ¢ a.s.

The task of this section is to obtain a useful estimate (Lemma 3.2 below) of the difference
E(XN(1)) — E(XY (1)) in terms of 3,4, the random walk kernel p, and the parameters T, K, L, N.
For A € Pp, z € S and & € {0,1}5N, let Sy (A) = NB(A), dx(A) = N&§(A), py(z) = p(zVN),
and

N, &)=Y pnly—2)1(Ey) =i), i=0,1.

YyESN

If ¢ € Cy([0,T) x Sw) and ¢(t,z) = 22(t,2) € Cy([0,T] x Sn), define

An(de)(z) = Z Npn(y — 2)($¢(y) — de(2)).

YyESN

Let BY¥ denote the continuous time random walk with generator Ay and semigroup P/ .

In Lemma 3.2 below, our bound on the difference E(X} (1)) — E(X}Y (1)) includes terms of
the form P(sup,<y |BN| > (K —1)L/3) and also P(sup,<y |BN| > (K — 1)L/3), where BY is a
random walk defined below. The B} term comes from the voter part of the dynamics, and the BtN
term comes from the (8y,dn) part. Define a probability mass function on Sy by

B (4) . +
(34) p (@) = {ZME_A/‘/’V atisgn L 1Awl >0
Hz = 0} if (1851l =0,
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with associated mean operator Py ¢(z) = >, bn(y—)¢(y). (In the Lotka-Volterra case, pn(z) =
p(z) if ap > 1 and 1{z =0} if ap < 1.) Let

And(x) = (185 1 (Py d(x) — ¢(x))

be the generator of the continuous time random walk BY, which takes jumps at rate ||37|1 ac-
cording to the kernel py. Let .AN =Ayx + AN and let PN be the semigroup associated with the
generator Ay. Therefore PN is the semigroup associated w1th the random walk BN = BN + B
where BY¥ and BN are 1ndependent copies of the random walks introduced above. We use P, P
and P, to denote the laws of these three random walks.

The Ay random walk arises from the spatial motion in the rescaled voter model dynamics.
The Ay random walk arises from the spatial motion implicit in the positive ﬁ( ) terms in the
series expansion for ¢ in (2.6). More specifically, we will bound x (4, z,¢) < TAT AI Y o€z +a)and

consider the creation of a 1 at z “due to {(z + a)” as including a migration from z + a to z, which
when rescaled leads to this second random walk. This interpretation leads to the following bound.

Lemma 3.1. For ¢ > 0,
—+ — ~
E(X{N (y)) < el w0t x ¥ (P y).

Proof. By Proposition 2.3 of [CP], for ¢, ¢ € Cy([0,t] x Sn) with ¢ > 0, we have
X (9) = X{'(g0) + D71 (9) + D;"*(9) — D7 () + M (9)

where

t .
DY (g) = / XN (¢o + AN 4,) ds

/qus 3 B (A)(1 — €Y () xw (A, 3, £Y) ds,

TESN A€PF
DY N/qus S (AN (2)xw (A, 7, £V) ds
TESN A€Pr

and M} (¢) is a square integrable G;-martingale starting at 0. (The filtration G; is not in [CP] but
it is trivial to verify the martingale property with respect to this filtration.) Now

D~ [ X 0 X s Y eerad

TESN A€Pr a€A/VN
- [ X 0@ X I @ @ - oy
TESN a€SN
== / 185 S 65w Y 5N @)y + a) ds
YyESN a€SN

t A
— 1851 / XN (BN (g,)) ds
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A shorter computation yields
DN
3>——/ S @) 3 on(A ——||6N||1/XN p)d
TESN A€PF

We have therefore established
t t
XX (60 < XF o)+ [ X+ AV as BT [ XN PN (8 ds
0 0
t
+ldlls [ X2 (0 ds+ MY (9)

Consequently,
t . ~
B35 XX @) <X @0+ [ (Xt 2 + (18511 + 10510 X (9) ds-+ MY (9).

Now set
bs(z) = ﬁtfxsw(x)e(llﬁﬁ||1+I|5§|]1)(t—8),

where 1) is a bounded non-negative function on Sn. Then ¢, = —AN ¢, — (||B5 11 + 105 ||l1) b5, and
since integrability of sup,, X (1) follows from Proposition 2.1 of [CP], we get

~ + —
EX} () < X (BN )e IR +135 1,

from which the result follows for bounded non-negative 1. It then follows by monotone convergence
for any non-negative . O

Let I, = (—V/N(K — 1)L/3,v/N(K — 1)L/3)%, and recall from (P1) that 3(A) = §(A) = 0 if
|A| > nq. Here is the Comparison Lemma.

Lemma 3.2. If||(By,6n)|[1 V1 < Kk and &) = §N is supported on I = [—L, L)%, then for all T > 0,
(:6) BUXF (W) - XF (0] < XF 3T (3 18w (A)] + Polsup B > (5 - 1)1/
AC(I)e 5=

+P(s1<1¥|B§V| > (K — 1)L/3)).

Proof. For A € Pp, z € Sy and ¢V € {0,1}5, let xn(A4,z,&N) = [Toca &N (z+ ﬁ) Consider
(SDE)(I') on the rescaled lattice Sy with

c1(z,6) = &0 (2, 6V) = NN (2,6¥) + Y Bn(A)xn (A4, 2,6N)

A€Pp

and

Co(l', éN)

(@, &Y) = N (@, M)+ Y on(A)xw(4,z,6V).

A€Pr
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Let ¢ € C} (R4 x Sn), and define ¢ ,(z) = ¢5(z)1{z € I}. Multiply (the rescaled) (SDE(I')) by
~ ¢ 5(z), integrate by parts, and sum over z to see

XN (60) = XY (do) + / XY (4,) ds

/ N la @)V @, + 3 Br(A)xn (4, 2,6V)] ds

A

/ N E 2D @IV 0.+ o (4. s + 2 (9)

where M ¥ is a square integrable martingale. The absolute summability of all these terms and inte-
grability of the resulting sums follow easily from E(sup,<; XY (1)*) < oo for all k, > 0 (Proposition

2.1 of [CP]), X (1) < XN (1) (Proposition 2.1 above), By, dnx € £*(Pr), and By (#) = 0. The same
reasoning shows M ¥ (¢) is a square integrable martingale and not just a local martingale (see the
proof of Proposition 2.3 of [CP]). Let B¥ denote the random walk B} killed when it exits I’, with
cemetary state A, and let P} be the associated semigroup, with generator

AN () (@) =Y Npn(y — o)l (y) — ¢ (@)]1{z € I'}.
y
Here 9 (y) = ¥(y)1{y € I'} as above. With this notation, summation by parts yields

%Z@(w)[(l ~ Y @) N (@,6Y) — Y @N Y (€Y

NZ¢ DNpx(y =) [ (1) (1 - € (@) — € (@) (1 - € ()]
——Zg 2)Npn(y — 2)[¢s(y) — ¢ s(2)]I(z € T)

= X;V(AN(‘]SS))

Therefore,
XV ($) =X2 (o) + / XY (e + AV ($)) ds
+/ %Zésm(l—§§V<w))ZﬂNM)xN(A,x,gf)ds

A

/ N 2 0) B o (A () s+ M),

We now set ¢, = P .4 where ¢ € C®(Sn), ¥ > 0, so that ¢s = ¢s and (}‘55 = —An(¢ps)- This

gives

XV () = XN (PYy) + / NS p@[a-¢ ) 3 P Aev(n )
= DA (A U {0 g] M) ds+ MY (PYy).
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= RY in the above). If

A similar representation, with the semigroup P}, holds for X}V (¢) (take I’
we set 9/ = 1 in the above two representations and take the difference, we obtain

Xy (1-P1)
tr1
+E(/O [NZ (1—&N(z ZﬂN )xn (A, z,&N)

—%Zziisl(w)(l ) T o (A (4.2,

[ 222w (Ap (AU {0}, 2,6)
0 LA (A (A0 {0, . )| ds).

We would like to estimate the above using Gronwall’s Lemma and random walk probabilities. To
d’, where

E[X{ (1) - X7’ (1)] =

(3.7)

1=1""s»

do this, let d; denote the integrand on the right-hand side, and write d; = Z

diz%ZZﬁN(A)[(l—fiv(w))XN(A,waé“s) (1 - & @) (A2, M)],

d; szaN )xn (AU {0}, ,6Y) -

s NZ 1_P11,‘vsl Z,BN (w))XN(A,:L',éiV),
A#£0D

1
dt = NZ(P,{VS1 ) —1) ZaN
To sum over A # () in d2 we have used (P5). The Gronwall term comes from d! and d? as follows

xn(AU {0}71’&\,)]7

)xv(AU{0},2,€7).

By an elementary inequality and the fact that £ , < ¢
1-¢) (w))xN<A z £N)\
a a
<1 =&N @) = A=Y@+ D 1N (@ + — N+ —=
= \/_ VN
+ —)] .

= > [ﬁﬁv(ﬂH—ﬁ)—és(w i

a€AU{0}
—xn(AU {0}),$,§iv)|, and thus

(1= &7 (@) xw (4,2, 67) —(

The same bound holds for |xn (AU {0}),z, &)
(58) ||+ |2 < —ZZ B (A)] + 1o (A )\)a€£0}<s£(w+ﬁ) ~& (et )
M (Bwsdn)lln < 26(m +1)(XN (1) — X (1)),

< 2(Xiv(l) — X (1) (1 +1

since (recall (P1)), B(A4) = §(A4) =0 if |A] > n1.
Turning to d3, for ) # A € P, choose @ = a(A) € A with |G| = max;<q4 |a;| minimal. Then
a(4) ))

(%3 -2 S a4 e (o+ 52

E(|d3]) <
(w%éﬁw(l—ﬂiv—sl(y—%)))-

=Y I8n(4)

(3.9)
A#D
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If En(s,A) is the expectation appearing in the above summand, then Lemma 3.1 implies (use
supp(X{') C [-L, L] in the third line)

B (s,4) < exp {51350} [ o (Pag o vm (B = ) X7 (@)
= eXP{SH(ﬂXn(SE)Hl}/IEO X By (PB§+B§_(5(A)/\/N)(3U <t-sBy ¢ I'))X(J)V(dw)

<emxg' (1) [P (IBY |+ "3‘2' > KARD) | p, (sup 52| 2 KDy

<emxd(m[i{ac ((—mg{ —IL ng_ DLYAY

+ Ry (181> DN + P (sup 5| < "D,

In the last line we argue that if AN (—v/N(K —1)L/3,VN(K —1)L/3)¢ # 0, then |a(A)|/V N <

(K —1)L/3, and so |BY| + |a(4)|/v/N > (K —1)2L/3 implies |BY| > (K — 1)L/3. Use the above
in (3.9) to obtain

(3.10) E(|d3]) < e“SXév(l)[ > BN+ 1By 1P (1BY| > (K —1)L/3)
AC(If)e

+ 118wl Pofsup | BY| > (K~ 1)1/3)]

<k X D BN (A)] + Po(IBY| > (K — 1)L/3)
AC(Iy)e

+ Po(sup |BY| > (K —1)L/3)].
u<t
A simpler argument shows
(311 B(d) < e X3 llonll [Pa0BY| = (K = 1L/2) + Pafsup | BY| > (K = DL/2)].

Finally, recalling supp(X2') C I, we have the easy estimate

(3.12) Xy (1-PYM1) < X3 (1) Po(sup |BY| > (K — 1)L).
u<t
Note that f(f ke ds < et and so if

FN(t):entXév(l)[ > |ﬁN(A)|+2150(s1£|BjV|2(K—1)L/3)
AC(IY)e 5=

+2Py(sup|BY| > (K ~1)L/3)] + XY (1) Po(sup |BY| > (K = 1)L/3)
then we may use (3.8), (3.10), (3.11) and (3.12) in (3.7) to conclude
E(X{'(1) - X{'(1) < 2(m + 1)H/tE(X§V(1) - X (1)) ds + Fn(b).
0
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Recall that E(XN (1)) < oo by Proposition 2.1 of [CP]. As Fyy is non-decreasing, Gronwall’s Lemma,
implies

BE(X7 (1) = X§ (1) < VT Fy(T)

< eZn(n1+1)T3enTXéV(1)[ > BN (A)] + Po(sup |BY| > (K —1)L/3)
AC(Iy)e s<T

+P(sup|BJY| > (K —1)L/3)|,
s<T

and the result follows. O

4. Weak Survival — Propagation Bounds

We continue to work with generalized voter model perturbations satisfying (P) with laws P#».
Here is the goal of the next two sections. We will show that Theorem 1 follows as a special case (see
Section 8). Recall that for A C Z%, o(A) = P(7(A) < o) where 7(A) = inf{s : |[{B? : x € A}| =1}
is the coalescing time of our system of coalescing random walks (see Section 1).

Theorem 4.1. Assume S C {(83,0) € £1(Pr)?: ||(B,0)||1 < 1} is relatively compact and (P) holds
uniformly on S. For n > 0, let

Sy ={(8,8) € 5: Y [B(A)o(4) — (B(A) +d(A)a(AU{0})] > n}.

Then there exists r = r(n, S) € (0,1) and C4.1 = C4.1(n,S) > 0 such that for all % € S, such
that 0 < ||(8,0)]|1 <,

(4.1) PPO(1€9] > 0 for all t > 0) > Cy1]|(B,9)]]1 .
In particular, survival holds for such (3, ¢).

The expression appearing in the definition of S, is the drift of the limiting super-Brownian
motion in Theorem B. Its positivity is necessary and sufficient for the possible survival of the
limiting super-Brownian motion and so after an interchange of limits one sees the above survival
conclusion.

We will first prove survival, and then use additional arguments to obtain the bound (4.1). The
proof of survival depends on a construction of a supercritical oriented percolation process which
“lies beneath &”. The occupied sites of this oriented percolation process will correspond to large
blocks of large mass for &. To prove the supercriticality we must show those large blocks propagate
with high probability. This is Proposition 4.2 below and is the goal of the present section. The
oriented percolation process is then constructed in Section 5, where the proof of survival is given.
The bound (4.1) is proved in Section 7.

Let I = [-L,L)% and for z € Z, I, = 2zLe; + I and I, = 2zLe; + (—KL, KL)%, where
e1 is the unit vector in the z; direction. Also introduce IYN = /NI, and I)Y = +/NI.. The
parameters L, K, N will be natural numbers whose values will be selected in the proof of the
next Proposition, along with two other parameters J € N and T € [1,00). Assume & is a given
initial condition such that || < co. We will assume (83, d) is as in Theorem 4.1, & = &0, &y, R,
€, = ¢&,[0,6, 1, eN, éiv, and X, X are defined as in the previous section. For example, ¢ has
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law Pg)’é, &N (z) = éne(zV/N) for z € Sy and XN = & > sesy &t ()8 The dependence on (8, )

is suppressed in this notation, but we will often use Pg) 4 for emphasis.

Proposition 4.2. Let n € (0,1) and assume S and S, are as in Theorem 4.1. There are
L,K,JeN, T >1, and r € (0,1] depending on (7, S), such that if

;0 17912 ~ ,
0< 1B, 0)ls <7, 0 € 80, N =182 and e = 64500,

108, 0) 1

then

(42)  X3'(I) = X'(1) > J implies PP*(X7 (I) > J and X7(I_1) > J) > 1 —yk .

Proof. Assume 0 < ||(8,0)]|1 and % € S,. Now define N as above and set Sn(A) = NS(A)

and 0y (A) = N6(A). First assume ||(3,9)]|1 < 7(n) < 1/16. Then an elementary argument shows
that

(4.3) 18, 8)ll7* > N > %Il(ﬁ, Ol

This implies

(4.4) dy =Y [Bn(A)o(A) — (B (A) + On(A)) o(AU{0})] > N|(B,6)[1n > g
A

and

(4.5) dy < |[Bnllr + 1By + dnlln < 2[[(Bw, dn) 1 = 2N][(8,0) |1 < 2.

To achieve (4.2) we want to choose our constants so that (with X; denoting the appropriate
limiting super-Brownian motion from Theorem B):

(1) Xr(I1) and X7(I-1) are large with high probability (Lemma 4.3 below).
(2) XN (1) = X7(I;) and XX (I_;) =~ X7(I_;) with high probability (proof of (4.13) below).
(3) X¥(I) ~ XN(I) and XN (I_;) = XN (I_;) with high probability ((4.14) below).

We start choosing our constants, beginning with a new constant ¢ = ¢(o) taken large enough
to satisfy

62K2 1 2
4. — ) < —_T4REHD K>1.
(4.6) eXp( 37a2d2> < 100° VK 2

(Recall that p(z) has covariance matrix 021.) The reason for this somewhat peculiar choice will
become clear later. As ¢ is a constant throughout this work we will drop all dependence on it in
our notation.

Next, choose T = T'(n) > 1 sufficiently large so that if B; denotes Brownian motion in R?
with diffusion parameter o2, then

(4.7) ent/? |i?<f {P.(B €c,3¢%)} > 5.
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By increasing T slightly we may also assume L = L(n) = ¢v/T is in N. We have chosen T large
so that a supercritical super-Brownian motion with drift dy € [n/2, 2] will have a large amount of
mass in both I; and I_; at time 7' with high probability provided it begins with a large amount
of mass in I. More precisely the following Lemma follows exactly as for Lemma 12.1(b) in [DP]
using a simple Chebychev argument. Note that by monotonicity in X it suffices to consider initial
states X with support contained in 1.

Lemma 4.3. There is a constant Cy.g3 = C4.5(n,T) such that if X. is a super-Brownian motion with
branching rate 2v,, diffusion rate o2, drift dy € [3,2], and initial state X, satisfying Xo(I) > 1,
then

(4.8) P(Xr(I) V X7(I-1) <4Xo(I)) < Cas/Xo(I)-

This will allow us to use Theorem B to infer that similar results will hold for our rescaled Lotka-
Volterra models.

We complete our selection of constants as follows. Choose K > K, = max{4,1 + 2%} large
enough so that

2 -2 2 2 2 72 2 2
(49) 6d68n1Te—c K*/36d°c < e ° K*/37d°c )

Lo =

Note that K really depends only on (7,S) since this is the case for T = T'(n) and n; = ny(S5).
Lastly, choose J € N large enough so that

(4.10) 704'8(}7’ 7). %e‘CZKZ/Wz”z.

Since all of T, C4 g, K, depend only on 7 and S, the same is true of J = J(n, S).

If BY is as in Section 3, then BY = B., d-dimensional Brownian motion with covariance matrix
o21. Therefore the functional central limit theorem shows that there are constants ey = ex (K, ¢, T)
with limpy_, ., €5 = 0 such that

K—-1)L K—-1)L
PO(SUP|BfV| > u) < PO(SUP | Bs| > u) +en
t<T 3 s<T 3
K —1)L
(411) < 4dP, (Br_%w > %) +en

< 4dexp(—((K —1)L)%/18d*0*T) + en
< 4dexp(—K?2c?/36d*0?) + en.

In the next to last line we used our lower bound on K and the bound P(B; > y) < e=v 120" for
y > 0, and in the last line we used K > 4 (which implies ((K —1)/K)2? > 1/2).

Assume that the initial condition XY satisfies X' (1) = X¥(Iy). As we have ||(Bx,dn)|l1 <1
by (4.3), we may use (4.11) and Lemma 3.2 with x = 1 to conclude that

BXF (1) - XX (1) < 3X (e T [ |5N(A)\)+P0(Sgg\3§|zﬂ)

(4.12) AC(Iy)e
—K202

+4dexp<m) + CN] .
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We give now the analogue of Lemma 4.3 for our rescaled Lotka-Volterra processes, in fact for
the processes X~ with additional killing on the boundary. The proof relies on Theorem B.

Lemma 4.4. Let n € (0,1) and assume S and S, are as in Theorem 4.1. There exists
r=r(n,S) >0, such that if 0 < ||(8,0)|1 <, ||((B 5))”1 € Sy, supp(X{') C I and X{¥(I) > J, then

(4.13) PEAXN (L) AXN(I_1) <4J) < (2/3)6—02K2/37d2a2
and for A} = (X (I) - X3 (1) v (XF (I_) - X¥ (1)),

(4.14) PPOAN > 20) < (4/3)e~¢ K7 /37d%0%

Proof. If (4.13) fails we may assume without loss of generality there is a sequence (8™, ™) in

£*(Pp)? such that 0 < [|(8™,6™)|ly — 0 and (™,0™) = M € 8" and a sequence of initial

conditions X}'™ such that supp(X,™) C I, Xév"‘ (I) > J, and
(4.15) PP (XN (1)) < 40) > 3 AL A

Here of course 12

Np = [[I(B™,6™)]; /7 )? = o0,
The monotonicity of P#"»%" (XNm ¢ .) in the initial condition, given by Proposition 2.3 and
elementary scaling, allows us to assume X; ™(I) — J as m — oco. By considering a subsequence

(recall that S is relatively compact), we may assume without loss of generality that (8™,6™) —
(8,6) in the closed unit ball of £*(Pr)?, and X' — X, € Mp with Xo(R%) = Xo(I) = J. The
former implies that

(4.16) (B 0% ) = Ny [|(B™, 6™)|[1(B™, ™) — (B,6) in £'(Pr)>.

It is now easy to use our hypothesis that (P) holds uniformly in S to conclude that the hypotheses
of Theorem B are in force. For example, our condition (P4) (uniformly over S) and (4.3) (we may
assume ||(8™,6™)||1 < 1/16) imply there is a K4 > 0 such that for all m,

Zém X(4,0,€) = N [|(B™,6™)|1 Zém X(4,0,€)

Z _TfO(Oag)a

which is precisely the hypothesis that (P4) holds uniformly on {(8% ,d0% ):m € N}, required in
Theorem B. The other conditions of Theorem B are easier to verify.
In addition, the bounds (4.4) and (4.5) are valid for

A = D065 (A)o(4) — (BR,(4) + 5% (A)o(AU{0})],
A

and so

0= [6(4)0(4) - (B(4) +5(4)a(4 L {0D)] € 2,2,

A
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by the £'-convergence of (8% ,0% ) to (B,0) (see (4.16)). Theorem B shows that X m = X.
where X. is super-Brownian motion with branching coefficient 2+,, drift coefficient 8 and diffusion
coefficient o2. Therefore, since X7(8I1) = 0 a.s., we may use this weak convergence, Lemma 4.3
and (4.10) to obtain

m m ].
lim sup P? ﬁ(X#%h)g&DSI&AXTUQ§4J)§9E§<§€#K”Wfﬁ.

m—r0o0 J

This contradicts (4.15) and so proves (4.13).
If (4.14) fails we may suppose there exist sequences (8™, ™), X)'™ as before but with (4.15)
replaced by

(4.17) P (X (1) = X () > 20) > (2/3)e= /3
A simple Chebyshev argument implies that the left side in (4.17) is bounded above by

(20) T E(Xp (1) - X3 (1))

XNm(1)3e5mT N . K-1)L
(4.18) < XTQBT TS g ()] + By (sup B > B2 DD
2J ATy ) m s<T 3
—K262
+ eNm + 4dexp(36dT‘2)] .

We have used (4.12) in the last line. Note that BNm is the random walk defined prior to Lemma 3.1
with % in place of fn. The fact that Sy — 0 in 2!, implies

(4.19) im S 18R (4)] =0,

m—r0o0 m
c
Ac(y, )

and also implies that VN,, BNm converges weakly to B, where B, € Z¢ is a random walk starting
at 0, taking steps at rate ||37]|1 according to

+ .
p(z) = { Speoa TEHIAL it 841 > 0
(z =0) if | 8[|, = 0.

This shows that

, . K -1)L
(4.20) nla(meﬁﬂ>£——J—):0

li
m—r0o0 SST 3

Nom
Use (4.19), (4.20) and the convergence lim,, Xo - @ —1in (4.18), and conclude that

7722

limsup P(XY™ (1) = X3 (1) > 27) < e Todexp( ) < Lexp(Z255)
m—)oop oV s V= - P\364a202) = 3P\ 37202 )
the last by (4.9). The above contradicts (4.17) and so the proof of (4.14) is complete. O

We can now end this section with the
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Proof of Proposition 4.2. By decreasing r(n) in Lemma 4.4, if necessary, we may assume
r(n) < 1/16 (to ensure (4.3)). Assume 0 < ||(5,0)][1 < 7(n), % € S,, and X} is supported
on I and has total mass at least J. By Lemma 4.4,

PEA(XN(1) < 2J) < PPO(XN (1) < 4J) + PAA(XN (1) — XJ(1) > 2J)
< 2e—c2K2/37d2¢72 )

Consequently, using the same bound for I_; and (4.6), we get

PPO(XN(I) > 2J and XY (I_1) > 2J) > 1 — dexp(—K2c?/37d%0?)
>1— i(;—4(21<+1)2
100
>1—k.

O

5. Oriented Percolation Construction. In this section the setting is as in Section 4. Hence
&; denotes a generalized voter perturbation with parameters (3, ). We will often write P for Pfo 9
We will use Theorem 4.3 of [D] to define a super-critical oriented percolation process which lies
beneath &;, but, as it will be convenient to have some detailed knowledge of the percolation process,
we will give an explicit description of its construction.

We begin by assuming that the parameters (8, 46), T, L, K, J, N are fixed; we do not yet impose
the assumptions of the last section. We recall the notation I = [~L,L]¢, I, = 2zLe; + I for
2 €%, I' =2zLe; + (~KL, KL)% IN = \/NI,, and I’N = +/NI.. Let £L = {(2,n) € Z x Zy :
z + nis even}, and let {B(z,n), (2,n) € L} be a collection of iid Bernoulli random variables,
independent of the Poisson processes N%¢, such that P(B(z,n) = 1) = 1 — vk, where yx is as in
Proposition 4.2.

Let us fix & € {0,1}Zd such that |£| < oo, and define £&. = £.[0,&y,R%]. Let B C {z € 27Z :
&(IN) > NJ}. We are ready now for the construction.

Step 1. Let WE = B, and for z € W2, define

&5 = ¢,[0,6&],5, 11, 20,

the unique solution to (SDE)(0,I.") (see the beginning of Section 3). By definition, §gz’0)(I§V) >
NJ for all z € W, and it follows from Proposition 2.1(b) that £*% < & forall £ > 0 and z € W.

Step 2. Suppose n > 0. Assume {w(z,k) : (2,k) € L,k <n}, WB C{2€Z: (z n) € L} and
{f #M) ¢ > nTNY} for all z € W2 have all been defined, and for all such z satisfy f % ")(IN) > NJ

and
éiz’”) <& forallt>nNJ.

For z ¢ W.B put w(z,n) = B(z,n). For z € W2, define

w(z,n) = {1 if éL( +1) NT( 1) A 5( +1) o IN,)>NJ
0 otherw1se

Now define
Wn+1 {zEZ:EIyEWf,|y—z|zl,w(y,n)zl}.
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For ze WE |, lety=2—-1if z— 1 € W2, and otherwise y = z + 1 € W2, and define

(5.1) gt = ¢ [(n + 1)TN, ggyfg ol Y] 2 (n+ DTN,

Then, by construction, £ Z:$2T(I N) > NJ, and by (3.1) and our induction hypothesis, we get

§§Z ) < ¢, for all ¢ > (n+ 1)NJ. This verifies the induction hypotheses for n + 1 and allows us
to iterate this construction. The above induction has established

(5.2) for all n > 0 and z € W,2, &unr(IY) > £520(IN) > NJ.

In fact one readily sees from the above construction that

(5.3) z € WB iff there exist z,...,z, such that =g € B,z, = z, and for 0 < i < n,
|xi+1 $1| =1 and f(m:;)NT(IN—l) A g(m:;)NT(Ié\:-i-l) > NJ.

Assume now that (8,d) and N are as in Proposition 4.2 for some n > 0 and T, L, K, J are se-
lected as in Lemma 4.4 and so satisfy (4.6), (4.7), (4.9) and (4.10). To relate the above construction
to that in Theorem 4.3 of [D], introduce

H = {& € {0,1}"" : &0 < 00, Y éo(z) 2 N},

zeIlN
and for &, € H define the event
& = {Exrl0:Golpy, o NIY) > N and £ 10,60y, 79 1(12) > NJ}.
Let &y € H and as usual, & = &[0, &y, R] is the unique solution of (SDE)(R). By Proposition 2.1,
(5.4) G, is G([0, NT] x (K LV N, K LV/N))-measurable.

On Gy, Ent € Ty 5 (H) N T_yp s (H) (vecall that 7,(£)(y) = &o(x + y)) because

Enr(IY) Aénr(IX)) > €,,00,& 1y, NI /\§NT[O-§0|1§J€)’N](II_V1) > NJ.

Finally Proposition 4.2 and our hypotheses on (3, 6) imply that P(Gg¢,) > 1 — yx. We have just
verified the Comparison Assumptions required to apply Theorem 4.3 of [D] and so the proof of that
result gives the following:

Lemma 5.1. For every k > 0 and (%,n;) € £, 4 = 0,...,k such that |z, — z;| > 2K whenever

(5.5) P(w(z;,n;) =0 forall1 <i < k) < k.
Some explanation is perhaps in order here. We have replaced the integers T', L, k¢ in [D] with
NT, VNL and K, respectively. In [D] it is assumed that ¢. is a finite range process which in our

setting amounts to p(-), B(-) and §(-) having finite support. This hypothesis is only used in [D] to
construct €. as a solution of (SDE) and establish (5.4). We have been able to derive this thanks
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to Proposition 2.1, which in turn relies on |§y| < oco. Once &. is constructed in this way the finite
range assumption plays no further role in the proof of Theorem 4.3 in [D]. We may consider initial
conditions such that |{y| = oo (see Remark 2.5) but when applying the above comparison with
oriented percolation will always cull our initial condition to a finite one.

The above lemma shows that, in the terminology of [D], we have constructed a 2K-dependent
oriented percolation process with density at least 1 — yx. According to Theorem 4.1 of [D], this
implies that

(5.6) P(WPE #£ 0 for all n > 0|W ) > .95 on {WF # 0}.
It follows from (5.2) and (5.6) that
(5.7) P, (|| > 0 all £ > 0) > .95 if £(VNIy) > NJ.

If o(z) = 1 only at z = 0, and again denoting the corresponding process £, a simple application
of the Markov property at time N7 shows that we may construct {W,, : n > 0} as above such that

(5.8) Wo = {{0} on {€%,(vVNTy) > N.J}
0 otherwise,
(5.9) z € Wy, implies &0 1y yr(VNT,) > NJ,

and so by (5.6),
(5.10) P(|€0) > 0 for all ¢ > 0) > .95 P(¢%(VNIy) > NJ).

We will use this in the proof of (4.1) below to get our quantitative lower bound but for now note
the trivial consequence of the above:

(5.11) P(|€)| >0 forallt>0)>0.
Thus, we have proved survival for (53, ¢) which satisfy the assumptions of Theorem 4.1.

Remark 5.2. We have spelled out this argument in some detail because there seem to be some
differences in the way we have applied the oriented percolation comparison argument than in other
applications of this method with which we are familiar (e.g. that in [DP]). The scaling parameter
N is intertwined with the underlying parameters (,6) and so changing it leads to a change in
the underlying probability. We cannot just fix a parameter value of interest and prove survival,
because, for a given 7, we must consider infinitely many parameter values simultaneously. In the
end the limit theorem (Theorem 4.1) nicely looks after this issue.

Perhaps more significant is the fact that we have needed the asymptotic upper bound from [D]
for the critical probability for 2K-dependent oriented percolation as K — oo. This arises because
we have only been willing (or able) to carry out a first moment argument in our Comparison
Lemma (Lemma 3.2) to bound the effect of our killing mechanism (as opposed to a second moment
argument as in Lemma 12.1(a) of [DP]). The complex nature of the Lotka-Volterra (and voter model
perturbations) makes higher moment calculations less desirable (although unfortunately some will
have to be carried out in a future work where we will show our survival results are sharp, at least
for the basic Lotka-Volterra examples). On the other hand, using first moments means we cannot
simply increase J to beat out whatever critical probability arises after the choice of K. Instead we
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have a horse race between the Gaussian tail in K arising in the bound given in Lemma 3.2 and the
upper bound on p.it, 1 — Yk, from Theorem 4.1 of [D]. The choice of c in (4.6) is made to ensure
that the right term wins thanks to our large choice of box I.

Here is a standard consequence of our supercritical oriented percolation construction.

Proposition 5.3. Assume (3, 0) satisfies the hypotheses of Theorem 4.1 for some 1 > 0. There is
a po = po(B,68) > 0 such that P(£2(0) = 1) > po for all t > 0.

Proof. Let {W,} be the 2K-dependent oriented percolation process in (5.9). Lemma 4.4 of [BN],
(5.8) and (5.6) imply there are £ > 0 and ny € N such that for n > n,

P(W,N[—4,4] #0) > 9P r(VNIy) > NJ) = p1(B,6) > 0.

Note that ¢ will also depend only on (3,6) as all our parameters K, N,T do. By (5.9), if L' =
(2¢+/N + 1)L, this implies
(5.12) PEAEL Lo ((—L, '] x [-VNL,VNL]*"") > 0) > p; for n > ny.

Let
pa(t) = inf{Pe, (£:(0) = 1) : &([-L', L% > 1},

and set po = inf{py(t) : t € [NT,(N + 1)T|}. We claim py = po(¢, N, L,T) = p2(f,9) is strictly
positive. By monotonicity we may assume in the first infimum, that &y has support in [-L', L']4
and hence ranges over a finite set. This shows that ps(t) > 0 for each ¢ > 0. Let

p3(t) = ps(B,9)(t) = inf{Pg)’J(és has no death event at z = 0 for times s in [0,]) : £, (0) = 1}.

By (2.6), p3(t) > e t(+I0l) > 0. Note that if ¢3,,(0) = 1 and there is no death event at 0 for
times in [NT, (N + 1)T], then &(0) =1 for all t € [NT, (N + 1)T']. The Markov property therefore
shows that

(5.13) p2 2 p2(NT)ps(NT) > 0.

Assume t > (no+2)NT = to and choose n > ng such that ¢t € [(n+2)NT, (n+3)NT]. Another
application of the Markov property together with (5.12) and (5.13) show that

PPA(£2(0) = 1) > pips > 0.

This gives the required bound for ¢ > #y. It then follows for all ¢ > 0 upon noting that p3(tg) > 0.
|

We finish this section with an estimate needed in Section 6.

Lemma 5.4. Assume (8, ) satisfies the assumptions of Theorem 4.1 for some n > 0. Let & be
the corresponding voter model perturbation process, where £(x),z € Z? are iid Bernoulli random
variables with P({{(z) = 1) = ¢ > 0. For each € > 0 and k € N there exist finite to and M such
that if t > ty, then

(5.14) PW( ERHOE k) >1—¢.

z€[—M,M]4
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To prepare for the proof of this result, let B! = {z € 2Z : ¢(/(IN) > NJ}. By decreasing
r(n), and hence increasing N, in Theorem 4.1, we may assume without loss of generality that
N?/2(2L)? > 2N.J (recall d > 3). This implies that the iid events {z € BY},z € 2Z satisfy
P(z € BY) = p'(B,d,q) > 0. For positive integers £ define B* = B2 N [~2¢,2/]. According to
Theorem A.3 and its proof on pages 194-195 of [D], and after a few misprints are corrected, for
n > ni(K),

BaL+n nvn —8¢ —4n, —2vn
PWy, — N[=2620#0) > (1 - (1—-p)V")(1 —277 =277y, V")
>(1-(1-p)VMa -2 -2 >1-(1-p)V" 27t -2,
Here we will carry out our oriented percolation construction with &, = &§ |[_2 M,,2M;)¢ for appropri-
ately large values of My—large enough so that it will give the same initial condition for W,,, B, as

it would without the truncation at 2Mj (see below). By translation invariance and monotonicity
in B, if n > ny, we get

(WBIIIH—TH—I z| [Z—2£,Z+2€] #m) Z 1_(1_pl)\/'r_1,_2—2_2—n,

and so if z1,...,2x € ZN[—M', M'], then again for n > ny,
(5.15) PWE™ ™™ iy =202 +20 £0forj=1,... k) > 1 — k(1 —p/)V® +27¢ +277).

Here our initial condition is as above with My = VNL[2(¢ + n 4+ M’) + 1], where M’ is chosen
below.

Proof. Let k£ € N, ¢ > 0 and g € (0,1] be fixed. Choose ng,%y € N so that ng > n; and the
right-hand side of (5.15) is at least 1 — ¢ for n > ng and £ > £y. Choose z1,..., 2, € Z so that

(5.16) |zi — 2| > K+3+20y fori+#j, and for all j <k, |z;| <k[K +3+2{] =M.

Then (5.15) implies that

q,4+n+M’

PWE Nzj —20y,z; +20] # 0 for j =1,...,k) >1—¢ for n > ny,

which by our definition of W2 trivially implies

(5.17)  PWE

n

Nlz; —20g— 1,z + 26+ 1] # D for j =1,...,k) > 1—¢ for n > 2n,.

Fix n > 2ng and then w in the event on the left-hand side of (5.17). Write B for Bo{+n+M'
Choose y; € WB N[z —20p — 1,2j + 26y + 1] for j = 1,...,k. By (5.3) (with i = n — 1 in that
result), for each j =1,... k,

gWs b= D(IN) > NJ or €3I (1) > NUJ.

2nNT

Recalling (5.1) (with » — 1 in place of n + 1), this implies

(5.18) guambn=(I'N ) > 1 for all ¢ € [(n — 1)NT, n.NT]
or {wHLm=I(IN ) > 1 for all € [(n — 1)NT,nNT).
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This is because if for some ¢t > (n — 1)NT, éiyjil’"_l)(I’N 1) = 0 then éﬁwilm—l) =0 for all s > t.
A bit of arithmetic using (5.16) shows that {I;]J,V_l U IZ’/N+1 j =1,...,k} are disjoint sets. If & is
our generalized voter perturbation with & = £|r, where

T =[-2(fy +n+ M')LVN — LVN,2(¢y +n+ M')LVN + LV N%,

then & > £ (w5£Ln=1) for all ¢ > (n — 1)NT by our inductive construction. Therefore (5.18) and
the dlS_]Oll’ltIleSS noted above imply

&(US_ LY uLY ) > kforallt € [(n — 1)NT,nNT].

If M = (2M' + 44y + K)L+/N, this shows
&([-M, M%) >k forall t € [(n — 1)NT,nNT).
By the monotonicity of ¢ this proves that for all £ >ty = (ng — 1)NT,

PE([-M, M]") > k) > 1 ¢,
as required. O

6. Coexistence. In order to prove coexistence we apply our survival criteria to the voter model
perturbation processes with the role of 0’s and 1’s reversed. For ¢ € {0, 1}Zd define the flipped

configuration & € {0, l}zd by £(z) = 1—£(z) for all z € Z4. Consider (8, 0) € £'(Pr)? satisfying (P),
and let ¢(z, &) = ¢?(z, £) be the associated rate function given in (2.6). Let & be the voter model
perturbation process determined by ¢(z,&). The flipped process {t has rate function &(z, §) = c(z, )
and monotonicity for é(z, ) follows easily from monotonicity for ¢(z,£). Furthermore, &; is in fact

a voter model perturbation with rate function &(z, £) = ¢#(z, £), where

(6.1) BlA) = (- Y 6B), 64 = (-1 Y BB
BDA BDA
To see this, first note that it follows easily from (P1) that ||(3,6)|l. < 2"||(8,6)||, so (B,6) €

01 (Pr)2. Next, it is easy to check that for A € Pp,

(6.2) X A,2,8) = [[A-ta+y) = 3 (-)Bly(B,z,¢).

yeA BCA

If £(x) = 0, and hence £(x) = 1, then

&(x,8) = c(x,€) = folx,&) + Y (A %3
AGPF
A€EPr BCA
+ Y B(B)x(B,,8),
BePFr

where we have used (6.2) in the second equality. A similar argument applies if £(z) = 1, and this
shows that & = ¢#9. Clearly (B, 4) also satisfies (P1) with the same n;.
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We have established that if (8,0) € ¢'(Pg)? satisfies (P), then (8,4) is also in £!(Pp)? and
satisfies (P1), (P2) and (P3). Here recall from Proposition 2.3 that under (P1) and (P2), (P3) is
equivalent to monotonicity. It is easy to check that if (53,4) also satisfies

(P4)’ There is a constant K4 such that Z B(A)x(A4,0,&) > —K4f1(0,€)
AGPF

V¢ € {0,1}%" such that £(0) =

and

(P5) 3 5(4) =

AEPF

then (B, 4) satisfies (P4) (with the same K, as in (P4)’) and (P5).
~ Recall {¢{(z) : # € Z%} are iid Bernoulli random variables with P(£(z) = 1) = ¢ and
§e(x) = 1= & ().

Theorem 6.1. Assume C C {(3,6) € £2(Pr)? : ||(8,6)|l1 < 1} is relatively compact and (P), (P4)'
and (P5)" hold uniformly on C. For 1 > 0, let C,, be the set of (3,9) € C such that

> [B)e(4) - (BA) + s(A)e(AU{0D)] > n,

A€Pp

and

> [Ba)o(4) - (BA) +d(a)o(au{on] >
Then thereis anr = r(n,S) € (0,1) such that coexistence holds for all (3, ) such that ”((5 5))” e Cy,
and 0 < ||(B,0)]|1 < r. Moreover in this case there is a translation invariant probability u such that

Sé() =Y Ew) = oo p—as.

Proof. For any initial £, Theorem 1.1.8 of [L1] shows that we may find a sequence t, — oo

such that i (f” &dt = € as n — 00, and the law, u, of £ is a stationary distribution for £..
Furthermore, if the law of £; is translation invariant, then so is 4. We apply this in the case that
& is & for some 0 < ¢ < 1. Lemma 5.4 easily implies that

p(>_ &) =

The symmetry of our hypotheses allow us to reverse the roles of 0’s and 1’s in the above
argument by considering £2. Then {0( ), z € Z% are iid with P(€y(z) = 1) = 1 — ¢, and (take

a further subsequence if necessary) ;- fo £2dt = fi, where ji(¢€ € A) = p(€ € p). By symmetry

the same hypotheses are now satisfied by 5‘1 (with 1 — ¢ in place of ¢) and so as before we obtain

(Y, (@) = 00) = 1, or u(Y, 1(E(e) = 0) = o0) = 1. :
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Corollary 6.2. Assume 0 < g < 1, ”((ﬂ 5))” € C, where 0 < ||(B,9)|l1 < r(n,S) and r(n,S) is as

in Theorem 6.1. Let & denote the voter model perturbation under P?° with £ equal to the iid
Bernoulli (q) random field. For any € > 0 there are £.,t. > 0 such that

PPO(E] ([Le, L)) >

™ | =

, G ([, 0] > é) >1—¢ forallt>t,.

Proof. This is immediate from Lemma 5.4 and symmetry (as in the previous argument). O

7. Proof of (4.1). We use the notation from Section 4. For y € Mg of the form

(1/N) Y ((=VN)6,

TESN

for some ¢ € {0,1}%°, we will write PPO(X)N €)= P,(X})Y €-) to refer to the law of the rescaled

empirical process X;' = + > eeSn ént(zV/N)6, with & = ¢. Hence & will be a generalized voter
perturbation.
In view of (5.10), the fact that 7', J, and Iy = I depend only on 7, and our definition of N

(recall (4.3)), we only need show there is an 7(n, §) > 0 so that for (3,4) = ”((5’5‘5))”1 € S and
108, 0)ll < r(n,5),

(7.1) PPy (XA (I) 2 J) > C/N,

where C > 0 is allowed to depend on (7, S) and hence on T, J, and I. By taking r(n,S) < 1/16,
as in the proof of (4.3), we may, and shall, assume (8, d) satisfies (4.4) and (4.5). Recall that
I=1y=[-L,L)? for some L € N.

We proceed to prove (7.1) by contradiction, and so assume there is a sequence (S, dx) such
that each (B, o) € Sy, |(Br,dk)||1 — O (hence also Nj, — oo), and

(7.2) Ny, PO (X2 () > J) = 0 as k — oo.
N, 90

Here, as in Proposition 4.2, Ny = [||(ﬂk,5k)||_1/2j Furthermore, by the relative compactness of

S we may assume without loss of generality that for some (8,0) € £*(Pp)?, (Bk,0r) — (8,9) in
1 (Pr)? as k — oo, and so Ni(Bk,dr) — (B,6) in the same space. We claim, by taking a further
subsequence if necessary, that for all 0 < e < J,

(7.3) Ny, Pﬁ“‘k (X ik (T) > €) = 0 as k — .

We first show how (7.3) leads to a contradiction, and then return to the derivation of (7.3) from
(7.2).
As in the proof of Lemma 4.4, one easily checks that (ﬁka,éka) = Ny (Bk,0r) satisfies the

hypotheses of Theorem C, using the fact that (Br,0) € Sy.  Theorem C and the fact that
Xr1/2(0I) = 0 a.s. imply that if {XN:¢ § < N} are as in Theorem C, then

ZXQJY/'E = Xr/2(1),
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where X is the super Brownian motion starting at do in Theorem C. Given (7.3), it follows that

Nkv
P(ng?,v}iXT/z (I) >e) > 0as k — 0.

These last two facts imply
(7.4) ZX;’FV;; )Ae= Xrjo(I) ask — oo.

Using the independence of the X N% one sees that

V(3L (1) 1e) = 3 Ve 09
< ZENLk(SO Xéﬂvfgﬂ(j) /\5)2)

Ny,
Nyyi
(7.5) <e) By, (X755 (1).
An elementary argument using Proposition 2.3 of [CP] with ¢ = 1 and Gronwall’s lemma gives

ENLkao (X:]F\]/kéz(l)) < GCOTNik
where ¢y is a universal constant thanks to the uniform bound (4.5). Therefore (7.5) implies
Var(ZN’“ Xéy/’"z (I) Ne) < e*Te. By (7.4), Fatou’s lemma and Skorokhod’s a.s. representation
theorem, we get Var(Xz/2(I)) < e®”e and as ¢ is arbitrary we have proved X7/5(T) is a constant
a.s. This contradicts the fact that it has a positive variance (eg. by Exercise I1.5.2 of [P]) since it’s
initial measure (dp) is non-zero. Therefore, (7.2) cannot hold. O

We now prove (7.3). By Cantor diagonalization we may fix € € (0,J). Also we may assume
the probability on the left-hand side of (7.3) is positive for all but finitely many &, or the conclusion

is trivial. In the following argument, we consider realizations &) = ¢ € {0, 1}Zd such that ¢ (1) >
Nie. For such a ( we can choose, using some lexicographical order, F(¢) = ¢ < ( such that
Nye < C(Ip'%) < Ny J and ¢((Ig*)¢) = 0. More formally we define an appropriate

{0,112 CUY) 2 Nie) = ¢ € {0,115 N = C(IY%) > Nye, C(a) = 0 Vo ¢ 1))
such that Fy(¢) < ¢ for all ¢ in the domain of Fy. The monotonicity given by Proposition 2.3 and

scaling implies
Pgﬁ’” ‘(Enyry2(I9*) > NipJ) > Pﬁ"’g) (Enyr/2(I9*) > NiJ) .

This inequality and the Markov property imply that

PR (X R () 2 & X7 () > J)
> [ PO s € AONCUS) > Nuo) PES ol 1) > NeJ).
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If we now adopt the notation X}V* = (1/Nk) > pesn Fi.(ényt)(xVN)J,, and define (recall the
conditioning event below has positive probability or we are done)

() PlEO(XT/z | T/2( )Z )

then the previous inequality can be written as

(7.6) PO (XNH (1) > T | X5(1) 2 €) > /M v (dp) PP (X8, (1) > ).
Ny, F

By construction, v is concentrated on
T ={n€Mp:e<p(l) <Jand p(I°) = 0}

Since M, is compact we may suppose, by taking a subsequence, that v, = v € Mp.
Let ¢ : R? — [0, 1] be continuous and satisfy 1; > ¢ > 1;, where I = [~L+.5, L —.5]%, and let
¥ : R — [0,1] be a continuous non-decreasing function satisfying 1[7,.) > % > 1[741,00)- Observe

that the right-side of (7.6) is bounded below by [, v (du)E(4(X7},(4))). By Theorem B, which

applies as in the previous part of the proof,

/M V(A By (X4 (6) = [ v(dn) By (9 (Xa2(9)))

MF

as k — oo. We may therefore conclude that

(7.7) po = inf{E, ($(X1/2(4))) : p € Mp,J 2 u(I) > &, u(I°) = 0}
< hm_)mfPﬂ’“’é"(XN’”( ) > J|X1]y/k2( ) > e).

The inf defining p, is attained at some non-zero pg, as it is the minimum of a continuous function
on a compact set of non-zero measures. If py = 0, then X7/3(I) < J + 1 P, —a.s., which is
impossible as Xr/5(I) is a non-constant, non-negative infinitely divisible random variable (see eg.
the beginning of Section I1.7 of [P]). Therefore, py > 0, and so (7.7) and (7.2) imply the claim (7.3).
This completes the proof of (7.1) and hence (4.1). O

8. Application to the Lotka-Volterra Models.

In this Section we apply our general perturbation results to derive the theorems in Section 1
on the stochastic Lotka-Volterra models. We in fact will work with the more general multikernel
Lotka-Volterra models with rates given by (1.16) for some g, a; > 0 and probability kernels p°, p?
on Z? such that p®(0) = p?(0) = 0. One may easily check (see Corollary 1.10 of [CP]) that these
rates correspond to voter model perturbations (i.e. are as in (2.6)) with

p(a)p’(a), A ={a}
B(A) = oo (A) = (a0 — 1) { (p(a)p’(a’) + p(a’)p"(a)), Ah: {a,d'}, a #d
0, otherwise
and
1, A=0
_ _ 1 J (p(a)p?(a) — pla) — p¥(a)), A={a}
oA =0l =01 = DY () +p(@ (@), A={ad), atd

0, otherwise.



Clearly (Bay;0a,) € £*(Pr)? and it is easy to see that

(8:1) (8,0l = lao — 1| +2]as = 12— ) pla)pa(a)) € [Jao — 1 +2|ar — 1], |ag — 1| +4|es — 1]].

Conditions (P5) and (P1) (with n, = 2) are immediate and (P2) is clear from the original definition
of the rates in Section 1. Condition (P4), with K4 = 1 is checked as in Section 1 of [CP] where it is
verified in the case p® = p? = p and left as an exercise in general. Here it amounts to noting that
(a1 = 1) fof§ > —fo-

Finally consider the monotonicity condition (P3). A bit of algebra, which is best left for the
reader, shows that the stronger condition (P3)’ is equivalent to

(8.2) apg>1-— (1 + 1;)((;)) —pb(a))_1 and a3 > 1 — (1 + ];j((aa)) —pd(a))_1 Va € Z°.

Here it is understood that % = 0 and otherwise the usual rules apply for division by 0 and co. This
condition is obvious if ag,a; > 1. To allow a; < 1 we assume there is a finite constant Cg 3 such
that

(8.3) p°(a) V p*(a) < Cs.sp(a) for all a € Z4.

Under this condition, (8.2) becomes

(8.4) o > oy and aq > ay,

where

a=1- [1 + Sup{ p(;) —p%(a) : p(a) > 0}]_1,

and

a
g:l—[l—i—sup{ —p%(a) : p(a >0}]
1 p(a) ( ) ( )
will satisfy (by (8.3))
(8.5) agVa; <1—(1+Cg3) <.
We have now proved
Proposition 8.1. Assume (8.3). Then (P) holds uniformly on
8" = {(Bag»9ay) : @0 > gy 1 > a4}
As has already been noted (Corollary 2.4 and Proposition 2.1) there is a unique {0, 1}Zd-valued
monotone Feller process &, whose generator is determined by these rates as in Proposition 2.1(c).
We say &; is LV (ag, a1, p®, p?). It will be convenient to slightly strengthen the monotonicity.
Proposition 8.2. Assume (8.3). Let 0 < o < ap, 0 < a3 < o, and assume either o; > o, @ =
Oa 17 or O‘; > Q;, 1= Oa L. If&t is LV(QOaal,pbapd) and 61? is LV(%aO‘ﬁapbapd) with 50 > 567 then

&; stochastically dominates &;.
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Proof. Let ¢;(z,&) and c}(z, &) be the spin-flip rates of & and &;, respectively. By Theorem III1.1.5
of [L1], it suffices to show that for &’ < ¢,

ci(z,¢) < eafa,€) if £(z) =0,

and
co(2,&) > co(x, ) if §'(z) = 1.

Assume without loss of generality that o) > o, for i = 0,1. Then &; is monotone by the previous
discussion. Therefore by Theorem II1.2.2 of [L1], ¢} (z,¢') < ci(z,§) if £(z) = 0 and ¢j(z, &) >
cy(z, &) if () = 1. Hence it suffices to show

ci(z,§) < er(w,§) if () = 0,

and
hl,€) > colw,€) i £(w) = 1.

The formulae for ¢; and ¢ (i.e., (1.16)) show that ¢; and ¢y are non-decreasing functions of «y and
a1, respectively, and these last two inequalities are then immediate. O

Using the notation from Section 1, if e, e’ € Z¢ — {0}, define

pi(e,e') = P(1(e,e’') < 0o,7(0,e) = 7(0,€’) = 00),

and
pa(e,e’) = P(1(0,e) = 7(0,€') = 00).
Introduce
A= > ple)p’()pilee)
e,e’ €Z4
&= ple)p(e)pale,€),
e,e’€Z4

and m{ = g—,’.
Notation. If 0 < 7 < mg, let

im0 —1) ifag>1
folao) =1+ { (mg +,7)(a2 —1) if aﬁ <1,

and

A

Sﬁ = {(aoval) € [0700)2 : (aOaal) 7é (1,1),041 -1< fﬂ(ao)}'

Theorem 8.3. Let & be LV (ag, a1, p,p?) under P* and assume (8.3) holds. If0 < n < my there
is an r(n) > 0 and Cs.(n) > 0 such that if |ag — 1| < r(n) and (ag, 1) € Sy, then

(8-6) P(|&f] > 0 for all t > 0) > Cae(n)llag = 1| + (laa — 1| Ar(m)))],
and in particular survival holds for such (o, a1).
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Proof. We apply Theorem 4.1 with
S = {(/Baoa(stn) e T Qg > Q, ‘OfO - 1| +4|a1 - 1| < 1}'

S is the image in £}(Pr)? of {(ap, 1) : ap > @y, @1 > ag,]ag — 1| +4lag — 1| < 1} under a
continuous map, and hence is a compact subset of the unit ball in £!(Pr)?2, the last inclusion by
(8.1). Implicit in the proof of Corollary 1.10 of [CP] is the fact that

87 0(@)= Y [Bas(A)0(4) = (Bag(A) + bay (A)o(AU{0})] = (a0 — 1) = (a1 — 1)§".

A€Pr

Let ||| denotes ||(Bag;da,)||1. Proposition 8.1 allows us to apply Theorem 4.1 and so conclude
from (8.7) that for ' > 0 there exists r'(n’) € (0,1) and Cs g(n') > 0 such that

0
(8.8) 0 < flafl <r(r) and 29 > o imply P(1€9] > 0 V¢ > 0) > Cys(n')llall

[l

Fix 0 < n < myg. For (ag,a1) € S‘n, ag # 1, define m = (a1 — 1)/(ap — 1). Then m < mj—1n
or m > my + 1, according as ag > 1 or ag < 1, respectively, and by the upper bound on ||| in
(8.1) and a bit of arithmetic,

(8.9) % > §'sgn(ag — 1)

my —m
1+4|m|"

As a function of m, (mgy —m)/(1 4 4|m|) is increasing on (—o0,0) and decreasing on (0, c0). Since
n < my, this implies the right side above cannot be smaller than 7nd’/(1 + 4my). Also, if ag = 1
and (ag, 1) € Sy, then a; < 1 and 8(a)/||al| > &'/4 > §'n/(1 + 4m}). Therefore, for 0 < 1 < ml,
if we set 0’ = &'n/(1 4+ 4my), ro(n) = r'(n')/8 and Cs.10(n) = Cs.s(n’), we have (using (8.1)),

(ag,1) € 8y and |ag — 1|+ |a; — 1| < 2ry(n) implies
(8.10) P(|&7| > 0Vt > 0) > Cs10(n)[Jao — 1| + |z — 1]].

By decreasing ro(n) we also may assume
(8.11) L—ro(n) > ayV ay.

Finally choose 7(n) > 0 small enough so that r(n) < r¢(n), and
(8.12) )
[1=7(n), 147 (n)]x[0,1=70(n)] C SyN([1—7(n), 1+7(n)]x[0,00)) C [1=7(n), 1+7(n)]x[0, 1+70(n)).

Assume (ag,a1) € S, and |ag — 1| < r(n). If |a; — 1| < ro(n), then the hypotheses of (8.10)
hold and that result gives the desired conclusion. Assume next that |ag — 1| > ro(n). The second
inclusion in (8.12) implies a1 < 1 —ro(n) = o} and we may apply Proposition 8.2 with af = ap
because by our choice of r(n) and (8.11), af = ap > @, and &} > ;. The first inclusion in (8.12)
shows that (o, ) € S, and so Proposition 8.2 and (8.10) imply that

P(|e0] > 0¥t > 0) > P (|€2] > 0 ¥t > 0) > Ca.10(n)]|eh — 1] + | — 1]
= Cs.10(n)[|ap — 1| + ro(n)]
> Cg.10(n)[lag — 1] +7(n) A|az — 1]].
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This completes the proof in either case. O

As an immediate application of the inclusion established in the above argument, the above
comparison argument and Proposition 5.3 we also obtain.

Corollary 8.4. Let & be LV (o, a1, p®,p?) under P® and assume (8.3) holds. Let r(n) > 0 be as
in Theorem 8.3 and assume that for some 0 < n < mg, (ag,a1) € Sy, and |ag — 1| < r(n). Then
there is a py = po(ap, a1) > 0 such that P*(£(0) = 1) > py for all t > 0.

Let
=T Y A ) and = Y S e € ler ).
e€Zd e’ €Zd e€Zd e'€Zd
and my = g—::. Note here we have reversed the roles of p® and p? from the definitions of 5’ and

d’. The facts that pa(e,e’) > pi(e,e’) with strict inequality for e # €’ and that supp(p) contains at
least two points (by symmetry and p(0) = 0) implies

(8.13) momg < 1.
Define
C = {(ﬁaoa(scu) oy € [Qial]a 1= 0715 |Ot(] - 1| —|—4:|051 - 1‘ < 1}’

and

Cp = {(a0, 1) € [0,1]% : (mg + )" (a0 — 1) < a1 = 1 < (mfy — ) (e — 1)}
By (8.13) for n > 0 small enough, C’n contains infinitely many points in every neighbourhood of
(1,1).

Theorem 8.5. Let & be LV (ag, a1, p°, p?) under P* and assume (8.3) holds. For each 0 < n < my,
there is an 7(n) > 0 so that coexistence holds for all (ag, 1) € Cy, so that 1 — ag < r(n).

Proof. We apply Theorem 6.1 to the above set C' which as in the proof of Theorem 8.3 is a compact
subset of the unit ball in £*(Pr)2. We have

&0('7"’5) = cl(xaé) = f0($a£) + (a() - 1)f0($’£)f(1))($a§)’

and
61(517,6) = CO(‘TaE) = fl(xaf) + (051 - 1)f1($1£)f1d(‘7",£)

It is now easy to check (P4)’ holds with K, = 1, just as for (P4), and it is also trivial to check
(P5)". Hence, as before, C satisfies the hypotheses of Theorem 6.1. We may again easily check that
if 8 and ¢ are defined as in Section 6 using the current rates, then

Z[ﬂ (B(4) +6(A))o (AU {0})] = (a1 = 1)B" — (ag — 1)6".

The result now follows from Theorem 6.1 by means of an easy computation similar to that in
the proof of Theorem 8.3. In fact there is some simplification now as there is no need to use the
comparison result (Proposition 8.2) since making 1 — ag small for (ag, 1) € C,, forces |1 — a;| =
1 — a3 to be small (and hence also ||(Bag,0da,)|l1 small.). Note also we have not had to exclude
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(1,1) from Cn since coexistence for the voter model in more than two dimensions is well-known
(e.g. Corollary V.1.13 of [L1]). O

An application of Corollary 6.2 in the above setting gives us the following result.

Corollary 8.6. Let & be LV (o, a1, p°, p?) under P® with initial condition £ for some 0 < g < 1
and assume (8.3) holds. Let r(n) > 0 be as in Theorem 8.5 and assume that for some 0 < 7 < my,
(g, 1) € Cp and |ap — 1| < (7). For any € > 0 there are positive £, t. such that

I TBIRO)INES (1—53(35)))2% >1—¢forallt>t,.

z€B(L:) zEB(L.)

Proofs of Theorem 1, Corollary 2, Corollary 3, Theorem 4 and Corollary 5. We simply
apply the above results in the setting where p® = p? = p. In this case (8.3) is trivial with Cg3 = 1
and so (8.5) implies a; > 1/2, and we may replace o,; with 1/2 in Propositions 8.1 and 8.2. We also
have m{ = my = mg € (p«,1) (see Section 1). Theorem 1, Corollary 2, Corollary 3, Theorem 4
and Corollary 5 are therefore special cases of Theorem 8.3, Corollary 8.4, (8.6), Theorem 8.5, and
Corollary 8.6, respectively. O
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