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Abstract

The multiplicative weights method is an algorithm for the problem of prediction with expert advice.
It achieves the minimax regret asymptotically if the number of experts is large, and the time horizon
is known in advance. Optimal algorithms are also known if there are exactly two or three experts, and
the time horizon is known in advance.

In the anytime setting, where the time horizon is not known in advance, algorithms can be obtained
by the “doubling trick”, but they are not optimal, let alone practical. No minimax optimal algorithm
was previously known in the anytime setting, regardless of the number of experts.

We design the �rst minimax optimal algorithm for minimizing regret in the anytime setting. We
consider the case of two experts, and prove that the optimal regret is γ

√
t/2 at all time steps t, where γ

is a natural constant that arose 35 years ago in studying fundamental properties of Brownian motion.
The algorithm is designed by considering a continuous analogue, which is solved using ideas from
stochastic calculus.
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1 Introduction

We study the classical problem of prediction with expert advice, whose origin can be traced back as early
as the 1950s [28]. The problem can be formulated as a sequential game between an adversary and an
algorithm as follows. At each time t, an adversary chooses a cost for each of n possible experts. Without
knowledge of the adversary’s move, the algorithm must choose (perhaps randomly) one of the n experts
to follow. The cost of each expert is then revealed to the algorithm, and the algorithm incurs the cost that
its chosen expert incurred. The goal is to design an algorithm whose regret is small, i.e. the algorithm’s
expected total cost is small relative to the total cost of the best expert. In the theoretical computer science
community, algorithms for this problem and its variants have been a key component in many results; we
refer the reader to [3] and the references therein for a survey on some of these results.

The most well-known algorithm for the experts problem is the celebrated multiplicative weights up-
date algorithm (MWU) which was introduced, independently, by Littlestone and Warmuth [31] and by
Vovk [40]. The algorithm itself is very elegant and commonly taught in courses on algorithms, machine
learning, and algorithmic game theory. An analysis of MWU shows that, in the �xed-time setting (where a
time horizon T is known in advance), it achieves a regret of

√
(T/2) lnn at time T , where n is the number

of experts [11, 10]. This bound on the regret of MWU is known to be tight whenever n ≥ 2 is an even inte-
ger [25]. It is also known [11] that

√
(T/2) lnn is asymptotically optimal for any algorithm as n, T →∞.

Hence, MWU is a minimax optimal1 algorithm as n, T →∞. Interestingly, MWU is not optimal for small
values of n. For n = 2, Cover [14] observed that a natural dynamic programming formulation of the
problem leads to a simple analysis showing that the minimax optimal regret is

√
T/2π.

The assumption that the time horizon T is known in advance may be problematic in some scenarios;
examples include any sort of online tasks (e.g., online learning), or tasks requiring convergence over time
(e.g., convergence to equilibria). These scenarios may be better suited for the anytime setting, which has
the stronger requirement that the regret be controlled at all points in time. Another interesting setting
is the geometric horizon setting, introduced by Gravin, Peres, and Sivan [24], in which the time horizon is
a geometric random variable of known distribution. In this setting, they gave the optimal algorithm for
three experts. (The optimal algorithm for two experts is inherited from Cover’s result).

The anytime setting is the focus of this work. There is a well-known “doubling trick” [11, §4.6] that can
be used to convert algorithms for the �xed-time setting to algorithms for the anytime setting. Typically,
the doubling trick involves restarting the �xed-time horizon algorithm every power-of-two steps with new
parameters. If the �xed-time algorithm has regretO(T c) for some c ∈ (0, 1) then the doubling trick yields
an algorithm with regretO(tc) for every t ≥ 1. On the one hand, this is a conceptually simple and generic
reduction from the anytime setting to the �xed-time setting. On the other hand, this approach is inelegant,
wasteful, and turns useful algorithms into algorithms of dubious practicality.

Instead of using the doubling trick, one can instead use variants of MWU with a dynamic step size;
see, e.g., [12, §2.3], [34, Theorem 1], [6, §2.5]. This is a much more elegant and practical approach than the
doubling trick (and is even simpler to implement). However, the analysis is somewhat di�erent and more
di�cult than the standard MWU analysis, and is rarely taught. It is known that, with an appropriate choice
of step sizes, MWU can guarantee2 a regret of

√
t lnn for all t ≥ 1 and all n ≥ 2 (see [6, Theorem 2.4]).

However, it is unknown whether
√
t lnn is the minimax optimal anytime regret, for any value of n.

A motivating conjecture. Our research agenda is motivated by the following question.

Are there settings in which the minimax anytime regret equals the minimax �xed-time regret?

In any such setting, the �xed-time algorithm would be making the unnecessary assumption that the time
horizon is known in advance. One might as well use the anytime algorithm since it has fewer assumptions

1This means that the algorithm minimizes the maximum, over all adversaries, of the regret.
2It can be shown, by modifying arguments of [25], that this is the optimal anytime analysis for MWU with step sizes c/

√
t.

1



and achieves a stronger guarantee. At present the question has been answered negatively for the setting
of two experts [32]: the anytime regret is strictly worse than the �xed-time regret, as discussed below.

Nevertheless, we conjecture that the question has a positive answer in the limit n→∞, which is the
only setting in which MWU is known to be optimal. This would imply that there is an anytime algorithm
with weaker hypotheses and stronger guarantees than MWU. More speci�cally, we conjecture that the
optimal anytime regret for n experts is intimately related to the roots of a special function (a con�uent
hypergeometric function, to be discussed later). That leads to the following conjectured regret bound.

Conjecture 1.1. The optimal regret for n experts in the anytime setting is
√

t
2 lnn for all t, as n → ∞.

This matches the guarantee of MWU for the �xed-time setting.

Results and techniques. As a �rst step in our research agenda, this work considers the anytime setting
with n = 2 experts. We show that the optimal regret is γ2

√
t, where γ ≈ 1.30693 is a fundamental constant

that arises in the study of Brownian motion [35]. A very concise algorithm achieving the minimax regret
is presented in Algorithm 1 on page 4.

Our techniques to derive and analyze this algorithm are a signi�cant departure from previous work
on regret minimization. Firstly, our algorithm is designed by considering a continuous-time analogue of
the discrete-time algorithmic process. This idea of viewing discrete algorithms in continuous time has
recently been fruitful in unrelated lines of work, e.g., [7, 9, 13, 1, 20, 41, 30, 8, 17]. Secondly, we use tools of
stochastic calculus to design and analyze algorithms for our continuous-time problem. Our work appears
to be the �rst to solve a regret minimization problem using tools from continuous-time stochastic calculus.

Lastly, we use con�uent hypergeometric functions to design and analyze the optimal continuous-time
algorithm. These functions may seem exotic, but they turn out to be inherent to our problem since they
also arise in the matching lower bound. The constant γ in the minimax regret may be de�ned as α(1/2),
where α is a function giving the root of a con�uent hypergeometric function with certain parameters (see
Claim A.5 and [35]). While attempting to generalize our techniques to n experts (a task that is still under-
way) we observed that limn→∞ α(1/n)/

√
lnn =

√
1/2, which lends support towards Conjecture 1.1.

Applications. The prediction problem with two experts is closely related to the problem of predicting
binary sequences; in fact, this was the problem originally considered by Cover [14]. A notable3 paper
by Feder et al. [21] pursued this problem further, de�ning the notion of universal s-state predictors, and
showing connections to Lempel-Ziv compression. They derive [21, Theorem 1 and Eq. (14)] a universal
online predictor whose expected performance converges to the performance of the best 1-state predictor
at rate 1/

√
t+O(1/t) where t is the sequence length. We describe a di�erent online predictor achieving

the better convergence rate γ/2
√
t, and show that no other online predictor can improve the constant γ/2.

We also give a second application of our techniques to a problem purely in probability theory, and
not involving regret at all. Let (Xt)t≥0 be a standard random walk. Then E [ |Xτ | ] ≤ γ E [

√
τ ] for

every stopping time τ ; moreover, the constant γ cannot be improved. This result is originally due to
Davis [16, Eq. (3.8)], who proved it �rst for Brownian motion then derived the result for random walks via
the Skorokhod embedding. We will prove it in Appendix B as a simple corollary of our main result.

2 Discussion of results and techniques

2.1 Formal problem statement

The problem may be stated formally as follows. For each integer t ≥ 1, there is a prediction task, which
is said to occur at time t. The task involves a deterministic algorithm A, which must pick a vector xt ∈
[0, 1]n, and an adversary B, which knows A and picks a vector `t ∈ [0, 1]n. The vector xt must satisfy

3Their paper won the 1993 IEEE Information Theory Society Paper Award.
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∑n
j=1 xt,j = 1 and may depend on `1, . . . , `t−1 (and implicitly x1, . . . , xt−1). The vector `t may depend

on A and on `1, . . . , `t−1 (and implicitly x1, . . . , xt, since A is deterministic and known).
The dimension n denotes the number of experts. The coordinate `t,j denotes the cost of the jth expert

at time t. The vector xt may be viewed as a probability distribution, so the inner product 〈xt, `t 〉 is the
expected cost of the algorithm at time t. Thus, the total expected cost of the algorithm up to time t is∑t

i=1〈xi, `i 〉. For j ∈ [n], the total cost of the jth expert up to time t is Lt,j =
∑t

i=1 `i,j . The regret at
time t of algorithm A against adversary B is the di�erence between the algorithm’s total expected cost
and the total cost of the best expert, i.e.,

Regret(n, t,A,B) =

t∑
i=1

〈xi, `i 〉 − min
j∈[n]

Lt,j .

Anytime setting. This work focuses on the anytime setting where the algorithm’s objective is to min-
imize, for all t, the regret normalized by

√
t. Speci�cally, the minimax optimal algorithm must solve

AnytimeNormRegret(n) := inf
A

sup
B

sup
t≥1

Regret(n, t,A,B)√
t

. (2.1)

As mentioned above, MWU with a time-varying step size achieves AnytimeNormRegret(n) ≤
√

lnn for
all n ≥ 2 [6, §2.5]. It is unknown whether this bound is tight, although as n → ∞ it can be loose by at
most a factor

√
2 due to the lower bound from the �xed time horizon setting [11]. The minimax optimal

anytime regret is unknown even in the case of n = 2 experts. The best known bounds at present are

0.564 ≈
√

1/π ≤ AnytimeNormRegret(2) ≤
√

ln 2 ≈ 0.833. (2.2)

The lower bound, due to [32], demonstrates a gap between the anytime setting and the �xed-time setting,
where the optimal normalized regret is

√
1/2π [14]. We will show that neither inequality in (2.2) is tight.

2.2 Statement of results

To state our main theorem and our algorithm, we must de�ne two special functions.

erfi(x) =
2√
π

∫ x

0
ez

2
dz

M0(x) = ex −
√
πx erfi(

√
x)

(2.3)

The �rst one is the well-known imaginary error function. The second one is a con�uent hypergeometric
function with certain parameters, as discussed in Appendix A. A key constant used throughout this paper
is γ, which is the smallest4 positive root of M0(x2/2), i.e.,

γ := min
{
x > 0 : M0(x2/2) = 0

}
≈ 1.3069... (2.4)

It is known that the constant γ relates to the slow points5 of Brownian motion [33, §10.3].

Theorem 2.1 (Main result). In the anytime setting with two experts, the minimax optimal normalized
regret (over deterministic algorithms A and adversaries B) is

AnytimeNormRegret(2) = inf
A

sup
B

sup
t≥1

Regret(2, t,A,B)√
t

=
γ

2
.

4In fact, γ is the unique positive root. See Fact A.4.
5γ is the smallest value such that Brownian motion almost surely has a two-sided γ-slow point [35]. We will not use this fact.
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The proof of this theorem has two parts: a lower bound, in Section 4, which exhibits an optimal ran-
domized adversary, and an upper bound, in Section 3, which exhibits an optimal algorithm. The algorithm
is very short, and it appears below in Algorithm 1. Remarkably, the quantity γ arises in both the lower
bound and upper bound for seemingly unrelated reasons. In the lower bound γ is the maximizer in (4.3),
and in the upper bound γ is the minimizer in (5.14).

Remark. Our lower bound can be strengthened to show that, for any algorithm A,

sup
B

lim sup
t≥1

Regret(2, t,A,B)√
t

≥ γ

2
.

In particular, even ifA is granted a “warm-up” period during which its regret is ignored, an adversary can
still force it to incur large regret afterwards. A sketch of this is in Appendix E.1.

The algorithm’s description and analysis heavily relies on a function R : R≥0 × R→ R de�ned by

R(t, g) =


0 (t = 0)
g
2 + κ

√
t ·M0 (g2/2t) (t > 0 and g ≤ γ

√
t)

γ
√
t

2 (t > 0 and g ≥ γ
√
t)

where κ =
1√

2π erfi(γ/
√

2)
(2.5)

and M0 is de�ned in (2.3). The function R may seem mysterious at �rst, but in fact arises naturally from
the solution to a stochastic calculus problem in Section 5. In our usage of this function, t will correspond
to the time and g will correspond to the gap between (i.e., absolute di�erence of) the total loss for the two
experts. One may verify thatR is continuous on R>0×R because the second and third cases agree on the
curve

{
(t, γ
√
t) : t > 0

}
since γ satis�es M0(γ2/2) = 0. We next de�ne the function p to be

p(t, g) = 1
2

(
R(t, g + 1)−R(t, g − 1)

)
, (2.6)

which is the discrete derivative of R at time t and gap g. It will be shown later that p(t, g) ∈ [0, 1/2]
whenever t ≥ 1 and g ≥ 0. The algorithm constructs its distribution xt so that p(t, g) is the probability
mass assigned to the worst expert. We remark that p(t, 0) = 1/2 (Lemma 3.3) for all t ≥ 1 so that when
both experts are equally good, the algorithm places equal mass on both experts.

An interesting observation is that Algorithm 1 assigns zero probability mass to the worst expert when
the gap is su�ciently large. Speci�cally, p(t, gt−1) = 0 whenever gt−1 ≥ γ

√
t + 1. Typical6 regret

minimization algorithms, such as MWU, do not have this property.

Algorithm 1 An algorithm achieving the minimax anytime regret for two experts. It is assumed that each
cost vector `t ∈ [0, 1]2.

1: Initialize L0 ← [0, 0].
2: for t = 1, 2, . . . do
3: If necessary, swap indices so that Lt−1,1 ≥ Lt−1,2.
4: The current gap is gt−1 ← Lt−1,1 − Lt−1,2.
5: Set xt ←

[
p(t, gt−1), 1−p(t, gt−1)

]
, where p is the function de�ned by (2.6).

6: . Observe cost vector `t and incur expected cost 〈xt, `t 〉.
7: Lt ← Lt−1 + `t
8: end for

6We are aware of two other algorithms that do have this property: Feder et al. [21, Eq. (9)] and Foster and Vohra [23].
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2.3 Techniques

Lower Bound. The common approach to prove lower bounds in the experts problem is to consider a
random adversary that changes the gap by ±1 at each step and to consider the regret at a �xed time T .
Although we do consider a random adversary, looking at a �xed time T will not be able to yield a good
lower bound. The �rst key idea is to replace the �xed time with a suitable stopping time. In particular, the
stopping time we use is the �rst time that the gap process (which is evolving as a re�ected random walk)
crosses a c

√
t boundary where c > 0 is a constant to be optimized.

To analyze this, we use an elementary identity known as Tanaka’s formula for random walks that
allows us to write the regret process as Regret(t) = Zt + gt/2 where Zt is a martingale with Z0 = 0 and
gt is the current gap at time t. At this point, it might seem we are ready to apply the optional stopping
theorem, which states that if we have a stopping time τ then E [Zτ ] = Z0 = 0. In particular, by choosing
τ as the �rst time that the gap gt exceeds the c

√
t boundary, one might expect that E [ Regret(τ) ] =

E [ gτ ] /2 ≥ E [ c
√
τ ] /2. Unfortunately, the argument cannot be so simple since the adversary is allowed

to choose c > 0 and, by taking c su�ciently large, it would violate known upper bounds on the regret.
The issue lies in the fact that the optional stopping theorem requires certain conditions on the mar-

tingale and stopping time. It turns out that the conditions used in most textbooks are too weak for us
to derive the optimal regret bound. Fortunately there is a strengthening of the optional stopping theo-
rem that leads to optimal results in our setting. Namely, if Zt is a martingale with bounded increments
(i.e. supt≥0 |Zt+1 − Zt| ≤ K for some K > 0) and τ is a stopping time satisfying E [

√
τ ] < ∞ then

E [Zτ ] = 0. (The crucial detail is the square root.) This result is stated formally in Theorem 4.2. The ques-
tion is now to choose as large a boundary as possible such that the associated stopping time of hitting the
boundary satis�es E [

√
τ ] < ∞. Using classical results of Breiman [4] and Greenwood and Perkins [26],

we will show that the optimal choice of c is γ.
Upper Bound. Our analysis of the upper bound uses a fairly standard, undergraduate-style potential
function argument with the function R de�ned in (2.5) as the potential. Speci�cally, we show that the
change in regret from time t − 1 and gap gt−1 to time t and gap gt is at most R(t, gt) − R(t − 1, gt−1).
This implies that maxg R(t, g) is an upper bound on the regret at time t. It is not di�cult to see that
R(t, g) ≤ γ

√
t/2 for all t ≥ 0, which establishes our main upper bound. One interesting twist is that our

potential function is bivariate: it depends both on the state g of the algorithm and on time t. To capture
how the potential’s evolution depends on time, we use a simple identity known as the discrete Itô formula.

The function R and the use of discrete Itô do not come “out of thin air”; both of these ideas come from
considering a continuous-time analogue of the problem. The reason for taking this continuous viewpoint
is that it brings a wealth of analytical tools that may not exist (or are more cumbersome) in the discrete
setting. In order to formulate the continuous-time problem, we will assume that the continuous adversary
evolves the gap between the best and worst expert as a re�ected Brownian motion. This assumption is
motivated by the discrete-time lower bound, since Brownian motion is the continuous-time analogue of a
random walk. Using this adversary, the continuous-time regret becomes a stochastic integral.

An important tool at our disposal is the (continuous) Itô formula (Theorem 5.3), which provides an
insightful decomposition of the continuous-time regret. This decomposition suggests that the algorithm
should satisfy an analytic condition known as the backwards heat equation. A key resulting idea is: if the
algorithm satis�es the backward heat equation, then there is a natural potential function that upper bounds
the regret of the algorithm. This a�ords us a systematic approach to obtain an explicit continuous-time
algorithm and a potential function that bounds the continuous algorithm’s regret. Remarkably, this same
potential function can be used to analyze the discrete-time algorithm with exactly the same regret bound.
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2.4 An application

Let us consider in more detail the problem of predicting a binary sequence, as discussed by Feder et al. [21].
At each time step t ≥ 1, the algorithm must randomly predict whether the next bit is a 0 or a 1, and the
adversary chooses the bit’s true value bt. For any �nite sequence b ∈ {0, 1}∗, let πs(b) be the smallest frac-
tion of errors achieved by any s-state predictor (that may be chosen with knowledge of b). Let π̂(b) denote
the expected fraction of errors achieved by some online algorithm (or “universal sequential predictor”),
whose behavior is independent of |b|.

The main objective of Feder et al. is to study algorithms for which π̂(b) approximates πs(b). In particu-
lar, their Theorem 1 describes an algorithm for which π̂(b)−π1(b) ≤ 1/

√
t+1/t for all b ∈ {0, 1}∗, where

t = |b|. They then build on this result to approximate any s-state predictor. They appear to have made
e�orts to optimize the constant multiplying 1/

√
t; see remark 2 on page 1260 and the �nal paragraph of

their Appendix A. We determine the optimal convergence rate for the problem considered by Feder et al.

Theorem 2.2. There is an algorithm achieving π̂(b)− π1(b) ≤ γ/2
√
t for all b ∈ {0, 1}∗, where t = |b|.

Moreover, no algorithm can achieve such a guarantee with a constant smaller than γ/2.

Proof sketch. The universal sequential prediction problem reduces easily to the problem of bounding any-
time regret for prediction with two experts. Intuitively, one expert always predicts that the next bit is 0,
whereas the other expert always predicts that it is 1. The adversary chooses a cost vector [0, 1] or [1, 0] to
indicate which expert’s prediction was correct. The quantity t · π1(b) equals the cost of the best expert,
and t · π̂(b) equals the cost of the algorithm, so t · (π̂(b)− π1(b)) equals the regret. If Algorithm 1 is used
for the random prediction, then Theorem 2.1 implies the �rst statement of the theorem.

Conversely, for any sequential predictor, we may use our adversaries from the proof of Theorem 2.1
to generate the binary sequence (since they only use cost vectors [0, 1] or [1, 0]). For any ε > 0, there is
an adversary that ensures that the regret is at least (γ− ε)

√
t/2 at some time t. It follows that there exists

b ∈ {0, 1}∗ for which π̂(b)− π1(b) ≥ (γ − ε)/2
√
t. Taking ε→ 0, the second statement follows.

2.5 An expression for the regret involving the gap

In our two-expert prediction problem, the most important scenario restricts each cost vector `t to be either
[0, 1] or [1, 0]. This restricted scenario is equivalent to the condition gt − gt−1 ∈ {±1} ∀t ≥ 1, where
gt := |Lt,1−Lt,2| is the gap at time t. To prove the optimal lower bound it su�ces to consider this restricted
scenario. The optimal upper bound will �rst be proven in the restricted scenario, then extended to general
cost vectors in Appendix D. With the sole exception of Appendix D, we will assume the restricted scenario.

We now present an expression, valid for any algorithm, that emphasizes how the regret depends on the
change in the gap. This expression will be useful in proving both the upper and lower bounds. Henceforth
we will often write Regret(t) := Regret(2, t,A,B) where A and B are usually implicit from the context.

Proposition 2.3. Assume the restricted setting in which gt − gt−1 ∈ {±1} for every t ≥ 1. When
gt−1 6= 0, let pt denote the probability mass assigned by the algorithm to the worst expert; this quantity
may depend arbitrarily on `1, . . . , `t−1. Then

Regret(T ) =
T∑
t=1

pt · (gt − gt−1) · 1[gt−1 6= 0] +
T∑
t=1

〈xt, `t 〉 · 1[gt−1 = 0]. (2.7)

Remark. If the cost vectors are randomly chosen so that the gap process (gt)t≥0 is the absolute value
of a standard random walk, then (2.7) is the Doob decomposition [29, Theorem 10.1] of the regret process(
Regret(t)

)
t≥0

, i.e., the �rst sum is a martingale and the second sum is an increasing predictable process.
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Proof. De�ne ∆R(t) = Regret(t) − Regret(t − 1). The total cost of the best expert at time t is L∗t :=
min {Lt,1, Lt,2}. The change in regret at time t is the cost incurred by the algorithm minus the change in
the total cost of the best expert, so ∆R(t) = 〈xt, `t 〉 − (L∗t − L∗t−1).
Case 1: gt−1 6= 0. In this case, the best expert at time t− 1 remains a best expert at time t. If the worst
expert incurs cost 1, then the algorithm incurs cost pt and the best expert incurs cost 0, so ∆R(t) = pt
and gt − gt−1 = 1. Otherwise, the best expert incurs cost 1 and the algorithm incurs cost 1 − pt, so
∆R(t) = −pt and gt − gt−1 = −1. In both cases, ∆R(t) = pt · (gt − gt−1).
Case 2: gt−1 = 0. Both experts are best, but one incurs no cost, soL∗t = L∗t−1 and ∆R(t) = 〈xt, `t 〉.

3 Upper bound

In this section, we prove the upper bound in Theorem 2.1 via a sequence of simple steps. We remind the
reader that for simplicity, we will assume that the gap changes by ±1 at each step, which corresponds to
the loss vectors `t ∈ {[0, 1], [1, 0]}. The analysis can be extended to general loss vectors in [0, 1]2 through
the use of concavity arguments. The details of this extension are not particularly enlightening, so we
relegate them to Appendix D.

The proof in this section uses the potential functionRwhich, as explained in Subsection 2.3, is de�ned
via continuous-time arguments in Section 5. Moreover, the structure of the proof is heavily inspired by
the proof in the continuous setting. Finally, we remark that the analysis of this section uses the potential
function in a modular way7, and could conceivably be used to analyze other algorithms.

Moving forward, we will need a few observations about the functions R and p, which were de�ned in
equations (2.5) and (2.6).

Lemma 3.1. For any t > 0, R(t, g) is concave and non-decreasing in g.

The proof of Lemma 3.1 is a calculus exercise and appears in Appendix C.1. As a consequence, we can
easily get the maximum value of R(t, g) for any t.

Lemma 3.2. For any t > 0, we have R(t, g) ≤ γ
√
t/2.

Proof. Lemma 3.1 shows thatR(t, g) is non-decreasing in g. By de�nition,R(t, g) is constant for g ≥ γ
√
t.

It follows that maxg R(t, g) ≤ R(t, γ
√
t) = γ

√
t/2.

In the de�nition of the prediction task, the algorithm must produce a probability vector xt. Recalling
the de�nition of xt in Algorithm 1, it is not a priori clear whether xt is indeed a probability vector. We
now verify that it is, since Lemma 3.3 implies that p(t, g) ∈ [0, 1/2] for all t, g.

Lemma 3.3. Fix t ≥ 1. Then
(1) p(t, 0) = 1/2;
(2) p(t, g) is non-increasing in g; and
(3) p(t, g) ≥ 0.

Proof. For the �rst assertion, we have

p(t, 0) =
1

2
(R(t, 1)−R(t,−1)) =

1

2

(
1

2
+ κ
√
tM0(1/2t) +

1

2
− κ
√
tM0(1/2t)

)
=

1

2
.

7Our analysis may also be viewed as an amortized analysis. With this viewpoint, the algorithm incurs amortized regret at
most γ

2
(
√
t−
√
t− 1) ≈ γ/4

√
t at each time step t.
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For the second equality, we used that 1 ≤ γ ≤ γ
√
t for all t ≥ 1. The second assertion follows from con-

cavity of R, which was shown in Lemma 3.1, and an elementary property of concave functions (Fact A.6).
The �nal assertion holds because R is non-decreasing in g, which was also shown in Lemma 3.1.

3.1 Analysis when gap increments are ±1

In this subsection we prove the upper bound of Theorem 2.1 for a restricted class of adversaries (that
nevertheless capture the core of the problem). The analysis is extended to all adversaries in Appendix D.

Theorem 3.4. Let A be the algorithm described in Algorithm 1. For any adversary B such that each cost
vector `t is either [0, 1] or [1, 0], we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

Our analysis will rely on an identity known as the discrete Itô formula, which is the discrete analogue
of Itô’s formula from stochastic analysis (see Theorem 5.3). To make this connection (in addition to future
connections) more apparent, we de�ne the discrete derivatives of a function f to be

fg(t, g) =
f(t, g + 1)− f(t, g − 1)

2
,

ft(t, g) = f(t, g)− f(t− 1, g),

fgg(t, g) =
(
f(t, g + 1) + f(t, g − 1)

)
− 2f(t, g).

It was remarked earlier that p(t, g) is the discrete derivative of R, and this is because

p(t, g) = Rg(t, g). (3.1)

Lemma 3.5 (Discrete Itô formula). Let g0, g1, . . . be a sequence of real numbers satisfying |gt−gt−1| = 1.
Then for any function f and any �xed time T ≥ 1, we have

f(T, gT )− f(0, g0) =

T∑
t=1

fg(t, gt−1) · (gt − gt−1) +

T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
. (3.2)

This lemma is a small generalization of [29, Example 10.9] to accommodate a bivariate function f that
depends on t. The proof is essentially identical, and appears in Appendix C.2 for completeness.

Now we show how the regret has a formula similar to (3.2). Recall that Lemma 3.3(1) guarantees
p(t, 0) = 1/2. Plugging this into (2.7) with xt = [1/2, 1/2] and `t ∈ {[0, 1], [1, 0]}, the last summation in
(2.7) becomes

∑
t 1[gt−1 = 0]/2. This equals

∑
t p(t, 0) · (gt− gt−1)1[gt−1 = 0], since gt = 1 on the event

gt−1 = 0. Collapsing the two sums in (2.7) into one, we derive that

Regret(T ) =
T∑
t=1

p(t, gt−1) · (gt − gt−1) =

T∑
t=1

Rg(t, gt−1) · (gt − gt−1), (3.3)

where g0 = 0 and gt ≥ 0 for all t ≥ 1. Note that the di�erence between (3.3) and (3.2) is the quantity
1
2fgg(t, gt−1)+ft(t, gt−1). In the continuous setting, we will see that a key idea is to try to obtain a solution
satisfying (1

2∂gg + ∂t)f = 0; this is the well-known backwards heat equation. In the discrete setting, we
will show that 1

2fgg(t, gt−1) + ft(t, gt−1) ≥ 0 which su�ces for our purposes.

Lemma 3.6 (Discrete backwards heat inequality). 1
2Rgg(t, g) +Rt(t, g) ≥ 0 for all t ∈ R≥1 and g ∈ R≥0.
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This lemma is the most technical part of the discrete analysis. Its proof appears in Appendix C.3. We
now have all the ingredients needed to prove our main theorem (in the present special case).

Proof (of Theorem 3.4). Apply Lemma 3.5 to the function R and the sequence g0, g1, . . . of (integer) gaps
produced by the adversary B. Then, for any time T ≥ 0,

R(T, gT )−R(0, g0)

=
T∑
t=1

Rg(t, gt−1) · (gt − gt−1) +
T∑
t=1

(1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(by Lemma 3.5)

≥
T∑
t=1

p(t, gt−1) · (gt − gt−1) (by (3.1) and Lemma 3.6)

= Regret(T ) (by (3.3)).

Since g0 = 0 and R(0, 0) = 0, applying Lemma 3.2 shows that Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2.

The reader at this point, may be wondering why γ is the right constant to appear in the analysis. In
Section 5, we will de�ne the function R speci�cally to obtain γ in the preceding analysis. In the next
section, our matching lower bound will prove that γ is indeed the right constant.

4 Lower bound

The main result of this section is the following theorem, which implies the lower bound in Theorem 2.1.

Theorem 4.1. For any algorithm A and any ε > 0, there exists an adversary Bε such that

sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (4.1)

As remarked earlier, the sup can be replaced by a lim sup, see Appendix E.1.
It is common in the literature for regret lower bounds to be proven by random adversaries; see, e.g.,

[12, Theorem 3.7]. We will also consider a random adversary, but the novelty is the use of a non-trivial
stopping time at which it can be shown that the regret is large.
A random adversary. Suppose an adversary produces a sequence of cost vectors `1, `2, . . . ∈ {0, 1}2
as follows. For all t ≥ 1,

• If gt−1 > 0 then `t is randomly chosen to be one of the vectors [1, 0] or [0, 1], uniformly and inde-
pendent of `1, . . . , `t−1. Thus gt − gt−1 is uniform in {±1}.

• If gt−1 = 0 then `t = [1, 0] if xt,1 ≥ 1/2, and `t = [0, 1] if xt,2 > 1/2. In both cases gt = 1.
As remarked above, the process (gt)t≥0 has the same distribution as the absolute value of a standard
random walk (which is also known as a re�ected random walk).

We now obtain from (2.7) a lower bound on the regret of any algorithm against this adversary. The
adversary’s behavior when gt−1 = 0 ensures that 〈xt, `t 〉 ≥ 1/2, showing that

Regret(T ) ≥
T∑
t=1

pt (gt − gt−1) · 1[gt−1 6= 0]︸ ︷︷ ︸
martingale

+
1

2

T∑
t=1

1[gt−1 = 0]︸ ︷︷ ︸
local time

∀T ∈ N.

(Equality holds if the algorithm sets xt = [1/2, 1/2] whenever gt−1 = 0.) The �rst sum is a martingale
indexed by t. (This holds because gt−gt−1 has conditional expectation 0 when gt−1 6= 0, and1[gt−1 6= 0] =
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0 when gt−1 = 0.) The second sum is called the local time of the random walk. Using Tanaka’s formula
[29, Ex. 10.8], the local time can be written as

∑T
t=1 1[gt−1 = 0] = gt − Z ′t where Z ′t is a martingale with

uniformly bounded increments and Z ′0 = 0. Thus, combining the two martingales, we have

Regret(t) ≥ Zt +
gt
2

∀t ∈ Z≥0, (4.2)

where Zt is a martingale with uniformly bounded increments and Z0 = 0.
Intuition for a stopping time. Optional stopping theorems assert that, under some hypotheses, the
expected value of a martingale at a stopping time equals the value at the start. Using such a theorem, at a
stopping time τ it would hold that E [ Regret(τ) ] ≥ E [ gτ ] /2 (under some hypotheses on τ and Z). Thus
it is natural to design a stopping time τ that maximizes E [ gτ ] and satis�es the hypotheses. We know from
(2.2) that the optimal anytime regret at time t is Θ(

√
t), so one reasonable stopping time would be

τ(c) := min
{
t > 0 : gt ≥ c

√
t
}

for some constant c yet to be determined. If τ(c) and Z satisfy the hypotheses of the optional stopping
theorem, then it will hold that E [ Regret(τ(c)) ] ≥ c

2 E[
√
τ(c) ]. From this, it follows, fairly easily, that

AnytimeNormRegret(2) ≥ c/2; this will be argued more carefully later.
An optional stopping theorem. The optional stopping theorems appearing in standard references
require one of the following hypotheses: (i) τ is almost surely bounded, or (ii) E [ τ ] is bounded and the
martingale has bounded increments, or (iii) the martingale is almost surely bounded and τ is almost surely
�nite. See, e.g., [5, Theorem 5.33], [19, Theorem 4.8.5], [29, Theorem 10.11], [27, Theorem 12.5.1], [37,
Theorem II.57.4], or [42, Theorem 10.10]. These will not su�ce for our purposes, and we will require
the following theorem, which has a weaker hypothesis (due to the square root). We are unable to �nd a
reference for this theorem, although it is presumably folklore, so we provide a proof in Appendix E.

Theorem 4.2. Let Zt be a martingale and K > 0 a constant such that |Zt−Zt−1| ≤ K almost surely for
all t. Let τ be a stopping time. If E [

√
τ ] <∞ then E [Zτ ] = E [Z0 ].

Optimizing the stopping time. Since the martingale Zt de�ned above has bounded increments, The-
orem 4.2 may be applied so long as E[

√
τ(c) ] < ∞, in which case the preceding discussion yields

AnytimeNormRegret(2) ≥ c/2. So it remains to determine

sup{ c ≥ 0 : E[
√
τ(c) ] <∞ }, (4.3)

where τ(c) is the �rst time at which a standard random walk crosses the two-sided boundary ±c
√
t. We

will use the following result, in whichM is the con�uent hypergeometric function de�ned in Appendix A.
Some discussion of our statement of this theorem appears in Appendix E.

Theorem 4.3 (Breiman [4], Theorem 2). Let c > 1 and a < 0 be such that c is the smallest positive root
of the function x 7→M(a, 1/2, x2/2). Then there exists a constant K such that Pr [ τ(c) > u ] ∼ Kua.

Recall the de�nition of γ in (2.4). For intuition, let us apply Theorem 4.3 with c = γ, which is de�ned
so that it is the root for a = −1/2 (see Eq. (A.2) and Fact A.2). It then follows that

E
[√

τ(γ)
]

=

∫ ∞
0

Pr
[√

τ(γ) > s
]

ds =

∫ ∞
0

Pr
[
τ(γ) > s2

]
ds ∼ K

∫ ∞
0

s−1 ds,

by Theorem 4.3. This integral is in�nite, so Theorem 4.2 cannot be applied to τ(γ). However, the integral
is on the cusp of being �nite. By slightly decreasing a below−1/2, and slightly modifying c to be the new
root, we should obtain a �nite integral, showing that E[

√
τ(c) ] is �nite. The following proof uses analytic

properties of M to show that this is possible.
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Proof (of Theorem 4.1). Fix any ε > 0 that is su�ciently small. Consider the random adversary and the
stopping times τ(c) described above. By Claim A.5, there exists aε ∈ (−1,−1/2) and cε ≥ γ− ε such that
cε is the unique positive root of z 7→ M(aε, 1/2, z

2/2). As in the above calculations, Theorem 4.3 shows
that

E
[√

τ(cε)
]

=

∫ ∞
0

Pr
[
τ(cε) > s2

]
ds ∼ K

∫ ∞
0

s2aε ds < ∞, (4.4)

since aε < −1/2. It follows that τ(cε) is almost surely �nite, and therefore Regret(τ(cε)) and gτ(cε) are
almost surely well de�ned. Applying Theorem 4.2 to the martingale Zt appearing in (4.2), we obtain that

E [ Regret(τ(cε)) ] ≥ 1

2
E
[
gτ(cε)

]
=

1

2
E
[
cε
√
τ(cε)

]
.

By the probabilistic method, there exists a �nite sequence of cost vectors `1, . . . , `t (depending on A and
ε) for which the regret of A at time t is at least cε

√
t/2. The adversary Bε (which knows A) provides this

sequence of cost vectors to algorithm A, thereby proving (4.1).

5 Derivation of a continuous-time analogue of Algorithm 1

The purpose of this section is to show how the potential function R de�ned in (2.5) arises naturally as
the solution of a stochastic calculus problem. The derivation of that function is accomplished by de�ning,
then solving, an analogue of the regret minimization problem in continuous time. The main advantage of
considering this continuous setting is the wealth of analytic methods available, such as stochastic calculus.

5.1 De�ning the continuous regret problem

Continuous time regret problem. The continuous regret problem is inspired by (3.3). Notice that,
when the adversary chooses costs in {[0, 1], [1, 0]}, the sequence of gaps g0, g1, g2, . . . live in the support
of a re�ected random walk. The goal in the discrete case is to �nd an algorithm p that bounds the regret
over all possible sample paths of a re�ected random walk. In continuous time it is natural to consider a
stochastic integral with respect to re�ected Brownian motion instead. Our goal now is to �nd a continuous-
time algorithm whose regret is small for almost all re�ected Brownian motion paths.

De�nition 5.1 (Continuous Regret). Let p : R>0 × R≥0 → [0, 1] be a continuous function that satis-
�es p(t, 0) = 1/2 for every t > 0. Let Bt be a standard one-dimensional Brownian motion. Then, the
continuous regret of p with respect to B is the stochastic integral

ContRegret(T, p,B) =

∫ T

0
p(t, |Bt|) d |Bt| . (5.1)

Remark. The condition p(t, 0) = 1/2 is due to (5.1) being inspired by (3.3), which requires this condition.
It is also possible to show that assuming p(t, 0) = 1/2 in lieu of p(t, 0) ≥ 1/2 is without loss of generality.

In this de�nition we may think of p as a continuous-time algorithm and B as a continuous-time ad-
versary. The goal for the remainder of this section is to prove the following result.

Theorem 5.2. There exists a continuous-time algorithm p∗ such that

ContRegret(T, p∗, B) ≤ γ
√
T

2
∀T ∈ R≥0, almost surely. (5.2)
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5.2 Connections to stochastic calculus and the backward heat equation

Since ContRegret(T ) evolves as a stochastic integral with respect to a semi-martingale8 (namely re�ected
Brownian motion), Itô’s lemma provides an insightful decomposition. The following statement of Itô’s
lemma is a specialization of [36, Theorem IV.3.3] for the special case of re�ected Brownian motion.9

Notation. Up to now, we have used the symbol g as the second parameter to the bivariate functions p and
R. Henceforth, it will be more consistent with the usual notation in the literature to use x to denote g. We
will also use the notationC1,2 to denote the class of bivariate functions that are continuously di�erentiable
in their �rst argument and twice continuously di�erentiable in their second argument.

Theorem 5.3 (Itô’s formula). Let f : R≥0 × R→ R be C1,2. Then, almost surely,

f(T, |BT |)− f(0, |B0|) =

∫ T

0
∂xf(t, |Bt|) d |Bt|+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)︸ ︷︷ ︸
=:
∗
∆f(t,|Bt|)

]
dt. (5.3)

The integrand of the second integral is an important quantity arising in PDEs and stochastic processes
(see, e.g., [18, pp. 263]). We will denote it by

∗
∆f(t, x) := ∂tf(t, x) + 1

2∂xxf(t, x). Some discussion about
the statement of Theorem 5.3 appears in Appendix F.7.
Applying Itô’s formula to the continuous regret. Comparing (5.1) and (5.3), it is natural to assume
that p = ∂xf for a function f that is C1,2 with f(0, 0) = 0, ∂xf ∈ [0, 1], and ∂xf(t, 0) = 1/2; the latter
two conditions are needed for De�nition 5.1 to be applicable. Itô’s formula then yields

ContRegret(T, p = ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d |Bt| = f(T, |BT |)−

∫ T

0

∗
∆f(t, |Bt|) dt. (5.4)

Path independence and the backward heat equation. At this point a useful idea arises: as a thought
experiment, suppose that

∗
∆f = 0. Then the second integral would vanish, and we would have the ap-

pealing expression ContRegret(T, p,B) = f(T, |BT |). Moreover, since f is a deterministic function, the
right-hand side depends only on |BT | rather than the entire Brownian path B|[0,T ]. Thus, the same must
be true of the left-hand side: at time T , the continuous regret of the algorithm p depends only on T and
|BT | (the gap). We say that say that such an algorithm has path independent regret. Our supposition that
led to these attractive consequences was only that

∗
∆f = 0, which turns out to be a well studied condition.

De�nition 5.4. Let f : R>0×R→ R be aC1,2 function. If
∗
∆f(t, x) = 0 for all (t, x) ∈ R>0×R then we

say that f satis�es the backward heat equation. A synonymous statement is that f is space-time harmonic.

We may summarize the preceding discussion with the following proposition.

Proposition 5.5. Let f : R>0 × R → R be a C1,2 function that satis�es
∗
∆f = 0 everywhere with

f(0, 0) = 0. Let p = ∂xf . Then, ∫ T

0
p(t, |Bt|) d |Bt| = f(T, |Bt|). (5.5)

Suppose that a function f satis�es the hypothesis of Proposition 5.5 and in addition p = ∂xf ∈ [0, 1]
with p(t, 0) = 1/2. Then, we would have

ContRegret(T, p,B) = f(T, |BT |). (5.6)
8A semi-martingale is a stochastic process that can written as the sum of a local martingale and a process of �nite variation.
9Speci�cally, we are using the statement of Itô’s formula that appears in Remark 1 after Theorem IV.3.3 in [36] withXt = |Bt|

and At = t. Note that y in their notation is t in ours and 〈 |B|, |B| 〉t = t.
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We are unable to derive a function that satis�es the properties required for (5.6) to hold along with
maxx≥0 f(T, |BT |) ≤ γ

√
T/2. Instead, we will begin by relaxing the constraint that p(t, x) ∈ [0, 1]

and allow p(t, x) to be negative. We will overload the notation ContRegret(·) to include such functions.
In the next section, we will derive a family of such functions that all achieve ContRegret(T, p, |BT |) =
f(T, |BT |) = O(

√
T ). This is done by setting up and solving the backwards heat equation. Next, we use

a smoothing argument to obtain a family of functions that all achieve ContRegret(T, p, |BT |) = O(
√
T ),

and that do satisfy p(t, x) ∈ [0, 1]. Finally, we will optimize ContRegret(T, ·, |BT |) over this family of
functions to prove Theorem 5.2.

5.2.1 Satisfying the backward heat equation

The main result of this section is the derivation of a family of functions p̃ : R>0 × R → R that satisfy
p̃(t, x) ≤ 1, p̃(t, 0) = 1/2 and

ContRegret(T, p̃, B) = f(T, |BT |) = O(
√
T ), (5.7)

but do not necessarily satisfy p̃(t, x) ≥ 0.
The �rst step is to �nd a function f which satis�es the partial di�erential equation

∗
∆f = 0. Since

the boundary condition p̃(t, 0) = 1/2 is a condition on p̃ = ∂xf , not on f itself, it will be convenient to
solve a PDE for p̃ instead, and then derive f by integrating. However, some care is needed since not all
antiderivates of p̃ (in x) will satisfy the backwards heat equation. Fortunately, we have a useful lemma
showing that if p̃ satis�es the backward heat equation, then we can construct an f that also does. This is
proven in Appendix F.1.

Lemma 5.6. Suppose that h : R>0 × R→ R is a C1,2 function. De�ne

f(t, x) :=

∫ x

0
h(t, y) dy − 1

2

∫ t

0
∂xh(s, 0) ds.

Then,
(1) f ∈ C1,2,
(2) If

∗
∆h = 0 over R>0 × R then

∗
∆f = 0 over R>0 × R,

(3) h = ∂xf .

De�ning boundary conditions for p. Obtaining a particular solution to the backward heat equation
requires su�cient boundary conditions in order to uniquely identify p̃. The boundary condition mentioned
above is that p̃(t, 0) = 1/2 for all t. This condition together with the backward heat equation clearly do
not su�ce to uniquely determine p̃. Therefore, we impose some reasonable boundary conditions on p̃.

What should the value be at the boundary? Intuitively, x 7→ p̃(t, x) should be a decreasing function
because p̃ represents the weight placed on the worst expert. Therefore, it is natural to consider an “up-
per boundary” which speci�es the point at which the di�erence in experts’ total costs is so great that
the algorithm places zero weight on the worst expert. The upper boundary can be speci�ed by a curve,
{ (t, φ(t)) : t > 0 } for some continuous function φ : R>0 → R>0. We will incorporate this idea by
requiring p̃(t, φ(t)) = 0 for all t > 0.

Where should the boundary be? One reasonable choice for the boundary is to use φα(t) = α
√
t for

some constant α > 0, as this is similar to the boundary used by the random adversary in the lower bound
of Section 4. These conditions are combined into the following partial di�erential equation:

(backward heat equation) ∂tu(t, x) + 1
2∂xxu(t, x) = 0 for all (t, x) ∈ R>0 × R (5.8)

(upper boundary) u(t, α
√
t) = 0 for all t > 0 (5.9)

(lower boundary) u(t, 0) = 1
2 for all t > 0. (5.10)
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Next we show that the following function solves this PDE. De�ne p̃α : R>0 × R→ R by

p̃α(t, x) :=
1

2

(
1− erfi (x/

√
2t)

erfi (α/
√

2)

)
. (5.11)

Lemma 5.7. p̃α satis�es the following properties:
(1) p̃α is C1,2 over R>0 × R,
(2) p̃α satis�es the constraints in (5.8), (5.9) and (5.10), and
(3) For all t > 0 and all x ≥ 0, p̃α(t, x) ≤ 1/2.

The proof of Lemma 5.7 appears in Appendix F.2. It shows that p̃α(t, x) nearly de�nes a valid continu-
ous time algorithm, in that it satis�es the conditions of De�nition 5.1 except for non-negativity. Next, we
will integrate p̃α as described in Lemma 5.6. De�ne the function R̃α : R>0 × R→ R as

R̃α(t, x) =
x

2
+ κα

√
t ·M0

(
x2

2t

)
where κα =

1√
2π erfi(α/

√
2)
.

Lemma 5.8. R̃α(t, x) =
∫ g

0 p̃α(t, y) dy − 1
2

∫ t
0 ∂gp̃α(s, 0) ds.

The proof of Lemma 5.8 appears in Appendix F.3. By Lemma 5.7, the function p̃α satis�es the hypothesis
of the function h in Lemma 5.6. Hence, we can apply Lemma 5.6 with h = p̃α and f = R̃α to assert the
following properties on R̃α.

Lemma 5.9. R̃α satis�es the following properties:
(1) R̃α is C1,2,
(2) R̃α satis�es

∗
∆Rα = 0 over R>0 × R,

(3) ∂xR̃α(t, x) = p̃α(t, x).

Since erfi(·) is a strictly increasing function with erfi(0) = 0, observe that p̃α has exactly one root at
α
√
t. Therefore, for every T, we have

ContRegret(T, p̃α, B) = R̃α(T, |BT |) ≤ max
x≥0

R̃α(T, x) ≤
(
α

2
+ καM0

(
α2

2

))√
T .

This establishes (5.7), as desired.

5.2.2 Resolving the non-negativity issue

The only remaining step is to modify p̃α so that it lies in the interval [0, 1/2]. We will modify p̃α in the
most natural way: by modifying all negative values to be zero. Speci�cally, we set

pα(t, x) := ∂xRα(t, x) =

0 t = 0
1
2

(
1− erfi(x/

√
2t)

erfi(α/
√
2)

)
+

t > 0
. (5.12)

Here, we use the notation (x)+ = max{0, x}. Note that pα(t, 0) = 1/2 for all t > 0 and pα ∈ [0, 1/2]. So
pα de�nes a valid continuous-time algorithm. From (5.12), we obtain a truncated version of R̃α as

Rα(t, x) :=


0 t = 0

R̃α(t, x) t > 0 ∧ x ≤ α
√
t

R̃α(t, α
√
t) t > 0 ∧ x ≥ α

√
t

. (5.13)
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IfRα were su�ciently smooth then we could immediately apply (5.6) (or Theorem 5.3) to obtain a formula
for the regret of pα. The only �aw is that ∂xxRα is not well-de�ned on the curve

{
(t, α
√
t) : t > 0

}
so

Rα is not in C1,2 and Theorem 5.3 cannot be applied directly. The reader who believes that this issue is
unlikely to be problematic may wish to take Lemma 5.10 on faith and skip ahead to Subsection 5.3.

Figure 1: The relationships between p̃α, R̃α, Rα,n, pα, and Rα

Lemma 5.10. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

Here, we will present a high-level overview of the proof of this lemma; the details can be found in
Appendix F.4. Let φ(x) be a smooth function satisfying φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For
n ∈ N, de�ne φn(x) = φ(nx) and the approximations

Rα,n(t, x) := R̃α(t, x)φn(x− α
√
t) + R̃α(t, α

√
t)(1− φn(x− α

√
t)).

It is relatively straightforward to check that Rα,n(t, x)
n→∞−−−→ Rα(t, x) pointwise and similarly for the

derivatives. The important property is that Rα,n is smooth so Itô’s formula may be applied. Lemma 5.10
is then proved by taking limits and controlling the error terms.

The remainder of this section proves Theorem 5.2 by setting p∗ = pα for the optimal α.

5.3 Optimizing the boundary to minimize the continuous regret problem

By Lemma 5.10, ContRegret(T, ∂xRα, B) ≤ Rα(T, |BT |) ≤ Rα(T, α
√
T ), where the last inequality is

because ∂gRα(t, g) = pα(t, g) is positive for g ∈ [0, α
√
t) and 0 for g ≥ α

√
t. De�ne

h(α) := Rα(1, α) =
α

2
+ καM0(α2/2)

and note that Rα(T, α
√
T ) =

√
T · h(α). Thus, the only remaining task is now to solve the following

optimization problem.

min
α>0

h(α) = min
α>0

{
α

2
+ κα ·M0

(
α2

2

)}
(5.14)

The following lemma veri�es that there exists some α for which ContRegret(T, ∂xRα, B) ≤ γ
√
T

2 ,
completing the proof of Theorem 5.2

Lemma 5.11. Fix T > 0. Then minαRα(T, α
√
T ) = Rγ(T, γ

√
T ) = γ

√
T

2 .

Lemma 5.11 follows easily from the following claim whose proof appears in Appendix F.6.
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Claim 5.12. h′(α) = − exp(α2/2)

π erfi(α/
√

2)
·M0(α2/2). In particular, h′(α) < 0 for α ∈ (0, γ), h′(γ) = 0, and

h′(α) > 0 for α ∈ (γ,∞).

Proof of Lemma 5.11. Claim 5.12 implies that γ is the global minimizer for h(α). Therefore, for every
α > 0, we have Rα(T, α

√
T ) =

√
T · h(α) ≥

√
T · h(γ) = Rγ(T, γ

√
T ). This proves the �rst equality.

The second equality is because M0(γ2/2) = 0 by de�nition of γ.
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A Standard facts

A.1 Basic facts about con�uent hypergeometric functions

For any a, b ∈ R with b 6∈ Z≤0, the con�uent hypergeometric function of the �rst kind is de�ned as

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
, (A.1)

where (x)n :=
∏n−1
i=0 (x+ i) is the Pochhammer symbol. See, e.g., Abramowitz and Stegun [2, Eq. (13.1.2)].

For notational convenience, for i ∈ {0, 1, 2, . . . , }, we write

Mi(x) = M(i− 1/2, i+ 1/2, x). (A.2)

Fact A.1. If b /∈ Z≤0 then d
dxM(a, b, x) = a

b ·M(a+ 1, b+ 1, x). Consequently,
(1) M ′0(x) = −M1(x); and
(2) M ′1(x) = 1

3 ·M2(x).

Proof. See [2, Eq. (13.4.9)].

Fact A.2. The following identities hold:
(1) M0(x) = −

√
πx erfi(

√
x) + ex.

(2) M1(x) =
√
π erfi(

√
x)

2
√
x

.

(3) M2(x) = 3(2ex
√
x−
√
π erfi(

√
x))

4x3/2
.

(4) 2
3 ·M2(x) · x+M1(x) = ex.

Proof.
(2): See [2], equations (7.1.21) or (13.6.19), and use that erfi(x) = −i erf(ix), where i =

√
−1.

(1): Di�erentiating the right-hand side (using the de�nition of erfi in (2.3)) yields −
√
π erfi(

√
x)

2
√
x

. So the
right-hand side is an anti-derivative of−M1(x), by part (2). Thus, the identity (1) follows from Fact A.1(1)
and the initial condition M0(0) = 1.

(3): This follows directly by di�erentiating (2) and Fact A.1(2).
(4): Immediate from (2) and (3).

Fact A.3. The function M0(x) is decreasing and concave on [0,∞).

Remark. In fact, M0(x) is decreasing and concave on R but we will not require this fact.

Proof. By Fact A.1, we have M ′0(x) = −M1(x) and M ′′0 (x) = −1
3 ·M2(x). Note that the coe�cients of

M1(x),M2(x) in their Taylor series are all non-negative. As x ≥ 0, we have that M ′0(x),M ′′0 (x) ≤ 0 as
desired.

Fact A.4. The function x 7→M0(x2/2) has a unique positive root at x = γ. Moreover M0(x2/2) > 0 for
x ∈ (0, γ) and M0(x2/2) < 0 for x ∈ (γ,∞).

Proof. The Maclaurin expansion of M0(x2/2) is given by

M0

(
x2

2

)
= 1−

∞∑
k=1

1

(2k − 1)k!

x2k

2k
.

Note that M0(0) = 1. It is clear, from the series expansion above (and Fact A.3), that M0(x2/2) is strictly
decreasing in x on (0,∞) and limx→∞M0(x2/2) = −∞. Hence, M0(x2/2) contains a positive root γ
and it is unique. Finally, it is clear that M0(x2/2) is positive on (0, γ) and negative on (γ,∞).
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Claim A.5. For any ε > 0, there exists aε ∈ (−1,−1/2) such that the smallest10 positive root cε of
z 7→M(aε, 1/2, z

2/2) satis�es cε ≥ γ − ε.

Proof. Following Perkins’ notation [35], let λ0(−c, c) be such that c is the smallest positive root of x 7→
M(−λ0(−c, c), 1/2, x2/2). By [35, Proposition 1], the map c 7→ λ0(−c, c) is strictly decreasing and con-
tinuous on R>0, so it has a continuous inverse α. From (2.4) and Fact A.2(1), we see that λ0(−γ, γ) = 1/2,
hence α(1/2) = γ. By continuity, for all ε > 0, there exists δ ∈ (0, 1/2) such that α(1/2 + δ) > γ − ε.
Then we may take aε = −(1/2 + δ) and cε = α(1/2 + δ).

A.2 Other standard facts

Fact A.6. Suppose f : R→ R is concave. Then for any α < β, the function g(t) = f(t+ β)− f(t+ α)
is non-increasing.

Fact A.7. Suppose that f : R → R is concave. Let α < β. Then f(x) ≥ min{f(α), f(β)} for all
x ∈ [α, β].

B Application to random walks

In this section we prove the following result, which was mentioned in Section 1.

Theorem B.1 (Davis [16]). Let (Xt)t≥0 be a standard random walk. Then E [ |Xτ | ] ≤ γ E [
√
τ ] for every

stopping time τ ; moreover, the constant γ cannot be improved.

Proof. We begin by showing that for every stopping time τ , E [ |Xτ | ] ≤ γ E [
√
τ ]. Assume that E [

√
τ ] <

+∞, otherwise there is nothing to show. Let B be the adversary in the proof of Theorem 4.1 and let
Regret(T ) be the regret incurred by Algorithm 1. By (4.2), we may write Regret(T ) = ZT + |XT |

2 where
Z is a martingale with uniformly bounded increments. Then by Theorem 3.4 we have

γ

2

√
T ≥ Regret(T ) = ZT +

|XT |
2

,

for all T . Therefore, the above inequality also holds at time τ . We obtain our desired result by taking
expectation and applying Theorem 4.2 — which says that E [Zτ ] = E [Z0 ] when Z is a martingale with
bounded increments and E [

√
τ ] <∞.

Next, let c < γ. Then, de�ne by the arguments in the proof of Theorem 4.1, c′ such that γ > c′ > c

and E
[√

τ(c′)
]
<∞ where τ(c′) =

{
t > 0 : |Xt| ≥ c′

√
t
}
. Then,

E
[ ∣∣Xτ(c′)

∣∣ ] = c′ E
[√

τ(c′)
]
> cE

[√
τ(c′)

]
.

C Technical results from Section 3

C.1 Proof of Lemma 3.1

The following two lemmas are essentially special cases of Lemma F.1 since R̃γ = R̃ and Rγ = R. We
restate them here without the subscript for convenience.

Lemma C.1. Consider the function R̃(t, g) = g
2 + κ

√
tM0

(
g2

2t

)
. Then ∂

∂g R̃(t, g) = 1
2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
.

10In fact, there is a unique positive root.
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Lemma C.2. ∂
∂gR(t, g) = 1

2

(
1− erfi(g/

√
2t)

erfi(γ/
√

2)

)
+

.

Proof (of Lemma 3.1). The fact thatR(t, g) is non-decreasing in g follows from Lemma C.2. The concavity
of R(t, g) (in g) follows from the fact that erfi is non-decreasing, so ∂

∂gR(t, g) is non-increasing in g.

C.2 Proof of Lemma 3.5

Proof (of Lemma 3.5). By telescoping, f(T, gT ) − f(0, g0) =
∑T

t=1 f(t, gt) − f(t − 1, gt−1). Consider a
�xed t ∈ [T ]. We can write

f(t, gt)− f(t, gt−1) =

(
f(t, gt)−

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

)
+

(
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1)

)
.

(C.1)

For the �rst bracketed term, by considering the cases gt = gt−1 + 1 and gt = gt−1 − 1, we have

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
=
f(t, gt−1 + 1)− f(t, gt−1 − 1)

2
· (gt − gt−1)

= fg(t, gt−1) · (gt − gt−1).
(C.2)

Note that the above step is the only place we used the assumption that |gt − gt−1| = 1. For the second
bracketed term, we have

f(t, gt−1 + 1) + f(t, gt−1 − 1)

2
− f(t− 1, gt−1) =

f(t, gt−1 + 1) + f(t, gt−1 − 1)− 2f(t, gt−1)

2
+ (f(t, gt−1)− f(t− 1, gt−1))

=
1

2
fgg(t, gt−1) + ft(t, gt−1).

This gives the desired formula.

C.3 Proof of Lemma 3.6

Lemma C.3. For all u ∈ [0, 1/2], we have M0(u) ≥
√

1− 2u.

Proof. The Maclaurin expansion of M0(u) is given by

M0(u) = 1−
∞∑
k=1

1

(2k − 1)k!
uk.

Note that dk

dxk

√
1− 2x = − (2k−3)!!

(1−2x)(2k−1)/2 , where (n)!! denotes the double factorial (note that (−1)!! = 1).11

Hence, the Maclaurin expansion of
√

1− 2u is

√
1− 2u = 1−

∞∑
k=1

(2k − 3)!!

k!
uk.

It is not hard to verify that (2k − 3)!! ≥ 1
2k−1 . This implies that M0(u) ≥

√
1− 2u.

11If n ∈ Z≥0, we de�ne (n)!! =
∏dn/2e−1
k=0 (n− 2k). If n ∈ Z<0, we de�ne (n)!! via the recursive relation (n)!! = (n+2)!!

n+2
so

that (−1)!! = (1)!!
1

= 1.
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Lemma C.4. For all z ∈ [0, 1) and x ∈ R, we have

M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
≥ 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Proof. Fix z ∈ [0, 1) and consider the function

hz(x) = M0

(
(x+ z)2

2

)
+M0

(
(x− z)2

2

)
− 2
√

1− z2M0

(
x2

2(1− z2)

)
.

Note that hz(0) ≥ 0 by applying Lemma C.3 with u = z2/2. We will show that x = 0 is the minimizer of
hz which implies the lemma.

Indeed, computing derivatives, we have

h′z(x) = −M1

(
(x+ z)2

2

)
· (x+ z)−M1

(
(x− z)2

2

)
· (x− z) + 2M1

(
x2

2(1− z2)

)
· x√

1− z2
.

As h′z(0) = 0, x = 0 is a critical point of hz . We will now show that hz is convex which certi�es that
x = 0 is indeed a minimizer.

To obtain h′′z , we di�erentiate term-by-term. Let u = (x+z)2

2 . Then

d

dx
M1

(
(x+ z)2

2

)
· (x+ z) =

M2

(
(x+z)2

2

)
· (x+ z)2

3
+M1

(
(x+ z)2

2

)
=

2M2(u) · u
3

+M1(u)

=
2u(2eu

√
u−
√
π erfi(

√
u))

4u3/2
+

√
π erfi(

√
u)

2
√
u

= eu = exp

(
(x+ z)2

2

)
.

The �rst equality is by Fact A.1 and the third equality is by identities (2) and (3) in Fact A.2. We can
similarly show that

d

dx
M1

(
(x− z)2

2

)
· (x− z) = exp

(
(x− z)2

2

)
.

Finally, for the last term, we have

d

dx
M1

(
x2

2(1− z2)

)
· x√

1− z2
= M2

(
x2

2(1− z2)

)
· x2

(1− z2)3/2
+M1

(
x2

2(1− z2)

)
· 1√

1− z2

=
1√

1− z2

(
M2

(
x2

2(1− z2)

)
· x2

(1− z2)
+M1

(
x2

2(1− z2)

))

=
exp

(
x2

2(1−z2)

)
√

1− z2
,

where the �rst equality uses Fact A.1 and the last equality is by identity (4) in Fact A.2.
Hence, we have

h′′z(x) =
2ex

2/2(1−z2) − (e(x+z)2/2 + e(x−z)2/2)
√

1− z2

√
1− z2

.
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So to check that h′′z(x) ≥ 0 for all x ∈ R, it su�ces to check that

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ ex2/2(1−z2).

Indeed, we have

(e(x+z)2/2 + e(x−z)2/2)
√

1− z2

2
≤ (e(x+z)2/2 + e(x−z)2/2)e−z

2/2

2

= ex
2/2 (exz + e−xz)

2

≤ ex2/2ex2z2/2

= ex
2(1+z2)/2

≤ ex2/2(1−z2),

where the �rst inequality is because 1 − a ≤ e−a for all a ∈ R, the second inequality is because (ea +
e−a)/2 = cosh(a) ≤ ea

2/2 for all a ∈ R, and the last inequality is because 1 + a ≤ 1/(1 − a) for all
a < 1. This proves that hz is convex which concludes the proof that x = 0 is a minimizer for hz and
hence, completes the proof of the lemma.

Proof (of Lemma 3.6). The inequality Rt(t, g) + 1
2Rgg(t, g) ≥ 0 is equivalent to

R(t, g + 1) +R(t, g − 1) ≥ 2R(t− 1, g). (C.3)

We �rst prove the claim for t = 1. In this case, the RHS of (C.3) is identically 0. On the other hand, the
LHS of (C.3) is non-decreasing in g by Lemma 3.1. Hence, it su�ces to prove the inequality for g = 0.
With t = 1 and g = 0, we have

R(1, 1) +R(1,−1) = 2κM0(1/2).

As M0 is decreasing (Fact A.3) and 1/2 ≤ γ2/2, we have M0(1/2) ≥ M0(γ2/2) = 0. So (C.3) holds for
t = 1 and g ≥ 0.

For the remainder of the proof, we assume that t > 1. Observe that γ
√
t − 1 ≤ γ

√
t− 1 ≤ γ

√
t + 1

(since t ≥ 1).12 We will consider a few cases depending on the value of g.
Case 1: g ≤ γ

√
t− 1. In this case, g + 1 ≤ γ

√
t, g ≤ γ

√
t− 1, and g − 1 ≤ γ

√
t. Hence,

R(t, g + 1) =
g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
R(t, g − 1) =

g − 1

2
+ κ
√
t ·M0

(
(g − 1)2

2t

)
R(t− 1, g) =

g

2
+ κ
√
t ·M0

(
g2

2(t− 1)

)
.

So (C.3) is equivalent to

√
t ·M0

(
(g + 1)2

2t

)
+
√
t ·M0

(
(g − 1)2

2t

)
≥ 2
√
t− 1 ·M0

(
g2

2(t− 1)

)
, (C.4)

12The inequality γ
√
t − 1 ≤ γ

√
t− 1 is equivalent to

√
t −
√
t− 1 ≤ 1/γ. As t 7→

√
t is concave and t ≥ 1, the LHS is

maximized at t = 1 (Fact A.6). Hence, the inequality is true provided
√
2 ≤ 1 + 1/γ. One can check numerically that this last

inequality is true as γ ≤ 2.
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or rearranging, is equivalent to

M0

(
(g + 1)2

2t

)
+M0

(
(g − 1)2

2t

)
≥ 2
√

1− 1/t ·M0

(
g2

2(t− 1)

)
.

The latter inequality is true by Lemma C.4 using x = g/
√
t and z = 1/

√
t ∈ (0, 1).

Case 2: γ
√
t− 1 ≤ g ≤ γ

√
t− 1. Let R̃ be the function de�ned in Lemma C.1. In this case, we have

R(t, g + 1) = γ
√
t = R̃(t, γ

√
t) ≥ R̃(t, g + 1) =

g + 1

2
+ κ
√
t ·M0

(
(g + 1)2

2t

)
.

The inequality is by Lemma C.1 which implies that R̃(t, g + 1) is non-increasing for g ∈ (γ
√
t − 1,∞).

Using the lower bound on R(t, g + 1), (C.3) is again implied by (C.4) and we have already veri�ed that
(C.4) is true.
Case 3: γ

√
t− 1 ≤ g. Note that for g ≥ γ

√
t− 1, the functions R(t− 1, g) and R(t, g+ 1) are constant

in g but R(t, g − 1) is non-decreasing in g. Hence, it su�ces to check (C.3) for g = γ
√
t− 1 which holds

by case 2.

D Analysis of Algorithm 1 for general cost vectors

In this section, we prove the upper bound of Theorem 2.1 in full generality.

Theorem D.1. Let A be the algorithm described in Algorithm 1. For any adversary B (allowing any cost
vectors `t ∈ [0, 1]2), we have

sup
t≥1

Regret(2, t,A,B)√
t

≤ γ

2
.

In Subsection 3.1, since the gap was integer-valued, the identity of the best expert could only change
when the gap is exactly 0 (at which time there are two best experts). In general, the gap can be real-valued,
so the best expert can switch abruptly, which a�ects our formula for the regret. We will need to generalize
Proposition 2.3 to deal with this possibility. Let ∆R(t) = Regret(t)− Regret(t− 1).

Proposition D.2. Let gt−1 be the gap after time t− 1 but before playing an action at time t. Let gt be the
gap after time t. Let p(t, gt−1) denote the probability mass assigned to the worst expert at time t. Suppose
that p(t, 0) = 1/2 for all t ≥ 1.

1. If a best expert at time t− 1 remains a best expert at time t then

∆R(t) = (gt − gt−1)p(t, gt−1).

2. If a best expert at time t− 1 is no longer a best expert at time t then

∆R(t) = gt − (gt + gt−1)p(t, gt−1).

Moreover, gt + gt−1 ≤ 1.

The proof of this is very similar to that of Proposition 2.3 and appears in Appendix D.1

Remark. Note that, at any speci�c time, the set of best experts may have size either one or two so the
choice of the best expert in Proposition D.2 may be ambiguous. However, note that if gt−1 = 0 (i.e., there
are two best experts at time t− 1) then p(t, gt−1) = 1/2 so both formulas give ∆R(t) = 1

2gt. On the other
hand, if gt = 0 (i.e., there are two best experts at time t) then both formulas give ∆R(t) = −gt−1p(t, gt−1).
Hence there is no issue with the ambiguity.
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We will need the following identity which is essentially the same as Lemma 3.5 but without specializing
to the case where |gt − gt−1| = 1.

Lemma D.3. Let g0, g1, . . . be a sequence of real numbers. Then for any function f and any �xed time
T ≥ 1, we have

f(T, gT )− f(0, g0) =
T∑
t=1

f(t, gt)−
f(t, gt−1 + 1) + f(t, gt−1 − 1)

2

+
T∑
t=1

(
1

2
fgg(t, gt−1) + ft(t, gt−1)

)
.

(D.1)

Proof. The proof is identical to the proof of Lemma 3.5 except that we do not perform the simpli�cation
in (C.2).

When we assumed the gaps were integer-valued, we had

∆R(t) = R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

because both sides were equal to Rg(t, gt−1) · (gt − gt−1). This does not hold in the general setting, but
we will be able to prove the following inequality.

Lemma D.4. For all t ≥ 1,

∆R(t) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

The proof of Lemma D.4 appears in Appendix D.2. Given Lemma D.4, we can now prove our upper
bound in general.

Proof (of Theorem D.1). Fix any T ≥ 1. Then

R(T, gT )−R(0, g0) =
T∑
t=1

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

+
T∑
t=1

(
1

2
Rgg(t, gt−1) +Rt(t, gt−1)

)
(Lemma D.3)

≥
T∑
t=1

∆R(t) (Lemma D.4 and Lemma 3.6)

= Regret(T ).

As g0 = 0 and R(0, 0) = 0, we have Regret(T ) ≤ R(T, gT ) ≤ γ
√
T/2, where the last inequality is by

Lemma 3.2.

D.1 Proof of Proposition D.2

Proof (of Proposition D.2). Fix t and for notational convenience, let p = p(t, gt−1) throughout the proof.
In addition, throughout the proof, we use expert 1 to refer to the worst expert at time t − 1 (chosen
arbitrarily if the choice of worst expert is not unique) and use expert 2 to refer to the other expert. Let
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`t,1, `t,2 ∈ [0, 1] be the respective losses at time t and Lt,1, Lt,2 be the respective cumulative losses up to
time t. Note that gt−1 = Lt−1,1−Lt−1,2. Finally, we setL∗t = mini∈[2] Lt,i. By assumption,L∗t−1 = Lt−1,2.

For the �rst assertion we have L∗t = Lt,2 (because a best expert remains a best expert). Note that
`t,1 + `t,2 = (Lt,1 − Lt,2) − (Lt−1,1 − Lt−1,2) = gt − gt−1. So the cost of the algorithm can be can be
written as

p`t,1 + (1− p)`t,2 = p(gt − gt−1) + `t,2.

On the other hand, L∗t − L∗t−1 = Lt,2 − Lt−1,2 = `t,2. Subtracting this from the above display equation
gives ∆R(t) = (gt − gt−1)p.

In the second assertion, we have L∗t = Lt,1. Again, the algorithm incurs cost p`t,1 + (1− p)`t,2. This
time, note that `t,1 − `t,2 = (Lt,1 − Lt,2)− (Lt−1,1 − Lt−1,2) = −gt − gt−1. So the algorithm incurs cost
−p(gt + gt−1) + `t,2. On the other hand,

L∗t − L∗t−1 = Lt,1 − Lt−1,2 = Lt,1 − Lt−1,1 + Lt−1,1 − Lt−1,2 = `t,1 + gt−1 = `t,2 − gt−1,

where the last equality uses the identity `t,1 − `t,2 = −gt − gt−1. Subtracting this last quantity with the
change in the algorithm’s cost gives ∆R(t) = gt−1 − p(gt + gt−1).

To complete the proof for the second assertion, it remains to check that gt + gt−1 ≤ 1. From above,
we have the identity, gt + gt−1 = `t,2 − `t,1 ≤ `t,2 ≤ 1, as desired.

D.2 Proof of Lemma D.4

Proof (of Lemma D.4). Fix t ≥ 1. We will consider the two cases corresponding to the two cases in Propo-
sition D.2.
Case 1: A best expert at time t − 1 remains a best expert at time t. In this case, ∆R(t) = (gt −
gt−1)p(t, gt−1), so it su�ces to check that

p(t, gt−1) · (gt − gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (D.2)

Rearranging, the above inequality is equivalent to

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
− p(t, gt−1) · (gt − gt−1) ≥ 0.

If gt−1 is �xed then notice that the LHS of the above expression is concave in gt. To see this, Lemma 3.1
implies that R(t, gt) is concave in gt, the second term is constant in gt, and the last term is linear in gt.
Hence, it su�ces to verify the inequality when gt = gt−1 ± 1 (Fact A.7). Indeed, if |gt − gt−1| = 1 then

R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
=
R(t, gt−1 + 1)−R(t, gt−1 − 1)

2
· (gt − gt−1)

= p(t, gt−1) · (gt − gt−1),

where the second equality used the de�nition of p.
Case 2: A best at time t− 1 is no longer a best expert at time t. This case is nearly identical to the
previous case but in this case ∆R(t) = gt − (gt + gt−1)p(t, gt−1) with the promise that gt + gt−1 ≤ 1.
Hence, the inequality we need to verify is that

gt − (gt + gt−1)p(t, gt−1) ≤ R(t, gt)−
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
. (D.3)

Once again, we do this via a concavity argument. Fix gt−1. Since gt+gt−1 ≤ 1, we have gt ∈ [0, 1−gt−1].
Notice that LHS of (D.3) is linear in gt and the RHS of (D.3) is concave in gt (by Lemma 3.1). Hence, it
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su�ces to check the inequality assuming gt ∈ {0, 1− gt−1}. Note that the case gt = 0 is handled by case
1 since the LHS of (D.2) and (D.3) are identical (see also the remark after Proposition D.2).

Now assume that gt = 1− gt−1. Then (D.3) becomes

1− gt−1 − p(t, gt−1) ≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2

Recall that p(t, g) = R(t,g+1)−R(t,g−1)
2 so that the above inequality is equivalent to

1− gt−1 −
R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
≤ R(t, 1− gt−1)− R(t, gt−1 + 1) +R(t, gt−1 − 1)

2
.

Rearranging the inequality becomes

1 ≤ gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1).

Note that gt−1 ≤ 1 ≤ γ
√
t (when t ≥ 1). Hence, by de�nition of R, the RHS of the above inequality is

gt−1 +R(t, 1− gt−1)−R(t, gt−1 − 1) = gt−1 +
1− gt−1

2
+ κ
√
tM0

(
(1− gt−1)2

2

)
− 1− gt−1

2
− κ
√
tM0

(
(gt−1 − 1)2

2

)
= 1,

and obviously, 1 ≤ 1.

E Additional proofs for Section 4

Before proving Theorem 4.2, some preliminary de�nitions are required. For a martingale (Xt)t∈N, de�ne its
maximum processX∗t = max0≤s≤t|Xs| and its quadratic variation process [X]t =

∑
1≤s≤t(Xs−Xs−1)2.

Theorem E.1 (Davis [15]). There exists a constant C such that for any martingale (Xt)t∈N with X0 = 0,
E [X∗∞ ] ≤ C E

[
[X]

1/2
∞
]
.

We will prove a more general variant of Theorem 4.2. To recover Theorem 4.2, we apply the following
theorem with σ = 0 and then take expectations to get that E [Zτ ] = Z0.

TheoremE.2. Let (Zt)t∈Z≥0
be a martingale with respect to the �ltration {Ft} andK > 0 a constant such

that |Zt −Zt−1| ≤ K almost surely for all t. Let σ ≤ τ be stopping times and suppose that E [
√
τ ] <∞.

Then the random variables Zσ, Zτ are almost surely well-de�ned and E [Zτ | Fσ ] = Zσ .

Proof. De�ne the stopped processZt∧τ , which is also a martingale [29, Theorem 10.15]. Since E [
√
τ ] <∞

we have Pr [ τ <∞ ] = 1. On the event {τ <∞}, (Zt∧τ )t≥0 has a well-de�ned limit, which is used as
the almost sure de�nition of Zτ . As {τ <∞} ⊆ {σ <∞}, the same argument shows that (Zt∧σ)≥0 has
a well-de�ned limit, and we use this as the almost sure de�nition of Zσ .

We claim that also Zt∧τ
L1−→ Zτ ∈ L1 and Zt∧σ

L1−→ Zσ ∈ L1, from which the theorem concludes
as follows. By the de�nition of conditional expectation, we need to check that E [Zτ1A ] = E [Zσ1A ]
for all A ∈ Fσ . To that end, �x A ∈ Fσ and note that A ∩ {σ ≤ t} ∈ Fσ∧t. For any �xed t, t ∧ σ ≤
t ∧ τ ≤ t, so the optional sampling theorem [29, Theorem 10.11] applied to the stopped process yields
E [Zt∧τ | Ft∧σ ] = Zt∧σ . Hence,

E
[
Zτ∧t1A1{σ≤t}

]
= E

[
Zσ∧t1A1{σ≤t}

]
. (E.1)
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Since Zτ∧t
L1−→ Zτ , it follows that Zτ∧t1A1{σ≤t}

L1−→ Zτ1A1{σ<∞}. This is because

E
[
|Zτ∧t1A1σ≤t − Zτ1A1σ<∞|

]
≤ E [ |Zτ∧t1A1σ≤t − Zτ1A1σ≤t| ] + E [ |Zτ1A1σ<∞ − Zτ1A1σ≤t| ]
≤ E [ |Zt∧τ − Zτ | ] + E [ |Zτ |1t<σ<∞ ] .

The quantity E [ |Zt∧τ − Zτ | ] → 0 because Zt∧τ
L1−→ Zτ . Next, Zτ ∈ L1 and 1t<σ<∞ → 0 a.s. so

E [ |Zτ |1t<σ<∞ ] → 0 by dominated convergence. Finally, note that Zτ1A1σ<∞ = Zτ1A as 1σ<∞ = 1
a.s. Hence,

E
[
Zτ∧t1A1{σ≤t}

] t→∞−−−→ E [Zτ1A ] . (E.2)

Similarly,
E
[
Zσ∧t1A1{σ≤t}

] t→∞−−−→ E [Zσ1A ] . (E.3)

Combining (E.1), (E.2), and (E.3) gives E [Zτ1A ] = E [Zσ1A ] as desired.
It remains to show that Zτ∧t

L1−→ Zτ ∈ L1 and Zσ∧t
L1−→ Zσ ∈ L1. We will only prove the conver-

gence for Zτ∧t as the two arguments are identical. The L1 convergence is proven using the dominated
convergence theorem [29, Corollary 6.26], which requires exhibiting a random variable that bounds |Zt∧τ |
for all t and has �nite expectation. For notational convenience, let Xt = Zt∧τ . Clearly |Xt| ≤ X∗t ≤ X∗∞,
so it remains to show that E [X∗∞ ] <∞. Using Theorem E.1 and that Z has increments bounded by K ,

E [X∗∞ ] ≤ C E
[

[X]1/2∞

]
= C E

( ∑
1≤s≤τ

(Zs − Zs−1)2
)1/2

 ≤ CK E
[
τ1/2

]
< ∞.

The dominated convergence theorem states that Zt∧τ
L1−→ Zτ ∈ L1, as required.

Remark (on Theorem 4.3). Breiman’s result is not stated in exactly this form because he focused on the
case a ∈ Z<0, in which case M degenerates to a polynomial. One can show by direct calculation that the
function θ(a) in his equation (2.6) is identical to our function M(a, 1/2, c2/2) for all a ∈ R.

An alternative approach is to use a result of Greenwood and Perkins [26, Theorem 5], which shows in
a more general context that Pr [ τ(c) > u ] = u−λ0(−c,c)π(u) where−λ0(−c, c) is the largest non-positive
eigenvalue of a certain Sturm-Liouville equation and π(u) is a “slowly-varying function”. It is shown
by Perkins [35, Proposition 1] that c is the smallest positive root of x 7→ M(−λ0(−c, c), 1/2, x2/2). A
standard result [22, Lemma VIII.8.2] states that any slowly-varying function π satis�es π(u) = O(uε)
for every ε > 0. This alternative approach su�ces to prove Theorem 4.1 since (4.4) is una�ected by the
slowly-varying function.

E.1 Large regret in�nitely often

In this subsection, we sketch the following theorem.

Theorem E.3. For any algorithm A and any ε > 0, there exists an adversary Bε such that

lim sup
t≥1

Regret(2, t,A,Bε)√
t

≥ γ − ε
2

. (E.4)

Sketch. We use the same adversary as in Theorem 4.1 so that

Regret(t) ≥ Zt +
gt
2
,
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where Zt is a martingale with Z0 = 0 and gt evolves as a re�ected random walk. Let Ft := σ(g0, . . . , gt)
be the natural �ltration. Finally, let cε ≥ γ − ε be as in the proof of Theorem 4.1.

De�ne the stopping times τ0 := 0 and τi := inf
{
t > τi−1 : gt ≥ cε

√
t
}

for i ≥ 1. Note that, by
the strong Markov property, for each i ≥ 1, the process {gτi−1+t}t≥0 is a re�ected random walk started
at position gτi−1 > 0. Moreover, observe that τi is similar to the stopping time used in Theorem 4.1
in that the asymptotics of the boundary are the same but the starting point is perturbed by a (random)
additive constant. It is not hard to show (via [26, Theorem 5]) that E

[√
τi
]
<∞.13 Hence, we can apply

Theorem E.2 to obtain that E
[
Zτi | Fτi−1

]
= Zτi−1 for all i ≥ 1.

We will now inductively construct a sequence of events which satisfy the conclusions of the theorem.
To that end, de�ne the events

Ai = {τi <∞, Zτi ≥ . . . ≥ Zτ1 ≥ 0} .

For the base case, we have A1 = {τ1 <∞, Zτ1 ≥ 0}. In the proof of Theorem 4.1, we have already
veri�ed that Pr [A1 ] > 0 (this also follows from the previous paragraph). For the inductive step, suppose
that Pr [Ai−1 ] > 0. The condition that E

[
Zτi | Fτi−1

]
= Zτi−1 implies that, for any B ∈ Fτi−1 with

Pr [B ] > 0, the eventB∩
{
τi <∞, Zτi ≥ Zτi−1

}
has positive probability. TakingB = Ai−1 implies that

Pr [Ai ] > 0.
To conclude, for any n ≥ 1, the event An has positive probability. Hence, there exists a sequence of

times T1, . . . , Tn < ∞ and loss vectors up to time Tn that guarantee gTi ≥ cε
√
Ti for all i ∈ [n] and

ZTn ≥ . . . ≥ ZT1 ≥ 0. In particular, for all i ∈ [n],

Regret(Ti) ≥ ZTi +
gTi
2
≥ cε

2

√
Ti.

As n ≥ 1 was arbitrary, the theorem follows.

F Additional proofs for Section 5

F.1 Proof of Lemma 5.6

Proof (of Lemma 5.6). First, we check that f ∈ C1,2. Let (t, x) ∈ R>0×R. It is easy to check via standard
applications of the Dominated Convergence Theorem (DCT) and the Fundamental Theorem of Calculus
(FTC) that

(1) ∂tf(t, x) =
∫ x

0 ∂th(t, y) dy − 1
2∂xh(s, 0),

(2) ∂xf(t, x) = h(t, x), and
(3) ∂xxf(t, x) = ∂xh(t, x).

All of the above partial derivatives are clearly continuous since h is C1,2.
Next, we show that if

∗
∆h(t, x) = 0 for all (t, x) ∈ R>0 × R, then

∗
∆f(t, x) = 0 for all R>0 × R. By

13Verifying that E [
√
τi ] <∞ is the only non-rigorous portion of the proof.
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DCT and FTC,

∗
∆f(t, x) =

(
∂t +

1

2
∂xx

)(∫ x

0
h(t, y) dy −

∫ t

0

1

2
∂xh(s, 0) ds

)
=

∫ x

0
∂th(t, y) dy +

1

2
∂xx

∫ x

0
h(t, y) dy −

(
∂t +

1

2
∂xx

)∫ t

0

1

2
∂xh(s, 0) ds (by DCT)

=

∫ x

0
∂th(t, y) dy +

1

2
∂xh(t, x)− 1

2
∂xh(t, 0) (by FTC)

=

∫ x

0

(
∂th(t, y) +

1

2
∂xxh(t, y)

)
︸ ︷︷ ︸

=0

dy (by FTC)

= 0.

An application of FTC shows that ∂xf(t, x) = h(t, x) for every (t, x) as y 7→ h(t, y) is continuous.

F.2 Proof of Lemma 5.7

Proof (of Lemma 5.7). Let us assume that we can write u(t, x) = v(x/
√
t). Then, we have ∂tu(t, x) =

− x
2t3/2

v′(x/
√
t), and 1

2∂xxu(t, x) = 1
2tv
′′
(x/
√
t). The backward heat equation enforces that v′′(x/

√
t) =

x√
t
v′(x/

√
t). By a change of variables (z = x/

√
t), we obtain the following ordinary di�erential equation

v′′(z) = z · v′(z). (F.1)

Hence, v′(z) = C · e
z2

2 for some constant C . We can then integrate to obtain v(z) =
∫ z

0 Ce
y2/2 dy+D =∫ z/√2

0

√
2Ceu

2
du + D, for some constant D. For the last equality, we made the change of variables

u = y/
√

2 in the integral. Therefore, by the de�nition of erfi (and replacing C
√

2 with C , we have
v(z) = C erfi(z/

√
2) +D. Hence, for some constants C,D ∈ R, we have

u(t, x) = C erfi(x/
√

2t) +D.

Plugging in the boundary condition at x = 0 and recalling that erfi(0) = 0 we see thatD = 1/2. Plugging
in the boundary condition that u(t, α

√
t) = 0 and using that D = 1/2 we see that C = − 1

2 erfi(α/
√

2)
.

Therefore, we have that the following function

q(t, x) =
1

2

(
1−

erfi
(
x/
√

2t
)

erfi
(
α/
√

2
) )

satis�es the backwards heat equation and the boundary conditions. Moreover, q ∈ C1,2 on R>0 × R.

F.3 Proof of Lemma 5.8

Recall that R̃α = g
2 + κα

√
t · M0 (x2/2t) where κα = 1√

2π erfi(α/
√

2)
. First we need to compute some

derivatives.

Lemma F.1. The following identities hold for every α > 0.

1. ∂xR̃α(t, x) = p̃α(t, x) = 1
2

(
1− erfi(x/

√
2t)

erfi(α/
√

2t)

)
.

2. ∂xxR̃α(t, x) = ∂xp̃α(t, x) = −κα · exp(x2/2t)√
2t

.
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Proof. The proof is a straightforward calculation. We have

∂xR̃α(t, x) =
1

2
− κα

x√
t
·M1

(
x2

2t

)
=

1

2
− 1√

2π erfi(α/
√

2)
· x√

t
·
√
π erfi(x/

√
2t)

2 · x/
√

2t

=
1

2

(
1− erfi(x/

√
2t)

erfi(α/
√

2)

)
,

where the �rst equality uses Fact A.1 and the second equality uses the identity (2) in Fact A.2. This proves
the �rst identity.

For the second identity, using the de�nition of erfi(·), we have

∂xxR̃α = ∂xp̃α(t, x) = − exp(x2/2t)√
2π erfi(α/

√
2)
√
s

= −κα ·
exp(x2/2t)√

2t
.

Proof (of Lemma 5.8). By the �rst identity in Lemma F.1, we have∫ x

0
p̃α(t, y) dy = R̃α(t, x)− R̃α(t, 0) (F.2)

Note that R̃α(t, 0) = κα
√
t. Next, the second identity of Lemma F.1 implies that −∂xp̃α(s, 0) = κα

2
√
s
.

Hence,

− 1

2

∫ t

0
∂xp̃α(s, 0) ds = κα

√
t = R̃α(t, 0). (F.3)

Summing (F.2) and (F.3) gives∫ x

0
p̃α(t, y) dy − 1

2

∫ t

0
∂xp̃α(s, 0) ds = R̃α(t, x)− R̃α(t, 0) + R̃α(t, 0) = R̃α(t, x).

F.4 Proof of Lemma 5.10

The main idea of the proof is that we will approximateRα by a sequence of smooth functions (i.e. functions
in C2,2).

Fix α > 0. Recall that R̃α(t, x) = x
2 + κα

√
t ·M0

(
x2

2t

)
for t > 0, x ∈ R, where κα = 1√

2π erfi(α/
√
2)

.
(For t = 0, it su�ces to de�ne R̃α(t, x) = 0.) We also have the truncated version, Rα, de�ned as

Rα(t, x) =


R̃α(t, g) t > 0 ∧ x ≤ α

√
t

R̃α(t, α
√
t) t > 0 ∧ x ≥ α

√
t

0 t = 0

.

Recall also that pα = ∂xRα. For convenience, we restate the lemma.

Lemma 5.10. Fix α > 0. Then, almost surely, for all T ≥ 0, ContRegret(T, pα, B) ≤ Rα(T, |BT |).

For the remainder of this section, we will write f̃ = R̃α and f = Rα. Let φ(x) be any non-increasing
C2 function satisfying φ(x) = 1 for x ≤ 0 and φ(x) = 0 for x ≥ 1. For concreteness, we may take

φ(x) =


1 x ≤ 0

(1− x) + 1
2π sin(2πx) x ∈ [0, 1]

0 x ≥ 1

. (F.4)
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We leave it as an easy calculus exercise to verify that φ is indeed a non-increasing C2 function.
Next, de�ne φn(x) = φ(nx) and

fn(t, x) = f̃(t, x) · φn(x− α
√
t) + f(t, α

√
t) ·
(

1− φn(x− α
√
t)
)
.

Note that fn ∈ C2,2 on R>0 ×R for all n. The function fn is a smooth approximation to f and its limit is
exactly f (= Rα).

Claim F.2. For every t > 0, x ∈ R, limn→∞ fn(t, x) = f(t, x).

Proof. If x ≤ α
√
t then φn(x − α

√
t) = 1 so fn(t, x) = f̃(t, x) = f(t, x). In particular, this also

holds for the limit. Next, suppose that a = x − α
√
t > 0. If n > 1/a then φn(x − α

√
t) = 0 so

fn(t, x) = f̃(t, α
√
t) = f(t, x).

Recall that our goal is to relate f(T, |BT |) and
∫ T

0 ∂xf(t, |Bt|) d|Bt|. However, one cannot apply Itô’s
formula to f directly as it is not in C1,2. Instead, we will apply Itô’s formula to the smoothed version of f ,
namely fn, and then take limits. The remainder of this section does this limiting argument carefully.

For technical reasons (namely that f̃(t, x) has a pole when t → 0 and x 6= 0), we will not be able to
start the stochastic integral at 0. Hence, we will �x ε > 0 and, at the end of the proof, we will allow ε→ 0.

The following lemma bounds the stochastic integral of fn with respect to |Bt|.

Lemma F.3. Almost surely, for every T ≥ ε∫ T

ε
∂xfn(t, |Bt|) d|Bt| ≤ fn(T, |BT |)− fn(ε, |Bε|)

−
∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

− 1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt.

(F.5)

Proof. The proof is by Itô’s formula (Theorem 5.3) applied to fn. We have, for all T ≥ ε,

fn(T, |BT |)− fn(ε, |Bε|) =

∫ T

ε
∂xfn(t, |Bt|) d|Bt|+

∫ T

ε
∂tfn(t, |Bt|) +

1

2
∂xxfn(t, |Bt|) dt. (F.6)

Computing derivatives of fn, we have

∂tfn(t, x) = (∂tf̃(t, x)) · φn(x− α
√
t)− α

2
√
t
f̃(t, g)φ′n(x− α

√
t)

+ ∂t(f(t, α
√
t)) · (1− φn(x− α

√
t)) +

α

2
√
t
f(t, α

√
t) · φ′n(x− α

√
t)

(F.7)

∂xfn(t, x) = (∂xf̃(t, x)) · φn(x− α
√
t) + f̃(t, x)φ′n(x− α

√
t)− f(t, α

√
t)φ′n(x− α

√
t) (F.8)

∂xxfn(t, x) = (∂xxf̃(t, x)) · φn(x− α
√
t) + 2(∂xf̃(t, x))φ′n(x− α

√
t)

+
(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(F.9)

Recalling the notation
∗
∆ = ∂t + 1

2∂xx, we have
∗
∆fn(t, x) =

( ∗
∆f̃(t, x)

)
· φn(x− α

√
t) + ∂t(f(t, α

√
t)) · (1− φn(x− α

√
t))

+ (∂xf̃(t, x))φ′n(x− α
√
t)

+
α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) · φ′n(x− α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x− α

√
t).

(F.10)
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By Lemma 5.9,
∗
∆f̃ = 0. By Claim F.4 below, ∂t(f(t, α

√
t)) > 0. Next, observe that (∂xf̃(t, x)) · φ′n(x −

α
√
t) ≥ 0. To see this, if x ≤ α

√
t then φ′n(x − α

√
t) = 0. On the other hand, if x > α

√
t then

φ′n(x − α
√
t) ≤ 0 because φn is non-increasing and ∂xf̃(t, x) ≤ 0 by Lemma 5.9 and (5.11). Hence, we

can lower bound (F.10) by

∗
∆fn(t, x) ≥ α

2
√
t
· (f(t, α

√
t)− f̃(t, x)) ·φ′n(x−α

√
t) +

1

2

(
f̃(t, x)− f(t, α

√
t)
)
φ′′n(x−α

√
t). (F.11)

Plugging (F.11) into (F.6) gives

fn(T, |BT |)− fn(ε, |Bε|) ≥
∫ T

ε
∂xfn(t, |Bt|) d|Bt|

+

∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

+
1

2

∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt.

(F.12)

Rearranging (F.12) gives the lemma.

Claim F.4. If t > 0 then ∂t(f̃(t, α
√
t)) > 0.

Proof. Note that

f̃(t, α
√
t) =

√
t ·
(
α

2
+

M0(α2/2)√
2π erfi(α/

√
2)

)
=
√
t · f(1, α).

So it su�ces to check that f̃(1, α) > 0. To see this, note that f̃(1, 0) = κα > 0 and ∂xf̃(1, x) ≥ 0 as long
as x ≤ α (by the �rst identity of Lemma F.1). Hence, f̃(1, α) > 0.

At this point, we would like to take limits on both sides of (F.5). This is achieved by the following two
lemmas.

Lemma F.5. Almost surely, for every T ≥ ε,
1. limn→∞

∫ T
ε

α
2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt = 0; and

2. limn→∞
∫ T
ε φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt = 0.

Lemma F.6. For every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|

as n→∞.

Within this section, Xn
L2

−→ X means that E
[

(Xn −X)2
]
→ 0 as n → ∞. We relegate the proofs

of Lemma F.5 and Lemma F.6 to Appendix F.5. We now take limits on both sides of (F.5) to obtain the
following lemma.

Lemma F.7. Almost surely, for every T ≥ ε,∫ T

ε
∂xf(t, |Bt|) d|Bt| ≤ f(T, |BT |)− f(ε, |Bε|). (F.13)
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Proof. By Lemma F.6, for every T ≥ ε,∫ T

ε
∂xfn(t, |Bt|) d|Bt|

L2

−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Hence, there exists a subsequence nk such that∫ T

ε
∂xfnk(t, |Bt|) d|Bt|

a.s.−→
∫ T

ε
∂xf(t, |Bt) d|Bt|.

Using Lemma F.3 to bound the left-hand-side and then Lemma F.5 to take limits gives that (F.13) holds
for any �xed T ≥ ε. Hence, almost surely, (F.13) holds for all rational T ≥ ε. As both sides of (F.13) are
continuous as a function of T , (F.13) holds for all T ≥ ε.

The proof of this lemma appears in Appendix F.5.

Proof (of Lemma 5.10). We will work in the probability 1 set where Lemma F.7 holds and t 7→ Bt is
continuous.

Fix T > 0. Note that ContRegret(T, ∂xf,B) is de�ned because ∂xf ∈ [0, 1/2] and ∂xf(t, 0) = 1/2
for all t > 0 (see (5.12)). Recalling De�nition 5.1, we have, for ε ≤ T ,

ContRegret(T, ∂xf,B) =

∫ T

0
∂xf(t, |Bt|) d|Bt|

=

∫ T

ε
∂xf(t, |Bt|) d|Bt|+

∫ ε

0
∂xf(t, |Bt|) d|Bt|

≤ f(T, |BT |)− f(ε, |Bε|) +

∫ ε

0
∂xf(t, |Bt|) d|Bt| (Lemma F.7).

The right-hand-side is continuous in ε so taking ε→ 0 (and recalling that f(0, 0) = 0), gives

ContRegret(T, ∂xf,B) ≤ f(T, |BT |).

F.5 Additional proofs from Appendix F.4

Before we prove Lemma F.5, we will need one key observation.

Lemma F.8. Fix ε > 0. Then there is a constant Cε > 0 (depending also on α) such that for t > 0 and x
satisfying |x− α

√
t| ≤ 1,

1. |f̃(t, x)− f(t, α
√
t)| ≤ Cε · (x− α

√
t)2; and

2. |∂xf̃(t, x)| ≤ Cε · |x− α
√
t|.

Proof. The key observation is that f(t, α
√
t) is already a �rst-order Taylor expansion of f̃(t, x) (in x) about

the point γ
√
t. Indeed, f̃(t, α

√
t) = f(t, α

√
t) and (∂xf̃)(t, α,

√
t) = 0. Hence, by Taylor’s Theorem (see

e.g. [39, Theorem 5.15])

|f̃(t, x)− f(t, α
√
t)| ≤ 1

2
· (x− α

√
t)2 · sup

t≥ε,|x−α
√
t|≤1

|∂xxf̃(t, x)|

By the second identity in Lemma F.1, we have

|∂xxf̃(t, x)| = κα exp(x2/2t)√
2t

.
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Since t ≥ ε and x ≤ 1 + α
√
t, we have

|∂ggf̃(t, x)| ≤ κα exp((1 + α
√
t)2/2t)√

2ε

=
κα exp(α2/2 + α/

√
t+ 1/t)√

2ε

≤ κα exp(α2/2 + α/
√
ε+ 1/ε)√

2ε
.

So one can take Cε = κα exp(α2/2+α/
√
ε+1/ε)√

2ε
. This gives the �rst assertion.

The second assertion is similar. Indeed, since (∂xf̃)(t, α
√
t) = 0, we have

|(∂xf̃)(t, x)| = |(∂xf̃)(t, x)− (∂xf̃)(t, α
√
t)|

≤ |x− α
√
t| · sup

t≥ε,|x−α
√
t|≤1

|∂xxf̃(t, x)|

≤ Cε · |x− α
√
t|.

We also need a simple claim which bounds the value of |φ′n(x)| and |φ′′n(x)|.

Claim F.9. There is an absolute constant C > 0 such that |φ′n(x)| ≤ Cn and |φ′′n(x)| ≤ Cn2.

Proof. Note that φ′n(x) = n·φ′(x) and n2 ·φ′′(x). It is easy to see, from di�erentiating (F.4) or by continuity
and compact arguments, that there exists C > 0 such that |φ′(x)|, |φ′′(x)| ≤ C for all x ∈ R.

Proof (of Lemma F.5). We start with the second assertion. The �rst assertion is similar but simpler. We
claim that there exists a constant C ′ (depending on ε and α) such that∣∣∣φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)∣∣∣ ≤ C ′1[|Bt| − α
√
t ∈ [0, 1/n]] (F.14)

Indeed, if |Bt| − α
√
t /∈ [0, 1/n] then φ′′n(|Bt| − α

√
t) = 0 so both sides of (F.14) are equal to 0. On the

other hand, if |Bt| − α
√
t ∈ [0, 1/n] then Lemma F.8 shows that |f(t, α

√
t)− f̃(t, |Bt|)| ≤ Cε/n2 where

Cε is the constant from Lemma F.8. Next, Claim F.9 gives |φ′′n(|Bt| −α
√
t)| ≤ Cn2. So taking C ′ = Cε ·C

gives (F.14). Hence,∣∣∣∣∫ T

ε
φ′′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε
C ′ · 1[|Bt| − α

√
t ∈ [0, 1/n]] dt

= C ′ ·m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
,

where m denotes the Lebesgue measure. By continuity of measure, we have

lim
n
m
({

t ∈ [ε, T ] : |Bt| − α
√
t ∈ [0, 1/n]

})
=

∫ T

ε
1
[
|Bt| = α

√
t
]

dt = 0 a.s.

This proves the second assertion.
For the �rst assertion, we can use the bound (from Lemma F.8 and Claim F.9)∣∣∣φ′n(x− α

√
t) ·
(
f(t, α

√
t)− f̃(t, x)

)∣∣∣ ≤ C ′

n
1[x− α

√
t ∈ [0, 1/n]] ≤ C ′

n
. (F.15)

Hence, ∣∣∣∣∫ T

ε

α

2
√
t
· φ′n(|Bt| − α

√
t) ·
(
f(t, α

√
t)− f̃(t, |Bt|)

)
dt

∣∣∣∣ ≤ ∫ T

ε

α

2
√
t

C ′

n
dt

≤ C ′α
√
T/n→ 0.
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Proof (of Lemma F.6). By (F.8), we have

∂xfn(t, x)− ∂xf(t, x) =
(
∂xf̃(t, x)φn(x− α

√
t)− ∂xf(t, x)

)
+
(
φ′n(x− α

√
t) ·
(
f̃(t, x)− f(t, α

√
t)
))

.
(F.16)

For the �rst bracketed term, since ∂xf̃(t, x) = ∂xf(t, x) when x ≤ α
√
t and ∂xf(t, x) = 0 when x ≥ α

√
t,

we have ∣∣∣∂xf̃(t, x)φn(x− α
√
t)
∣∣∣ =

∣∣∣∂xf̃(t, x)φn(x− α
√
t)
∣∣∣1[x− α

√
t ∈ [0, 1/n]]

≤ C ′

n
,

where the �nal inequality is by the second assertion in Lemma F.8. The second bracketed term has been
bounded in (F.15), and so we have proved∣∣∣∂xfn(t, x)− ∂xf(t, x)

∣∣∣ ≤ C ′′

n
for all t ≥ ε and all x. (F.17)

Tanaka’s formula (see [38, Theorem IV.43.3]) states that

|Bt| =
∫ t

0
sign(Bs) dBs + Lt =: Wt + Lt,

whereL is the local time at zero ofB andW is a Brownian motion. Recall that t 7→ Lt is a continuous non-
decreasing random process which increases only on the set { t : Bt = 0 }. Therefore by the Itô isometry
property, for any T ≥ ε,

E
[(∫ T

ε
∂xfn(t, |Bt|) d|B|t −

∫ T

ε
∂xf(t, |Bt|) d|B|t

)2]
≤ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|) dWt

)2
]

+ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)) dLt

)2
]

= 2 E

[ ∫ T

ε
(∂xfn − ∂xf)(t, |Bt|)2 dt

]
+ 2 E

[(∫ T

ε
(∂xfn − ∂xf)(t, 0) dLt

)2
]
.

Now use (F.17) to bound the right-hand side by

2(C ′′/n)2T + 2(C ′′/n)2 E
[
L2
T

]
≤ C ′′′n−2T,

where the last inequality uses Tanaka’s formula (and the fact that Wt is also a standard Brownian motion)
to bound

E
[
L2
T

]
= E

[
(|BT | −WT )2

]
≤ 2 E

[
|BT |2

]
+ 2 E

[
|WT |2

]
= 4 E

[
|BT |2

]
= O(T ).

The result follows.

F.6 Proof of Claim 5.12

Proof of Claim 5.12. Recall that h(α) = α
2 + M0(α2/2)√

2π erfi(α/
√

2)
. Hence,

h′(α) =
1

2
− α ·M1(α2/2)√

2π erfi(α/
√

2)
− exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)
(by Fact A.1)

= −exp(α2/2) ·M0(α2/2)

π erfi(α/
√

2)
(by Fact A.2(2)).
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This proves the �rst assertion.
Next, observe that exp(α2/2)

erfi(α/
√

2)
is positive for all α ∈ R. Hence, by Fact A.4, we have that h′(α) < 0 for

α ∈ (0, γ), h′(γ) = 0, and h′(α) > 0 for α ∈ (γ,∞).

F.7 Discussion on the statement of Theorem 5.3

In this paper, we use the version of Itô’s formula that appears in Remark 1 after Theorem IV.3.3 in [36].
It states that if f ∈ C1,2, X is a continuous semimartingale14 and A is a process with bounded variation
then

f(AT , XT )− f(A0, X0) =

∫ T

0
∂xf(At, Xt) dXt +

∫ T

0
∂tf(At, Xt) dAt

+
1

2

∫ T

0
∂xxf(At, Xt) d〈X, X 〉t.

(F.18)

In our setting, we take Xt = |Bt| and At = t. We now explain the notation 〈X, X 〉.
(1) For a continuous local martingaleM , 〈M, M 〉 is the unique increasing continuous process vanish-

ing at 0 such that M2 − 〈M, M 〉 is a martingale [36, Theorem IV.1.8].
(2) If X is a continuous semimartingale with M being the (continuous) local martingale part then
〈X, X 〉 = 〈M, M 〉 [36, De�nition IV.1.20].

Tanaka’s formula [38, Theorem IV.43.3] asserts that |Bt| = Wt + Lt where Wt is a Brownian Motion
and Lt is the local time of Bt at 0, which is an increasing, continuous, adapated process. Hence, |Bt| is a
semimartingale with 〈 |B|, |B| 〉t = 〈W, W 〉t = t. Plugging these into (F.18) gives

f(T, |BT |)− f(0, |B0|) =

∫ T

0
∂xf(t, |Bt|) d |Bt|+

∫ T

0

[
∂tf(t, |Bt|) + 1

2∂xxf(t, |Bt|)
]

dt,

which is what appears in Theorem 5.3.
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