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Basics

Definition (Groups)

A group is a set G with a binary operation · : G × G → G satisfying three properties:

1 (associativity) (a · b) · c = a · (b · c), a, b, c ∈ G

2 (identity) There exists e ∈ G such that a · e = e · a = a for all a ∈ G

3 (inverse) For every g ∈ G there exists g−1 ∈ G such that g · g−1 = g−1 · g = e.

A subset H ⊂ G is a subgroup if it is closed under the group operation of G .

If S ⊂ G is a subset, by ⟨S⟩ we denote the smallest subgroup containing S , this is the
subgroup generated by S .

Some notation

For every x , y in Γ we define [x , y ] = xyx−1y−1. In particular, for any two subgroups
Γ0, Γ1 we can define the commutator [Γ0, Γ1] as the smallest subgroup of G that
contains all [x , y ] for x ∈ Γ0, y ∈ Γ1.

We will also denote gh = hgh−1 for g , h ∈ G .
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Groups, basics

Let H ≤ G be a subgroup.

Definition

A left coset is a subset gH = {gh : h ∈ H}. The set of all left cosets wrt H will be
denoted by G/H.

A subgroup H ≤ G is normal if for every g ∈ G we have gHg−1 = H.

The set of all left cosets wrt H will be denoted by G/H, with |G/H| := [G : H] and
called the index of H in G .

Exercise

Show that if H is a normal subgroup of G then the set G/H can be equipped with an
operation g1H · g2H = (g1g2)H, making it into a group, called the quotient group.
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Group homomorphisms

Definition

A map f : (G , ·G ) → (H, ·H) is a group homomorphism if

f (g1 ·G g2) = f (g1) ·H f (g2), g1, g2

We say that

Kerf = {g ∈ G : f (g) = eH}, Imf = {h ∈ H : ∃g ∈ H : f (g) = h}.
f is an endomorphism if G = H.

f is an isomorphism if there exists a homomorphism f −1 : H → G such that
f ◦ f −1 = f −1 ◦ f = Id .

Theorem (First isomorphism theorem)

If f : G → H is a homomorphism, then Kerf ≤ G is a normal subgroup with G/Ker f
isomorphic to H.
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Group properties

Definition (Properites)

A group Γ is called

abelian if xy = yx for any x , y ∈ Γ

finitely generated if there exists a finite collection {g1, . . . gn} ⊂ Γ such that every
g ∈ Γ can be written as a finite product of gi ’s.

solvable if the sequence Γ(0) = Γ, Γ(n) = [Γ(n−1), Γ(n−1)] stabilizes

nilpotent if the sequence Γ(0) = Γ, Γ(n) = [Γ, Γ(n−1)] stabilizes

free if there exists a set S ⊂ Γ so that Γ is generated by S and there are no relations
between the generators (no non-trivial word can give identity)

In these notes I will restrict myself to finitely generated discrete groups (or compactly
generated locally compact groups) unless stated otherwise. The strongest results can be
restated for non f.g. groups but requires a bit more work.

Virtual notation

For a property P we say that a group Γ is virtually P if there exists a finite index
subgroup H ⊂ Γ such that P holds for H.
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Group actions

Let G be a group. Observe that for a given object X with some structures, the set of all
automorphisms X → X form a group Aut(X ).

Definition (Group actions)

Let X be a set which, possibly, has some additional structure. The correspondence
ρ : G → Aut(X ) defines a (left-)action if for every g , h ∈ G and hwe have

ρ(g)(ρ(h)(x)) = ρ(gh)(x).

In other words, ρ is a homomorphism. Notation: G ↷ X .

Remark. We will mostly consider left group action, omitting the direction in the future.

Definition

Given a group Γ, we say that two actions X and Y are isomorphic, if there exists a
morphism ρ : X → Y such that for every g the following diagram commutes:

X Y

X Y

f

g g

f
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Examples of groups

For n ≥ 1 we will denote the free group by Fn =
〈
a±1
i

〉
1≤i≤n

, with the multiplication

being concatenation with cancelling out inverses. For example,
a1 · a−1

2 · a3 · a3 = a1a
−1
2 a23, but a1 · a−1

1 · a2 = a2.

In general, every finitely generated group can be represented in terms of its
generators and relations between them:

Γ = ⟨a1, . . . an | e = w1 = w2 = w3 = . . . ⟩ ,

where wi are words in ak . If the set of relations can be made finite, Γ is called
finitely presented.

Let F be a field. Then we can define GLn(F) = invertible matrices with coefficients
in F. It is a group with respect to matrix multiplication.

Similarly, SLn(F) = {A ∈ GLn(F) : det(A) = 1} is a subgroup of GLn(F).
Consider Aff (F) = {ax + b : a ∈ F×, b ∈ F}. It is a group with respect to
composition.

Consider SLn(Z). Show that this is a group with respect to matrix multiplication
because the inverses are also integer-valued matrices.

In general, any (finite-dimensional) Lie group G contains many interesting discrete
subgroups, and we will discuss them much later!
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Operations on groups

Definition

Let G ,H be groups.

The direct product G × H is a group with the operation

(g1, h1)(g2, h2) = (g1g2, h1h2), g1, g2 ∈ G , h1, h2 ∈ H.

Suppose that H acts on G via φ : H → Aut(G), we define the semi-direct product
G ⋊φ H as follows:

(g1, h1)(g2, h2) = (g1φh1(g2), h1h2), g1, g2 ∈ G , h1, h2 ∈ H.

The free product G ∗ H is a group with the underlying set being finite words
{g1h1g2 . . . hngn} with the operation being concatenation, with no additional
relations imposed between elements of G ,H.
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More exotic groups

Let A,B be countable groups. We define the wreath product A ≀B as the semidirect
product

⊕
b∈B

A⋊ B, where B acts on the direct sum
⊕

B A as follows: for every

finitely supported function f : B → A and b, x ∈ B we have (bf )(x) := f (b−1x).

In particular, we will consider the lamplighter group Z/2Z ≀ Z.
Fix p, q ∈ N. The Baumslag-Solitar groups are a family of groups

BS(p, q) =
〈
a, b | bamb−1 = an

〉
.

The Basilica group B is a self-similar group acting on a rooted binary tree (with the
vertex set represented by binary numbers), generated by two elements a, b and with
multiplication defined by the following rule:

a(0x) = 0x , a(1x) = 1(bx),

b(0x) = 1x , b(1x) = 0(ax).

It is an non-finitely presented group of exponential growth.
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Examples of groups with some interesting actions

Let G = GLn(R). Then G acts on Rn via matrix multiplication. It can be restricted
to SLn(R) as well.
Consider G = PSL2(R) = SL2(R)/{±Id}. Then define the action of G on the upper
half-plane model {z ∈ C : Im(z) > 0} as follows:(

a b
c d

)
z =

az + b

cz + d
.

Same can be done via taking G = PSU(1, 1), where

SU(1, 1) =

{(
a b

b a

)
: |a|2 − |b|2 = 1

}
, with G = SU(1, 1)/{±Id}, and

considering the action on D = {|z | ≤ 1}(
a b

b a

)
z =

az + b

bz + a
.

Both actions are isomorphic to each other.

Consider Γ = BS(p, q). Then we can consider its matrix representation via

a 7→
(
1 1
0 1

)
, b 7→

(
q/p 0
0 1

)
.

It is not always a faithful representation (the map does not need to be injective!)
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Growth of groups

Let (G ,S) is a finitely generated group equipped with a finite generating set S .

Definition

The word distance |g |S of an element g ∈ G wrt S is the smallest n ≥ 0 such that
g = s1 . . . sn for some si ∈ S .

Exercise

Show that |g | is a norm on G : |e| = 0, |g | = |g−1| and |gh| ≤ |g |+ |h|.

We will denote B(x , r) := {g ∈ G : |x−1g |}, with the growth function br := |B(e, r)|.

Definition

Let f , g : (0,∞) → (0,∞) be two increasing functions. We say that f ≺ g if there exist
C , α > 0 so that g(n) ≤ Cf (αn), and we write f ∼ g if f ≺ g and g ≺ f .
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Gromov’s theorem

Definition

Given a finitely generated G , we say

G has polynomial growth if there exists k ∈ N and C > 0 such that bn ⪯ Cnk .

G has intermediate/subexponential growth if lim
n→∞

bn ⪰ nk for any k ∈ N and

bn ≺ exp(αn) for any α > 0.

G has exponential growth if there exists α > 0 so that bn ⪰ exp(αn).

Theorem

A finitely generated nilpotent group has polynomial growth.

Theorem (Gromov)

Every group of polynomial growth is virtually nilpotent. Moreover, the growth is exactly

polynomial, so there exists C > 0 and k ∈ N such that nk

C
≤ bn ≤ Cnk .
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Intermediate growth

Theorem (Grigorchuk)

There exists a group of intermediate growth.

Theorem (Shalom, Tao)

Let G be a finitely generated group with bn ≤ nlog(log n)c for some c > 0. Then G is
virtually nilpotent.

Grigorchuk’s gap conjecture

Let G be a finitely generated group with bn ≺ exp(
√
n). Then G is virtually nilpotent.

The gap between nlog(log n)c is exp(
√
n) is very big, but so far there are no known groups

with growth in this regime.
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Random walks on groups

Definition

A random walk on an (infinite) group Γ generated/induced by a probability measure µ
on Γ and the initial distribution µ0 is a sequence of random variables

Xn = g0g1 . . . gn,

where {gi}i≥1 are i.i.d µ-distributed Γ-valued random variables, with g0 ∼ µ0 and also
independent.

Unless stated otherwise, we will usually assume µ0 = δe .

If the support suppµ := {γ ∈ Γ : µ(γ) > 0} generates Γ as a semigroup, we call µ (and
the respective random walk) admissible/non-degenerate.

Our goal

We aim to understand the long-term behaviour of random walks by classifying the
stochastically significant and distinct events that can happen if we let the random walk
run for a long amount of time!
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Random walks on groups

Notation

We will refer to the pairs (Γ, µ), where Γ is a group equipped with a probability measure
µ as measured groups.

Definition

Let (Γ, µ) be a measured group equppied with an measurable action on a probability
space (X ,A, ν).

We say that ν is a µ-stationary measure if for every A ∈ A we have

ν(A) =

∫
Γ

ν(g−1(A))dµ(g) =

∫
Γ

g∗(ν)(A)dµ(g).

In this case we will say that (X , ν) is a (Γ, ν)-space.

Self-similarity

This definition should be familiar to harmonic analysis folks who study self-similar
measures!
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Examples: Zd

Consider Γ = Zd . Let µ be a probability measure which is uniformly distributed on
{±ei}1≤i≤d . Then, due to Polya’s theorem, the respective random walk on Γ will return
to 0 infinitely often for d = 1, 2 (recurrence) and the opposite will hold for d ≥ 3
(transience).

Definition

Let (Γ, µ) be a group equipped with a probability measure µ. A function f : Γ → C is
called µ-harmonic if f (g) =

∑
h µ(h)f (gh).

We will sometimes denote the space of bounded harmonic functions by Har∞(Γ, µ).
However, as we will see later, from the asymptotic standpoint, there is nothing
interesting going on, due to the Choquet-Deny theorem:

Theorem (Choquet-Deny theorem)

Let Γ be a countable abelian group. Then, for every non-degenerate measure µ on Γ we
have Har∞(Γ, µ) = C.

(proof by D. Blackwell for Zd .)
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Free group

If we consider µ to be a measure with weights 1/2n on all ai and a−1
i , then the word

length will decrease with probability 1/2n (if you have a word Xk = ai1 . . . aik , then only
Xka

−1
ik

has smaller length), so from the drift we see in the respective Markov chain, the
Xk will stabilize to an infinite word. Let us denote the space of all infinite words by ∂Fn.
The above argument shows that the pushforward (SN, µ⊗∞) → ∂Fn is well defined up to
measure zero, so we can denote the resulting pushforward measure by ν.

Definition

The measure ν on ∂Fn will be referred to as the hitting measure on the random walk.

Exercise

Let Γ = Fn, and µ is a uniform measure on the generators.

Express ν as an infinite product measure!

Show that ν is a µ-stationary measure with respect to the standard action of Fn on
∂Fn, so (∂Fn, ν) is, indeed, a (Fn, µ)-space.

Find an example of a non-constant f ∈ Har∞(Fn, µ).

(*) Do the same if µ is an arbitrary non-uniform measure with the same support.
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Poisson boundary: formal construction

Let Γ be a countable discrete group equipped with a measure µ and initial distribution µ0.

Definition

Denote the space of sample paths by ΓZ≥0 , with the coordinate-wise action of Γ via
multiplication from the left.

Let f : ΓZ≥0 → ΓZ≥0 be the map which is defined as follows,

f (g0, g1, g2, . . . ) = (g0, g0g1, g0g1g2 . . . ).

This will allow us to define the probability measure Pµ0 as the pushforward of the product
measure µ0

⊗
µ⊗N. We will denote the codomain and the measure by (Ω,Pµ0), with

P = Pδe .

Definition

For two sequences (gi ), (hi ), define the orbit equivalence relation as follows: (gi ) ∼ (hi )
iff there exists m > 0, n > 0 such that gm+k = hn+k for k > 0.
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Poisson boundary: formal definition
The naive idea is to take the space (Ω,P) and ”quotient out” the equivalent sequences
to make sure different asymptotic events are actually different. This is the idea behind
measurable quotients and partitions, and this turns out to be quite difficult to do
rigorously, done by Rokhlin a long time ago. We will just present the definition via the
universal property. Define the time shift map

T : Ω → Ω, (Tg)n = gn+1.

Definition

Let (Γ, µ) be a measured group, and consider the time shift map T : Ω → Ω,
(Tg)n = gn+1. Then there exists a unique up to a measurable isomorphism (Γ, µ)-space
(X , ν) equipped with a Γ-equivariant map bnd : Ω → X , such that for every
Γ-equivariant map between (Γ, µ)-spaces F : (Ω,P) → (Y , λ) with F ◦ T = F we have
the following commutative diagram:

(Ω,P) (Y , λ)

(X , ν)

F

bnd
∃!G

Notation: (X , ν) = (Ω,P)//T = Pois(Γ, µ).
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Poisson boundary: formal definition

We can modify the equivalence relation with a weaker one:

Definition

Two sequences (xn) and yn in Ω are tail equivalent if there exists N ≥ 0 such that
xn = yn for all n ≥ N.

We can repeat the same procedure to define the tail boundary of (Γ, µ).

Theorem (Deriennic, Kaimanovich)

The tail and Poisson boundaries coincide Pµ0 mod 0 for a given µ0 iff for any integers
k, d ≥ 0 and any λ ≺ µ0µk ∧ µ0µk+d we have

lim
n→∞

||λµn − λµn+d ||TV = 0.

Otherwise the above limit is > 2.
In particular, the Poisson and tail boundaries coincide for µ0 = δe .
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Poisson boundary: geometry

Ironically, contrary to the previous point, it is evident that the definition is just too hard
to work with, and we cannot compute Poisson boundaries by explicitly computing
measurable quotients. This is why one seeks to find geometric realizations of the
Poisson boundary of (Γ, µ).

Definition (Topological realization)

A (Γ, µ)-space (X , ν) is a µ-boundary if we have (gn)∗ν
wk∗−−→ δx P-a.s.

A µ-boundary is called maximal if it is not a non-trivial quotient of another
µ-boundary.

A topological realization of the Poisson boundary is a maximal µ-boundary

equipped with the map bnd : Ω → X , where (gn)∗ν
wk∗−−→ δbnd(gn).

Finding µ-boundaries is as easy as showing the stabilization of a feature related to the
group or its action on a nice space in a long run of a random walk. Yet, it is still a bit
difficult to show that a given µ-boundary is maximal using quotients.
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Poisson boundary: harmonic functions

Definition

A function f : (Γ, µ) → C is µ-harmonic if f (g) =
∑

h µ(h)f (gh).

Observe that, given a (Γ, µ)-space (X , ν) plus a function F ∈ L∞(X , ν), the following
integral always delivers you a bounded µ-harmonic function:

χF (g) =

∫
X

F (x)dg∗(ν)(x), g ∈ Γ.

Thus we define a correspondence L∞(X , µ) → Har∞(Γ, µ).

Definition

We say that a (Γ, µ)-space (X , ν) is an analytic realization of the Poisson boundary if
the above map is an isometric isomorphism; in other words, integration along (X , ν)
realizes all bounded harmonic functions.

This definition is nice because sometimes one can study bounded harmonic functions
directly, and one can show the triviality of the Poisson boundary by showing
non-existence of non-constant harmonic functions.
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Poisson boundary: harmonic functions

Theorem

Let (X , ν) be the Poisson boundary of a measured group (Γ, µ).

(X , ν) realizes all bounded µ-harmonic functions on Γ.

(X , ν) is a maximal µ-boundary.

Proof.

Let f be a bounded µ-harmonic function. The Martingale Convergence Theorem
ensures that f (ωn) converges for P-a.e. ω = (ωn), so f can be extended to a
T -invariant function on Ω (P-mod 0). By the universal property there has to exist a
function g on (X , ν) such that f (ω) = g(bnd(ω)). However, it is not difficult to
check ∫

X

g(γx)dν(x) =

∫
Ω

f (γω)dP(ω) =
∫
Ω

f (ω)dPγ(ω) = f (γ).

This is just the same argument, where we start with a continuous f ∈ C(X ) and
consider the µ-harmonic function ξ : γ 7→

∫
X
f (γξ)dν(ξ).
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Entropy criterion

Definition

Let (G , µ) be a measured group. Then we define the entropy of µ as
H(µ) = −

∑
g µ(g) log(µ(g)).

The following is a corollary of the Fekete’s lemma.

Theorem

If H(µ) <∞, then H(µ∗k) <∞ and the limit

h(µ) := lim
k→∞

H(µ∗k)

k

exists. This limit is called the asymptotic entropy of the random walk.

Theorem (Liuoville property + Entropy criterion)

Let µ be a non-degenerate measure on a discrete countable group Γ. TFAE:

The Poisson boundary of (G , µ) is trivial

There are no non-constant bounded µ-harmonic functions on G (Liuoville)

If H(µ) <∞ then above are equivalent to h = 0.
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Wait, but do we actually determine Poisson boundaries?
How do we show that a candidate µ-boundary is maximal?

Definition (Conditional RW)

Let (X , ν) be a µ-boundary of (Γ, µ), and fix a point ξ ∈ X . Define the conditional
random walk on Γ as a Markov process defined via

µξ
n(g) = µ∗n(g)

dg∗ν

dν
(ξ).

Definition (Relative entropy)

Let (X , ν) be a µ-boundary of (Γ, µ). The relative entropy at ξ ∈ X is the limit

hξ = lim
k→∞

H(µξ
n)

k
.

Theorem (Kaimanovich, Sobieczky ’12)

Let µ be a non-degenerate measure on a countable discrete G with H(µ) <∞. TFAE:

A µ-boundary (X , ν) is maximal.

hξ = 0 for ν-a.e ξ ∈ X.
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Geometric criteria for Poisson boundary

The above criterion serves as a foundation for practical criteria for maximality of
µ-boundaries.

Definition

Let (X , x0, d , µ) be a metric µ-boundary of (G , µ), with the action preserving distances.
In particular, we can identify G with a subgroup of Isom(X , d).

G < Isom(X , d) has exponentially bounded growth if there exists C > 0 such that

|{g ∈ G : d(x0, g .x0) ≤ R}| ≤ CeCR .

We say that µ has finite first moment if∫
Γ

d(x0, g .x0)dµ(g) <∞.

It is not difficult to see that finite support will imply finite first moment. We can also
replace d(x0, g .x0) with f (d(x0, g .x0)) to modify the moment condition for our needs
(common candidates are f = log, exp).
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Geometric criteria for Poisson boundary

Theorem (Ray approximation criterion)

Let:

Γ be a countable group

G < Isom(X , d) is an action of exponentially bounded growth

µ has finite first moment wrt d

(B, ν) is a µ-boundary.

Assume that there exist maps πn : B → G such that

lim
n→∞

d(Xn, πn(bnd(X∞)))

n
= 0.

Then (B, ν) is maximal.

This criterion works well if we can somehow show that a random walks tracks paths
which diverge to infinity – then we can just take πn to be the n-th point in our path.
Moreover, there are more approximation criteria, which we are not going to talk about in
much detail.
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Geometric criteria for Poisson boundary

To formulate the strip criterion we need to consider the backward random walk, with
µ̃(g) = µ(g−1).

Theorem (Strip approximation criterion)

Let:

Γ be a countable group

G < Isom(X , d) is an action of exponentially bounded growth

µ has finite first moment wrt d

(B,ν−) and (B+, ν+) are a µ̃-boundary and µ-boundary respectively.

Assume that there exists a measurable Γ-equivariant map S assigning to pairs of points
(b−, b+) ∈ B− × B+ non-empty “strips” S(b−, b+) ⊂ Γ such that for all g ∈ Γ and
ν− ⊗ ν+-a.e (b−, b+) ∈ B− × B+ we have

1

n
log |S(b−, b+)g ∩ B(e, d(e, xn))|

P−→ 0,

with respect to x = (xn)n≥0, then (B+, ν+) is maximal.
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Triviality of the Poisson boundary

The problem of classification of measured groups with trivial Poisson boundary is
extremely difficult, but here is the state of the art.

1 (Blackwell, ’55) There are no non-constant bounded µ-harmonic functions on
Γ = Zd for any measure µ.

2 (Choquet, Deny ’60) Same but for any abelian Γ.

3 (Dynkin, Maljutov, ’61) Same but for any virtually nilpotent Γ.

4 (Furstenberg ’60s) The Poisson boundary of a non-amenable group Γ is always
non-trivial for a non-degenerate µ.

5 (Kaimanovich-Vershik, ’83) There exists an amenable group of exponential growth
(lamplighter Z2 ≀ Z) and a finitely supported symmetric µ with trivial Poisson
boundary.

6 (Kaimanovich-Vershik, Rosenblatt, ’83) Every amenable group admits a measure µ
with trivial Poisson boundary.

7 (Frisch, Hartman, Tamuz, Ferdowsi, ’19) The reverse is true – if Γ is a finitely
generated group so that its Poisson boundary is trivial for any non-degenerate µ,
then Γ is virtually nilpotent.
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Triviality of the Poisson boundary

Exercise

Prove that the Poisson boundary of a recurrent random walk is trivial. Hint:
martingale convergence theorem.

Use the entropy criterion to show that any group Γ of subexponential growth has
trivial Poisson boundary with respect to any finitely supported non-degenerate µ.

Exercise (Proof of the Choquet-Deny theorem)

Let Γ be an abelian group and let µ be a non-degenerate measure.

1 Consider H = Har [0,1](Γ, µ) to be a collection of bounded µ-harmonic functions with
range in [0, 1]. Show that this is a Γ-invariant compact convex subset of Har∞(Γ, µ).

2 Suppose that f ∈ H is extremal, so it cannot be a non-trivial convex combination of
harmonic functions. Show that f is constant.

3 Conclude via Krein-Milman theorem and prove the Choquet-Deny’s theorem.
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Warning!

Warning

Due to [Ershler] and [Frisch-Chawla] we know that there are measures on groups of
subexponential growth with non-trivial Poisson boundary.

Theorem (Erschler, ’04)

There exists a measured group (Γ, µ), such that

Γ is a group of subexponential growth with growth faster than exp(nα) for any
α ∈ (0, 1)

The measure µ is a symmetric non-degenerate measure with finite entropy

There is a non-constant bounded µ-harmonic function on Γ, so the Poisson
boundary of (Γ, µ) is non-trivial.
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Free group

The free group is, arguably, one of the simplest groups one could study where the
Poisson boundary is non-trivial. Before we have shown that if we take Γ = Fn and µ to
be uniform on S = {a±1

i }, then ∂Fn is a µ-boundary.

(Furstenberg, ’60s) For any non-degenerate µ and n > 1 the respective random walk
on Fn converges to ∂Fn, thus obtaining a µ-boundary (∂Fn, ν)

(Dynkin-Maljutov ’61) For any µ supported on the standard generators (∂Fn, ν) is
the Poisson boundary.

(Derrienic ’63) Same but for any finitely supported µ.

(Kaimanovich ’00) Same but for any non-degenerate µ with finite entropy + finite
logarithmic moment, using ray or strip approx. criteria.

(Forghani-Tiozzo ’19) Same but for finite entropy or finite logarithmic moment

(Chawla-Frisch ’25+) An example of µτ for which (∂Fn, ν) is not the Poisson
boundary.

Exercise

Follow up on the previous exercise and establish using an approximation criterion
that (∂Fn, ν) is the Poisson boundary for uniform µ.
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Hyperbolic spaces and groups

Definition

A metric space (X , d) is geodesic if for every x , y ∈ X there exists an isometry
i : [a, b] → X with i(a) = x , i(b) = y .

(thin triangles) A geodesic metric space (X , d) is called (Gromov) δ-hyperbolic if for
every triple x , y , z ∈ X we have

[x , z] ⊆ Bδ([x , y ] ∪ [y , z])

for every choice of the respective geodesics.

There are many nice definitions for hyperbolicity which rely on some “negative
curvature” feature.

Examples/exercises

Compact spaces are δ-hyperbolic.

Trees are δ-hyperbolic.

Free products of cyclic groups are δ-hyperbolic.

The hyperbolic space H2 is δ-hyperbolic, with δ = log(3).

Rn is hyperbolic only for n = 1.
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Hyperbolic groups

Theorem

A finitely generated group Γ is δ-hyperbolic if its Cayley graph with respect to a choice of
a generating set S is δ-hyperbolic wrt word metric.

Exercise

Recall that f : (X , dX ) → (Y , dY ) is a quasi-isometry if we have

dX (x , y)

C
− A ≤ dY (f (x), f (y)) ≤ CdX (x , y) + A.

Show that hyperbolicity is preserved under quasi-isometries.

Use this to show that δ-hyperbolicity does not depend on the choice of a generating
set, so it is a true group property.

Show that the free groups are δ-hyperbolic (what is δ?), and any group which
contains Z2 cannot be δ-hyperbolic for any δ > 0.
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Milnor-Svarc lemma

Definition

An action of a group Γ on a proper metric space (X , d) via isometries is

cocompact if there is a compact set K ⊂ X so that X =
⋃

g∈Γ gK .

totally discontinuous if for every x ∈ X and open nbhd x ∈ U the set of g ∈ Γ such
that U ∩ gU ̸= ∅ is finite.

geometric if it is cocompact and totally discontinuous.

Theorem (Milnor-Svarc lemma)

Let Γ be a group which admits a geometric action on a proper metric space (X , d). Then
Γ is finitely generated, with the map g 7→ gx0 being a quasi-isometry with respect to the
word distance defined by said generating set. In particular, if (X , d) is hyperbolic, then so
is Γ.

This theorem allows us to effortlessly show hyperbolicity of groups which act on
hyperbolic spaces.
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More examples of hyperbolic groups

Definition

Let G be a locally compact group. We will say that a subgroup Γ ≤ G is a lattice, if the
quotient space Γ \ G admits a finite G -invariant Borel measure.
We will say that Γ is a cocompact lattice if Γ \ G is a compact space.

On the notation + exercise

Consider G = PSL2(R). Consider the subgroup K =

(
cos(λ) − sin(λ)
sin(λ) cos(λ)

)
.

Show that the Riemannian structure on the quotient G/K defines a symmetric space
isomorphic to H2.

Show that PSL2(Z) ≤ PSL2(R) is a lattice

Show that a lattice Γ ≤ G is cocompact if and only if the quotient Γ\G/K is
compact if and only if there is a compact fundamental domain with respect to the
action of Γ on G/K .

Show that any cocompact lattice in PSL2(R) is a hyperbolic group.

Show that SL2(Z) is lattice but not cocompact, yet it is a hyperbolic group.

(*) Show that SL3(Z) is not a hyperbolic group.
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Gromov boundary

Let (X , d) be a hyperbolic space.

Definition (Gromov product)

For x , y , z ∈ X define

(x , y)z =
d(x , z) + d(y , z)− d(x , y)

2
.

Definition (Gromov/geodesic boundary)

Fix x0 ∈ X . Define the Gromov boundary ∂x0X as a set of asymptotic equivalence
classes of geodesic rays γ : [0,∞) → X with γ(0) = x0, with γ ∼ γ′ if
supt d(γ(t), γ

′(t)) <∞.
The topology on ∂X is defined using the basis of neighbourhoods

V (p, r) = {q ∈ ∂x0X | ∃γ1 ∼ p, γ2 ∼ q, γ1(0) = γ2(0) = x , lim inf
t→∞

(γ1(t), γ2(t))x ≥ r}

around each point p ∈ ∂X .

The Gromov boundary does not depend on the choice of x0, moreover, both ∂X and
X ∪ ∂X are compact.
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Gromov boundary: examples

The Gromov boundary of R consists of just two points, which correspond to ±∞.

The Gromov boundary of a tree T can be identified with its space of ends ∂T .

Any quasi-isometry induces a homeomorphism between the Gromov boundaries. So,
as long as a hyperbolic group Γ acts geometrically on a hyperbolic space X , the
Gromov boundaries of Γ and X are the same.

In general, we have the following theorem.

Theorem

Let Γ be a hyperbolic group. Exactly one of the following occurs.

Γ is finite and ∂Γ is empty

Γ is virtually cyclic and |∂Γ| = 2

Γ contains a subgroup isomorphic to F2 and ∂Γ is an infinite perfect compact
metrizable space.

Remark. This theorem shows that any non-virtually cyclic hyperbolic group is
non-amenable!
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Random walks on hyperbolic groups

The following theorem is a powerful result which establishes the Poisson boundary for
hyperbolic groups.

Theorem (Kaimanovich ’01)

Let (Γ, µ) be a hyperbolic group equipped with a non-degenerate µ with the finite
entropy and finite first logarithmic moment.

Then the respective random walk almost surely converges to the Gromov boundary
∂Γ, so (∂Γ, ν) is a µ-boundary with respect to the hitting distribution ν.

Moreover, if µ has finite entropy and finite logarithmic moment, (∂Γ, ν) is maximal,
so it is a model for the Poisson boundary.

The proof is not super difficult once you have ray/strip approximation criterion at your
disposal. The recent paper by Chawla, Frisch, Forghani, Tiozzo removes the logarithmic
moment condition using a new approximation criterion but finite entropy turns out to be
strictly necessary.
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Strengthening of the previous theorem

We would like to also understand random walks on groups which might act on nice
hyperbolic spaces but not necessarily in a geometric fashion.

Example

Consider Γ = PSL2(Z) acting on H2 = {Im(z) > 0}. Then it is well-known that the
fundamental domain for this action has a cusp, so the action cannot be cocompact.

Thankfully, we have a strengthening of the above theorem by Maher-Tiozzo.

Theorem (Maher-Tiozzo ’18)

Let (X , d) be a separable proper hyperbolic space, and consider Γ ≤ Isom(X ).

If µ is a non-degenerate measure on Γ, then the random walk almost surely
converges to ∂X.

If, in addition, µ has a finite entropy + finite logarithmic moment wrt the distance
on Γ induced by d + Γ is itself a hyperbolic group, then (∂X , ν) is the maximal
µ-boundary.
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Example/exercise: random walks on PSL2(Z)

Let us study random walks on Γ = PSL2(Z).

Let S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. Show that [S ] and [T ] generate Γ.

(*) Show that S and ST freely generate Γ, and use this to establish an isomorphism
Γ ≃ Z2 ∗ Z3. Hint: can be done directly by studying the relations in Γ, cleverly apply
the ping-pong lemma or use the Bass-Serre theory.

Make sure that both [Kai] and [MT] apply to (Γ, µ) for any finitely supported µ. In
particular, the previous discussion implies that there are two distinct geometric
realizations for the Poisson boundary of Γ:

1 If we consider the isomorphism Γ = Z2 ∗ Z3, then we can identify the Gromov
boundary ∂Γ of Γ with the Cantor-like space of infinite words {a, b, b−1}N

2 A more interesting realization is obtained by using the action on H2, so that we can
identify the Poisson boundary with RP1 = R ∪ {∞} ∼= S1.

Petr Kosenko A minicourse on random walks on groups October 1, 2025 41 / 85



Higher rank Lie groups and lattices

Remark. The following assumes intricate knowledge of Lie groups, I will provide a
concrete example in the following slides.

Definition

Let G ≤ GLn(R) be a closed subgroup.

G is connected if G is connected as a topological space.

G is semi-simple if G has no non-trivial closed connected abelian normal subgroups.

The (real) rank of G is the dimension of the maximal abelian subgroup (Cartan
subgroup) it contains.

Consider a connected semi-simple real Lie group of real rank ≥ 2 with finite center.
Consider its maximal compact subgroup K , and take S = G/K to be the corresponding
Riemannian symmetric space with the origin o ≃ K .

Theorem (Iwasawa decomposition)

Any connected semi-simple Lie semigroup G can be decomposed as a product G = KAN,
where K is the maximal compact subgroup, A is the Cartan subgroup, and N is a
nilpotent subgroup.
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Higher rank Lie groups and lattices, cont.

Fix the dominant Weyl chamber A+ in the Cartan Lie algebra A of the Cartan
subgroup A, and denote by A+

1 the intersection of A+ with the unit sphere wrt the
Killing form ⟨·, ·⟩.
The exponential map is just the matrix exponential exp(A) =

∑
n

An

n!
.

Any point x ∈ S can be represented as x = k(exp a)o, where k ∈ K , a := r(x) ∈ A+

is the uniquely determined radial part of x . Then the Riemannian distance satisfies
dist(o, x) := ||r(x)||.
In a similar fashion to the Gromov boundary, define the visual compactification ∂S
to be a set of equivalence classes of geodesic rays from o equipped with the cone

topology. For any a ∈ A+
1 denote ∂aS = {t 7→ g exp(ta)o : g ∈ G}. These are

exactly the orbits of the G -action on ∂S , and we can identify each orbit
corresponding to the interior vectors α ∈ A+

1 with the Furstenberg boundary
B = G/P, where P is the minimal parabolic subgroup of G .

Petr Kosenko A minicourse on random walks on groups October 1, 2025 43 / 85



A concrete and most useful example

Let G = SLn(R) for n ≥ 3.

G is a connected semi-simple Lie group with finite center of real rank n − 1.

In the Iwasawa decomposition we can choose K = SOn, A = diagonal matrices, N =
upper triangular matrices with 1-s on the main diagonal, P = all upper triangular
matrices.

Thus we can identify

A = {α = (α1, . . . , αn) ∈ Rd :
∑

αi = 0} (1)

A+ = {α ∈ A : α1 > α2 > · · · > αn} (2)

A+
1 = {α ∈ A+ : ||α||2 = 1}. (3)

In particular, if x is a diagonalizable matrix, then r(x) is just x written wrt the
eigenbasis of x .

If α ∈ A+
1 , then we can identify the visual boundary with the space of full flags

V = {Vi}, {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 = Vn = Rd .

For all non-interior roots α the flag space will partially degenerate.
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Oseledets’ multiplicative theorem

Theorem (Oseledets, Kaimanovich)

Let (Γ, µ) be a discrete measured subgroup of a connected semi-simple Lie group G with
finite center. Then there exists a vector λ(µ) ∈ A+ (the Lyapunov vector) such that

log(r(xn))

n
→ λ

for P-a.e sample path x = (xn) ∈ Ω. Moreover, for P-a.e sample path x = (xn) ∈ Ω there
exists a uniquely determined positive definite symmetric matrix g = g(x) = k(expλ)k−1,
k ∈ K such that

log ||g−nxn|| = o(n).
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Random walks on higher rank lattices

As a corollary from the above theorem, we get the following identification result.

Theorem

Let Γ ⊂ G be a discrete subgroup of a connected semisimple Lie group G with finite
center so that µ has the finite first moment.

If the Lyapunov vector λ(µ) = 0, then the Poisson boundary of (Γ, µ) is trivial.

If the Lyapunov vector λ(µ) ̸= 0, then the respective random walk converges to the
visual boundary G/P of the symmetric space G/K, and (G/P, ν) is the maximal
µ-boundary wrt the hitting measure.

As discrete subgroups of higher-rank Lie groups tend to be non-hyperbolic, only this
result can guarantee the identification of the Poisson boundary.

Exercise

Verify that for G = SL2(R) and Γ hyperbolic the above theorem is consistent with the
previous results.

For Zariski-dense Γ the above theorem was strengthened by
[Chwala-Forghani-Frisch-Tiozzo] a few weeks ago, requiring only finite entropy condition.
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Random walks on rational affine group: preliminaries

Definition

Let a ∈ Q, and let P ⊂ N denote the set of prime numbers. For any p ∈ P define
|a|p = p−k to be the p-adic norm of a – the maximal k ∈ Z so that a = pk r where p
divides neither numerator or denominator of r .

Definition

Fix a prime number p. Define the p-adic integers Zp as Z equipped with the ultrametric
defined by the dp(x , y) = |x − y |p. In a similar way, we define Qp as the Q equipped with
the same ultrametric.

Exercise

Show that every p-adic rational x ∈ Qp can be uniquely written as a converging series

x =
∞∑
k

ajp
j

for some k ≤ 0, with x being a p-adic integer iff k ≥ 0.
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Random walks on rational affine group: result

The following result belongs to Sara Broffeiro, and is quite interesting from the
standpoint of arithmetic dynamics.

Theorem (Broffeiro, ’06)

Let Γ = Aff (Q), and consider a probability measure µ which is not supported on an
abelian subgroup, satisfying the moment condition∫

Aff (Q)

(∑
p∈P

| ln |a|p|+
∑

p∈P∪∞

ln+ |b|p

)
dµ(a, b) <∞.

Denoting the p-drift

ϕp =

∫
Aff (Q)

ln |a|pdµ(a, b),

the random walk P-a.s. converges to the associated adele space B∗ =
∏

p∈P∪∞,ϕp<0 Qp

with the hitting measure ν. Moreover, ν is the only µ-stationary measure in B∗, and
(B∗, ν) is the Poisson boundary of (Γ, µ).
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Examples: affine + p-adic self-similar measures

Fix a prime p. Consider µ = (x 7→ px︸ ︷︷ ︸
1/p

, . . . , x 7→ px + (p − 1)︸ ︷︷ ︸
1/p

). Show that

Pois(Γ, µ) = (Qp,Haar)

Consider µ = 1
2
δx 7→3x +

1
2
δx 7→3x+2. Find the hitting measure on Q3 and compute its

Hausdorff dimension.
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Random walks on the lamplighter group

Theorem (Kaimanovich)

Let Γ = Z/2Z ≀ Z. Consider µ to be a symmetric measure supported on the set of
generators {L,R, S}, where L,R move the lamplighter left/right, and S switches the
lamp. Then the Poisson boundary of (Γ, µ) is trivial.

There are at least two ways to approach this nice theorem:

Exercise

Use strong large deviation estimates to show that the lamplighter’s distance from
the origin at time n cannot exceed n3/4 with high probability, then use this to show
that the entropy grows sublinearly.

A more elegant way is to find coupled random walks starting from any two distinct
lamp configurations: show that one can first match the positions of the lamplighter,
then use recurrence to eventually match the lamp states as well.
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Random walks on wreath products

It is very important that the projection of the random walk to the base group is recurrent
for triviality of the Poisson boundary: as one suspects, transience guarantees the lamp
stabilization, yielding at the very least a µ-boundary!

Theorem (Frisch-Silva, ’23+)

Consider two countable groups A,B, and a probability measure on A ≀ B with finite
entropy, such that the lamp configurations stabilize almost surely. Denote the Poisson
boundary of the induced random walk on B by (∂B, νB). Then AB × ∂B with the
corresponding hitting measure ν is a model for the Poisson boundary.
Moreover, if µ is non-degenerate, and has finite first moment wrt a word distance, then
the Poisson boundary can be modelled by lamp configurations AB alone.

We provide the strongest theorem available, for complete history I will refer to the
introduction of this paper.

The first half does not require non-degeneracy!

It is still open if we can recover the trajectory of the lamplighter without the finite
first moment condition.
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Kesten’s amenability criterion

Definition (Amenability)

Let Γ be a discrete group. Γ is amenable if it admits a finite left-invariant mean.

This notion admits many equivalent characterizations, see
https://arxiv.org/abs/1705.04091. We are interested in a nice random walk-related
criterion for amenability due to Kesten.

Definition

Define the spectral radius of a random walk as the limit

ρµ = lim sup
n→∞

(µ∗n(x))1/n,

which exists and is the same for all x ∈ Γ.

Theorem (Kesten ’59)

Let Γ be a discrete group. TFAE:

Γ is amenable

The return probability µ∗n(e, e) has subexponential decay.

For any symmetric non-degenerate µ on Γ we have ρµ = 1.
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Corollaries of Kesten’s theorem

Usually this theorem is used to groups that we already know to be non-amenable (free,
hyperbolic...) to show that the spectral radius is strictly less than 1, and then use this
fact to get immediate estimates on the return probabilities.

Exercise

Compute the spectral radius of the simple random walk on Fn.

In a certain sense, the free group is the only group for which we really can compute the
spectral radius numerically. The most studied groups in this regard seem to be surface
groups Γg = π1(Sg ) = ⟨ai , bi | [a1, b1] . . . [ag , bg ] = e⟩ for Sg = orientable compact
Riemann surface of genus ≥ 2:

Known results

Let g = 2, and consider the simple RW on π1(Sg ).

(Nagnibeda ’97) ρ ≤ 0.662816

(Bartholdi ’04) ρ ≥ 0.662421

(Gouezel ’15) ρ ≥ 0.662772
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Liouville property and amenability

Lemma

Let (Γ, µ) be a measured group. Then the Poisson boundary of (Γ, µ) is trivial iff for

every γ ∈ suppµ and for P-a.e. ω = (ωn) we have limn
µ∗(n−1)(γ−1ωn)

µn(ωn)
= 1.

Proof via entropy criterion + Kolmogorov 0-1 law (essentially proving the trviality of the
tail boundary)

Theorem (Kaimanovich-Vershik)

Let Γ be a group equipped with an aperiodic non-degenerate measure µ. TFAE:

The Poisson boundary of (Γ, µ) is trivial.

The measures µn converge weakly to a left-invariant mean on Γ.

Corollary

Let (Γ, µ) be a non-amenable group with a non-degenerate µ. Then the Poisson
boundary of (Γ, µ) is non-trivial.
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Proof of the theorem
(⇒) By aperiodicity WLOG we assume µ(e) > 0. Therefore,

lim
n

µ∗(n−1)(γ−1ωn)

µ∗n(ωn)
= lim

n

µ∗(n−1)(γ−1ωn)

µ∗(n−1)(ωn)
= lim

n

µ∗n(γ−1ωn)

µ∗n(ωn)
= 1,

so

µ∗n{x ∈ Γ :

∣∣∣∣1− µ∗n(γ−1ωn)

µ∗n(ωn)

∣∣∣∣ > ε} → 0

for all γ ∈ suppµ and ε > 0. Non-degeneracy of µ implies the claim.

(⇐) Assume that f is a bounded µ-harmonic function. Then for every x ∈ Γ and
n > 0 we have by definition

f (x) =
∑
h

f (h)µ∗n(x−1h),

and
f (e) =

∑
h

f (h)µ∗n(h).

Subtracting the two formulas, we get

f (x)− f (e) =
∑
h

f (h)(µ∗n(x−1h)− µ∗n(h)).

By weak convergence of the convolutions, the RHS converges to 0, so f (x) = f (e)
for every x ∈ Γ and f is a constant function.
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Self-similar groups

Definition

Let X be a finite set. Denote the rooted tree with vertices encoded by words in the
alphabet X by X ∗, denoting the root by the empty word ∅. So, w1 is connected to w2 if
there exists x ∈ X so that w1 = w2x or w2 = w1x .

Denote the group of graph automorphisms of X ∗ by Aut(X ∗).

Definition

We say that Γ ≤ Aut(X ∗) is a self-similar group if for every g ∈ Γ and v ∈ X ∗ the
restriction of g to the subtree rooted at v still belongs to Γ.

Sometimes it is useful to consider the wreath recursion map:

ψ : Γ → Sym(X ) ≀ Γ, ψ(g) = (σg , g),

where σg (x) := g(x). Keep in mind that defining the set of rewriting rules is the same as
embedding Γ as a subgroup of Sym(X ) ≀ Aut(X ∗).
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Examples of self-similar groups

Take X = {0, 1} and define Γ via the rule

a(0w) = 1w , a(1w) = 0(aw).

Check that a has infinite order, so Γ = Z.
Take X = {0, 1} and define Γ via rules

a(0w) = 1w , a(1w) = 0w ,

b(0w) = 0(aw), b(1w) = 1(cw),

c(0w) = 0(aw), c(1w) = 1(dw),

d(0w) = 0w , d(1w) = 1(bw).

Not an exercise

The resulting group, called the Grigorchuk group, is the first known example of an
infinite group (*) of intermediate growth (**).
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More examples/exercises

Take X = {0, 1} and define Γ via the rules

a(0w) = 1(bw), a(1w) = 0(aw),

b(0w) = 0(bw), b(1w) = 1(aw).

Exercise

Identify X = Z/2Z = F2. Show that

(b−1a)(w1w2w3 · · · ) = (w1 + 1)w2w3 . . . ,

b(w1w2w3 . . . ) = w1(w2 + w1)(w3 + w2) . . .

Now identify X ∗ with the formal power series x =
∑

xkt
k ∈ F2[[t]]. Show that Γ is

isomorphic to the group generated by transformations

φσ(F (t)) = F (t) + 1, φb(F (t)) = (1 + t)F (t).

Finally, use the above identification to show that Γ ≃ (Z/2Z) ≀ Z.
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Bartholdi-Virag’s treatment of Basilica group

Basilica group B

a(0x) = 0x , a(1x) = 1(bx),

b(0x) = 1x , b(1x) = 0(ax).

It is outright baffling that it took so long to discover the reverse application of Kesten’s
theorem!

Theorem (Bartholdi-Virag, ’05)

There exists a symmetric non-degenerate random walk on the Basilica group with
subexponential decay of the return probabilities. In particular, the Basilica group is
amenable.

To this day it is essentially the only way to prove its amenability.

Exercise

(**) Construct an explicit Folner sequence on the Basilica group.

Their method turned out to be extremely flexible, allowing us to show amenability for a
large class of self-similar groups, but the complete classification of amenable self-similar
groups is still far away.
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Münchhausen’s trick

Consider the matrix “representation” of the Basilica group:

a =

(
b 0
0 1

)
, b =

(
0 a
1 0

)
.

Let µ = α(δa + δa−1) + β(δb + δb−1) with 2α+ 2β = 1. Define

Mµ = α(a+ a−1) + β(b + b−1) =

(
p00 p01
p10 p11

)
=

(
α(b + b−1) β(1 + α)
β(1 + a−1) 2α

)
.

Think of µxy as the term that fully accounts for first digit switch from x to y . It is not
difficult to see that if we start from (e, 0), at some point the random walk will return to
(g , 0). The induced random walk will be given by the measure

µ0 = µ00 + µ01µ10︸ ︷︷ ︸
07→17→0

+µ01µ11µ10︸ ︷︷ ︸
07→17→17→0

+ · · · = µ00 + µ01(1− µ11)
−1µ10.
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The above argument by Kaimanovich serves as an elegant restatement of the proof of
amenability of B by Bartholdi-Virag.

Theorem (Kaimanovich ’05)

Let Γ be the Basilica group and let α, β define the probability measure
µ = α(δa + δa−1) + β(δb + δb−1).

Check that µ0 = β + β
2
(a+ a−1) + α(b + b−1).

Prove that h(µ) ≤ h(µ0) for any choice of weights α, β.

Choose weights in such a way that 2α2 = β2, so that

µ0 = β + (1− β)µ.

Show that h(µ) ≤ h(µ0) = (1− β)h(µ). As β ∈ (0, 1), this implies h(µ) = 0.

Thus Γ is amenable.
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Contracting self-similar groups

Definition

A self-similar group Γ acting on a tree T is called contracting if there exists a finite set
N ⊂ Γ so that for every g ∈ Γ there exists k ≥ 1 such that g [v ] ∈ N for all vertices at a
height ≥ k.

A big objective is to understand the following conjecture:

Conjecture

All contracting self-similar groups are amenable.

The idea of constructing a self-similar walk to show subexponential decay of return
probabilites/sublinear entropy turned out to be highly successful but there are contracting
self-similar groups which are not Liouville for some finitely supported random walks.
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Martin boundary

Definition

Given a measured group (Γ, µ),

We define the Green function as

Gµ(x , y) =
∑
k≥0

µ∗k(x−1y).

We define the Martin kernel as

Kµ(x , y) :=
G(x , y)

G(e, y)
.

Simple exercise

Show that transience of a random walk on a group is equivalent to Gµ(e, e) <∞.

Definition

The Martin compactification of a measured group (Γ, µ) is the closure of the functions
Kµ(·, y) in the continuous functions C (Γ) wrt pointwise convergence. We define the
Martin boundary as ∂M(Γ) = {Kµ(·, y)} \ {Kµ(·, y)}.

Unlike the Poisson boundary, this is a true topological invariant of (Γ, µ).
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Martin representation theorem

Below we will assume that the random walk is transient. Martin boundary to the Poisson
boundary is like positive harmonic functions are to bounded ones – but the representation
theorem is a bit more tricky to formulate.

A subtle abuse of notation

If ξ ∈ ∂MΓ, then, by definition, it is obtained as the pointwise limit of some sequence of
functions K (x , yn), we will denote ξ(x) := Kµ(x , ξ), thus extending the Martin kernel to
Γ× ∂MΓ.

Theorem (Choquet-Martin representation)

Let (Γ, µ) be a measured group with Gµ(e, e) <∞. Then for every positive µ-harmonic
function f there exists a unique positive finite Borel measure νf on ∂µΓ so that

f (x) =

∫
Kµ(x , ξ)dνf (ξ).

The measure ν1 which represents the constant function f ≡ 1 is called the harmonic
measure.
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Why you should not study Martin boundaries

Martin boundaries are tricky to identify because we don’t have the same handy
entropy criteria.

Somehow it does not carry the same asymptotic information about the random walk
as the Poisson boundary does – the Martin representation formula is much less
elegant and it does not represent positive functions in an equally constructive way
compared to the Poisson formula. However, usually the points in ∂MΓ correspond
1-1 to minimal positive harmonic functions

(Cartwright-Sawyer) Long before Chawla-Frisch result, it has been known that a
stopping time modification of a simple RW on a free group can change the Martin
boundary. In general, the way the Green function depends on the measure is very
much not understood even for very nice groups and measure classes.

Even describing the Martin boundary for nice random walks on Zd requires some
heavy machinery, see results of Ney-Spitzer.

Finally, the Martin boundary lacks the “continuous-to-discrete” principle that works
extremely well for Poisson boundaries – we cannot exploit geometric actions to
compute the Martin boundary.
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In case previous warning did not work!

Let us outline known results and methods one can use to identify the Martin boundary.

Definition

A positive µ-harmonic function h is minimal if v ≤ h on Γ implies h = cv .

The Martin representation formula implies that if f is a minimal µ-harmonic
function, then νf has to be a δ-measure, so f = cKξ for some c > 0 and ξ ∈ ∂MΓ.

The key idea that for many nice groups we can show the reverse: every point in the
Martin boundary corresponds to a minimal function! Combined with the
Ancona-type inequality, we can actually show that the Martin boundary is
homeomorphic to a geometric boundary.

Petr Kosenko A minicourse on random walks on groups October 1, 2025 66 / 85



Ancona’s inequality

Let us show the original inequality, proved by Ancona and with the argument fixed and
upgraded by Blachere-Haissinsky-Mathieu. Let us denote

Fµ(x , y) =
Gµ(x , y)

Gµ(e, e)
.

Theorem (Ancona)

Let (Γ, µ) be a non-elementary hyperbolic group equipped with a symmetric
non-degerenerate finitely supported (with finite exponential moment wrt word metric)
measure µ. Then there exists a constant C > 0 such that

Fµ(x , z)Fµ(z , y) ≤ Fµ(x , y) ≤ CFµ(x , z)Fµ(z , y)

for any z on a geodesic segment [x , y ] in the Cayley graph.

This theorem essentially, shows convergence via geodesics to the Martin boundary should
be the same as in the Gromov boundary.
Stronger versions of Ancona’s inequality work with weaker ”negative curvature”
assumptions (relative hyperbolicity, acylindrically hyperbolic...)
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Martin boundaries for measures with bad moments

Theorem (Gouezel, ’15)

Let Γ be a non-amenable finitely presented Γ and a sequence yn escaping to infinity in Γ.
There exists a symmetric non-degenerate µ on Γ so that yn does not converge in the
Martin boundary.

The naive idea is to put weights with bad heavy tails on µ, so that is becomes “cheaper”
for a random walk to make a big jump compared to a sequence of shorter jumps. This
theorem prohibits a nice description of the Martin boundary for measures with bad
moments, and every geometric argument which can be used to establish the Martin
boundary has to operate in the exponential moment regime.
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On a theorem of Chawla-Frisch

Question

Is it possible to find a group Γ and a space X so that for every probability measure µ on
Γ there exists a probability measure ν on X so that the random walk P-a.s. converges to
X and (X , ν) is a maximal µ-boundary?

In other words, can Poisson boundary be a pure group invariant? Turns out that the
answer is no!

Theorem (Chawla-Frisch, ’25+)

There exists a non-degenerate probability measure µ on F2, which satisfies the following.
Denote the maximal µ-boundary of (F2, µ) by (X , ν). Then there exists a randomized
stopping time τ , so that Har∞(F2, µ) ⊊ Har∞(F2, µτ ). In particular, (X , ν) is a
non-maximal µτ -boundary of (F2, µ).

Remarks

The argument can be generalized to any non-virtually nilpotent group and any
non-degenerate µ by invoking the technique of switching elements.

Even if we impose the finite entropy condition, the problem of realizing the Poisson
boundary is open in general, with positive results for the hyperbolic groups.
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Outline of the proof

Definition

A randomized stopping time τ is a collection of stopping times (τ)i≥0 weighted by a
probability measure p on Z≥0.
Given a measured group (Γ, µ), we define µτ =

∑
i≥0 p(i)µτi .

We will start with the standard lamplighter group Γ = Z/2Z ≀ Z.
Consider the projection homomorphism π : F2 = ⟨a, b⟩ → Γ, with

π(a) = (0, e0), π(b) = (1, 0).

Consider the simple RW on F2 = ⟨a, b⟩, and take µ′ = π∗µ.

We already know that the Poisson boundary of (Γ, µ′) is trivial invoking the
argument of Kaimanovich.

We will construct a randomized stopping time τ for (Γ, µ′) so that the Poisson
boundary of (Γ, (µ′)τ ) becomes non-trivial.

This yields a non-trivial bounded µ′
τ -harmonic function f , which can be pulled back

to a µπ◦τ -harmonic but not µ-harmonic function on F2.
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Sketch of the proof I: records

Definition

Given a probability measure p ∈ Prob(Z≥0), consider (Xi )i>0 to be i.i.d samples
drawn according to p. Let Tk be the k-th record time, given by

T0 = 1, Tk = inf{i > Tk−1,Xi ≥ Xj ∀j < i}.

Denote the k-th record value by Rk = XTk .

A probability measure p has eventually simple records if a.s. for sufficiently large k
we have Rk+1 > Rk .

Lemma

Assume that p(i) > 0 and
∑

i

(
p(i)∑
j≤i p(j)

)2
<∞. Then p has eventually simple records.

Moreover, there exists a non-decreasing function Φ such that a.s. Tk+1 < Φ(Rk) for
k ≫ 0.

We will use such p as our weight for the stopping time. There are many suitable
measures, the only important thing tis to guarantee the eventual simplicity of
records.
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Sketch of the proof II: stopping time

Denote the respective random walk on Γ by (Xn, φn), where Xn denotes the position of
the lamplighter and φ : Z → Z/2Z keeps track of lamp configurations.

Given two sequences (sn)n≥0, (rn)n≥0, we define

τn = inf{t ≥ 1 : φt |[−sn,sn ]
≡ 0, |Xt | ≥ rn}.

Recurrence ensures that all stopping times are almost surely finite.

Let us carefully choose the sequences so that s1 < r1 < s2 < r2 < . . . . Pick
s1 = r1 = 0, and assume that ri , si are picked up to i = k − 1.

For any subset of indices (i1, . . . , iΦ(k)) ⊂ {1, ..., k − 1}Φk consider the random
sequence (gj)1≤j≤Φ(k), where gj are independently drawn according to µτij

. Denote

wj = g1 . . . gj and denote the respective lamp configuration after applying wj by ϕj .

Pick sk large enough so that for every choice of sequence (i1, . . . , iΦ(k)) with
probability ≥ 1− 2−k the support of φj is contained in [−sk/3, sk/3] for all
1 ≤ j ≤ Φk . Then we set rk = 3sk .
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Sketch of the proof III: non-triviality of Poisson boundary

First of all, observe that (µ′)τ is non-degenerate. We will establish the the sequence
of lamp configurations (φj)j≥0 almost surely converges.

Consider the record time (Tk) wrt p. Given some k ≥ k0, consider the RW at time
Tk+1 − 1,

wTk+1−1 = g1 . . . gTk−1︸ ︷︷ ︸
a

gTk gTk+1 . . . gTk−1−1︸ ︷︷ ︸
b

.

Observe that both a, b are products of at most Φ(Rk) increments.

Then due to Borel-Cantelli and the way we chose sk , rk , a.s. for k >> 0 we have

φTk−1|[−sRk
/3,sRk

/3] = φj |[−sRk
/3,sRk

/3]

for all Tk ≤ j ≤ Tk+1 − 1. Since the records are increasing and a.s. go to infinity,
the limit limj→∞ φj exists a.s.

As µτ is irreducible, the limiting lamp configuration is not a.s. constant, so it
defines a non-trivial tail event in the Poisson boundary.
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Sketch of the proof IV: reduction

Consider the lazy simple RW on F2 given by µ = 1
4
δa +

1
4
δb +

1
4
δa−1 + 1

4
δb−1 .

Pullback of a stopping time is a stopping time, so (∂F2, ν) is a µ-boundary and a
(µ)π◦τ -boundary, as stopping times do not change the convergence.

However, consider the non-trivial µ′-harmonic function f on Γ. Its pullback to F2

will be µπ◦τ -harmonic but not µ′-harmonic.

We show this by establishing that any bounded µ′-harmonic function which is
constant on the fibers of π has to be constant.

Therefore, Har∞(F2, µ) ⊊ Har∞(F2, µπ◦τ ).
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Properties of the harmonic measure

Suppose we have a measured group (Γ, µ) for which we understand a concrete geometric
realization (∂Γ, ν) of its Poisson boundary as a measure space.

Question

Assume that X carries a natural/invariant measure λ. Can we study the harmonic
measure ν on it own and compare it to λ?

This question turns out to be quite subtle! It is even difficult when restricted to very
narrow classes of measures µ.
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Hausdorff dimension

Let (X , d , ν) be a metric measure space.

Definition

Hausdorff measure Let A ⊂ X be a subset. For every α ≥ 0,∆ > 0 we define

Hα
∆(E) := inf

{
∞∑
i=1

diamd(Ei )
α : E ⊂ ∪Ei , diam(Ei ) ≤ ∆

}
.

The α-Hausdorff measure of E is

Hα(E) := sup
∆>0

Hα
∆(E).

The Hausdorff dimension of E is

dimH(E) := inf{α ≥ 0 : Hα(E) = 0} = sup{α ≥ 0 : Hα(E) > 0}.

Definition

The Hausdorff dimension of ν is defined by

dimH ν := inf{dimH E : ν(E c) = 0}.
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Asymptotic invariants

Let (Γ, µ) be a measured group equipped with a left-invariant distance d .

Definition

l = lim
n→∞

∑
g µ

∗n(g)d(e, g)

n
(drift),

h = lim
n→∞

−
∑

g µ
∗n(g) log(µ∗n(g))

n
(entropy)

v = lim
n→∞

log(|{g ∈ Γ : d(e, g) ≤ n}|)
n

(logarithmic volume).

Theorem (Fundamental inequality)

Suppose that metric measured group (Γ, µ, d) satisfies the finite entropy + finite first
moment condition + finite logarithmic volume condition. Then all three invariants are all
finite and

h ≤ lv .

Question:

When is this inequality strict?
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Gromov boundaries, cont.

Theorem

Let (X , d) be a proper hyperbolic space. Then for any two non-equivalent geodesics
γ1 ̸= γ2 in ∂X there exists a bi-inifnite geodesic γ so that γ+ ∼ γ1 and γ− ∼ γ2.

Definition (Visual distance)

Let (X , x0, d) be a proper hyperbolic space. Fix ε > 0. We say that a distance dε on ∂X
is a visual distance if

The metric dε generates the cone topology on ∂X

There exists a constant C > 0 so that for any a, b ∈ ∂X , a biinfinite geodesic γ
connecting a, b and y ∈ X so d(x0, y) = d(x0, γ)

1

C
e−εd(x0,y) ≤ dε(a, b) ≤ Ce−εd(x0,y).

Theorem

For any proper hyperbolic space (X , d) there exists ε0 > 0 so that dε exists for any
ε ∈ (0, ε0). Moreover, any visual distances are bi-Lipschitz equivalent for the same
parameter.
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Blachère-Häıssinsky-Mathieu criterion

The main tool which allows us to determine the inequality is a powerful result of S.
Blachère, P. Häıssinsky and P. Mathieu.

Theorem (BHM, Theorem 1.5)

Let (Γ, d , µ) be a non-elementary hyperbolic measured group with µ satisfying a
superexponential moment. Identify the Poisson boundary with the Gromov boundary
(∂Γ, ν), equipped with the quasiconformal measure νd , which is the Hausdorff measure
on (∂Γ, dε) for small enough ε. TFAE:

1 h = lv ,

2 The hitting measure ν is equivalent to νd .

3 sup
g∈Γ

|dµ(e, g)− dH2(e, g)| <∞, where

dµ(e, g) = − log(Fµ(e, g))

is the Green metric, Fµ(e, g) denotes the first-passage function, and
dH2(e, g) = d(o, go).

4 The Hausdorff dimension of the hitting measure on (∂Γ, dε) equals v = h
l
.
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Exercise
Let Γ = Fn, and µ be symmetric with suppµ = {a±1

i }.
Compute v with respect to the word distance.

Assume the weights are uniform, compute h, l .

Verify that the quasiconformal measure is exactly the product measure on ∂Fn.

Assuming the weights are uniform, check that h = lv , confirming your previous
computations.

(Ledrappier ’01, K.-Tiozzo ’21) Consider the first-passage function
Fµ(e, x) = P(∃n : Xn = x). Show that

Fµ(e, ai ) =
ν(C (ai ))

1− ν(C(ai ))
,

where C (ai ) = infinite words which start with ai .

Use the above to show that h = lv only for the uniform µ. Keep in mind that you
are unable to compute h, l in general case.

(**) (K. ’25) Show that if the measure is allowed to sit on the powers {aki }, then

lim inf
n→∞

Fµ(e, (ai )
n)1/n ≥ ν(C (ai ))

1− ν(C(ai ))
.

(*) Show that the above is not true for general µ.
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Cool research problem

Let Γ = PSL2(Z) and consider µ = 1
3
δS + 1

3
δS−1 + 1

3
δT .

Consider a sample path Tm1STm2STm3 . . . , and define the correspondence

Tm1STm2STm3S · · · 7→ m1 −
1

m2 −
1

m3 −
1

. . .

∈ R.

Show that this correspondence is Γ-equivariant on R.
Consider the pushforward η of the hitting measure ν with respect to this
correspondence. This is the distribution of a random continued fraction with i.i.d.
geometric terms mi .

(*) Find asymptotics for the η([n, n + 1
k
]) as n → ∞ and k is fixed.

(**) Use them to show that the Hausdorff dimension of η is strictly less than 1.

(***) Can you find the precise formula for the Hausdorff dimension? What if we
change the weights?
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Here be dragons: biggest open questions

There still a lot of open questions regarding random walks on groups.

Stability conjecture

Let Γ be a non-virtually nilpotent group. Then the triviality of the Poisson boundary of
(Γ, µS) does not depend on the choice of generating set S , where µS is the uniform
measure on S .

Still open for many amenable groups of exponential growth.

Realizing the Poisson boundary

Is it true that for every group Γ there exists a single space X which realizes the Poisson
boundary of (G , µ) for all µ with finite entropy?

Remark: Due to recent result of Chawla-Frisch, this is not true if we drop the entropy
condition.
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Here be dragons: intermediate growth

Gap conjecture

Any group with growth ≺ e
√
n is virtually nilpotent.

(most experts don’t believe this conjecture)

Question

Is there a finitely presented group of intermediate growth?

Conjecture by Grigorchuk-Pak

If H is a group of intermediate group, then it contains two distinct infinite commuting
subgroups H1,H2.

If true, it resolves the pc < 1 conjecture positively.

Petr Kosenko A minicourse on random walks on groups October 1, 2025 83 / 85



Here be dragons: singularity

This slide is dedicated to the problems related to the subtle properties of the harmonic
measure.

Singularity conjecture: rank 1, dimension 2

Let Γ ≤ PSU(1, 1) be a discrete subgroup equipped with a finitely supported
non-degenerate measure µ. Then, identifying the Poisson boundary with (S1, ν), the
hitting measure ν is singular with respect to the harmonic measure.

Singularity conjecture: rank 1, high dimensions

Let Γ ≤ Isom(Hn) be a discrete subgroup equipped with a finitely supported
non-degenerate measure µ. Then, identifying the Poisson boundary with (Sn−1, ν), the
hitting measure ν is singular with respect to the harmonic measure

Singularity conjecture: higher rank

Let Γ ≤ G be a discrete subgroup of a semisimple Lie group with trivial center and real
rank ≥ 2 equipped with a finitely supported non-degenerate measure µ. Then, identifying
the Poisson boundary with the associated visual boundary (G/P, ν) of the symmetric
space G/K , the hitting measure ν is singular with respect to the obvious pushforward of
the Haar measure on G .
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Singularity: cont.

All of the above conjectures are still open as of fall of 2025, with the two-dimensional
conjecture seeing the most progress.
These conjectures are, in spirit, similar to the conjectures related to affine and p-adic
self-similar measures.

Bernoulli convolution problem

Fix λ ∈ (1/2, 1). Consider the probability measure ν on R (uniquely) defined by∫
R
f (x)dν(x) =

1

2

∫
R
f (λx + 1)dν(x) +

1

2

∫
R
f (λx − 1)dν(x).

Then ν is absolutely continuous wrt Lebesgue measure iff λ is not a Pisot number.

p-adic self-similar problem

Let Γ ≤ Aff(Q) be a subgroup equipped with a non-degenerate probability measure µ. If
we identify the Poisson boundary with the adele space

∏
p Qp, then when is the hitting

measure singular with respect to the product of the Haar measures?

Both problems are open, with the p-adic self-similarity related to difficult problems in
arithmetic dynamics.
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