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Abstract. We prove that the hitting measure is singular with respect
to Lebesgue measure for random walks driven by finitely supported mea-
sures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Haus-
dorff dimension of the hitting measure is strictly less than one. Equiv-
alently, the inequality between entropy and drift is strict. A similar
statement is proven for Coxeter groups.

Let G < SL2(R) be a countable group, and µ be a finitely supported,
generating probability measure on G. We consider the random walk

wn := g1g2 . . . gn

where each (gi) is i.i.d. with distribution µ. Let us fix a base point o ∈ H2.
Then the hitting measure ν of the random walk on S1 = ∂D is

ν(A) := P
(

lim
n→∞

wno ∈ A
)

for any Borel set A ⊆ ∂D. The hitting measure is also the unique µ-
harmonic, or µ-stationary, measure, as it satisfies the convolution equation
ν = µ ? ν. On the other hand, the boundary circle ∂D = S1 also carries the
Lebesgue measure, which is the unique rotationally invariant measure on S1.

In the 1970’s, Furstenberg [Fu71] proved that for any discrete subgroup
of SL2(R) there exists a measure µ such that the hitting measure of the cor-
responding random walk is absolutely continuous with respect to Lebesgue
measure. This was the first step to produce boundary maps, eventually lead-
ing to rigidity results. However, such measures µ are inherently infinitely
supported, as they arise from discretization of Brownian motion (see also
[LS84]). Another construction of absolutely continuous hitting measures,
still infinitely supported, on general hyperbolic groups is given by [CM07].

For finitely supported measures, though, the situation is quite different.
For any finitely supported measure µ on SL2(Z), it is known since Guivarc’h-
LeJan [GL90] that the hitting measure is singular. Kaimanovich-LePrince
[KP11] produced on any countable Zariski dense subgroup of SLd(R) exam-
ples of finitely supported measures with singular hitting measure.

They also formulated the following singularity conjecture.
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Conjecture 1 ([KP11], page 259). For any finitely supported measure µ on
SLd(R), whose support generates a discrete subgroup, the hitting measure for
the random walk driven by µ is singular with respect to Lebesgue measure.

This conjecture has been mentioned several times, see also [GMM18, Re-
mark 1.1], [HS17, page 817], and [BQ18, Question (vi)]. In this paper, we
focus on the case d = 2. Let G < SL2(R) be the subgroup generated by the
support of µ. Recall that a discrete subgroup of SL2(R) is called a Fuchsian
group, and is cocompact if the quotient Σ = D/G is compact.

If G is discrete, but not cocompact (which includes the case G = SL2(Z)),
the conjecture is known; in fact, there are many approaches to this result,
and several generalizations in many contexts with different proofs ([GL90],
[BHM11], [DKN09], [KP11], [Gad14], [GMT15], [DG18], [RT19]), all of
which exploit in various ways the fact that the cusp subgroup is highly
distorted in G.

Note that if one drops the hypothesis that G be discrete, then Conjec-
ture 1 no longer holds: there exist finitely supported measures on SL2(R)
for which the hitting measure is absolutely continuous ([Bo12], [BPS12]),
but the group generated by their support is not discrete (see also [KP11,
Footnote 1]).

Thus, the only case still open is when G is a cocompact Fuchsian group.
In this case the hyperbolic metric and the word metric on G are quasi-
isometric to each other, hence distortion arguments do not work. So far,
the only known examples are the recent ones from [Ko20] and [CLP21],
where singularity of hitting measure is proven for cocompact Fuchsian groups
whose fundamental domain is a regular polygon (except for a finite number
of cases with few sides). These examples form a countable family.

In this paper, we prove Conjecture 1 for any hyperelliptic, cocompact
Fuchsian group, for measures supported on the canonical generating set.

Recall a hyperelliptic surface is a Riemann surface Σ with a holomorphic
involution j : Σ → Σ. Any hyperelliptic surface can be uniformized as the
quotient Σ = D/G, where G is a Fuchsian group with fundamental domain
a centrally symmetric hyperbolic polygon P , and generators of G are given
by hyperbolic translations joining opposite sides of P (see e.g. [Ga79]). We
call such G a hyperelliptic Fuchsian group, and such a generating set the
canonical generating set of G. In order for G to be discrete, P needs to
satisfy the cycle condition from Poincaré’s theorem (see Definition 12). The
space of hyperelliptic Fuchsian groups of genus g is a complex variety of
dimension 2g − 1. Our main result is the following.

Theorem 2. Let P be a centrally symmetric hyperbolic polygon in the
Poincaré disk D, with 2m sides, satisfying the cycle condition, and let S :=
{t1, t2, . . . , t2m} be the hyperbolic translations which identify opposite sides
of P . Then, for any measure µ supported on the set S, the hitting measure
ν on S1 = ∂D is singular with respect to Lebesgue measure. Moreover the
Hausdorff dimension of ν is strictly less than 1.
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Figure 1. A symmetric hyperbolic octagon. Sides of the
same color are identified by the Fuchsian group G.

If m is even, the above construction yields the standard presentation of a
hyperelliptic Fuchsian group of genus g = m

2 ; if m is odd, we also obtain a

discrete cocompact group of genus g = m−1
2 .

Finally, if one replaces the random walk with a Brownian motion, then
absolute continuity of harmonic measure only holds if the underlying man-
ifold is highly homogeneous: to be precise, on a negatively curved surface,
the hitting measure is absolutely continuous if and only if the curvature is
constant ([Le90], [Le95]).

The fundamental inequality. This problem is closely related to the fol-
lowing “numerical characteristics” of random walks. Recall that the entropy
[Av72] of µ is defined as

h := lim
n→∞

−
∑

g∈G µ
n(g) logµn(g)

n

and the drift, or rate of escape, is

` :=
dH(o, wno)

n
,

where dH denotes the hyperbolic metric and the limit exists almost surely.
The drift also equals the classical Lyapunov exponent for random matrix
products [FK60]. Finally, the volume growth of G is

v := lim sup
n→∞

1

n
log #{g ∈ G : dH(o, go) ≤ n}.

The inequality

(1) h ≤ `v

has been established by Guivarc’h [Gu80] and is called the fundamental
inequality by Vershik [Ve00]. Several authors (e.g. [Ve00, Question A]) have
asked:
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Question 3. Under which conditions is inequality (1) an equality?

For discrete, cocompact actions, Question 3 is equivalent to Conjecture
1: indeed, by [BHM11] (see also [GMM18] and Theorem 8), inequality (1) is
strict if and only if the hitting measure is singular with respect to Lebesgue
measure.

If one replaces the hyperbolic metric dH with a word metric dw on G,
then [GMM18] prove that the inequality is strict unless the group G is
virtually free. Observe that cocompact Fuchsian groups are not virtually
free; however, the drift for dH and the drift for dw are not the same (in
fact, one has `dH < `dw), hence the result from [GMM18] does not settle
Question 3 or Conjecture 1. Note that for a cocompact Fuchsian group it is
well-known that v = 1 (see e.g. [PR94]).

Our result also has consequences on the Hausdorff dimension of the hitting
measure. Recall that the Hausdorff dimension of a measure ν on a metric
space is the infimum of the Hausdorff dimensions of subsets of full measure.
Moreover, by [Le83], [Ta19], [HS17], for cocompact Fuchsian groups the
Hausdorff dimension dimH(ν) of the hitting measure satisfies, for almost
every x ∈ S1,

dimH(ν) = lim
r→0+

log ν(B(x, r))

log r
=
h

`

where B(x, r) is a ball of center x and radius r. Thus, Theorem 2 implies:

Corollary 4. Under the hypotheses of Theorem 2, the inequality h < ` is
strict. Hence, the hitting measure ν has Hausdorff dimension strictly less
than one.

A geometric inequality. The approach of this paper is based on the fact
that cocompactness forces at least some of the generators to have long
enough translation lengths (this is related to the collar lemma: two in-
tersecting closed geodesics cannot be both short at the same time; also, the
quotient Riemann surface has a definite positive area). Indeed, in Theorem
11 we prove a criterion for singularity in terms of the translation lengths of
the generators, and then we show the following purely geometric inequality.

Theorem 5. Let P be a centrally symmetric polygon with 2m sides, satis-
fying the cycle condition, and let S := {g1, . . . , g2m} be the set of hyperbolic
translations identifying opposite sides of P . Then we have

(2)
∑
g∈S

1

1 + e`(g)
< 1,

where `(g) denotes the translation length of g in the hyperbolic metric.

Interestingly, our geometric inequality has exactly the same form as the
main inequalities of [CS92], [ACCS96] for free Kleinian groups. However, it
is not a consequence of theirs; see Section 3.
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Coxeter groups. We also prove the following version of Theorem 2 for
reflection groups.

Theorem 6. Let P be a centrally symmetric, hyperbolic polygon with 2m
sides and interior angles π

ki
, with ki ∈ N+ for 1 ≤ i ≤ 2m. Let µ be a

probability measure supported on the set R := {r1, . . . , r2m} of hyperbolic
reflections on the sides of P , with µ(ri) = µ(ri+m) for all 1 ≤ i ≤ m. Then
the hitting measure for the random walk driven by µ is singular with respect
to Lebesgue measure. Moreover, the inequality h < ` is strict, and the hitting
measure ν has Hausdorff dimension strictly less than one.
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draft.

1. Preliminary results

Let µ be a probability measure on a countable group G. We assume that
µ is generating, i.e. the semigroup generated by the support of µ equals
G. We define the step space as (GN, µN), and the map π : GN → GN as
π((gn)n∈N) := (wn)n∈N, with for any n

wn := g1g2 . . . gn.

The target space of π is denoted by Ω and called the path space; as a set, it
equals GN , and is equipped with the measure Pµ := π?(µ

N).

Then, we define the first-passage function Fµ(x, y) as

Fµ(x, y) := Pµ(∃n : wnx = y)

for any x, y ∈ G, and the Green metric dµ on G, introduced in [BB07], as

dµ(x, y) := − logFµ(x, y).

The following fact is well-known.

Lemma 7. Let p : G→ H be a group homomorphism, let µ be a probability
measure on G, and let µ := p?µ. Then, for any x, y ∈ G,

dµ(p(x), p(y)) ≤ dµ(x, y).

Proof. Since p induces a map from paths in G to paths in H, we have
µn(p(g)) ≥ µn(g) for any g ∈ G, any n ≥ 0. Hence

Pµ(p(x), p(y)) ≥ Pµ(x, y)

for any x, y ∈ G, from which the claim follows. �
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We shall use the following criterion, which relates the absolute continuity
of the hitting measure to the fundamental inequality. Recall that a group
action is geometric if it is isometric, properly discontinuous, and cocompact.

Theorem 8. ([BHM11, Corollary 1.4, Theorem 1.5], [Ta19], [GT20]) Let Γ
be a non-elementary hyperbolic group acting geometrically on H2, endowed
with the geometric distance d = dH induced from the action. Consider a
generating probability measure µ on Γ with finite support. Then the following
conditions are equivalent:

(1) The equality h = `v holds.
(2) The Hausdorff dimension of the hitting measure ν on S1 is equal to

1.
(3) The measure ν is equivalent to the Lebesgue measure on S1.
(4) For any o ∈ H2, there exists a constant C > 0 such that for any

g ∈ Γ we have

|dµ(1, g)− dH(o, go)| ≤ C.

For each g ∈ G, let `(g) denote its translation length, namely

`(g) := lim
n→∞

dH(o, gno)

n
.

Equivalently, `(g) is the length of the corresponding closed geodesic on the
quotient surface. The mechanism to utilize Theorem 8 is through the fol-
lowing lemma, similar to the one from [Ko20].

Lemma 9. Suppose that the hitting measure is absolutely continuous. Then
for any g ∈ G we have

`(g) ≤ dµ(1, g).

Proof. If not, then `(g) > dµ(1, g) ≥ 0, hence g is loxodromic. Let us pick

some o ∈ H2 which lies on the axis of g, so that dH(o, gko) = `(gk) = k`(g)
for any k. Moreover, by the triangle inequality for the Green metric one has
dµ(1, gk) ≤ kdµ(1, g), hence

dH(o, gko)− dµ(1, gk) ≥ k`(g)− kdµ(1, g) = k(`(g)− dµ(1, g))

thus, since `(g)− dµ(e, g) > 0,

sup
k∈N

∣∣∣dH(o, gko)− dµ(1, gk)
∣∣∣ = +∞,

which contradicts Theorem 8. �

Let F be a free group, freely generated by a finite set S. Recall the
(hyperbolic) boundary ∂F of F is the set of infinite, reduced words in the
alphabet S ∪ S−1. Given a finite, reduced word g, we denote as C(g) ⊆ ∂F
the cylinder determined by g, namely the set of infinite, reduced words
which start with g.
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Lemma 10. Consider a random walk on the free group

Fm =
〈
s±11 , . . . , s±1m

〉
,

defined by a probability measure µ on the generators. If we denote xi :=
Fµ(1, si), x̌i := Fµ(1, s−1i ), and the hitting measure on the boundary of Fm
by ν, then

ν(C(si)) =
xi(1− x̌i)
1− xix̌i

.

A similar lemma is stated in [La18, Exercise 5.14].

Proof. For any infinite word w = sj1sj2sj3 . . . there exist two possibilities:

(1) There exists a subword sj1 . . . sjk such that it equals si in Fm
(2) No subword sj1 . . . sjk equals si, so it belongs to the set of paths

which never hit si.

In the first case we denote this subword by w1, and we consider w−11 w and

we apply the same procedure, but replacing si with s−1i at each subsequent
step. This procedure yields the equality

ν(C(si)) = P(1→ si 9 1) + P(1→ si → 1→ si 9 1) + · · · =

=

∞∑
n=0

Fµ(1, si)
n+1Fµ(1, s−1i )n(1− Fµ(1, s−1i ))

= Fµ(1, si)(1− Fµ(1, s−1i ))
∞∑
n=0

(
Fµ(1, si)Fµ(1, s−1i )

)n
=
xi(1− x̌i)
1− xix̌i

.

�

2. A criterion for singularity

Theorem 11. Let µ be a finitely supported measure on a cocompact Fuch-
sian group, and let S be the support of µ. Suppose that

(3)
∑
g∈S

1

1 + e`(g)
< 1.

Then the hitting measure ν on ∂D is singular with respect to Lebesgue mea-
sure.

Proof. Let F be a free group of rank m, with generators (hi)
m
i=1, and let µ̃

be a measure on F with µ̃(h±i ) = µ(g±i ). Moreover, let us denote

xi := Fµ̃(1, hi) = Pµ̃(∃n : wn = hi)

x̌i := Fµ̃(1, h−1i ).

Then we have

(4)
m∑
i=1

xi(1− x̌i)
1− xix̌i

+
x̌i(1− xi)
1− xix̌i

= 1.
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Indeed, if ν̃ is the hitting measure on ∂F , by Lemma 10 the measure of the
cylinder C(hi) starting with hi is

ν̃(C(hi)) =
xi(1− x̌i)
1− xix̌i

, ν̃(C(h−1i )) =
x̌i(1− xi)
1− xix̌i

from which, since the cylinders are disjoint and cover the boundary, (4)
follows.

Then, by equation (3), there exists an index i such that

2

1 + e`(gi)
<
xi(1− x̌i)
1− xix̌i

+
x̌i(1− xi)
1− xix̌i

which is equivalent to

e`(gi) >
2− xi − x̌i

xi + x̌i − 2xix̌i

Finally, an algebraic computation yields

2− xi − x̌i
xi + x̌i − 2xix̌i

≥ min

{
1

xi
,

1

x̌i

}
thus we obtain

(5) `(gi) > inf{− log xi,− log x̌i}.

If the hitting measure ν on S1 = ∂D is absolutely continuous, then by
Lemma 9 and Lemma 7 we get

`(gi) ≤ dµ(1, gi) ≤ dµ̃(1, hi) = − log xi

for any i. If we apply the same inequality to g−1i , we also have

`(gi) = `(g−1i ) ≤ dµ(1, g−1i ) ≤ dµ̃(1, h−1i ) = − log x̌i

hence

`(gi) ≤ inf{− log xi,− log x̌i}
which contradicts (5), showing that ν is singular with respect to Lebesgue
measure. �

3. Parameterization of the space of polygons

Let P be a convex, compact polygon in the hyperbolic disk D, with 2m
sides and interior angles {γ1, . . . , γ2m}.

We say that P is centrally symmetric if there exists a point o ∈ D so that
P is invariant under reflection across o. This clearly implies that opposite
sides have equal length, and opposite angles are equal.

Poincaré’s theorem provides conditions to ensure that the group generated
by side pairings is discrete (see [Ma71]). In particular, one needs a condition
on the angles, which in our setting can be formulated as follows.
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Definition 12. A centrally symmetric polygon P satisfies the cycle condi-
tion if there exists an integer k ≥ 1 such that

m∑
i=1

γ2i =

m∑
i=1

γ2i−1 =
2π

k
.

Let S := {g1, . . . , g2m} be the set of hyperbolic translations identifying
opposite sides of P . By Poincaré’s theorem [Ma71], if the polygon P satisfies
the cycle condition, then the group G generated by S is discrete1.

The following is our main geometric inequality.

Theorem 13. Let P be a centrally symmetric, hyperbolic polygon satisfying
the cycle condition, with 2m sides, and let S := {g1, . . . , g2m} be the set of
hyperbolic translations identifying opposite sides of P . Then we have

(6)
∑
g∈S

1

1 + e`(g)
< 1.

o

γ1

γ2α1
α2

Figure 2. Angles at the center and at the vertices of a sym-
metric hyperbolic octagon.

Remarks.
The inequality (6) has the same form as the main inequality in [ACCS96]

and [CS92] for free Kleinian groups; more recently, a stronger version for
free Fuchsian groups has been obtained in [He19], while generalizations in
variable curvature (and any dimension) are due to [Ho01], [BM21].

1Note that in the usual formulation of Poincaré’s theorem there are two cases: if m
is even, all vertices of P are identified by G; if m is odd, there are two elliptic cycles,
corresponding to alternate vertices of P . If m is even and k = 1, the polygon P does
not satisfy the classical version of Poincaré’s theorem, but if P is symmetric, the group
generated is still discrete, so all our arguments still apply.
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Equation (6) is also reminiscent of McShane’s identity [McS98], where one
obtains the equality by taking the infinite sum over all group elements of a
punctured torus group. Our inequality, however, does not follow from any
of them; in fact, it is in a way stronger than these, as a cocompact surface
group can be deformed to a finite covolume group and then to a Schottky
(hence free) group by increasing the translation lengths of the generators.

It is interesting to point out that the above inequalities have an interpre-
tation in terms of hitting measures of stochastic processes (see e.g. [LT18]).
Here, we go along the opposite route: we prove the geometric inequality (6)
and then we use it to conclude properties about the hitting measure.

Finally, there are generating sets of G for which (6) fails. Indeed, the
mechanism behind the inequality is that, since all curves corresponding to
(gi)

m
i=1 intersect each other, by the collar lemma, at most one of them can

be short. In general, on a surface of genus g one can choose a configura-
tion of 3g − 3 short curves, and construct a Dirichlet domain for which the
corresponding side pairing does not satisfy (6).

Proof. The proof of this inequality will take up most of the paper, until
Section 5. To begin with, let us note that a way to parameterize the space
of all symmetric hyperbolic polygons is to write, by [Bu10, Example 2.2.7],

(7) cos(γi) = − cosh(ai) cosh(ai+1) cos(αi) + sinh(ai) sinh(ai+1)

with i = 1, . . . ,m, where (ai) are the distances between the base point and
the ith side, (αi) are the angles at the origin and (γi) are the angles at the
vertices. Since `(gi) ≥ 2ai, it is enough to show

m∑
i=1

1

1 + e2ai
<

1

2

under the constraints
∑m

i=1 αi = π and
∑m

i=1 γi = π.

The fundamental geometric idea in our approach to Theorem 13 is that
two intersecting curves cannot be both short, as a consequence of the collar
lemma [Bu78]. For instance, we get:

Lemma 14. Suppose that there exists ai such that sinh(ai) ≤ 2(m−1)
m(m−2) . Then

the hitting measure is singular.

Proof. From the collar lemma [Bu78] we have

sinh(ai) sinh(aj) ≥ 1

for all i 6= j. Recall that

2

1 + e2a
= 1− tanh(a)

hence, if we set s := sinh(a1), we obtain for i 6= 1 that sinh(ai) ≥ 1
s thus

tanh(ai) =
sinh(ai)√

1 + sinh(ai)2
≥ 1√

1 + s2
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hence
m∑
i=1

tanh(ai) ≥
s√

1 + s2
+

m− 1√
1 + s2

> m− 1

if and only if s < 2(m−1)
m(m−2) . �

To actually prove Theorem 13, however, we need an improvement on the
previous estimate. Let us rewrite equation (7) above as

cos(αi) = tanh(ai) tanh(ai+1)−
cos(γi)

cosh(ai) cosh(ai+1)

and, recalling that

tanh2(x) +
1

cosh2(x)
= 1

we obtain, by setting zi = tanh(ai),

(8) cos(αi) = zizi+1 − cos(γi)
√

1− z2i
√

1− z2i+1

with 0 ≤ zi ≤ 1. Finally, we want to show
m∑
i=1

1

1 + e2ai
=

m∑
i=1

1− zi
2

?
<

1

2
,

which is equivalent to

(9)
m∑
i=1

zi
?
> m− 1.

Now, let us first assume that γi ≤ π/2 for all 1 ≤ i ≤ m. Then (8) yields

cos(αi) ≤ zizi+1

hence the constraint becomes

(10)

m∑
i=1

arccos(zizi+1) ≤ π.

Note that z1 → 0 implies cosα1 ≤ z1z2 → 0 thus α1 → π
2 and cosαm ≤

zmz1 → 0 thus αm → π
2 , hence also α2, α3, . . . , αm−1 → 0, which implies

z2, z3, . . . , zm → 1.

4. An optimization problem

By the above discussion, we reduced the proof of Theorem 13 (at least in
the case all angles of P are acute) to the following optimization problem.

Theorem 15. Let m ≥ 3 and 0 ≤ xi ≤ 1 with
∑m

i=1 xi = m− 1. Then

m∑
i=1

arccos(xixi+1) ≥ π.
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Figure 3. The graph of f(x) :=
∑3

i=1 arccos((1 − xi)(1 −
xi+1)) subject to the constraint

∑3
i=1 xi = 1, compared with

the constant function at height π.The lack of convexity (or
concavity) of f makes the proof of Theorem 15 trickier.

Moreover, equality holds if and only if there exists an index i such that xi = 0
and xj = 1 for all j 6= i.

In the statement of Theorem 15 and elsewhere from now on, all indices i
are meant modulo m. The next is the main technical lemma.

Lemma 16. Let m ≥ 3 and 0 ≤ xi ≤ 1 with
∑m

i=1 xi = 1. Then

m∑
i=1

√
xi + xi+1 − xixi+1 ≥

√√√√4 + 3
m∑
i=1

xixi+1.

Proof. Set ∆i := xi + xi+1 − xixi+1. Note that

∆i ≥ max{xi, xi+1}

hence

(11)
√

∆i

√
∆i+1 ≥ xi+1.

Moreover, since m ≥ 2, we have xi+1 + xi+2 ≤
∑m

i=1 xi = 1, hence if we
multiply by (xi+1 + xi+2), we obtain

∆i = xi + xi+1 − xixi+1

≥ (xi + xi+1)(xi+1 + xi+2)− xixi+1

≥ x2i+1 + xi+1xi+2.
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Similary, we obtain

∆i+2 = xi+2 + xi+3 − xi+2xi+3

≥ (xi+2 + xi+3)(xi+1 + xi+2)− xi+2xi+3

≥ x2i+2 + xi+1xi+2.

Thus, Cauchy-Schwarz yields

(12)
√

∆i

√
∆i+2 ≥

√
x2i+1 + xi+1xi+2

√
x2i+2 + xi+1xi+2 ≥ 2xi+1xi+2.

By squaring both sides, our desired inequality is equivalent to

m∑
i=1

∆i + 2
∑

1≤i<j≤m

√
∆i

√
∆j ≥ 4 + 3

m∑
i=1

xixi+1,

thus, using
∑m

i=1 ∆i = 2−
∑m

i=1 xixi+1, it is enough to prove

(13)
∑

1≤i<j≤m

√
∆i

√
∆j ≥ 1 + 2

m∑
i=1

xixi+1.

Now, note that ∑
1≤i<j≤m

√
∆i

√
∆j =

m∑
i=1

√
∆i

√
∆i+1 +M

with

M = 0 if m = 3(14)

M =
2∑
i=1

√
∆i

√
∆i+2 if m = 4(15)

M ≥
m∑
i=1

√
∆i

√
∆i+2 if m ≥ 5.(16)

Thus, for m ≥ 5 we have, using (16), (11) and (12),∑
1≤i<j≤m

√
∆i

√
∆j ≥

m∑
i=1

√
∆i

√
∆i+1 +

m∑
i=1

√
∆i

√
∆i+2

≥
m∑
i=1

xi+1 + 2

m∑
i=1

xi+1xi+2

≥ 1 + 2

m∑
i=1

xi+1xi+2

which yields (13), hence completes our proof. The cases m = 3 and m = 4
need to be dealt with separately. If m = 3, we obtain, by multiplying by
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i=1 xi = 1,

∆i = x2i + x2i+1 +
3∑
i=1

xixi+1

so by Cauchy-Schwarz we get√
∆i

√
∆i+1 ≥ x2i+1 + xixi+2 +

3∑
i=1

xixi+1

hence
3∑
i=1

√
∆i

√
∆i+1 ≥

3∑
i=1

x2i + 4

3∑
i=1

xixi+1

=

(
3∑
i=1

xi

)2

+ 2
3∑
i=1

xixi+1

= 1 + 2

3∑
i=1

xixi+1

which yields (13), as desired. Finally, if m = 4, then we note∑
1≤i<j≤4

√
∆i

√
∆j =

4∑
i=1

√
∆i

√
∆i+1 +

2∑
i=1

√
∆i

√
∆i+2

and, again by Cauchy-Schwarz,√
∆1

√
∆3 ≥

√
x21 + x22 + x1x4 + x2x3

√
x23 + x24 + x1x4 + x2x3 ≥ 2x1x4+2x2x3

and similarly √
∆2

√
∆4 ≥ 2x1x2 + 2x3x4

thus, using (11),∑
1≤i<j≤4

√
∆i

√
∆j ≥

4∑
i=1

xi + 2
4∑
i=1

xixi+1 = 1 + 2
4∑
i=1

xixi+1

which is again (13). This completes the proof. �

Lemma 17. For 0 ≤ x ≤ 1 we have the inequalities:

(1)
2

π
arccos(1− x) ≥ 2

3

√
x+

1

3
x

with equality if and only if x = 0 or x = 1;
(2)

2

3

√
4 + 3x+

2− x
3
≥ 2

with equality if and only if x = 0.
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Proof. For the first inequality, let f(x) := 2
π arccos(1− x2)− 2

3x−
1
3x

2. One

checks that f(0) = f(1) = 0 and f( 1√
2
) = 1

2 −
√
2
3 > 0; moreover, f ′(x) has

a unique zero in [0, 1]. Hence, f(x) ≥ 0 for all 0 ≤ x ≤ 1, which implies (1).
To prove (2), let g(x) := 2

3

√
4 + 3x + 2−x

3 . Then one checks g(0) = 2

and g′(x) = 1√
4+3x

− 1
3 > 0 for 0 ≤ x ≤ 1, which implies g(x) ≥ 2 for all

0 ≤ x ≤ 1. �

Proof of Theorem 15. By replacing xi by 1−xi and setting f(x) := 2
π arccos(1−

x), our claim is equivalent to

m∑
i=1

f(xi + xi+1 − xixi+1) ≥ 2

under the constraint
∑m

i=1 xi = 1, with m ≥ 3 and 0 ≤ xi ≤ 1.
Let us set ∆i := xi + xi+1 − xixi+1 and σ :=

∑m
i=1 xixi+1. Observe that

2σ ≤ (
∑m

i=1 xi)
2 = 1. Then we have by Lemma 17

m∑
i=1

f(∆i) ≥
2

3

m∑
i=1

√
∆i +

1

3

m∑
i=1

∆i

and using Lemma 16 and the fact
∑m

i=1 ∆i = 2− σ, we obtain

≥ 2

3

√
4 + 3σ +

1

3
(2− σ) ≥ 2

where in the last step we apply Lemma 17 (2). This completes the proof of
the inequality. By Lemma 17 (1), equality implies that ∆i = 0, 1 for every
i, which in turn implies that xi = 0, 1 for all i. Since

∑m
i=1 xi = 1, this can

only happen if xi = 1 for exactly one index i. �

5. The obtuse angle case

The proof in the previous section works as long as all angles γi are less or
equal than π/2. If one of them is obtuse, we have a geometric argument to
reduce ourselves to that case.

5.1. Neutralizing pairs. We call a neutralizing pair for P a pair {γi, γi+1}
of adjacent interior angles of P with γi + γi+1 ≤ π. Whenever we have a
neutralizing pair, we can apply the following lemma.

Lemma 18. Let ABCDE be a hyperbolic pentagon, with right angles B̂

and Ê, and suppose that Ĉ < π/2 and Ĉ + D̂ ≤ π. Let P be the midpoint

of CD, and let F̂ be the foot of the orthogonal projection of P to BC. Let

Ĝ be the intersection of the lines FP and ED. Then the angle δ = DĜF
satisfies δ ≤ π/2.

Proof. Let F ′ be the symmetric point to F with respect to P . Then CFP

and DPF ′ are equal triangles. Hence ED̂F ′ = ED̂P + PD̂F ′ = ED̂C +
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Figure 4. The hyperbolic pentagon of Lemma 18.

BĈD ≤ π, hence F ′ lies on the segment PG. Moreover, DF̂ ′P = CF̂P =

π/2, hence δ = DĜP ≤ π/2. �

We say that P has disjoint neutralizing pairs if every obtuse angle of P
belongs to a neutralizing pair, and all such neutralizing pairs are disjoint.
Let us use the notation

ϕ(x1, x2, . . . , xm) :=
m∑
i=1

1

1 + e2xi
.

Proposition 19. Let P be a centrally symmetric hyperbolic polygon with
2m sides and center o, and let `1, . . . , `m be the distances between o and the
midpoints of the sides. If P has disjoint neutralizing pairs, there exists a
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centrally symmetric hyperbolic 2m-gon P ′ with no obtuse angles and such
that

ϕ(`1, `2, . . . , `m) ≤ ϕ(d′1, d
′
2, . . . , d

′
m)

where d′i is the distance between o and the ith side of P ′.

Proof. Let us denote as di the distance between o and the ith side of P .
Note that by definition di ≤ `i for all i.

If the polygon P only has acute angles, we take P = P ′ and note that by
definition d′i = di ≤ `i, which yields the claim.

Suppose now that the hyperbolic polygon P has one obtuse angle, say
γ1, which belongs to a neutralizing pair, and let `1 correspond to the side
adjacent to the obtuse angle and the other angle, say γ2, in the neutralizing
pair. Consistently with this choice, let us denote as s1, s2, . . . , s2m the sides
of P .

Let us now consider the hyperbolic pentagon delimited by s2m, s1, s2, and
the orthogonal projections from o to s2 and s2m. Let us call this pentagon
ABCDE, where o = A, the side s1 is denoted DC, the orthogonal projection
from o to s2 is B, and the orthogonal projection from o to s2m is E.

Using Lemma 18, let us replace P by a new polygon P ′ obtained sub-
stituting the pentagon ABCDE by the pentagon ABFGE, which satisfies

F̂ = π/2 and Ĝ ≤ π/2. If we denote by d′1 the distance between o = A and
FG, then we have

d′1 = d(A,FG) ≤ d(A,P ) = `1.

On the other hand, note that for i = 2, . . . ,m the distance between o and
the ith side is the same for P and P ′. That is, di = d′i for i = 2, . . . ,m.
Hence,

ϕ(`1, `2, . . . , `m) ≤ ϕ(`1, d2, . . . , dm) ≤ ϕ(d′1, d2, . . . , dm) = ϕ(d′1, d
′
2, . . . , d

′
m).

If there are more than one neutralizing pairs, we can analogously replace
each side adjacent to the pair by rotating it around its midpoint. This
proves the claim. �

5.2. The general case. Let (pi)
2m
i=1 denote the vertices of P and (qi)

2m
i=1

denote the midpoints of the sides, indexed so that qi lies between pi−1 and
pi. Let o denote the center of symmetry of P . Let αi = qiôqi+1 be the angles
at the origin, and γi = qip̂iqi+1 the angles at the vertices of P . By the cycle
condition and symmetry we have

m∑
i=1

αi = π,

m∑
i=1

γi =
2π

k
,

where k ≥ 1 is an integer. Note that if k ≥ 2, at most one of the γi
is obtuse, hence P has disjoint neutralizing pairs. However, if k = 1, P
need not have disjoint neutralizing pairs; in particular, it may have three
consecutive obtuse angles. In order to deal with this case, we need the notion
of dual polygon.
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Figure 5. On the left: the polygon P , in blue. On the right:

the dual polygon P̂ , in red. The highlighted quadrilaterals
can be rearranged as shown to form the dual polygon.

5.3. Dual polygons. Given a centrally symmetric polygon P with center

o, we construct its dual polygon P̂ as follows.
Let Qi be the quadrilateral delimited by o, qi, pi, qi+1. As in Figure 5, we

can cut and rearrange the Qi’s with 1 ≤ i ≤ m by gluing all vertices pi to
a single point, which we now denote as v. Since the sum of all angles at
pi is 2π, this creates a new polygon with sides of lengths 2`1, . . . , 2`m. The

angles of P̂ are α1, . . . , αm, hence their sum is π. We define the pair (P̂ , v)
to be the dual polygon to (P, o).

The duality relation

(P, o)↔ (P̂ , v)

defines a bijective correspondence between centrally symmetric 2m-gons
with sum of angles 4π and m-gons with sum of angles π together with a
choice of a point inside them.

Given a polygon P with 2m sides and a point o inside P , we define

Σ(P ) :=
2m∑
i=1

1

1 + e2`i

where `i are the segments connecting o and the midpoint of the ith side.
Let us also define

Σ̂(P ) :=
m∑
i=1

1

1 + esi

where si are the lengths of the sides of P . Then note that we have

Σ(P ) = Σ̂(P̂ ).

In particular, Σ(P ) does not depend on v but only on P̂ .
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Lemma 20. Let P be a centrally symmetric hyperbolic polygon with 2m
sides and total sum of its interior angles 4π. Then there exists a centrally
symmetric hyperbolic polygon P ′ with the same number of sides, so that
Σ(P ) = Σ(P ′) and so that P ′ has at most four obtuse angles, which belong
to disjoint neutralizing pairs.

Proof. Let P̂ be the dual polygon to P , as defined above. We claim that

we can pick another point v′ inside P̂ so that at most two of the angles at

v′ are obtuse. This is just because we can pick two non-adjacent sides of P̂
and join their midpoints by a segment. Now, let us pick v′ on that segment

and connect it to all midpoints of the sides of P̂ .

Then, out of the angles γ′i := qiv̂′qi+1 with 1 ≤ i ≤ m, at most two of

them can be obtuse. Then we define P ′ to be the dual of (P̂ , v′). Since P
and P ′ have the same dual, we have Σ(P ) = Σ(P ′). Thus, in P ′ there are
at most 4 obtuse angles γ′i, and for all of them there exists another adjacent
angle γ′i±1 so that γ′i + γ′i±1 < π. Hence, P ′ has neutralizing pairs. �

By putting together these reductions we can complete the proof of The-
orem 13. Let us see the details.

Proof of Theorem 13. Let us first suppose that γi ≤ π/2 for all i. We know
by (10) that

∑m
i=1 arccos(zizi+1) ≤ π with 0 < zi < 1. Then we need to show

that
∑m

i=1 zi > m − 1. Suppose not, then there exists zi with
∑m

i=1 zi ≤
m − 1. Then there exists (z′i)

m
i=1 with 0 ≤ zi ≤ z′i ≤ 1 for all i, so that∑

z′i = m − 1. Then we have, by Theorem 15, π ≤
∑m

i=1 arccos(z′iz
′
i+1) ≤∑m

i=1 arccos(zizi+1) ≤ π, hence
∑m

i=1 arccos(z′iz
′
i+1) = π, which by the sec-

ond part of Theorem 15 implies z′i = 0 for some i, hence also zi = 0, which
is a contradiction.

In the general case, we first apply Lemma 20 to reduce to the case where
P has disjoint neutralizing pairs. Then, by applying Proposition 19, we
reduce to the case of P having no obtuse angles, which we can deal with as
above. This completes the proof. �

Proof of Theorem 2. Theorem 13 shows that the criterion of Theorem 11
holds, proving the singularity of hitting measure. �

6. Coxeter groups

Let P be a centrally symmetric convex polygon with 2m sides in H2, with
each angle γi at the vertices being equal to π

ki
for some natural ki > 1, for

1 ≤ i ≤ 2m. Then, due to [Dav08, Theorem 6.4.3], the group of isometries
generated by hyperbolic reflections R := {r1, . . . , r2m} with respect to the
sides of P acts geometrically on H2. Therefore, it is a hyperbolic group, so
Theorem 8 can be applied to it. Such groups are referred to as hyperbolic
Coxeter groups.

Below we will show that Theorem 2 can be quickly generalized to hyper-
bolic Coxeter groups.
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Lemma 21. Let m > 1. Consider a random walk on the free product of 2m
copies of Z/2Z

F ′2m =
〈
s1, . . . , s2m | s2i = 1

〉
,

defined by a probability measure µ on the generators. If we denote xi :=
Fµ(1, si) for 1 ≤ i ≤ 2m, and the hitting measure on the boundary of F ′2m
by ν, then

ν(C(si)) =
xi

1 + xi
.

Proof. The proof of this lemma can be obtained in a similar way to the
proof of Lemma 10 for Fm, because the Cayley graphs for Fm and F ′2m are
isometric.

More precisely, a sample path converges to the boundary of the cylinder
C(si) if and only if it crosses the edge si an odd number of times. This leads
to the following computation:

ν(C(si)) = P(1→ si 9 1) + P(1→ si → 1→ si 9 1) + · · · =

=
∞∑
n=0

Fµ(1, si)
2n+1(1− Fµ(1, si))

=
∞∑
k=1

(−1)k+1xki =
xi

1 + xi
.

�

A measure µ on the set R = {r1, . . . , r2m} of reflections through the sides
of P is called geometrically symmetric if µ(ri) = µ(ri+m) for each 1 ≤ i ≤ m.

Theorem 22. Let µ denote a geometrically symmetric measure supported
on the generators R = {r1, . . . , r2m} of a hyperbolic Coxeter group. Suppose
that

(17)
m∑
i=1

1

1 + e`(riri+m)/2
<

1

2
.

Then the hitting measure ν in ∂D is singular with respect to Lebesgue mea-
sure.

Proof. The proof of this theorem is quite similar to the proof of Theorem
11. We consider a measure µ̃ on a free product

〈
h1, . . . , h2m | h2i = 1

〉
of 2m

copies of Z/2Z uniquely defined by µ̃(hi) = µ(ri).
If ν were to be absolutely continuous, then a similar argument would yield

that

`(riri+m) ≤ dµ(1, riri+m) ≤ dµ(1, ri) + dµ(1, ri+m)

≤ dµ̃(1, hi) + dµ̃(1, hi+m) = 2dµ̃(1, hi) = −2 log xi.

Keep in mind that dµ̃(1, hi) = dµ̃(1, hi+m) due to µ̃ being geometrically
symmetric as well. Therefore,

xi
1 + xi

≤ 1

1 + e`(riri+m)/2
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and due to Lemma 21 we obtain

1 =

2m∑
i=1

xi
1 + xi

≤ 2

m∑
i=1

1

1 + e`(riri+m)/2
< 1,

which delivers a contradiction. �

Theorem 23. The hitting measure of a nearest-neighbour random walk gen-
erated by a geometrically symmetric measure on a Coxeter group associated
with a centrally symmetric polygon is singular with respect to Lebesgue mea-
sure on ∂D.

Proof. Let us recall that (gi)
m
i=1 denotes the translations identifying the op-

posite sides of P . It is easily seen that `(riri+m) = 2`(gi) = 2`(gi+m) for
every 1 ≤ i ≤ m. However, we can apply Theorem 13 because there are no
obtuse angles, to get

m∑
i=1

2

1 + e`(riri+m)/2
=
∑
g∈S

1

1 + e`(g)
< 1.

We conclude the proof by applying Theorem 22. �
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Summer School Géométries à courbure négative ou nulle, groupes discrets et rigidités,
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