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Abstract
If A is an algebra with finite right global dimension, then for any automorphism α and α-derivation δ

the right global dimension of A[t;α, δ] satisfies

rgldA ≤ rgldA[t;α, δ] ≤ rgldA+ 1.

We extend this result to the case of holomorphic Ore extensions and smooth crossed products by
Z of ⊗̂-algebras.
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1 Introduction
Recall the following well-known theorem:

Theorem 1.1 ([13], Theorem 4.3.7). If R is a ring then the following identity takes place for every
n ∈ N:

rgldR[x1, . . . xn] = n+ rgldR.

The importance of this theorem lies in the fact that it immediately yields the Hilbert’s syzygy
theorem in the case when R is a field (see [[13], Corollary 4.3.8]).

This fact can be, indeed, generalized to Ore extensions R[t;α, δ], as shown in [6]. It turns out that
if the global dimension of R is finite, then the global dimension of R[t;α, δ] either stays the same, or
increases by one.

In this paper we adapt the arguments used in [6, ch. 7.5] to the topological setting in order
to obtain the estimates for the right homological dimensions of analytic (also called holomorphic or
topological) Ore extensions (see [8, ch. 4.1]) and smooth crossed products by Z (see [11] and [7]).

Below we state the result in the purely algebraic situation, which is provided in [6] and then we
present its topological version.
Remark. There is a certain ambiguity in defining Ore extensions, which will be demonstrated below,
so, to state the result in the algebraic setting, we need to fix an appropriate definition of an Ore
extension:

Definition 1.1. Let A be an associative C-algebra, α ∈ End(A) and let δ : A→ A be a C-linear map,
such that the following relation holds for every a, b ∈ A:

δ(ab) = δ(a)b+ α(a)δ(b).

Let us call such maps α-derivations.
Then the Ore extension of A w.r.t α and δ is the vector space

A[t;α, δ] =

{
n∑

i=0

ait
i : ai ∈ A

}

with the multiplication defined uniquely by the following conditions:
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(1) The relation ta = α(a)t+ δ(a) holds for any a ∈ A.

(2) The natural inclusions A ↪→ A[t;α, δ] and C[t] ↪→ A[t;α, δ] are algebra homomorphisms.
Also, if δ = 0 and α is invertible, then one can define the Laurent Ore extension of A

A[t, t−1;α] =

{
n∑

i=−n

ait
i : ai ∈ A

}
with the multiplication defined the same way.
We would like to highlight a certain ambiguity: the authors of [6] define A[t;α, δ] in a slightly

different way:
Definition 1.2 ([6], pp. 1.2.1-1.2.6). Let A be an algebra, α̃ ∈ End(A) and let δ̃ : A → A be a
C-linear map, such that the following relation holds for every a, b ∈ A:

δ̃(ab) = δ̃(a)α̃(b) + aδ̃(b).

Let us call such maps opposite α-derivations. Then the (opposite) Ore extension of A w.r.t α̃ and δ̃ is
the vector space

Aop[t; α̃, δ̃] =

{
n∑

i=0

tiai : ai ∈ A

}
with the multiplication defined uniquely by the following conditions:

(1) The relation at = tα̃(a) + δ̃(a) holds for any a ∈ A.

(2) The natural inclusions A ↪→ Aop[t; α̃, δ̃] and C[t] ↪→ Aop[t; α̃, δ̃] are algebra homomorphisms.
Also, if δ̃ = 0 and α̃ is invertible, then one can define the (opposite) Laurent Ore extension of A

Aop[t, t
−1; α̃] =

{
n∑

i=−n

tiai : ai ∈ A

}
with the multiplication defined the same way.

It is easily seen that in the case of invertible α, the following algebra isomorphisms take place:
A[x;α, δ] ∼= Aop[x, α

−1,−δα−1], A[x, x−1;α] ∼= Aop[x, x
−1;α−1]. (1)

Throughout the paper, we will work with Ore extensions in the sense of Definition 1.1 (if not stated
otherwise).

Now we are ready to state the result in the purely algebraic case, which is contained in [6, Theorem
5.7.3]:
Theorem 1.2 ([6], Theorem 5.7.3). Let A be an algebra, let σ be an automorphism and let δ be a
σ-derivation, in the sense of Definition 1.2. Denote the right global dimension of a ring R by dgr(R).
Then the following estimates hold:

(1) dgrA ≤ dgrAop[t;σ, δ] ≤ dgrA+ 1 if dgrR <∞,

(2) dgrA ≤ dgrAop[t, t−1;σ] ≤ dgrA+ 1,

(3) dgrAop[t, σ] = dgrA+ 1,

(4) dgrA[t, t−1] = dgrA+ 1.
Remark. In fact, the above theorem still holds if we replace Aop[t;σ, δ] with A[t;σ, δ] due to (1).

This paper is organized as follows: in the Section 2 we recall the important notions related to
homological properties of topological modules, in particular, we provide definitions of homological
dimensions for topological algebras and modules. In the Section 3 we obtain the estimates for the
homological dimensions of holomorphic Ore extensions; we use the bimodules of relative differentials
to construct the required projective resolutions. In the Section 4 we obtain the estimates for the
smooth crossed products by Z.

In the Appendix A we provide the computations of algebraic and topological bimodules of relative
differentials for different types of Ore extensions.
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2 Homological dimensions
Remark. All algebras in this paper are considered to be complex, unital and associative. Also, we
will be working only with unital modules.

2.1 Notation
Let us introduce some notation and important definitions. (see [2] and [10] for more details).

For locally convex Hausdorff spaces E,F we denote the completed projective tensor product of
E,F by E⊗̂F .

Recall that a Fréchet space is a complete metrizable locally convex space. In other words, a
complete locally convex space X is a Fréchet space if and only if the topology on X can be generated
by a countable family of seminorms.

Denote by LCS, Fr the categories of complete locally convex spaces and Fréchet spaces, respec-
tively. Also we will denote the category of vector spaces by Lin.

For a detailed introduction to the theory of locally convex spaces and algebras, and relevant
examples, the reader can see [12], [4], [5], or [3].

Let A be a locally convex space with a multiplication µ : A×A→ A, such that (A,µ) is an algebra.

(1) If µ is separately continuous, then A is called a locally convex algebra.

(2) If A is a complete locally convex space, and µ is jointly continuous, then A is called a ⊗̂-algebra.

If A,B are ⊗̂-algebras and η : A → B is a continuous unital algebra homomorphism, then the pair
(B, η) is called a A-⊗̂-algebra.

A ⊗̂-algebra with the underlying locally convex space which is a Fréchet space is called a Fréchet
algebra.

Recall that a seminorm ‖·‖ on a locally convex algebra A is called submultiplicative if
‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A. Recall that a locally convex algebra A is called m-convex if the topology
on it can be defined by a family of submultiplicative seminorms. A complete locally m-convex algebra
is called an Arens-Michael algebra.

Let A be a ⊗̂-algebra and let M be a complete locally convex space with a structure of a left
A-module. Also suppose that the natural map A ×M → M is jointly continuous. Then we will call
M a left A-⊗̂-module. In a similar fashion we define right A-⊗̂-modules and A-B-⊗̂-bimodules.

A ⊗̂-module with its underlying LCS being a Fréchet space over a Fréchet algebra is called a
Fréchet A-⊗̂-module.

For ⊗̂-algebras A,B we denote

A-mod = the category of left A-⊗̂-modules,
mod-A = the category of right A-⊗̂-modules,

A-mod-B = the category of A-B-⊗̂-bimodules.

More generally, for a fixed category C ⊆ LCS we denote the following full subcategories:

A-mod(C) = the category of left A-⊗̂-modules whose underyling LCS belong to C,
mod-A(C) = the category of right A-⊗̂-modules whose underyling LCS belong to C,

A-mod-B(C) = the category of A-B-⊗̂-bimodules whose underyling LCS belong to C.

Complexes of A-⊗̂-modules for a ⊗̂-algebra A

. . .
dn+1−−−→Mn+1

dn−→Mn
dn−1−−−→Mn−1

dn−2−−−→ . . .
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are usually denoted by {M,d}.
Let A be a ⊗̂-algebra and consider a left A-⊗̂-module Y and a right A-⊗̂-module X.

(1) A bilinear map f : X×Y −→ Z, where Z ∈ LCS, is called A-balanced if f(x◦a, y) = f(x, a◦y)
for every x ∈ X, y ∈ Y, a ∈ A.

(2) A pair (X⊗̂AY, i), where X⊗̂AY ∈ LCS, and i : X × Y −→ X⊗̂AY is a jointly continuous
A-balanced map, is called the completed projective tensor product of X and Y , if for
every Z ∈ LCS and jointly continuous A-balanced map f : X × Y −→ Z there exists a unique
continuous linear map f̃ : X⊗̂AY −→ Z such that f = f̃ ◦ i.

For the proof of the existence and uniqueness of completed projective tensor products of ⊗̂-modules
the reader can see [2, ch. 2.3-2.4]. In this paper we would like to keep in mind a trivial, but nonetheless
useful example:

Example 2.1. Let A be a ⊗̂-algebra, and consider a left A-⊗̂-module M . Then

A⊗̂AM
∼−→M, a⊗m 7→ a ·m, (2)

is a topological isomorphism of left A-⊗̂-modules. Similar isomorphisms can be constructed for right
A-⊗̂-modules and A-⊗̂-bimodules.

2.2 Projectivity and flatness
The following definitions will be given in the case of left modules; the definitions in the cases of right
modules and bimodules are similar, just use the following category isomorphisms:

mod-A ' Aop-mod; A-mod-B ' (A⊗̂Bop)-mod.

Let us fix a ⊗̂-algebra A. A complex of A-⊗̂-modules {M,d} is called admissible if it is split
exact in the category LCS. A morphism of A-⊗̂-modules f : X → Y is called admissible if it is one
of the morphisms in an admissible complex.

An additive functor F : A-mod→ Lin is called exact if for every admissible complex {M,d} the
corresponding complex {F (M), F (d)} in Lin is exact.

(1) A module P ∈ A-mod is called projective if the functor HomA(P,−) is exact.

(2) A module Y ∈ A-mod is called flat if the functor (−)⊗̂AY : mod-A→ Lin is exact.

(3) A module X ∈ A-mod is called free if X is isomorphic to A⊗̂E for some locally convex space
E.

The following result is well-known, and we will use it in our paper.

Proposition 2.1. Let X be a free left A-⊗̂-module. Then for every admissible sequence {M,d} of
right A-⊗̂-modules the complex {M⊗̂AX, d⊗̂IdX}, where (M⊗̂AX)i = Mi⊗̂AX splits in LCS.

Let A be an algebra and let M be a right A-module (or a A-bimodule, resp.). For any endomor-
phism α : A → A denote by Mα a right A-module (or an A-bimodule, resp.), which coincides with
M as an abelian group (left A-module, resp.), and whose structure of right A-module is defined by
m ◦ a = mα(a). In a similar fashion one defines αM for left modules.

The proof of the following lemma is very similar to the proof of [2, Proposition 4.1.5].

Lemma 2.1. Let R be a ⊗̂-algebra and let A be a R-⊗̂-algebra.

(1) For every (projective/flat) left module X ∈ R-mod the left A-⊗̂-module A⊗̂RX ∈ A-mod
is (projective/flat). Moreover, for every projective (flat) right module X ∈ mod-R the right
A-module X⊗̂RA ∈mod-A is (projective/flat).
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(2) For every projective bimodule P ∈ R-mod-R and α ∈ Aut(R) the bimodule
Aα⊗̂RP ⊗̂RA ∈ A-mod-A is projective.

Proof.

(1) This part of the lemma is well-known to follow from [2, Theorem 3.1.27].

(2) First of all, notice that the following isomorphism of A-R-⊗̂-bimodules takes place:

Aα⊗̂RR
∼−→ Aα.

In particular, Aα
∼= A as a left A-⊗̂-module. Any projective bimodule is a retract of a free

bimodule, in other words, there exist a locally convex space E and a retraction σ : R⊗̂E⊗̂R→ P .
Notice that the map

IdAα ⊗ σ ⊗ IdA : A⊗̂E⊗̂A ∼= Aα⊗̂RR⊗̂E⊗̂R⊗̂RA→ Aα⊗̂RP ⊗̂RA

is a retraction of A-⊗̂-bimodules, and A⊗̂E⊗̂A is a free A-⊗̂-bimodule.

2.3 Homological dimensions
Let X ∈ A-mod. Suppose that X can be included in a following admissible complex:

0← X
ε←− P0

d0←− P1
d1←− . . .

dn−1←−−− Pn ← 0,

where every Pi is a projective module. Then we will call such complex a projective resolution of
X of length n. Furthermore, we call resolutions of form

0← X
ε←− P0

d0←− P1
d1←− . . .

dn−1←−−− Pn ← Pn+1 ← . . .

where Pn 6= 0 for all n ≥ 0 unbounded, and we define the length of an unbounded resolution as ∞.
Flat resolutions are defined similarly.

It is known that A-mod has enough projectives, therefore, one is able define the notion of a
derived functor in the topological case, for example, see [2, ch 3.3]. In particular, ExtkA(M,N) and
TorAk (M,N) are defined similarly to the purely algebraic situation.

Consider an arbitrary module M ∈ A-mod(C) for a category C ⊆ LCS such that A-mod(C)
has enough projectives. For example, we can consider an admissible category C in the sense of [10,
Definition 2.4]. Then due to [2, Theorem 3.5.4] following number is well-defined and we have the
following identities:

dhC
A(M) := min{n ∈ Z≥0 : Extn+1

A (M,N) = 0 for every N ∈ A-mod(C)} =
= {the length of a shortest projective resolution of M in A-mod(C)} ∈ {−∞} ∪ [0,∞].

We define dhC
A(0) = −∞ and if every projective resolution of M is unbounded, we set dhC

A(M) =∞.
As we can see, this number doesn’t depend on the choice of the category C:

dhC
A(M) = min{n ∈ Z≥0 : Extn+1

A (M,N) = 0 for every N ∈ A-mod(C)} ≤
≤ min{n ∈ Z≥0 : Extn+1

A (M,N) = 0 for every N ∈ A-mod} = dhLCS
A (M),

dhLCS
A (M) = {the length of a shortest projective resolution of M in A-mod} ≤

≤ {the length of a shortest projective resolution of M in A-mod(C)} = dhC
A(M).

So we will denote this invariant by dhA(M), and we will call it the projective homological dimen-
sion of M .
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If A is a Fréchet algebra, and M is a left Fréchet A-module, then we can define the weak homo-
logical dimension of M :

w.dhA(M) = min{n ∈ Z≥0 : TorAn+1(N,M) = 0 and TorAn (N,M) is Hausdorff for every N ∈mod-A(Fr)} =
= {the length of the shortest flat resolution of M} ∈ {−∞} ∪ [0,∞].

We define w.dhC
A(0) = −∞ and if every flat resolution of M is unbounded we set dhC

A(M) =∞.
Let A be a ⊗̂-algebra. Then we can define the following invariants of A:

dglC(A) = sup{dhA(M) : M ∈ A-mod(C)} − the left global dimension of A.

dgrC(A) = sup{dhAop(M) : M ∈mod-A(C)} − the right global dimension of A.

db(A) = dhA⊗̂Aop(A)− the bidimension of A.

For a Fréchet algebra A we can consider weak dimensions.

w.dg(A) = sup{w.dhA(M) : M ∈ A-mod(Fr)} =
= sup{w.dhA(M) : M ∈mod-A(Fr)} − the weak global dimension of A.

w.db(A) = w.dhA⊗̂Aop(A)− the weak bidimension of A.

Unfortunately, we are not aware whether global dimensions depend on the choice of C. We will
denote

dgl(A) := dglLCS(A), dgr(A) := dgrLCS(A).

For more details the reader can consult [2].
The following theorem demonstrates one of the most important properties of homological dimen-

sions.

Theorem 2.1. [2, Proposition 3.5.5] Let A be a ⊗̂-algebra. If 0 → X ′ → X → X ′′ → 0 is an
admissible sequence of left A-⊗̂-modules, then

dhA(X) ≤ max{dhA(X
′), dhA(X

′′)}
dhA(X

′) ≤ max{dhA(X), dhA(X
′′)− 1}

dhA(X
′′) ≤ max{dhA(X), dhA(X

′) + 1}.

In particular, dhA(X) = max{dhA(X
′), dhA(X

′′)} except when dhA(X) < dhA(X
′′) = dhA(X

′) + 1.

Moreover, the same estimates hold for weak homological dimensions of Fréchet modules over
Fréchet algebras, for the proof see [9].

Proposition 2.2. [9, Proposition 4.1, Corollary 4.4] Let A be a Fréchet algebra, then for every
M ∈ A-mod(Fr) we have

w.dhA(M) = min{n : Extn+1
A (M,N∗) = 0 for every N ∈mod-A(Fr)},

where Y ∗ denotes the strong dual of Y .
As a corollary, for every admissible sequence 0→ X ′ → X → X ′′ → 0 of left Fréchet A-⊗̂-modules

we have the following estimates:

w.dhA(X) ≤ max{w.dhA(X
′),w.dhA(X

′′)}
w.dhA(X

′) ≤ max{w.dhA(X),w.dhA(X
′′)− 1}

w.dhA(X
′′) ≤ max{w.dhA(X),w.dhA(X

′) + 1}.
(3)

In particular, w.dhA(X) = max{w.dhA(X
′),w.dhA(X

′′)} except when w.dhA(X) < w.dhA(X
′′) =

w.dhA(X
′) + 1.

6



Proposition 2.3. Let R be a ⊗̂-algebra, let A be a R-⊗̂-algebra, which is free as a left R-module,
and let M be a right R-⊗̂-module.

(1) For every projective resolution of M in mod-R

0←M ← P0 ← P1 ← P2 ← . . .

the complex
0←M⊗̂RA← P0⊗̂RA← P1⊗̂RA← P2⊗̂RA← . . . (4)

is a projective resolution of M⊗̂RA in the category of right A-⊗̂-modules. In particular,

dhAop(M⊗̂RA) ≤ dhRop(M).

(2) Moreover, assume that M,A and R are all metrizable as locally convex spaces. Then for every
flat resolution of M in mod-R

0←M ← F0 ← F1 ← F2 ← . . .

the complex
0←M⊗̂RA← F0⊗̂RA← F1⊗̂RA← F2⊗̂RA← . . . (5)

is a flat resolution of M⊗̂RA in the category of right A-⊗̂-modules. In particular,

w.dhAop(M⊗̂RA) ≤ w.dhRop(M).

Proof.

(1) Lemma 2.1 implies that Pi⊗̂RA is a projective right A-⊗̂-module for all i. The complex (4) is
admissible, because the functor (−)⊗̂RA for a free A preserves admissibility (due to Proposition
2.1), so it defines a projective resolution of M⊗̂RA in the category mod-A.

(2) Due to Lemma 2.1 the modules Fi⊗̂RA are flat right A-⊗̂-modules for all i. Then the rest of
the proof is the same as in (1).

Lemma 2.2. Let R be a ⊗̂-algebra, and consider an R-⊗̂-algebra A.

1. If A is projective as a right R-⊗̂-module, and M is projective as a right A-⊗̂-module, then M is
projective as a right R-⊗̂-module. In this case for every X ∈mod-A we have

dhRop(X) ≤ dhAop(X). (6)

2. If A is projective as a right R-⊗̂-module, and M is flat as a right A-⊗̂-module, then M is flat as
a right R-⊗̂-module. If R,A are Fréchet algebras, then for every X ∈mod-A(Fr) we have

w.dhAop(X) ≤ w.dhRop(X). (7)

Proof. (1) Due to [2, Theorem 3.1.27] we can fix an isomorphism of right R-⊗̂-modules A⊕S ∼= X⊗̂R
for some right R-⊗̂-module S and for some complete locally convex space X.
Suppose that M is a projective right A-⊗̂-module. Then due to [2, Theorem 3.1.27] there
exists a right A-⊗̂-module N such that, for some complete locally convex space E, we have
M ⊕N ∼= E⊗̂A as right A-modules, hence there exist isomorphisms in mod-R

M ⊕N ⊕ (E⊗̂S) ∼= E⊗̂A⊕ (E⊗̂S) ∼= E⊗̂(X⊗̂R) = (E⊗̂X)⊗̂R.
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(2) As in the proof of [6, Lemma 7.2.2], we notice that for any right R-⊗̂-module N we have

M⊗̂RN ∼= M⊗̂A(A⊗̂RN),

and this immediately implies our statement.

Lemma 2.3. If R is a ⊗̂-algebra, α : R → R is an automorphism and M is a right R-⊗̂-module,
then dhRop(Mα) = dhRop(M) and if R is a Fréchet algebra, and M is a Fréchet R-⊗̂-module, then
w.dhRop(Mα) = w.dhRop(M).

Proof. The proof relies on the fact that (·)α : mod-R → mod-R and α(·) : R-mod → R-mod
can be viewed as functors between mod-R and R-mod, which preserve admissibility of morphisms,
projectivity and flatness of modules.

Indeed, if f : M → N is an admissible module homomorphism, then fα : Mα → Nα is admissible,
because �fα = �f , where � : mod-R→ LCS denotes the forgetful functor. The same goes for α(·).

Let P ∈ mod-R be projective. Let us show that the functor Hom(Pα,−) is exact. However, we
know that for every admissible epimorphism ϕ : X → Y the following diagram commutes:

Hom(Pα, X) Hom(Pα, Y )

Hom(P,Xα−1) Hom(P, Yα−1)

φ∗

(·)α−1 (·)α−1 ,

where the left and right arrows are isomorphisms. However, projectivity of P implies that the bottom
arrow is a surjection, therefore, the top arrow is a surjection as well.

Let F ∈mod-R be flat. Then Fα⊗̂RX ' F ⊗̂R(α−1X) and we already know that α−1(·) preserves
admissibility.

3 Estimates for the bidimension and projective global dimensions of
holomorphic Ore extensions

3.1 Bimodules of relative differentials
Firstly, let us give several necessary algebraic definitions.

Definition 3.1. Let S be an algebra, A be an S-algebra and M be an A-bimodule. Then an additive
map δ : A→M is called an S-derivation if the following relations hold for every a, b ∈ A and s ∈ S:

1. δ(ab) = δ(a)b+ aδ(b),

2. δ(s) = 0.

Remark. In particular, any S-derivation is an S-linear map: for every a ∈ A and s ∈ S we have
δ(sa) = sδ(a) and δ(as) = δ(a)s.

Example 3.1. Let α be an endomorphism of an algebra A. Then an α-derivation is precisely an
C-derivation δ : A→ αA.

The following definition is due to J. Cuntz and D. Quillen, see [1]:

Definition 3.2. Suppose that S is an algebra and (A, η) is an S-algebra, where η : S → A is an
algebra homomorphism. Denote by A = A/Im(η(S)) the S-bimodule quotient. Then we can define
the bimodule of relative differential 1-forms Ω1

S(A) = A⊗S A. The elementary tensors in Ω1
S(A)

are usually denoted by a0 ⊗ a1 = a0da1. The A-bimodule structure on Ω1
S(A) is uniquely defined by

the following relations:

b ◦ (a0da1) = ba0da1, (a0da1) ◦ b = a0d(a1b)− a0a1db.
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The bimodule of relative differential 1-forms together with the canonical S-derivation

dA : A→ Ω1
S(A), dA(a) = 1⊗ a = da

has the following universal property:

Proposition 3.1 ([1], Proposition 2.4). For every A-bimodule M and an S-derivation D : A →
M there is a unique A-bimodule morphism ϕ : Ω1

S(A) → M such that the following diagram is
commutative:

Ω1
S(A) M

A

∃!φ

dA
D

(8)

Proposition 3.2 ([1], Proposition 2.5). The following sequence of A-bimodules is exact:

0 Ω1
SA A⊗S A A 0,

j m (9)

where j(a0 ⊗ a1) = j(a0da1) = a0a1 ⊗ 1− a0 ⊗ a1 and m denotes the multiplication.

In the appendix of this paper we compute the bimodule of relative differential 1-forms of Ore
extensions, see Proposition A.1.

3.2 A topological version of the bimodule of relative differentials
The following definition serves as a topological version of Definition 3.1.

Definition 3.3. Let R be a ⊗̂-algebra, and suppose that (A, η) is a R-⊗̂-algebra. Denote by
(A/Im(η(R)))∼ = A the R-⊗̂-bimodule quotient, where (·)∼ stands for the completion. Then we can
define the (topological) bimodule of relative differential 1-forms Ω̂1

R(A) := A ⊗R A. The
elementary tensors are usually denoted by a0⊗̂a1 = a0da1.

The structure of A-⊗̂-bimodule on Ω̂1
R(A) is uniquely defined by the following relations:

b ◦ (a0da1) = ba0da1, (a0da1) ◦ b = a0d(a1b)− a0a1db for every a0, a1, b ∈ A.

Remark. To avoid confusion with the algebraic bimodules of differential 1-forms, here we use the
notation Ω̂1

R(A), unlike in [8].
We will need to recall the following propositions related to topological bimodule of relative differ-

ential 1-forms.

Theorem 3.1. [8, p. 99] For every A-⊗̂-bimodule M and a continuous R-derivation D : A → M
there exists a unique A-⊗̂-bimodule morphism ϕ : Ω̂1

R(A) → M such that the following diagram is
commutative:

Ω̂1
R(A) M

A

∃!φ

dA
D

, (10)

where dA(a) = da.

Proposition 3.3. [8, Proposition 7.2] The short exact sequence

0 Ω̂1
R(A) A⊗̂RA A 0,

j m

where j(a0da1) = a0 ⊗ a1 − a0a1 ⊗ 1 and m(a0 ⊗ a1) = a0a1, splits in the categories A-mod-R and
R-mod-A.
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3.3 Holomorphic Ore extensions
To give the definition of the holomorphic Ore extension of a ⊗̂-algebra, associated with an endomor-
phism and derivation, we need to recall the definition of localizable morphisms.

For a locally convex space X let us denote the space of all continuous linear maps X → X by
L(X).

Definition 3.4. [8, Definition 4.1] Let X be a LCS and consider a family F ⊂ L(X) of continuous
linear maps X → X.

Then a seminorm ‖·‖ on X is called F-stable if for every T ∈ F there exists a constant CT > 0,
such that

‖Tx‖ ≤ CT ‖x‖ for every x ∈ A.

Definition 3.5.

(1) Let X be a LCS.
A family of continuous linear operators F ⊂ L(X) is called localizable, if the topology on X
can be defined by a family of F-stable seminorms.

(2) Let A be an Arens-Michael algebra.
A family of continuous linear operators F ⊂ L(A) is called m-localizable, if the topology on A
can be defined by a family of submultiplicative F-stable seminorms.

Now we will state the theorem which proves the existence of certain ⊗̂-algebras which would
be reasonable to call the “holomorphic Ore extensions”. By O(C) we denote the space of entire
holomorphic functions equipped with the topology of uniform convergence on compact subsets of C.

Theorem 3.2. [8, Section 4.1] Let A be a ⊗̂-algebra and suppose that α : A → A is a localizable
endomorphism of A, δ : A→ A is a localizable α-derivation of A.

Then there exists a unique multiplication on the tensor product A⊗̂O(C), such that the following
conditions are satisfied:

(1) The resulting algebra, which is denoted by O(C, A;α, δ), is an A-⊗̂-algebra.

(2) The natural inclusion
A[z;α, δ] ↪→ O(C, A;α, δ)

induced by the inclusion C[z]→ O(C), where z stands for the identity map C→ C, is an algebra
homomorphism.

(3) Moreover, if the pair (α, δ) is m-localizable, then for every Arens-Michael A-⊗̂-algebra B the
following natural isomorphism takes place:

Hom(A[z;α, δ], B) ∼= Hom(O(C, A;α, δ), B).

Moreover, let α be invertible, and suppose that the pair (α, α−1) is localizable. Then there exists a
unique multiplication on the tensor product A⊗̂O(C×), such that the following conditions are satisfied:

(1) The resulting algebra, which is denoted by O(C×, A;α), is a ⊗̂-algebra.

(2) The natural inclusion
A[z;α, α−1] ↪→ O(C×, A;α)

induced by the inclusion C[z, z−1]→ O(C×), where z stands for the identity map C→ C, is an
algebra homomorphism.

(3) Moreover, if the pair (α, α−1) is m-localizable, then for every Arens-Michael A-⊗̂-algebra B the
following natural isomorphism takes place:

Hom(A[z;α, α−1], B) ∼= Hom(O(C×, A;α), B).

10



And if we replace the word “localizable” with “m-localizable” in this theorem, then the resulting
algebras will become Arens-Michael algebras.

By considering Aop[z;α, δ̃] for an endomorphism α and an (opposite) derivation δ̃, we can formulate
a version of Theorem 3.2 for opposite Ore extensions, the proof is basically the same in this case. As a
result, we can construct ⊗̂-algebras Oop(C, A;α, δ) and Oop(C×, A;α) with underlying LCS isomorphic
to O⊗̂A, and multiplication extended from Aop[z;α, δ̃]. In fact, we need this to prove the following
corollary:

Corollary 3.1. Let R be a ⊗̂-algebra equipped with an endomorphism α : R→ R and a α-derivation
δ such that the pair (α, δ) is localizable.

(1) If A = O(C, R;α, δ), then A is free as a left R-⊗̂-module.

(2) If α is invertible, and (α, α−1) is a localizable pair, then A = O(C×, R;α) is free as a left and
right R-⊗̂-module.

(3) If α is invertible, and the pairs (α, δ) and (α−1, δα−1) are m-localizable, then A = O(C, R;α, δ)
is free as a left and right R-⊗̂-module.

Proof.

1. This already follows from the fact that O(C, R;α, δ) is isomorphic to R⊗̂O(C) in R-mod.

2. This is the immediate corollary of [8, Lemma 4.12]. It shows that the map

τ : O(C×)⊗̂R→ RO(C×), τ(zn ⊗ r) = αn(r)⊗ zn,

where z stands for the identity map C→ C, is a well-defined continuous left R-⊗̂-module map.
However, we can define its inverse as follows:

γ : R⊗̂O(C)→ O(C)⊗̂R, γ(r ⊗ zn) = zn ⊗ α−n(r).

Thus γ will be a continuous inverse of τ in LCS. It remains to construct an isomorphism of
right R-⊗̂-modules

O(C×, R;α)→ O(C×)⊗̂R, rzn 7→ r ⊗ zn 7→ γ(r ⊗ zn).

It is, indeed, an R-⊗̂-module homomorphism because for any r, r′ ∈ R we have

(rzn)r′ = rαn(r′)zn 7→ (rαn(r′))⊗ zn 7→ γ((rαn(r′))⊗ zn) = (zn ⊗ α−n(r))r′ = γ(r ⊗ zn)r′.

3. Here the idea is similar. Observe that the isomorpisms (1) can be extended via the universal
properties to the topological isomorphisms of R-⊗̂-algebras as follows: consider the algebra
homomorphisms

R[t;α, δ]
∼−→ Rop[t;α

−1,−δα−1] ↪→ Oop(C, R;α−1,−δα−1),

Rop[t;α
−1,−δα−1]

∼−→ R[t;α, δ] ↪→ O(C, R;α, δ).

Universal property allows us to extended these maps to continuous algebra homomorphisms

O(C, R;α, δ)→ Oop(C, R;α−1,−δα−1),

Oop(C, R;α−1,−δα−1)→ O(C, R;α, δ).

Now notice that the extensions are continuous and inverse on dense subsets of the holomorphic
Ore extensions, therefore, they are actually inverse to each other. However, the opposite Ore
extensions are free as right R-⊗̂-modules by definition.
Notice that to apply the universal properties we need the the morphisms to be m-localizable, so
that the holomorphic Ore extensions are Arens-Michael algebras.
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3.4 Upper estimates for the bidimension
Theorem 3.3. Suppose that R is a ⊗̂-algebra, and A is one of the two ⊗̂-algebras:

(1) A = O(C, R;α, δ), where the pair {α, δ} is localizable.

(2) A = O(C×, R;α), where the pair {α, α−1} is localizable.

Then we have
db(A) ≤ db(R) + 1.

Proof. Due to Proposition 3.3 and Proposition A.2, we have the following sequence of A-⊗̂-bimodules,
which splits in the categories R-mod-A and A-mod-R:

0 Aα⊗̂RA A⊗̂RA A 0,
j m (11)

where m is the multiplication operator. Let

0← R← P0 ← · · · ← Pn ← 0 (12)

be a projective resolution of R in R-mod-R. Notice that (12) splits in R-mod and mod-R, because all
objects in the resolution are projective as left and right R-⊗̂-modules ([2, Corollary 3.1.18]). Therefore,
we can apply the functors Aα⊗̂R(−) and A⊗̂R(−) to (12) and the resulting complexes of A-R-⊗̂-
bimodules are still admissible:

0← A← A⊗̂RP0 ← · · · ← A⊗̂RPn ← 0 (13)

0← Aα ← Aα⊗̂RP0 ← · · · ← Aα⊗̂RPn ← 0. (14)

Recall that A is a free left R-⊗̂-module due to Corollary 3.1, so the functor (−)⊗̂RA preserves admis-
sibility, due to Proposition 2.1, therefore the following complexes of A-⊗̂-bimodules are admissible:

0← A⊗̂RA← A⊗̂RP0⊗̂RA← · · · ← A⊗̂RPn⊗̂RA← 0 (15)

0← Aα⊗̂RA← Aα⊗̂RP0⊗̂RA← · · · ← Aα⊗̂RPn⊗̂RA← 0 (16)

Lemma 2.1 implies that (15) and (16) define projective resolutions for A⊗̂RA and Aα⊗̂RA. Now we
can apply Theorem 2.1 to (11), so we get

db(A) = dhAe(A) ≤ max{dhAe(A⊗̂RA), dhAe(Aα⊗̂RA) + 1} ≤ n+ 1.

In other words, we have obtained the desired estimate

db(A) ≤ db(R) + 1.

3.5 Upper estimates for the right global and weak global dimensions
Theorem 3.4. Let R be a ⊗̂-algebra. Suppose that A is one of the two ⊗̂-algebras:

(1) A = O(C, R;α, δ), where α is invertible, and the pair {α, δ} is localizable.

(2) A = O(C×, R;α), where the pair {α, α−1} is localizable.

Then the right global dimension of A can be estimated as follows:

dgr(A) ≤ dgr(R) + 1,

and a similar estimate holds for the weak dimensions if R is a Fréchet algebra:

w.dg(A) ≤ w.dg(R) + 1.
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Proof. Suppose that M is a right A-⊗̂-module. Then we can apply the functor M⊗̂A(−) to the
sequence (11). Notice that the resulting sequence of right A-⊗̂-modules

0 M⊗̂AAα⊗̂RA M⊗̂AA⊗̂RA M⊗̂AA 0
IdM⊗j IdM⊗m

is isomorphic to the sequence

0 Mα⊗̂RA M⊗̂RA M 0.
j′ m (17)

Since (11) splits in A-mod-R, (17) splits in mod-R, in particular, this is an admissible short exact
sequence.

Now notice that we can apply Theorem 2.1 to (17), so we get

dhAop(M) ≤ max{dhAop(M⊗̂RA), dhAop(Mα⊗̂RA) + 1} ≤ dhRop(M) + 1

due to Corollary 3.1, Proposition 2.3 and Lemma 2.3. Hence, the following estimate holds:

dgr(A) ≤ dgr(R) + 1.

For the weak dimensions we apply the second part of Proposition 2.2 to the sequence (17):

w.dhAop(M) ≤ max{w.dhAop(M⊗̂RA),w.dhAop(Mα⊗̂RA)}+ 1 ≤ w.dhRop(M) + 1.

3.6 Lower estimates
In order to obtain lower estimates, we need to formulate the following lemma:

Proposition 3.4. Suppose that R is a ⊗̂-algebra, and A is a R-⊗̂-algebra. Assume that there exists
a morphism of left R-⊗̂-modules ϕ : A→ R⊗̂E such that ϕ(1) = 1⊗ x for some x ∈ E.

Then i : M → M⊗̂RA, i(m) = m ⊗ 1 is an admissible monomorphism for every M ∈ mod-R. In
particular, it is a coretraction between the underlying locally convex spaces.

Proof. Look at the following diagram:

M M⊗̂RA M⊗̂RR⊗̂E M⊗̂E,i

m→m⊗x

IdM⊗φ π⊗IdE

where π : M⊗̂RR→M,π(m⊗ r) = mr.
Due to the Hahn-Banach theorem there exists a functional f ∈ E∗ such that f(x) = 1, so the map

m→ m⊗ x admits a right inverse, which is uniquely defined by n⊗ y → f(y)n, therefore m 7→ m⊗ x
is a coretraction therefore i is a coretraction as well.

Proposition 3.5. Let R be a Fréchet algebra, and assume that dgrFr(R) < ∞. Suppose that the
following conditions hold:

(1) Let A be a Fréchet R-⊗̂-algebra which is a free left R-⊗̂-module, moreover, we can choose an
isomorphism of left R-⊗̂-modules ϕ : A→ R⊗̂E in such a way that ϕ(1) = 1⊗ x for some x ∈ E.

(2) A is projective as a right R-⊗̂-module.

Then dgrFr(R) ≤ dgrFr(A) and w.dg(R) ≤ w.dg(A).
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Proof. Fix a Fréchet module M ∈ mod-R(Fr) such that dhRop(M) = dgrFr(R) = n. Proposition 3.4
states that the map M →M⊗̂RA, m→ m⊗1 is an admissible monomorphism, so there exists a short
admissible sequence

0→M
i
↪−→M⊗̂RA→ N → 0.

Notice that dhRop(M) = dgrFr(R) and dhRop(N) ≤ dgrFr(R), therefore dhRop(M⊗̂RA) = dgrFr(R)
due to Theorem 2.1.

Now recall that A is projective as a right R-⊗̂-module, therefore, due to Lemma 2.2, we have

dgrFr(R) = dhRop(M⊗̂RA)
L2.2
≤ dhAop(M⊗̂RA),

which implies dgrFr(R) ≤ dgrFr(A).
A similar argument works for weak dimensions as well: we find a module M ′ ∈ mod-R(Fr) of

maximal dimension: w.dhRop(M) = w.dg(R). Then we prove

w.dg(R) = w.dhRop(M⊗̂RA)
L2.2
≤ w.dhAop(M⊗̂RA) ≤ w.dg(A)

in a similar fashion by using Proposition 2.2 and Lemma 2.2.

As a quick corollary from Proposition 3.5 and Corollary 3.1 we obtain lower estimates for the
homological dimensions.

Theorem 3.5. Let R be a Fréchet algebra, and suppose that dgrFr(R) <∞ and A is one of the two
⊗̂-algebras:

(1) A = O(C, R;α, δ), where α is invertible, and the pairs (α, δ) and (α−1, δα−1) are m-localizable.

(2) A = O(C×, R;α), where the pair (α, α−1) is m-localizable.

Then the conditions of Proposition 3.5 are satisfied. As a corollary, we have the following estimates:

dgrFr(R) ≤ dgrFr(A), w.dg(R) ≤ w.dg(A).

Proof. We have nothing to prove, because Corollary 3.1 ensures that A is free as a left and right R-
⊗̂-module, both conditions follow from this and the construction of holomorphic Ore extensions.

4 Homological dimensions of smooth crossed products by Z

First of all, let us recall the definition of the space of rapidly decreasing sequences:

s =

{
(an) ∈ CZ : ‖a‖k = sup

n∈Z
|an|(|n|+ 1)k <∞ ∀k ∈ N

}
=

∼=

{
(an) ∈ CZ : ‖a‖2k =

∑
n∈Z
|an|2(|n|+ 1)2k <∞ ∀k ∈ N

}
=

∼=

{
(an) ∈ CZ : ‖a‖k =

∑
n∈Z
|an|(|n|+ 1)k <∞ ∀k ∈ N

}
.

It is well-known that s is a nuclear Fréchet space.
The following definitions and theorems are due to L. Schweitzer, see [11] or [7] for more detail.

Definition 4.1. Suppose that R is a Fréchet algebra equipped with an automorphism α ∈ Aut(R).
Then α defines an m-tempered Z-action if the topology on R can be defined by a sequence of submul-
tiplicative seminorms {‖·‖m : m ∈ N} such that for every m, t ∈ N there exists a polynomial p ∈ R[t]
satisfying ∥∥αt(r)

∥∥
m
≤ |p(t)| ‖r‖m

for any t ∈ Z and r ∈ R.
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Definition 4.2. Let A be a Fréchet algebra with a fixed generating system of seminorms {‖·‖λ , λ ∈ Λ}
Then we can define the following locally convex space:

S (Z, A) =

{
f = (fm)m∈Z ∈ AZ : ‖f‖λ,k :=

∑
n∈Z
‖fn‖λ (|n|+ 1)k <∞ for all λ ∈ Λ, k ∈ N

}
.

Theorem 4.1 ([11], Theorem 3.1.7). Let R be a Fréchet-Arens-Michael algebra with an
m-tempered Z-action. Then the space S (Z, R) endowed with the multiplication

(f ∗ g)k =
∑
n∈Z

fnα
n(gk−n), f, g ∈ S (Z, R).

becomes a Fréchet-Arens-Michael algebra. This algebra is denoted by S (G,Z;α) and called the
smooth crossed product by Z.

Proposition 4.1. Consider the following multiplication on S (Z, R):

(f ∗′ g)k =
∑
m∈Z

α−m(fk−m)gm.

Then the following locally convex algebra isomorphism takes place:

i : S (Z, R;α)→ (S (Z, R), ∗′), i(f)k = α−k(fk).

Moreover, this is an isomorphism of unital algebras.

Proof. First of all, let us prove that i is a topological isomorphism of locally convex spaces. First
of all, let us show that i is well-defined and continuous. Fix a countable non-decreasing generating
family {‖·‖t}t∈N of seminorms on R given by Definition 4.2. Then

||i(f)||t,k =
∑
n∈Z
||α−n(fn)||t(|n|+ 1)k.

Because the action is m-tempered, we know that for all n ∈ Z we have ||αn(fn)||t ≤ |p(n)|||fn||t for
some t′ ∈ N and C > 1. Therefore,

||i(f)||t,k ≤
∑
n∈Z
||fn||t|p(−n)|(|n|+ 1)k.

Considering the fact that p is a polynomial, we can always find a constant C ′ > 1 and k′ > k such
that

|p(−n)|(|n|+ 1)k ≤ C ′(|n|+ 1)k
′
,

therefore,
||i(f)||t,k ≤ C ′||f ||t,k′ .

Observe that the map (fk) 7→ (αk(fk)) is a continuous inverse of i. Therefore, i is an isomorphism of
LCS. Now notice that

(i(f) ∗′ i(g))(k) =
∑
m∈Z

α−m(i(f)k−m)i(g)m =
∑
m∈Z

α−k(fk−m)α−m(gm) =

=
∑
m∈Z

α−k(f−m)α−m−k(gm+k) = αk

(∑
m∈Z

f−mα−m(gm+k)

)
=

= αk

(∑
m∈Z

fmαm(gk−m)

)
= (i(f ∗ g))k.

therefore, i is an algebra homomorphism.
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For example, let us consider a Fréchet-Arens-Michael algebra R with a m-tempered action of Z
and fix a generating family of submultiplicative seminorms {‖·‖λ | λ ∈ Λ} on R, such that

‖αn
1 (r)‖λ ≤ p(n) ‖r‖λ , (r ∈ R,n ∈ Z),

where p is a polynomial depending on λ ∈ Λ. In this case the algebra R is contained in S (Z, R;α):

R ↪→ S (Z, R;α), r 7→ re0,

where (rei)j := δijr.
Hence, S (Z, R;α) becomes a unital R-⊗̂-algebra, and in the appendix we prove Proposition A.3,

which states that the structure of Ω̂1
R(S (Z, R;α)) is similar to the algebraic and holomorphic cases.

This gives us an opportunity to formulate the following theorem:

Theorem 4.2. Let R be a Fréchet-Arens-Michael algebra with an m-tempered Z-action α. If we
denote A = S (Z, R;α), then we have

db(A) ≤ db(R) + 1, dgrFr(A) ≤ dgrFr(R) + 1, w.dg(A) ≤ w.dg(R) + 1.

The proof of the theorem is very similar to the proofs of Theorems 3.3 and 3.4. We just use Proposition
A.3 to establish the sequence (11) for smooth products, and then we proceed with the same argument.

Lemma 4.1. The module S (Z, R;α) is free as a left and right R-⊗̂-module.

Proof. We observe that S (Z, R;α) is a left R-⊗̂-module because its underlying locally convex space
S (Z, R) is isomorphic to s⊗R, and the map

(fn)⊗ r 7→ (fnr)

is an isomorphism of left R-⊗̂-modules. We finish the argument by proving that (S (G,Z), ∗′) is
isomorphic to R⊗ s as a right R-⊗̂-module in a similar fashion, then invoking Proposition 4.1.

Lemma 4.1 together with Proposition 3.5 allows us to obtain the lower estimates.

Theorem 4.3. Let R be Fréchet-Arens-Michael algebra with dgrFr(R) <∞ and with a m-tempered
Z-action α. Denote A = S (Z, R;α). Then the conditions of Proposition 3.5 are satisfied. In particular,
we have

dgrFr(R) ≤ dgrFr(A), w.dg(R) ≤ w.dg(A).

A Relative bimodules of differential 1-forms of Ore extensions
We will provide a sketch of a proof for the following proposition, whereas for the full proof we refer
to [6, Proposition 7.5.2].

Proposition A.1. Let R be a C-algebra. Suppose that

(1) A = R[t;α, δ], where α : R→ R is an endomorphism and δ : R→ R is an α-derivation.

(2) A = R[t, t−1;α], where α : R→ R is an automorphism.

Then Ω1
R(A) is isomorphic as an A-bimodule to Aα ⊗R A.

Sketch of the proof. The first part of the proof works for the both cases. Define the map ϕ : Aα×A→
Ω1
R(A) as follows:

ϕ(f, g) = fd(tg)− ftdg = f(dt)g, (f, g ∈ A).

First of all, we prove that this map is balanced.
Therefore, ϕ induces a well-defined homomorphism of A-bimodules ϕ : Aα ⊗R A→ Ω1

R(A).
We will use the universal property of Ω1

R(A) to construct the inverse morphism.
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(1) Suppose that A = R[t;α, δ]. Consider the following linear mapping:

D : A→ Aα ⊗R A, D(rtn) =

n−1∑
k=0

rtk ⊗ tn−k−1.

As it turns out, D is an R-derivation.

(2) Suppose that A = R[t, t−1;α]. Consider the following linear mapping:

D : A→ Aα ⊗R A, D(rtn) =

{∑n−1
k=0 rt

k ⊗ tn−k−1, if n ≥ 0,

−
∑|n|

k=1 rt
−k ⊗ tn+k−1, if n < 0.

As in the first case, this map turns out to be an R-derivation.

The rest of this proof works in the both cases. Notice that ϕ◦D = dA, because (ϕ◦D)(t) = dA(t),
and both ϕ◦D and dA are R-derivations. Therefore, these derivations have to agree on the subalgebra
generated by R, t (and t−1 in the invertible case), which is A itself.

The following proposition was already proven by A. Yu. Pirkovskii, see [8, Proposition 7.8], but we
present another proof, which utilizes the derivations introduced in the sketch of the proof of Proposition
A.1; it even works in the case of localizable morphisms. Moreover, the proof can be carried over to the
case of smooth crossed products by Z, as we will see later.

Proposition A.2. Let R be an Arens-Michael algebra. Suppose that A is one of the following
⊗̂-algebras:

(1) A = O(C, R;α, δ), where α : R→ R is an endomorphism and δ : R→ R is a α-derivation, such
that the pair (α, δ) is a localizable pair of morphisms.

(2) A = O(C×, R;α), where α : R → R is an automorphism, such that the pair (α, α−1) is a
localizable pair of morphisms.

Then Ω̂1
R(A) is isomorphic to Aα⊗̂RA.

Proof. Fix a generating family of seminorms {‖·‖λ : λ ∈ Λ} on R such that for every λ ∈ Λ there
exists C > 0 such that for all x ∈ R we have ‖α(x)‖λ ≤ C ‖x‖λ and ‖δ(x)‖λ ≤ C ‖x‖λ. Define the
map Aα ×A→ Ω̂1

R(A) as in the proof of Proposition 0.1:

ϕ(f, g) = fd(zg)− fzdg = f(dz)g, (f, g ∈ A).

This is a R-balanced map (the proof is literally the same as in Proposition A.1), also it is easily seen
from the continuity of the bimodule action of A on Ω1

R(A) that this map is continuous. Therefore,
this map induces a continuous A-⊗̂-bimodule homomorphism Aα⊗̂RA→ Ω̂1

R(A).

(1) Suppose that A = O(C, R;α, δ). Recall that the topology on A is generated by the family
{‖·‖λ,ρ}λ∈Λ,ρ>1, where ∥∥∥∥∥∥

∑
n≥0

fnz
n

∥∥∥∥∥∥
λ,ρ

=
∑
‖fn‖ ρn.

Consider the following linear map:

D : R[z;α, δ]→ Aα⊗̂RA, D(rzn) =
n−1∑
k=0

rzk ⊗ zn−k−1.
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For now it is defined on the dense subset of A; let us prove that this map is continuous. Fix
λ1, λ2 ∈ Λ and ρ1, ρ2 ∈ R≥0. Denote the projective tensor product of ‖·‖λ1,ρ1

and ‖·‖λ2,ρ2
by γ.

Then for every f =
∑m

k=0 fkz
k ∈ R[z;α, δ] ⊂ A we have

γ(D(f)) ≤
m∑
k=1

γ(D(fkz
k)) =

m∑
k=1

γ

(
k−1∑
l=0

fkz
l ⊗ zk−l−1

)
≤

m∑
k=1

‖fk‖λ1

k−1∑
l=0

ρl1ρ
k−l−1
2 ≤

≤
m∑
k=1

‖fk‖λ1
(2max{ρ1, ρ2, 1})k = ‖f‖λ1,2max{ρ1,ρ2,1} .

(2) Suppose that A = O(C×, R;α). Recall that the topology on A is generated by the family
{‖·‖λ,ρ}λ∈Λ,ρ>1, where ∥∥∥∥∥∑

n∈Z
fnz

n

∥∥∥∥∥
λ,ρ

=
∑
‖fn‖ ρ|n|.

Consider the following linear map:

D : R[t, t−1;α]→ Aα⊗̂RA, D(rzn) =

{∑n−1
k=0 rz

k ⊗ zn−k−1, if n ≥ 0,

−
∑|n|

k=1 rz
−k ⊗ zn+k−1, if n < 0.

For now it is defined on the dense subset of A; let us prove that this map is continuous. Fix
λ1, λ2 ∈ Λ and ρ1, ρ2 ∈ R≥0. Denote the projective tensor product of ‖·‖λ1,ρ1

and ‖·‖λ2,ρ2
by γ.

Suppose that n ≥ 0. Then we have

γ(D(rzn)) = γ

(
n−1∑
l=0

rzl ⊗ zn−l−1

)
≤ ‖r‖λ1

n−1∑
l=0

ρl1ρ
n−l−1
2 ≤

≤ n ‖r‖λ1
max{ρ1, ρ2}n−1 ≤ ‖r‖λ1

2nmax{ρ1, ρ2, 1}n ≤ ‖rzn‖λ1,2max{ρ1,ρ2,1} .

If n < 0, then

γ(D(rzn)) = γ

 |n|∑
l=1

rz−l ⊗ zn+l−1

 ≤ ‖r‖λ1

|n|∑
l=1

ρ
|−l|
1 ρ

|n+l−1|
2 = ‖r‖λ1

|n|∑
l=1

ρl1ρ
1−l−n
2 ≤

≤ ‖r‖λ1
2|n|max{ρ1, ρ2, 1}|n|+1 ≤ ‖rzn‖λ1,2max{ρ21,ρ22,1}

.

Therefore, for every f =
∑m

−m fkz
k ∈ R[z, z−1;α] ⊂ A we have

γ(D(f)) =
m∑

k=−m

γ
(
D(fkz

k)
)
≤

m∑
k=−m

∥∥∥fkzk∥∥∥
λ1,2max{ρ21,ρ22,1}

= ‖f‖λ1,2max{ρ21,ρ22,1}
.

Therefore, this map can be uniquely extended to the whole algebra A; we will denote the extension
by D, as well. Notice D is also an R-derivation: the equality D(ab) − D(a)b − aD(b) = 0 holds for
R[z;α, δ]×R[z;α, δ] ⊂ A×A, which is a dense subset of A × A. Therefore, D(ab) = D(a)b + aD(b)
for every a, b ∈ A.

Notice that ϕ ◦D = dA. Denote the extension of D : A → Aα⊗̂RA by D̃ : Ω̂1
R(A) → Aα⊗̂RA, so

D = D̃ ◦ dA. Therefore we can derive from the universal property of Ω̂1
R(A) that ϕ ◦ D̃ = Id. And

D̃ ◦ ϕ(a⊗ b) = a(D̃ ◦ ϕ(1⊗ 1))b = aD̃(dt)b = a⊗ b.

Therefore, the equality D̃ ◦ ϕ = Id holds on a dense subset of Aα⊗̂RA, but D̃ ◦ ϕ is continuous,
therefore, D̃ ◦ ϕ = Id holds everywhere on Aα⊗̂RA.

Proposition A.3. Let R be a Fréchet-Arens-Michael algebra and consider an m-tempered action α
of Z on R. If we denote the algebra S (Z, R;α) by A, then Ω̂1

R(A) is isomorphic to Aα1⊗̂RA.
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Proof. Fix a generating system of submultiplicative seminorms {‖·‖λ : λ ∈ Λ} on R, such that for
every λ ∈ Λ there exists a polynomial p such that for all x ∈ R and n ∈ N we have

‖αn(x)‖λ = ‖αn
1 (x)‖λ ≤ p(n) ‖x‖λ (x ∈ R, λ ∈ Λ).

Define the map ϕ : Aα1 ×A→ Ω̂1
R(A) as follows:

ϕ(f, g) = fd(e1 ∗ g)− (f ∗ e1)dg = f(de1)g.

It is a continuous R-balanced linear map (the proof is literally the same as in the previous propositions).
Now let us denote by A the dense subalgebra of A (algebraically) generated by R, z and z−1, and

let us consider the following linear map:

D : A → Aα1⊗̂RA, D(ren) =


n−1∑
k=0

rek ⊗ en−k−1, if n ≥ 0

−
|n|∑
k=1

re−k ⊗ en+k−1, if n < 0

.

Let us prove that it is a well-defined and continuous map from A to Aα1⊗̂RA. Fix λ1, λ2 ∈ Λ and
k1, k2 ∈ Z≥0. Denote the projective tensor product of ‖·‖λ1,k1

and ‖·‖λ2,k2
by γ. Let n ≥ 1, then we

have

γ(D(ren)) = γ

(
n−1∑
k=0

rek ⊗ en−k−1

)
≤ ‖r‖λ1

(nk2 + 2k1(n− 1)k2 + · · ·+ nk1) ≤

≤ ‖r‖λ1
(nmax{k1,k2} + 2max{k1,k2}(n− 1)max{k1,k2} + · · ·+ nmax{k1,k2}) ≤

≤ ‖r‖λ1
n2max{k1,k2}+1 ≤ ‖ren‖λ1,2max{k1,k2}+1 .

For n < 0 the argument is pretty much the same:

γ(D(ren)) = γ

 |n|∑
k=1

re−k ⊗ en+k−1

 ≤ ‖r‖λ1
(2k1(|n|+ 1)k2 + 3k1 |n|k2 + . . . (|n|+ 1)k12k2) ≤

≤ ‖r‖λ1
(2max{k1,k2}(|n|+ 1)max{k1,k2} + · · ·+ (|n|+ 1)max{k1,k2}2max{k1,k2}) ≤

≤ ‖r‖λ1
|n|(|n|+ 1)2max{k1,k2} ≤ ‖r‖λ1

(|n|+ 1)2max{k1,k2}+1 = ‖ren‖λ1,2max{k1,k2}+1 .

It is easily seen that for every f ∈ A we have

γ(Df) ≤
∑
m∈Z

γ(D(f (m)em)) ≤ 2
∑
m∈Z

∥∥∥f (m)em

∥∥∥
λ1,2max{k1,k2}+1

= 2 ‖f‖λ1,2max{k1,k2}+1 .

Then D is a R-derivation which can be uniquely extended to the whole algebra A, the extension D̃ is
the inverse of ϕ, the proof is the same as in Proposition A.2.
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