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Abstract. In this paper we provide upper estimates for the global pro-
jective dimensions of smooth crossed products S (G,A;α) for G = R
and G = T and a self-induced Fréchet-Arens-Michael algebra A. In or-
der to do this, we provide a powerful generalization of methods which
are used in the works of Ogneva and Helemskii.

Introduction

There are numerous papers dedicated to homological properties of smooth
crossed products of Fréchet algebras and C*-algebras, see [3], [8], [9], [11], or
[14], for example.

However, it seems that nothing is known about homological dimensions
of smooth crossed products. In [6] we provided the estimates for homological
dimensions of holomorphic Ore extensions and smooth crossed products by
Z of unital ⊗̂-algebras, and in this paper we show that the methods of the
author’s previous works and the paper [10] can be adapted to smooth crossed
products by R and T.

The idea behind the estimates lies in the construction of admissible Ω̂1-
like sequences for the required non-unital algebras. What do we mean by
that? Recall the definition of a bimodule of relative 1-forms:

Definition 0.1 ([1]). Suppose that R is an algebra, and A is an R-algebra.
For an A-bimodule X we define a R-derivation as an additive map d : A→ X
such that:

1. d(ab) = d(a) · b+ a · d(b) for every a, b ∈ A,
2. d(r) = 0 for every r ∈ R,

where · denotes the outer multiplication in X as an A-bimodule.
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Definition 0.2. Let R be a unital ⊗̂-algebra, and let A denote a unital

R-⊗̂-algebra (see Definition 3.1). A pair
(

Ω̂1
R(A), dA

)
, which consists of an

A-⊗̂-bimodule Ω̂1
R(A) and a continuous R-derivation dA : A −→ Ω̂1

R(A), is
called the bimodule of relative 1-forms of A, if this pair is universal in the
following sense:

for every A-⊗̂-bimodule M and a continuous R-derivation D : A −→M

there exists a unique continuousA-⊗̂-bimodule homomorphism D̃ : Ω̂1
R(A) −→

M such that D = D̃ ◦ dA.

Ω̂1
R(A) M

A

D̃

dA
D

This construction is a topological version of a construction presented in

[1]. It is not hard to prove that Ω̂1
R(A) is a well-defined object, moreover, this

bimodule is a part of an extremely useful admissible sequence. The following
theorem is the topological version of [1, Proposition 2.5].

Theorem 0.3 ([12], Proposition 7.2). Let R be a unital ⊗̂-algebra and
let A denote a unital R-⊗̂-algebra. Then there exists a sequence which splits
in the categories A-mod-R and R-mod-A:

0 Ω̂1
R(A) A⊗̂RA A 0,

j m (0.1)

where m(a⊗ b) = ab. In particular, this sequence is admissible.

In the paper [6] we utilized the sequence (0.1) in order to obtain the
upper estimates for the homological dimensions of different types of non-
commutative Ore-like extensions. In the case when all algebras are unital, this

sequence proves to be quite useful because it turns out that Ω̂1
R(A) ∼= A⊗̂RA

as an R-⊗̂-module.
However, when G = R or G = T, then, given a Fréchet-Arens-Michael

algebra A, the algebras S (G,A;α) are, in general, not unital. Nevertheless,
we managed to obtain the exact sequences for these algebras, which look
similar to (0.1), and which allowed us to derive the upper estimates for the
global projective dimensions of S (R, A;α) and S (T, A;α).

Let us recall that for A = C and α = IdC we have S (R, A;α) ' S (R).
In [10] it is shown that the projective homological dimension of S (Rn) equals
n for n ≥ 1.

As for the general case, we conjecture that the estimates for homological
dimensions should look as follows:

Conjecture 0.4. Let A be a Fréchet-Arens-Michael algebra (not necessarily
unital) with a smooth m-tempered action α of R or T on A. Denote the left
(projective) global dimension by dgl. Then for G = R or G = T we have

dgl(A) ≤ dgl(S (G,A;α)) ≤ dgl(A) + 1.
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The main results of this paper are Theorems 2.19, 2.20, 3.12, 3.13. In
particular, we have proven a weak form of the above conjecture.

Theorem 0.5. Let A be a projective Fréchet-Arens-Michael algebra, which
satisfies the following condition: the multiplication map m : A⊗̂AA −→ A
is an A-⊗̂-bimodule isomorphism. Also let α denote a smooth m-tempered
action of R or T on A. Denote the left (projective) global dimension by dgl.
Then for G = R or G = T we have

dgl(S (G,A;α)) ≤ max{dgl(A), 1}+ 1

Acknowledgments

I would like to thank Alexei Pirkovskii and Alexander Helemskii for encour-
aging me to work on this problem, and I greatly appreciate their feedback.

1. Preliminaries

1.1. Notation

Remark. All algebras in this paper are defined over the field of complex
numbers and assumed to be associative. Moreover, we allow the algebras to
be non-unital, in contrast to [6].

Definition 1.1. A Fréchet space is a complete metrizable locally convex
space.

Let us introduce some notation (see [5] and [13] for more details). Denote
by LCS, Fr the categories of complete locally convex spaces, Fréchet spaces,
respectively. Also we will denote the category of vector spaces by Lin.

For a locally convex Hausdorff space E we will denote its completion by
Ẽ. Also for locally convex Hausdorff spaces E,F the notation E⊗̂F denotes
the completed projective tensor product of E,F .

By A+ we will denote the unitization of an algebra A. By Aop we denote
the opposite algebra.

Definition 1.2. A complete locally convex algebra with jointly continuous
multiplication is called a ⊗̂-algebra.

A ⊗̂-algebra with the underlying locally convex space which is a Fréchet
space is called a Fréchet algebra.

Definition 1.3. A locally convex algebra A is calledm-convex if the topology
on it can be defined by a family of submultiplicative seminorms.

Definition 1.4. A complete locally m-convex algebra is called an Arens-
Michael algebra.
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Definition 1.5. Let A be a ⊗̂-algebra and let M be a complete locally
convex space which is also a left A-module. Also suppose that the natural
map A×M →M is jointly continuous. Then we will callM a left A-⊗̂-module.
In a similar fashion we define right A-⊗̂-modules and A-B-⊗̂-bimodules.

A ⊗̂-module over a Fréchet algebra which is itself a Fréchet space is
called a Fréchet A-⊗̂-module.

For arbitrary ⊗̂-algebras A,B we denote

A-mod = the category of left A-⊗̂-modules,

mod-A = the category of right A-⊗̂-modules,

A-mod-B = the category of A-B-⊗̂-bimodules.

For unital ⊗̂-algebras A,B we denote

A-unmod = the category of unital left A-⊗̂-modules,

unmod-A = the category of unital right A-⊗̂-modules,

A-unmod-B = the category of unital A-B-⊗̂-bimodules.

Let A be a ⊗̂-algebra, and consider a complex of A-⊗̂-modules:

. . .
dn+1−−−→Mn+1

dn−→Mn
dn−1−−−→Mn−1

dn−2−−−→ . . . ,

then we will denote this complex by {M,d}.

Definition 1.6. Let A be a ⊗̂-algebra and consider a left A-⊗̂-module Y
and a right A-⊗̂-module X.

(1) A bilinear map f : X × Y −→ Z, where Z ∈ LCS, is called A-balanced
if f(x ◦ a, y) = f(x, a ◦ y) for every x ∈ X, y ∈ Y, a ∈ A.

(2) A pair (X⊗̂AY, i), where X⊗̂AY ∈ LCS, and i : X × Y −→ X⊗̂AY is
a continuous A-balanced map, is called the completed projective tensor
product of X and Y , if for every Z ∈ LCS and continuous A-balanced
map f : X × Y −→ Z there exists a unique continuous linear map
f̃ : X⊗̂AY −→ Z such that f = f̃ ◦ i.

1.2. Projectivity and homological dimensions

The following definitions will be given in the case of left modules; the defi-
nitions in the cases of right modules and bimodules are similar, just use the
following category isomorphisms: for unital A,B we have

unmod-A ' Aop-unmod A-unmod-B ' (A⊗̂Bop)-unmod

Let A be a unital ⊗̂-algebra.

Definition 1.7. A complex of A-⊗̂-modules {M,d} is called admissible ⇐⇒
it splits in the category LCS. A morphism of A-⊗̂-modules f : X → Y is
called admissible if it is one of the morphisms in an admissible complex.

Definition 1.8. An additive functor F : A-unmod → Lin is called ex-
act ⇐⇒ for every admissible complex {M,d} the corresponding complex
{F (M), F (d)} in Lin is exact.
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Definition 1.9. Suppose that A and B are unital ⊗̂-algebras.

(1) A module P ∈ A-unmod is called projective ⇐⇒ the functor HomA(P,−)
is exact.

(2) A module X ∈ A-unmod is called free ⇐⇒ X is isomorphic to A⊗̂E
for some E ∈ LCS.

Now we consider the general, non-unital case. Let A be a ⊗̂-algebra.
Any left ⊗̂-module over an algebra A can be viewed as a unital ⊗̂-module
over A+, in other words, the following isomorphism of categories takes place:

A-mod ∼= A+-unmod, A-mod-B ∼= A+⊗̂Bop
+ -unmod.

By using this isomorphism we can define projective and free modules in the
non-unital case.

Definition 1.10. Suppose that A and B are ⊗̂-algebras.

(1) A module P ∈ A-mod is called projective ⇐⇒ the module P is
projective in the category A+-unmod

(2) A module X ∈ A-mod is called free ⇐⇒ X is isomorphic to A+⊗̂E
for some E ∈ LCS.

As it turns out, there is no ambiguity, a unital module is projective
in the sense of Definition 1.9 if and only if it is projective in the sense of
Definition 1.10.

Definition 1.11. Let X ∈ A-mod. Suppose that X can be included in the
following admissible complex:

0← X
ε←− P0

d0←− P1
d1←− . . . dn−1←−−− Pn ← 0← 0← . . . ,

for a chain where every Pi is a non-zero projective module. Then we call this
admissible complex a projective resolution of X of length n. If X is included
in an admissible complex of a form

0← X
ε←− P0

d0←− P1
d1←− . . . dn−1←−−− Pn

dn←− Pn+1
dn+1←−−− . . . ,

where Pi 6= 0 for all i ≥ 0, then it is called an unbounded projective resolution,
with its length being equal to ∞.

This allows us to define the notion of a derived functor in the topological
case, for example, see [5, ch 3.3]. In particular, ExtkA(M,N) and TorAk (M,N)
are defined similarly to the purely algebraic situation.

Definition 1.12. Consider an arbitrary non-zero moduleM ∈ A-mod. Then
the following number is well-defined:

dhA(M) = min{n ∈ Z≥0 : Extn+1
A (M,N) = 0 for every N ∈ A-mod} =

= {the length of a shortest projective resolution of M} ∈ [0,∞].

It is called the projective (homological) dimension of M .

Remark. Following a standard convention, we define dhA(0) = −∞.
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Definition 1.13. Let A be a ⊗̂-algebra. Then we can define the following
invariants of A:

dgl(A) = sup{dhA(M) : M ∈ A-mod} − the left global dimension of A.

dgr(A) = sup{dhA(M) : M ∈mod-A} − the right global dimension of A.

1.3. Algebra of rapidly decreasing functions

Recall the definition of the space of rapidly decreasing functions on Rn.

Definition 1.14. For n > 0 define the Fréchet space

S (Rn) := {f : Rn → C : ‖f‖k,l = sup
x∈Rn

|xkDl(f)| <∞ for all k, l ∈ Zn≥0},

where xk = xk11 . . . xknn and Dl(f) = ∂l1

∂x
l1
1

. . . ∂
ln

∂xlnn
f . The topology on S (Rn)

is defined by the system {‖f‖k,l : k, l ∈ Zn≥0}.

There are two natural ways to define the multiplication on S (Rn):

(f · g)(x) = f(x)g(x) (pointwise product)

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y)dy. (convolution product)

The following theorem is well-known.

Theorem 1.15. Fix n ∈ N.

(1) (S (Rn), ·) is a Fréchet-Arens-Michael algebra.
(2) The Fourier transform induces an isomorphism of Arens-Michael alge-

bras

Fn : (S (Rn), ·) −→ (S (Rn), ∗),

Fn(f)(x) =

∫
Rn
f(y)e−2πi〈x,y〉dy1 . . . dyn.

Proof. (1) The proof is very similar to the proof that C∞(Rn) is a Fréchet-
Arens-Michael algebra, which can be found in [7, Section 4.4.(2)].

(2) See [2, Theorem 8.22, Corollary 8.28] for the proof.
�

From now on we will write S (Rn) instead of (S (Rn), ·) and S (Rn)conv
instead of (S (Rn), ∗).

1.4. Ω̂1-like admissible sequences for S (R)

In order to determine the homological dimensions of S (Rn) in [10], Helemskii

and Ogneva used a simple and natural Ω̂1-like admissible sequence for S (R).
It was constructed using Hadamard’s lemma.

Lemma 1.16 (Hadamard’s lemma). Let f ∈ S (Rn), such that
f(0, x2, . . . , xn) = 0 for all (x2, . . . , xn) ∈ Rn−1. Then there exists a function
g ∈ S (Rn) such that

f(x1, . . . , xn) = x1g(x1, . . . , xn).
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More generally, suppose that f(x) = 0 on a hyperplane in Rn defined by the
equation a1x1 + · · ·+ anxn = 0. Then there exists g ∈ S (Rn) such that

f(x1, . . . , xn) = (a1x1 + · · ·+ anxn)g(x1, . . . , xn).

Recall that S (R2) admits the following structure of an S (R)-⊗̂-bimodule:

(ϕ · f)(x, y) = ϕ(x)f(x, y), (f · ϕ)(x, y) = f(x, y)ϕ(y)

for any ϕ ∈ S (R), f ∈ S (R2), x, y ∈ R.

The Theorem 1.1 gives a similar S (R)conv-⊗̂-bimodule structure on
S (R2)conv.

Proposition 1.17 ([10], Proposition 3). The following diagram is com-
mutative, moreover, the rows of the diagram are short exact sequences of
S (R)-⊗̂-bimodules which split in the categories S (R)-mod and mod-S (R):

0 S (R2) S (R2) S (R) 0

0 S (R)⊗̂S (R) S (R)⊗̂S (R) S (R) 0

j π

k

∼ ∼

m

Id (1.1)

where

j(f)(x, y) = (x− y)f(x, y) for all f ∈ S (R2),

π(f)(x) = f(x, x) for all f ∈ S (R2)

k(f ⊗ g) = fx⊗ g − f ⊗ gx for all f ∈ S (R2),

m(f ⊗ g) = fg for all f ∈ S (R2).

Let us restate the above proposition for S (R)conv. First of all, we
will formulate a lemma which can be considered as the “Fourier dual” to
Hadamard’s lemma.

Lemma 1.18. Let f ∈ S (Rn) such that
∫
R f(t, x2, . . . , xn)dt = 0 for any

(x2, . . . , xn) ∈ Rn−1. Then there exists a function g ∈ S (Rn) satisfying

f(x1, . . . , xn) =
∂

∂x1
g(x1, . . . , xn).

More generally, if there is a non-zero vector v = (v1, . . . , vn) ∈ Rn such that
the integral

∫
R f(x + tv)dt = 0 for any x ∈ Rn, then there exists a function

g ∈ S (Rn) satisfying

f(x1, . . . , xn) =

(
n∑
i=1

vi
∂

∂xi

)
g(x1, . . . , xn).

Proof. WLOG we can assume that v = e1 = (1, 0, . . . , 0), otherwise we apply
a suitable linear change of variables.
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Let us consider f̃ := Fn(f) ∈ S (Rn), this is a well-defined function due
to Theorem 1.15. Then

f̃(0, x2, . . . , xn) =

∫
Rn
f(y)e−2πi(x2y2+···+xnyn)dy =

=

∫
Rn−1

(∫
R
f(t, y2, . . . , yn)dt

)
e−2πi(x2y2+···+xnyn)dy2 . . . dyn

due to Fubini’s theorem. However,
∫
R f(t, y2, . . . , yn)dt = 0 due to our as-

sumption. Therefore, f̃ satisfies the conditions of Lemma 1.16, so there exists
a function g̃ such that f̃(x) = x1g̃. We finish the argument by applying the
inverse Fourier transform to obtain

f =
∂

∂x1

(
1

2πi
F−1n (g̃)

)
.

�

In the same fashion, we can formulate the “Fourier dual” to Proposition
1.17.

Proposition 1.19. The following diagram is commutative, moreover, the
rows of the diagram are short exact sequences of S (R)conv-⊗̂-bimodules
which split in the categories S (R)conv-mod and mod-S (R)conv:

0 S (R2)conv S (R2)conv S (R)conv 0

0 S (R)conv⊗̂S (R)conv S (R)conv⊗̂S (R)conv S (R)conv 0

j π

k

∼

m

∼ Id

(1.2)
where

j(f)(x, y) =

(
∂

∂x
− ∂

∂y

)
f(x, y) for all f ∈ S (R2),

π(f)(x) =

∫
R
f(y, x− y)dy for all f ∈ S (R2).

k(f ⊗ g) = f ′ ⊗ g − f ⊗ g′ for all f ∈ S (R2),

m(f ⊗ g) = f ∗ g for all f ∈ S (R2).

In the next section we will show that the diagram (1.2) can be gener-
alized if we replace S (R) with smooth crossed products of Fréchet-Arens-
Michael algebras by R and T.
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2. Ω̂1-like admissible sequences for smooth crossed
products

2.1. Smooth m-tempered actions and smooth crossed products

Definition 2.1. Let E be a Hausdorff topological vector space. For a function
f : Rn → E and x ∈ Rn we denote

∂f

∂xi
(x) := lim

h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
.

Let us define T = {z ∈ C : |z| = 1}. From now on, we will canonilcally
identify T with R/Z.

Definition 2.2. Let X be a Fréchet space with topology, generated by a
sequence of seminorms {‖·‖m : m ∈ N}.
(1) The space S (Tn, X) := C∞(Tn, X) is a Fréchet space with respect to
the system {

‖f‖k,m = sup
x∈Tn

∥∥Dk(f)(x)
∥∥
m

: k ∈ Zn≥0,m ∈ N
}
.

(2) Define the following space:

S (Rn, X) =

{
f : Rn → X : ‖f‖k,l,m := sup

x∈Rn

∥∥∥xlDk(f)(x)∥∥∥
m
<∞, k, l ∈ Zn≥0,m ∈ N

}
,

where Dk(f) = ∂k1

∂x
k1
1

. . . ∂
kn

∂xknn
f . The topology on S (Rn, X) is defined by the

system
{‖f‖k,l,m : k, l ∈ Zn≥0,m ∈ N}.

The following proposition was proven in [4], also see [7, Chapter 11.2]
for some related results.

Proposition 2.3. Let A be a Fréchet space. Then the natural maps

S (Rn)⊗̂A→ S (Rn, A), f ⊗ a 7→ (x 7→ f(x)a),

S (Tn)⊗̂A→ S (Tn, A), f ⊗ a 7→ (x 7→ f(x)a).

are topological isomorphisms for n ∈ N. As a corollary, we have

S (Rm)⊗̂S (Rn) ∼= S (Rm,S (Rn)) ∼= S (Rn+m),

S (Tm)⊗̂S (Tn) ∼= S (Tm,S (Tn)) ∼= S (Tn+m),

This proposition gives us another way to differentiate and integrate
vector-valued Schwartz functions.

Definition 2.4. Let A be a Fréchet algebra. Then for G = T,R we define
the derivative
d
dx : S (G,A) → S (G,A) and the integral

∫
G

: S (G,A) → A using the
universal property of the completed projective tensor product:

d

dx
(f ⊗ a) :=

(
d

dx
f(x)

)
⊗ a,

∫
G

(f ⊗ a)dµ :=

(∫
G

fdµ

)
⊗ a,
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where µ denotes the Lebesgue measure on R and the normalized Lebesgue
measure on T.

Definition 2.5. Let A be a Fréchet-Arens-Michael algebra, and let G = R
or G = T. Then the action α of G on A via automorphisms is called

(a) m-tempered (as in [14]), if there exists a generating family of submulti-
plicative seminorms {‖·‖m}m∈N on A such that for every m ∈ N there
is a polynomial pm(x) ∈ R[x], satisfying

‖αx(a)‖m ≤ |pm(x)| ‖a‖m (a ∈ A, x ∈ G).

(b) C∞-m-tempered or smooth m-tempered , if the following conditions are
satisfied:
(1) for every a ∈ A the function

αx(a) : G −→ A, x 7→ αx(a),

is C∞-differentiable,
(2) there exists a generating family of submultiplicative seminorms
{‖·‖m}m∈N on A such that for any k ≥ 0 and m > 0 there exists a
polynomial pk,m ∈ R[x], satisfying∥∥∥α(k)

x (a)
∥∥∥
m
≤ |pk,m(x)| ‖a‖m (k ∈ N, x ∈ G, a ∈ A).

The following theorem can be considered as a definition of smooth
crossed products.

Theorem 2.6 ([14], Theorem 3.1.7). Let A be a Fréchet-Arens-Michael
algebra with an
m-tempered action of one of the groups G = R or G = T. Then the space
S (G,A) endowed with the following multiplication:

(f ∗α g)(x) =

∫
G

f(y)αy(g(x− y))dy

becomes a Fréchet-Arens-Michael algebra.

When G = R, we will denote this algebra by S (R, A;α), and in the
case G = T we will write C∞(T, A;α).

Remark. If α is the trivial action, then S (G,A;α) = S (G,A) with
the usual convolution product.

Proposition 2.7. Let A be a Fréchet-Arens-Michael algebra. Consider an
action α : R → Aut(A). Then α is a smooth m-tempered action if and only
if the following holds:

1. the derivative α′x(a) exists at x = 0 for every a ∈ A, and, as a corollary,
derivatives all of orders at zero exist.

2. there exists a generating family of submultiplicative seminorms {‖·‖m}m∈N
on A such that for every m ∈ N and k ∈ N there exist polynomials
pm(x) ∈ R[x] and Ck,m > 0, satisfying

‖αx(a)‖m ≤ |pm(x)| ‖a‖m ,
∥∥∥α(k)

0 (a)
∥∥∥
m
≤ Ck,m ‖a‖m
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for every a ∈ A, x ∈ R.

Proof. (⇒) If α is C∞-m-tempered, choose the seminorms ‖·‖m and the
polynomials pm,k(x) as in Definition 2.5, and set

pm(x) = p0,m(x), Ck,m = pk,m(0).

(⇐) Notice that

α′x(a) = lim
h→0

αx+h(a)− αx(a)

h
= αx

(
lim
h→0

αh(a)− a
h

)
= αx(α′0(a)) (a ∈ A).

(2.1)
Therefore,

α(k)
x (a) = α(k−1)

x (α′0(a)) = α(k−2)
x (α′0(α′0(a))) = · · · = αx(α′0(. . . (α′0(a)))︸ ︷︷ ︸

k times

).

However,

α′0(α′0(x)) = lim
h→0

αh(α′0(x))− α′0(x)

h
= lim
h→0

α′h(x)− α′0(x)

h
= α′′0(x).

By induction we obtain the following equality:

α(k)
x (a) = αx(α

(k)
0 (a)) (2.2)

for every a ∈ A, x ∈ R, k ∈ Z≥0.
As an immediate corollary, αx(a) ∈ C∞(R, A) for every a ∈ A. This

also implies that∥∥∥α(k)
x (a)

∥∥∥
m

=
∥∥∥αx(α

(k)
0 (x))

∥∥∥
m
≤ |pm(x)|

∥∥∥α(k)
0 (a)

∥∥∥
m
≤ |pm(x)|Ck,m ‖a‖m .

Now set pk,m(x) = Ck,mpm(x). �

The proposition can be restated for G = T:

Proposition 2.8. Let A be a Fréchet-Arens-Michael algebra. Consider an
action α : T → Aut(A). Then α is a smooth m-tempered action if and only
if the following holds:

1. the derivative α′x(a) exists at x = 0 for every a ∈ A, and, as a corollary,
derivatives all of orders at zero exist.

2. there exists a generating family of submultiplicative seminorms {‖·‖m}m∈N
on A such that for every m ∈ N and k ∈ N there exist Cm, Ck,m > 0,
satisfying

‖αx(a)‖m ≤ Cm ‖a‖m ,
∥∥∥α(k)

0 (a)
∥∥∥
m
≤ Ck,m ‖a‖m

for every a ∈ A, x ∈ T.

Proof. The proof is the same as in the previous proposition, we only need
keep in mind that

|pk,m(x)| ≤ sup
x∈T
|pk,m(x)| <∞.

�
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2.2. Explicit construction

Remark. In this subsection we only treat the case G = R here, the case
G = T can be dealt with in the same way.

Definition 2.9. A ⊗̂-algebra A is called self-induced, if the multiplication
map mA : A⊗̂AA −→ A is an A-⊗̂-bimodule isomorphism.

Until the end of this section, A will denote a self-induced Fréchet-Arens-
Michael algebra. We will also consider a smooth m-tempered R-action α of
A.

In this subsection we will construct a Ω̂1
A-like admissible sequence for

S (R, A;α).

Proposition 2.10. For any F ∈ S (R, A) define T (F )(x) = αx(F (x)). Then
the following statements hold:

1. The mapping T is a well-defined continuous linear map T : S (R, A)→
S (R, A),

2. Moreover, T is invertible, with the inverse, defined for every F ∈ S (R, A)
as follows:

T−1(F )(x) = α−x(F (x)).

In particular, we have(
T ◦ d

dx
◦ T−1

)
(F )(x) = F ′(x)− α′0(F (x)) (2.3)

for any F ∈ S (R, A).
3. For any F,G ∈ S (R, A;α) we have

F ′ ∗α T (G) = F ∗α T (G′).

This equality is equivalent to

F ′ ∗α G = F ∗α
(
T ◦ d

dx
◦ T−1

)
(G).

Proof.

1. Let us write down the derivative of αx(F (x)):

d

dx
(αx(F (x))) = lim

h→0

αx+h(F (x+ h))− αx(F (x))

h
=

= αx

(
lim
h→0

αh(F (x) + F ′(x)h+ o(h))− F (x)

h

)
=

= αx (α′0(F (x)) + F ′(x)) = α′x(F (x)) + αx(F ′(x)).

It is easily seen that

dk

dxk
(αx(F (x))) =

k∑
i=0

(
n

k

)
α(i)
x (F (k−i)(x)). (2.4)



Homological dimensions of smooth crossed products 13

Now fix a generating system of seminorms on A which satisfies the con-

ditions of Proposition 2.7. Let us show that α
(m)
x (F (x)) lies in S (R, A)

for any F ∈ S (R, A) and m ≥ 0:

‖T (F )‖k,l,m = sup
x∈R

∥∥∥∥xl dkdxk (αx(F (x)))

∥∥∥∥
m

≤
k∑
i=0

(
k

i

)
sup
x∈R

∥∥∥α(i)
x (F (k−i)(x))

∥∥∥ ≤
≤

k∑
i=0

(
k

i

)
sup
x∈R

(
|pi,m(x)|

∥∥∥F (k−i)(x)
∥∥∥
m

)
<∞.

2. Notice that the same argument shows works for T−1, as well. As for the
equality, notice that

d

dx
(α−x(F (x))) = −α′−x(F (x)) + α−x(F ′(x)), (2.5)

so we have

T

(
d

dx
(α−x(F (x)))

)
= −αx(α′0(F (x))) + (F ′(x))

2.2
= −α′0(F (x)) + F ′(x)

3. This is equivalent to∫
R
F ′(y)αy(TG(x− y))dy =

∫
R
F (y)αy(TG′(x− y))dy ⇔

⇔
∫
R
F ′(y)αx(G(x− y))dy =

∫
R
F (y)αx(G′(x− y))dy ⇔

⇔
∫
R

d

dy
(F (y))αx(G(x− y))dy = −

∫
R
F (y)

d

dy
(αx(G(x− y)))dy ⇔

⇔
∫
R

d

dy
(F (y))αx(G(x− y))dy +

∫
R
F (y)

d

dy
(αx(G(x− y)))dy = 0 (int. by parts)

�

Let S (R, A;α)α =: Sα denote the S (R, A;α)-⊗̂-bimodule and A-⊗̂-
bimodule, which coincides with S (R, A) as a LCS, and the bimodule actions
are given below:

(F · a)(x) = F (x)αx(a), a · F (x) = aF (x) for any a ∈ A,F ∈ Sα
(F ·G)(x) = (F ∗α G)(x), (G · F )(x) = (G ∗α F )(x) for any F,G ∈ Sα.

Proposition 2.11.

1. For any F ∈ S (R, A) and a ∈ A the functions F · a and a ·F belong to
S (R, A). As a corollary, Sα is well-defined.

2. The following equalities take place:

(F · a)′ = (F ′ · a) + (F · α′0(a)), (2.6)(
T ◦ d

dx
◦ T−1

)
(F · a) =

((
T ◦ d

dx
◦ T−1

)
F

)
· a, (2.7)(

T ◦ d

dx
◦ T−1

)
(a · F ) = a ·

(
T ◦ d

dx
◦ T−1

)
(F )− α′0(a) · F. (2.8)
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Proof.

1. The argument for a · F is pretty much trivial, we only need to check
that F · a ∈ S (R, A). Fix a generating system of seminorms {‖·‖m} on
A, satisfying the conditions of Proposition 2.7.

Notice that for every k, l ∈ Z≥0 and m ∈ N we have

‖F · a‖k,l,m = sup
x∈R

∥∥∥∥xl dkdxk (F · a)(x)

∥∥∥∥
m

= sup
x∈R

∥∥∥∥∥
k∑
i=0

xl
(
k

i

)
F (i)(x)α

(k−i)
0 (a)

∥∥∥∥∥
m

≤

≤
k∑
i=0

(
k

i

) ∣∣xl∣∣ ∥∥∥F (i)(x)
∥∥∥
m

∥∥∥α(k−i)
0 (a)

∥∥∥
m
≤

≤ ‖a‖m
k∑
i=0

(
k

i

)
Ck−i,m

∣∣xl∣∣ ∥∥∥F (i)(x)
∥∥∥
m

=

= ‖a‖m
k∑
i=0

(
k

i

)
Ck−i,m ‖F‖i,l,m <∞.

2. Checking these equalities is pretty straightforward:

(F · a)′(x) = F (x)α′x(a) + F ′(x)αx(a)
2.2
= F (x)αx(α′0(a)) + F ′(x)αx(a) =

= (F ′ · a)(x) + (F · α′0(a))(x),(
T ◦ d

dx
◦ T−1

)
(F ·a) =

((
T ◦ d

dx

)
(T−1F ) ◦ a

)
=

((
T ◦ d

dx
◦ T−1

)
F

)
·a.(

T ◦ d

dx
◦ T−1

)
(a · F )(x) =

(
T ◦ d

dx

)
(α−x(a)(T−1F )(x)) =

= T
(
α−x(a)(T−1F )′(x)− α′−x(a)(T−1F )(x)

)
=

=

(
a ·
(
T ◦ d

dx
◦ T−1

)
(F )− α′0(a) · F

)
(x).

�

Lemma 2.12. The bimodule Sα belongs to the categories S (R, A;α)-mod-
A andA-mod-S (R, A;α). In particular, the following S (R, A;α)-⊗̂-bimodule
structure on Sα⊗̂ASα is well-defined:

H · (F ⊗G) = (H ∗α F )⊗G, (F ⊗G) ·H = F ⊗ (G ∗α H)

for any F,G,H ∈ S (R, A).

Proof. We only need to prove that (H · F ) · a = H · (F · a) and (a · F ) ·H =
a · (F ·H) for any a ∈ A;F,H ∈ Sα.

H · (F · a)(x) =

∫
R
H(y)αy(F (x− y))αx(a)dy = (H · F ) · a(x),

(a · F ) ·H(x) =

∫
R
aF (y)αy(H(x− y))dy = a · (H · F )(x).

�
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It is also easy to see that Sα⊗̂ASα is a well-defined A-⊗̂-bimodule.

Lemma 2.13. Define the following maps:

m : Sα⊗̂ASα −→ Sα, m(F ⊗G) = F ∗α G,

j : Sα⊗̂ASα −→ Sα⊗̂ASα, j(F ⊗G) = F ′ ⊗G− F ⊗
(
T ◦ d

dx
◦ T−1

)
G.

These maps are well-defined S (R, A;α)-⊗̂-bimodule and A-⊗̂-bimodule ho-
momorphisms.

Proof. First of all, let us prove that m and j are well-defined:

m((F · a)⊗G)(x) =

∫
R
F (y)αy(a)αy(G(x− y))dy =

=

∫
R
F (y)αy(aG(x− y))dy = m(F ⊗ (a ·G))(x, y).

j(F · a⊗G) = (F · a)′ ⊗G− (F · a)⊗
(
T ◦ d

dx
◦ T−1

)
(G)

2.6
=

2.6
= (F ′ · a)⊗G+ (F · α′0(a))⊗G− (F · a)⊗

(
T ◦ d

dx
◦ T−1

)
(G) =

= F ′ ⊗ a ·G+ F ⊗ α′0(a) ·G− F ⊗ a ·
(
T ◦ d

dx
◦ T−1

)
(G).

j(F ⊗ a ·G) = F ′ ⊗ a ·G− F (x)⊗
(
T ◦ d

dx
◦ T−1

)
(a ·G)

2.8
=

2.8
= F ′ ⊗ a ·G− F ⊗ a ·

(
T ◦ d

dx
◦ T−1

)
(G) + F ⊗ α′0(a) ·G =

= j(F · a⊗G).

The algebra S (R, A;α) is associative, therefore,m is an S (R, A;α)-⊗̂-bimodule
homomorphism.

It is relatively easy to show that j is a left S (R, A;α)-⊗̂-module homo-
morphism:

j((H ∗α F )⊗G) = (H ∗α F )′ ⊗G− (H ∗α F )⊗
(
T ◦ d

dx
◦ T−1

)
(G) =

= (H ∗α F ′)⊗G− (H ∗α F )⊗
(
T ◦ d

dx
◦ T−1

)
(G) =

= H ∗α j(F ⊗G).

And it is slightly more difficult to show that it is a right S (R, A;α)-⊗̂-module
homomorphism.

j(F ⊗ (G ∗α H)) = F ′ ⊗ (G ∗α H)− F ⊗ T ((T−1(G ∗H))′)

T−1(G ∗H)(x) =

∫
R
α−x(G(y))α−x+y(H(x− y))dy =

=

∫
R
α−x(G(y + x))αy(H(−y))dy
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(T−1(G ∗H))′(x) =

∫
R

d

dx
(α−x(G(y + x)))αy(H(−y))dy

2.5
=

2.5
=

∫
R

(α−x(G′(x+ y))− α′−x(G(x+ y)))αy(H(−y))dy.

T ((T−1(G ∗H))′)(x) =

∫
R
(G′(x+ y)− αx(α′−x(G(x+ y))))αx+y(H(−y))dy

2.2
=

2.2
=

∫
R
(G′(x+ y)− α′0(G(x+ y)))αx+y(H(−y))dy =

=

∫
R
(G′(y)− α′0(G(y)))αy(H(x− y))dy

2.3
=

2.3
=

((
T ◦ d

dx
◦ T−1

)
(G) ∗α H

)
(x).

Therefore, we have

j(F⊗(G∗αH)) = F ′⊗(G∗αH)−F⊗
(
T ◦ d

dx
◦ T−1

)
(G)∗αH = j(F⊗G)∗αH.

Now let us check that j and m are A-⊗̂-bimodule homomorphisms:

m(a · F ⊗G)(x) =

∫
R

aF (y)αy(G(x− y))dy = (a ·m(F ⊗G))(x)

m(F ⊗G · a)(x) =

∫
R

F (y)αy(G(x− y))αx(a)dy = (m(F ⊗G) · a)(x)

j(a · F ⊗G) = (a · F )′ ⊗G− a · F ⊗
(
T ◦ d

dx
◦ T−1

)
(G) = a · j(F ⊗G)

j(F ⊗G · a) = F ′ ⊗G · a− F ⊗
(
T ◦ d

dx
◦ T−1

)
(G · a)

2.7
=

2.7
= F ′ ⊗G · a− F (x)⊗

(
T ◦ d

dx
◦ T−1

)
(G) ◦ a = j(F ⊗G) ◦ a.

�

As a corollary from Proposition 2.10 we have m ◦ j = 0.

Proposition 2.14. The tensor product Sα⊗̂ASα is isomorphic to S (R2, A)
as a locally convex space:

I1 : Sα⊗̂ASα −→ S (R2, A), I1(F ⊗G)(x, y) = α−x(F (x))G(y).

Proof. First of all, we can replace S (R2, A) with S (R2, A⊗̂AA), because A
is isomorphic to A⊗̂AA as a locally convex space. This is precisely where we
use the fact that A is a self-induced algebra.

Let X be a complete LCS and consider a continuous A-balanced map
Q : Sα × Sα −→ X. Define the map

Q̃ : S (R2, A⊗̂AA) −→ X, Q̃(f(x)g(y)a⊗ b) = I1(f(x)αx(a), g(x)b).

This map is a well-defined continuous linear map, because I1 is A-balanced
and the linear span of {f(x)g(y)a ⊗ b : f, g ∈ S (R), a, b ∈ A} is dense
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in S (R2, A⊗̂AA). From the construction of Q̃ it follows that the following
diagram is commutative:

S (R2, A⊗̂AA) X

Sα × Sα

Q̃

I1 Q

Moreover, Q̃ is a unique mapping which makes this diagram commute. �

Therefore, the isomorphism I1 induces the structure of an S (R, A;α)-
⊗̂-module on S (R2, A), which we will denote by S (R2, A)α. Let us describe
the action of S (R, A;α) and A on S (R2, A)α explicitly.

Lemma 2.15. The algebra A acts on S (R2, A)α as follows:

(a · F )(x, y) = α−x(a)F (x, y) for any F ∈ S (R2, A)α, a ∈ A
(F · a)(x, y) = F (x, y)αy(a) for any F ∈ S (R2, A)α, a ∈ A

The algebra S (R, A;α) acts on S (R2, A)α as follows:

(H · F )(x, y) =

∫
R
α−x(H(z))F (x− z, y)dz for any F ∈ S (R2, A)α, H ∈ S (R, A;α)

(F ·H)(x, y) =

∫
R
F (x, z)αz(H(y − z))dz for any F ∈ S (R2, A)α, H ∈ S (R, A;α).

Proof. In all cases we will check every relation on a dense subset, then we will
use the continuity arguments to finish the proof. Let F (x, y) = G1(x)G2(y).

(a · F )(x, y) = I1(a · TG1 ⊗G2)(x, y) = α−x(a)G1(x)G2(y) = α−x(a)F (x, y)

(F · a)(x, y) = I1(TG1 ⊗G2 · a)(x, y) = G1(x)G2(y)αy(a) = F (x, y)αy(a)

(H · F )(x, y) = I1

(∫
R
H(z)αz(TG1(x− z))dz ⊗G2(x)

)
⊗G2(x) =

= I1

(∫
R
H(z)αx(G1(x− z))dz ⊗G2(x)

)
=

=

(∫
R
α−x(H(z))(G1(x− z))G2(y)dz

)
=

=

∫
R
α−x(H(z))F (x− z, y)dz.

(F ·H)(x, y) = I1

(
TG1(x)⊗

∫
R
G2(z)αz(H(x− z))dz

)
=

=

∫
R
G1(x)G2(z)αz(H(y − z))dz =

=

∫
R
F (x, z)αz(H(y − z))dz.

�



18 Petr Kosenko

Now we want to construct two right inverse maps to m and and two
left inverse maps to j. First of all, let us describe the action of these maps
on S (R2, A).

Lemma 2.16. The following diagrams are commutative:

Sα⊗̂ASα Sα⊗̂ASα Sα⊗̂ASα S,

S (R2, A)α S (R2, A)α S (R2, A)α

I1

j

I1 I1

m

ι

π

where

ι(F )(x, y) =

(
∂F

∂x
− ∂F

∂y

)
(x, y) + α′0(F (x, y)) for any F ∈ S (R2, A)

π(F )(x) =

∫
R
αy(F (y, x− y))dy for any F ∈ S (R2, A)

Proof. It is obvious that ι and ρ are continuous, so we can assume that
F (x, y) = G(x)H(y) for some G,H ∈ S:

I1 ◦ j ◦ I−11 (F )(x, y) = I1 ◦ j(TG⊗H)(x, y) =

= I1
(
(TG)′(x)H(y)− (TG)(x)(T (T−1H)(y))

)
=

= T−1((TG)′(x))H(y)−G(x)T ((T−1H)′(y))
2.3
=

2.3
= (G′(x) + α′0(G(x)))H(y)−G(x)(H ′(y)− α′0(H(y))) =

=

(
∂F

∂x
− ∂F

∂y

)
(x, y) + α′0(G(x))H(y) +G(x)α′0(H(y)) =

=

(
∂F

∂x
− ∂F

∂y

)
(x, y) +

d

dt
αt(G(x)H(y))|t=0 .

m◦I−11 (F )(x) =

∫
R

TG(y)αy(H(x−y))dy =

∫
R

αy(G(y)H(x−y))dy = π(F )(x).

�

Now we can construct two right inverse maps for π.

Lemma 2.17. Fix a function ϕ ∈ C∞c (R) with
∫
R ϕ(t)dt = 1. Define the

maps

ρx : Sα −→ S (R2, A)α, ρx(F )(x, y) = ϕ(y)α−x(F (x+ y)),

ρy : Sα −→ S (R2, A)α, ρy(F )(x, y) = ϕ(x)α−x(F (x+ y)).

Then ρx is an S (R, A;α)-A-⊗̂-bimodule homomorphism, and ρy is an A-
S (R, A;α)-⊗̂-bimodule homomorphism. Moreover, we have

π ◦ ρx = π ◦ ρy = IdSα .
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Proof. For any F,H ∈ S (R, A;α), a ∈ A we have

ρx(H ∗α F )(x, y) = ϕ(y)

∫
R
α−x(H(z))αz−x(F (x+ y − z))dz

H · ρx(F )(x, y) =

∫
R
α−x(H(z))ρx(F )(x− z, y)dz =

=

∫
R
ϕ(y)α−x(H(z))αz−x(F (x+ y − z))dz

ρx(F · a)(x, y) = ϕ(y)α−x((F · a)(x+ y)) = ϕ(y)F (x+ y)αy(a) = (ρx(F )) · a

(π ◦ ρx)(F )(x) =

∫
R
αy(ρx(F )(y, x− y))dy =

=

∫
R
ϕ(x− y)F (x)dy = F (x)

∫
R
ϕ(x− y)dy = F (x).

ρy(F ∗α H)(x, y) = ϕ(x)

∫
R
α−x(F (z))αz−x(H(x+ y − z))dz =

=

∫
R
ϕ(x)α−x(F (z + x))αz(H(y − z))dz

ρy(F ) ·H(x, y) =

∫
R
ρy(F )(x, z)αz(H(y − z))dz =

=

∫
R
ϕ(x)α−x(F (x+ z))αz(H(y − z))dz

ρy(a · F )(x, y) = ϕ(x)α−x((a · F )(x+ y)) =

= ϕ(x)α−x(a)F (x+ y) = (a · ρy(F ))(x, y)

(π ◦ ρy)(F )(x) =

∫
R
αy(ρy(F )(y, x− y))dy =

∫
R
ϕ(y)F (x)dy = F (x).

�

Lemma 2.18. Fix a function ϕ ∈ C∞c (R) with
∫
R ϕ(t)dt = 1. Define the

maps

βx : S (R2, A)α −→ S (R2, A)α,

βy : S (R2, A)α −→ S (R2, A)α,

βx(F )(x, y) =

∫ x

−∞

(
αt−x(F (t, x+ y − t))− ϕ(x+ y − t)

∫
R
αz−x(F (z, x+ y − z))dz

)
dt

βy(F )(x, y) =

∫ x

−∞

(
αt−x(F (t, x+ y − t))− ϕ(t)

∫
R
αz−x(F (z, x+ y − z))dz

)
dt

Then βx is an S (R, A;α)-A-⊗̂-bimodule homomorphism, and βy is an A-
S (R, A;α)-⊗̂-bimodule homomorphism. Moreover, we have

βx ◦ ι = βy ◦ ι = IdS (R2,A)α .

Proof. We’ll start by proving that βx is well-defined: it is not entirely obvious
from the construction that these integrals define functions which belong to
S (R2, A). Let us prove that the corresponding integral over R equals zero,
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then we can use the vector-valued version of the Haramard’s lemma to prove
that the antiderivative lies in S (R2, A), as well.∫

R

(
αt−x(F (t, x+ y − t))− ϕ(x+ y − t)

∫
R
αz−x(F (z, x+ y − z))dz

)
dt =

=

∫
R
αt−x(F (t, x+ y − t))dt−

∫
R

(
ϕ(x+ y − t)

∫
R
αz−x(F (z, x+ y − z))dz

)
dt =

=

∫
R
αt−x(F (t, x+ y − t))dt−

∫
R
ϕ(x+ y − t)dt

∫
R
αz−x(F (z, x+ y − z))dz =

=

∫
R
αt−x(F (t, x+ y − t))dt−

∫
R
αz−x(F (z, x+ y − z))dz = 0

Now we can prove that βx is a ⊗̂-bimodule homomorphism. We notice that
for every H ∈ S, F ∈ S (R2, A) we have

αt−x((H · F )(t, x+ y − t)) = αt−x

(∫
R
α−t(H(s))F (t− s, x+ y − t)ds

)
=

=

∫
R
α−x(H(s))αt−x(F (t− s, x+ y − t))ds,

therefore, we have

βx(H · F )(x, y) =

∫ x
−∞

(
αt−x(H · F (t, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(H · F (z, x + y − z))dz

)
dt =

=

∫ x
−∞

∫
R
α−x(H(s))αt−x(F (t− s, x + y − t))dsdt−

−
∫ x
−∞

ϕ(x + y − t)
∫
R

∫
R
α−x(H(s))αz−x(F (z − s, x + y − z))dsdzdt =

=

∫ x
−∞

∫
R
α−x(H(s))αt−x(F (t− s, x + y − t))dsdt−

−
∫ x
−∞

ϕ(x + y − t)
∫
R
α−x(H(s))

∫
R
αz−x(F (z − s, x + y − z))dzdsdt =

=

∫ x
−∞

(∫
R
α−x(H(s))

(
αt−x(F (t− s, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(F (z − s, x + y − z))dz

)
ds

)
dt =

=

∫
R

(∫ x
−∞

α−x(H(s))

(
αt−x(F (t− s, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(F (z − s, x + y − z))dz

)
dt

)
ds =

=

∫
R
α−x(H(s))

(∫ x
−∞

(
αt−x(F (t− s, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(F (z − s, x + y − z))dz

)
dt

)
ds =

=

∫
R
α−x(H(s))

∫ x
−∞

αt+s−x(F (t, x + y − t− s))dtds−

−
∫
R
α−x(H(s))

∫ x
−∞

ϕ(x + y − t− s)
∫
R
αz+s−x(F (z, x + y − z − s))dzdtds =

=

∫
R
α−x(H(s))βx(F )(x− s, y)ds = (H · βx(F ))(x, y),

βx(F · a)(x, y) =

=

∫ x

−∞

(
αt−x((F · a)(t, x+ y − t))− ϕ(x+ y − t)

∫
R
αz−x((F · a)(z, x+ y − z))dz

)
dt =

=

∫ x

−∞

(
αt−x(F (t, x+ y − t))αy(a)− ϕ(x+ y − t)

∫
R
αz−x(F (z, x+ y − z))αy(a)dz

)
dt =

=

(∫ x

−∞

(
αt−x(F (t, x+ y − t))− ϕ(x+ y − t)

∫
R
αz−x(F (z, x+ y − z))dz

)
dt

)
αy(a) =

= (βx(F ) · a)(x, y).
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To check that βx is the left inverse to ι, we have to assume that F (x, y) =
G(x)H(y). First of all, notice that

d

dt
(αt−x(F (t, x+ y − t))) =

d

dt
(αt−x(G(t))αt−x(H(x+ y − t))) =

= (αt−x(G′(t)) + α′t−x(G(t)))αt−x(H(x+ y − t))+
+ αt−x(G(t))(α′t−x(H(x+ y − t))− αt−x(H ′(x+ y − t))) =

= αt−x(G′(t)H(x+ y − t) + α′0(G(t))H(x+ y − t)+

+G(t)α′0(H(x+ y − t))−G(t)H ′(x+ y − t)) 2.3
=

2.3
= αt−x(T−1((TG)′)(t)H(x+ y − t)−G(t)T ((T−1H)′)(x+ y − t)) =

= αt−x(ι(F )(t, x+ y − t)).

Therefore, we have

(βx ◦ ι(F ))(x, y) =

=

∫ x

−∞

(
αt−x(ι(F )(t, x+ y − t))− ϕ(x+ y − t)

∫
R
αz−x(ι(F )(z, x+ y − z))dz

)
dt =

=

∫ x

−∞

(
d

dt
(αt−x(F (t, x+ y − t)))− ϕ(x+ y − t)

∫
R

d

dz
(αz−x(F (z, x+ y − z)))dz

)
dt =

= F (x, y).

The necessary computations for βy are, essentially, the same. �

By combining the Lemmas 2.12 – 2.18, we obtain the following theorem:

Theorem 2.19. Let A be a self-induced Fréchet-Arens-Michael algebra with
a smooth m-tempered action α of R on A. Then the following diagram is
commutative, moreover, the rows are short exact sequences of S (R, A;α)-
bimodules which split in the categories S (R, A;α)-mod-A and A-mod-
S (R, A;α):

0 S (R2, A)α S (R2, A)α S (R, A;α)α 0,

0 Sα⊗̂ASα Sα⊗̂ASα Sα 0,

ι π

j

∼

m

∼ Id

where

ι(F )(x, y) =

(
∂F

∂x
− ∂F

∂y

)
(x, y) + α′0(F (x, y)) for any F ∈ S (R2, A)

π(F )(x) =

∫
R
αy(F (y, x− y))dy for any F ∈ S (R2, A)

j(F ⊗G) = F ′ ⊗G− F ⊗ T ((T−1G)′) for any F,G ∈ S (R, A;α)

m(F ⊗G) = F ∗α G for any F,G ∈ S (R, A;α).

Proof. In the previous lemmas we have constructed the sections ρx, ρy, βx, βy.
The only thing that is left to check that ι ◦ βx + ρx ◦ π = ι ◦ βy + ρy ◦ π =
IdS (R2,A)α , then we use [5, Proposition 3.1.8].
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For any F (x, y) ∈ S (R2, A)α we have

(ι ◦ βx)(F )(x, y) = ι

(∫ x
−∞

(
αt−x(F (t, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(F (z, x + y − z))dz

)
dt

)
=

= F (x, y)− ϕ(y)
∫
R
αz−x(F (z, x + y − z))dz+

+

∫ x
−∞

(
∂

∂x
−

∂

∂y

)(
αt−x(F (t, x + y − t))− ϕ(x + y − t)

∫
R
αz−x(F (z, x + y − z))dz

)
dt+

+

∫ x
−∞

(
α
′
t−x(F (t, x + y − t))− ϕ(x + y − t)

∫
R
α
′
z−x(F (z, x + y − z))dz

)
dt =

= F (x, y)− ϕ(y)
∫
R
αz−x(F (z, x + y − z))dz+

+

∫ x
−∞

(
−α′t−x(F (t, x + y − t)) + ϕ(x + y − t)

∫
R
α
′
z−x(F (z, x + y − z))dz

)
dt+

+

∫ x
−∞

(
α
′
t−x(F (t, x + y − t))− ϕ(x + y − t)

∫
R
α
′
z−x(F (z, x + y − z))dz

)
dt =

= F (x, y)− ϕ(y)
∫
R
αz−x(F (z, x + y − z))dz,

(ρx ◦ π)(F )(x) = ϕ(y)α−x(π(F )(x+ y)) = ϕ(y)

∫
R
αz−x(F (z, x+ y − z))dz,

therefore, we have

ι ◦ βx + ρx ◦ π(F )(x, y) = F (x, y).

The argument for ι ◦ βy + ρy ◦ π is similar. �

The case G = T can be treated in the same fashion, to formulate the
result, we will denote the module C∞(T, A;α) (the definition is the same as
for Sα) by Tα.

Theorem 2.20. Let A be a self-induced Fréchet-Arens-Michael algebra with
a smooth m-tempered action α of T on A. Then the following diagram is
commutative, moreover, the rows are short exact sequences of C∞(T, A;α)-
bimodules which split in the categories C∞(T, A;α)-mod-A and A-mod-
C∞(T, A;α):

0 C∞(T2, A)α C∞(T2, A)α C∞(T, A;α)α 0,

0 Tα⊗̂ATα Tα⊗̂ATα Tα 0,

ι π

j

∼

m

∼ Id

where

ι(F )(x, y) =

(
∂F

∂x
− ∂F

∂y

)
(x, y) + α′0(F (x, y)) for any F ∈ C∞(T2, A)

π(F )(x) =

∫
T
αy(F (y, x− y))dy for any F ∈ C∞(T2, A)

j(F ⊗G) = F ′ ⊗G− F ⊗ T ((T−1G)′) for any F,G ∈ C∞(T, A;α)

m(F ⊗G) = F ∗α G for any F,G ∈ C∞(T, A;α).
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3. Obtaining upper estimates for homological
dimensions of smooth crossed products by R and T

Remark. Again, we provide the proofs only for the case G = R, but the
same arguments work for G = T, as well.

Here we adapt the arguments in [6], which were used to obtain the upper
estimates, to the non-unital case.

Definition 3.1. Let A be a ⊗̂-algebra. Then a ⊗̂-algebra S together with
an A-⊗̂-bimodule structure is called an A-⊗̂-algebra if:

1. S ∈ A-mod-S and S ∈ S-mod-A,
2. We have

(s · a) ∗S t = s ∗S (a · t) (3.1)

for every s, t ∈ S, a ∈ A, where · defines the outer module multiplication,
and ∗S defines the ring multiplication in S.

This definition works as expected in the unital case.

Proposition 3.2. Let A be a unital ⊗̂-algebra. An A-⊗̂-algebra structure
on a unital A-⊗̂-algebra S is uniquely defined by a (unital) algebra homo-
morphism η : A→ S:

a · s = η(a)s, s · a = sη(a)

for every a ∈ A, s ∈ S, where · denotes the outer A-module multiplication.

Proof. Define η as follows: η(a) = 1S · a · 1S
(3.1)
= a · 1S = 1S · a. It is easy to

see that η is an algebra homomorphism. Also, we have

η(a)s = (a · 1S)s = a · (1Ss) = a · s,
sη(a) = s(a · 1S) = s(1S · a) = (s1S) · a = s · a

for any a ∈ A, s ∈ S. �

As a corollary from Lemma 2.12 we get that the A-⊗̂-algebra structure
on Sα makes S (R, A;α) into an A-⊗̂-algebra, and checking (3.1) can be done
like this:

((F · a) ∗α G)(x) =

∫
R
F (y)αy(a)αy(G(x− y))dy =

=

∫
R
F (y)αy((a ·G)(x− y))dy =

= (F ∗α (a ·G))(x).

Proposition 3.3. Let A be a Fréchet-Arens-Michael algebra, and let α be a
smooth m-tempered action of R on A. Consider the following multiplication
on S (R, A):

(f ∗′α g)(x) =

∫
R
α−y(f(x− y))g(y)dy.

Then the following locally convex algebra isomorphism takes place:

i : S (R, A;α)→ (S (R, A), ∗′α), i(f)(x) = α−x(f(x)).
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Proof. The mapping i is, obviously, a topological isomorphism of locally con-
vex spaces. Now notice that

(i(f) ∗′ i(g))(x) =

∫
R
α−y(i(f)(x− y))i(g)(y)dy =

=

∫
R
α−x(f(x− y))α−y(g(y))dy =

=

∫
R
α−x(f(−y))α−x−y(g(y + x))dy =

= α−x

(∫
R
f(−y)α−y(g(y + x))dy

)
=

= i(f ∗ g)(x),

therefore, i is an algebra homomorphism. �

Corollary 3.4. Define the A-⊗̂-bimodule and (S (R, A), ∗′α)-⊗̂-bimodule

α−1S (R, A;α) := α−1S as follows: α−1S coincides with S (R, A) as a LCS,
and

(F · a)(x) = F (x)a, a · F (x) = α−x(a)F (x) for any a ∈ A,F ∈ α−1S

(F ·G)(x) = (F ∗′α G)(x), (G · F )(x) = (G ∗′α F )(x) for any F ∈ α−1S,G ∈ (S (R, A), ∗′α).

Then the map

Sα −→ α−1S, F (x) 7−→ α−x(F (x)),

is an isomorphism of A-⊗̂-bimodules.

Definition 3.5. Let A be a ⊗̂-algebra. A left A-⊗̂-module M is called es-
sential, if the canonical morphism ηM : A⊗̂AM −→M is an isomorphism of
left A-⊗̂-modules.

Example. If A is a self-induced ⊗̂-algebra, then for any left A-⊗̂-module M
the modules A⊗̂AM and A⊗̂M are essential. We can prove this by noticing
that the maps of left A-⊗̂-modules

(A⊗̂AA)⊗̂AM
m⊗IdM−−−−−→ A⊗̂AM

and

(A⊗̂AA)⊗̂M m⊗IdM−−−−−→ A⊗̂M
are isomorphisms and they do coincide with the canonical projections ηA⊗̂AM
and ηA⊗̂M , respectively.

Lemma 3.6. Let A be a self-induced Fréchet-Arens-Michael algebra together
with a smooth m-tempered R-action α of R. Then

1. the module S (R, A;α)α is an essential left and right A-⊗̂-module,
2. and if A is projective as a left and right A-⊗̂-module then the module

S (R, A;α)α is projective as a left and right A-⊗̂-module and a as a left
and right S-⊗̂-module.
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Proof. 1. By definition, Sα ' A⊗̂S (R), so we can use the proof in the
Example 3 to get that Sα is essential as a left A-⊗̂-module. Now the ex-
istence of the isomorphism α−1S (R, A;α) ∼= S (R, A;α)α ensures that
Sα is essential as a right A-⊗̂-module..

2. Due to our assumption, A is projective as a left A-module, therefore,
for any Fréchet space E the left A-⊗̂-module A⊗̂E is projective, as
well. However, by definition, Sα is isomorphic as a left A-⊗̂-module to
A⊗̂S (R). Therefore, Sα is a projective left A-⊗̂-module. By using the
isomorphism α−1S (R, A;α) ∼= S (R, A;α)α, we also prove that Sα is
projective as a right A-⊗̂-module.

To prove that Sα is projective as a left S-⊗̂-module, we need to
prove that the multiplication map m+

S : Sα⊗̂(Sα)+ → Sα is a retraction,
due to [5, Proposition 4.1.1]. However, we can prove a stronger statement
by noticing that the restriction m : Sα⊗̂Sα → Sα is a retraction.

Unfortunately, for now we only know that the multiplication map
Sα⊗̂ASα → Sα is a retraction of left and right S-⊗̂-modules, because we
have already proven that m◦(I−11 ◦ρx) = IdSα and m◦(I−11 ◦ρy) = IdSα
in Lemma 2.16 and Lemma 2.17.

Nevertheless, due to A-⊗̂-module projectivity, we can utilize the
canonical projection ρ : Sα⊗̂A→ Sα, which is a retraction of right A-⊗̂-
modules. By applying the functor (−)⊗̂ASα to ρ we get the following:

Sα⊗̂Sα
∼−→ Sα⊗̂A⊗̂ASα

ρ⊗1Sα−−−−→ Sα⊗̂ASα.
Finally, we can compose the two retractions we have just obtained,
Sα⊗̂Sα → Sα⊗̂ASα, and Sα⊗̂ASα → Sα, to get that Sα is a right
projective S-⊗̂-module. A similar argument shows that Sα is a left pro-
jective S-⊗̂-module.

�

Lemma 3.7. Consider a ⊗̂-algebra A and an A-⊗̂-algebra S which is pro-
jective as a left and right A-⊗̂-module, and also is projective as a left and
right S-⊗̂-module.

(1) Let X be a projective right A-⊗̂-module. Then the module X⊗̂AS is
a projective right S-⊗̂-module. Similarly, if X is a projective left A-⊗̂-
module, then S⊗̂AX is a projective left S-⊗̂-module.

(2) Let X be a projective A-⊗̂-bimodule. Then the module S⊗̂AX⊗̂AS is
a projective S-⊗̂-bimodule.

Proof. (1) If X is a projective right A-⊗̂-module, then there is a retraction
σ : E⊗̂A+ → X for some l.c.s E. Then we can apply the functor (−)⊗̂AS
to both parts, thus obtaining the following retraction:

E⊗̂S ' E⊗̂A+⊗̂AS → X⊗̂AS.
Moreover, because S itself is projective over S, we can immediately de-
rive that E⊗̂S is a projective right S-⊗̂-module, and X⊗̂AS is projective
due to being a retract of a projective module. A similar argument works
for left modules and bimodules, therefore, we also get (2) as well.
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�

Lemma 3.8. Let A be a ⊗̂-algebra. Also let {M,d} denote an admissible
sequence of right A-⊗̂-modules. If X is a projective left A-⊗̂-module, then
the complex {M⊗̂AX, d⊗ Id} splits in LCS.

Similarly, if {M,d} is an admissible sequence of left A-⊗̂-modules, then
for every projective right A-⊗̂-module X the complex {X⊗̂AM, Id⊗d} splits
in LCS.

Proof. If X were a free left A-⊗̂-module, then the statement of the lemma
would follow from the canonical isomorphism M⊗̂AA+⊗̂E ∼= M⊗̂E for some
E ∈ LCS. However, a retract of an admissible sequence is admissible, as
well. �

Lemma 3.9. Let A be a ⊗̂-algebra and let S be an A-⊗̂-algebra, which is
projective as a left A-⊗̂-module. Then we have

dhSop(M⊗̂AS) ≤ dhAop(M) for all M ∈mod-A.

If S is projective as a right A-⊗̂-module, then

dhS(S⊗̂AM) ≤ dhA(M) for all M ∈ A-mod.

Proof. Suppose we have a projective resolution of M in mod-A:

0←−M d0←− P0
d1←− · · · ←− Pn ←− 0←− . . .

Then due to Lemma 3.7 and 3.8 the following sequence is a projective reso-
lution for M⊗̂AS in mod-S:

0←−M⊗̂AS
d0⊗Id←− P0⊗̂AS

d1⊗Id←− · · · ←− Pn⊗̂AS ←− 0←− . . .

Therefore, dhSop(M⊗̂AS) ≤ dhAop(M). �

From now on, we will, in addition, assume that A is projective as a left
and as a right A-⊗̂-module. For brevity, we will just say that A is projective.

Lemma 3.10. Let A be a projective self-induced Fréchet-Arens-Michael al-
gebra together with a smooth m-tempered R-action α. Set S = S (R, A;α).
For any right S-⊗̂-module M we have the following estimate:

dhSop(M⊗̂SSα) ≤ dhAop(M⊗̂SSα) + 1 ≤ dgr(A) + 1.

And for any left S-⊗̂-module M we have

dhS(Sα⊗̂SM) ≤ dhA(Sα⊗̂SM) + 1 ≤ dgl(A) + 1.

Proof. Due to Theorem 2.19 we have the following sequence:

0 −→ Sα⊗̂ASα −→ Sα⊗̂ASα −→ Sα −→ 0. (3.2)

By applying the functor M⊗̂S(−) to (3.2), we get

0 −→M⊗̂SSα⊗̂ASα −→M⊗̂SSα⊗̂ASα −→M⊗̂SSα −→ 0.
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Since (3.2) splits due to Theorem 2.19, this sequence is admissible, therefore,
we can apply Lemma 3.9, because Sα is a projective A-⊗̂-module (Lemma
3.6).

dhSop(M⊗̂SSα) ≤ dhSop(M⊗̂SSα⊗̂ASα)+1
L3.9
≤ dhAop(M⊗̂SSα)+1 ≤ dgr(A)+1.

�

So, we have just obtained the upper bound for projective dimension of
essential modules. To obtain an estimate for an arbitrary right S-⊗̂-module,
we use the method, described in the Lemmas 1-3 of the paper [10].

Theorem 3.11. [5, Theorem 5.2.1] Let A be a ⊗̂-algebra and let X be a left
A-⊗̂-module. Then there exists an admissible complex in A-mod:

0←− X ←− (A+⊗̂X)⊕ (A⊗̂AX)
δ0←− (A+⊗̂(A⊗̂AX))⊕A⊗̂X δ1←−
δ1←− A⊗̂(A⊗̂AX)←− 0.

Moreover, this sequence is isomorphic to the Yoneda product of the following
short admissible complexes:

0←− Im δ0
δ0←− (A+⊗̂(A⊗̂AX))⊕A⊗̂X δ1←− A⊗̂(A⊗̂AX)←− 0, (3.3)

0←− X ←− (A+⊗̂X)⊕ (A⊗̂AX)←↩ Im δ0 ←− 0. (3.4)

Remark. It is important to observe that this theorem works in a fairly
general setting, without any strong assumptions on A and X.

Consider a projective self-induced Fréchet-Arens-Michael algebraA equipped
with a smooth m-tempered R-action α, and let us, once again, denote S =
S (R, A;α).

To obtain the main result, it remains to observe that the modules
(A+⊗̂(A⊗̂AX))⊕ A⊗̂X and A⊗̂(A⊗̂AX) are projective left A-modules, be-
cause A itself is projective. Therefore, dhA(Im δ0) ≤ 1.

But then we also have

dhA(X) ≤ max{dhA((A+⊗̂X)⊕(A⊗̂AX)),dhA(Im δ0)+1} ≤ max{dhA(A⊗̂AX), 2},
(3.5)

for any projective ⊗̂-algebra A and a left A-⊗̂-module X. Combining (3.5)
with Lemma 3.10, we get the following: for every left S-⊗̂-module M we have

dhS(M)
(3.5)

≤ max{dhS(Sα⊗̂SM), 2}
L3.10
≤ max{dgl(A)+1, 2} = max{dgl(A), 1}+1.

Theorem 3.12. Let A be a projective self-induced Fréchet-Arens-Michael
algebra equipped with a smooth m-tempered R-action α. Then the following
estimate takes place:

dgl(S (R, A;α)) ≤ max{dgl(A), 1}+ 1.

The same result holds for G = T:



28 Petr Kosenko

Theorem 3.13. Let A be a projective self-induced Fréchet-Arens-Michael
algebra equipped with a smooth m-tempered T-action α. Then the following
estimate takes place:

dgl(C∞(T, A;α)) ≤ max{dgl(A), 1}+ 1.
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algebra crossed products by Lie groups”. In: International Journal of
Mathematics 4.04 (1993), pp. 601–673.

https://arxiv.org/abs/1111.2154
https://arxiv.org/abs/1712.06177
math/0410596


REFERENCES 29

Petr Kosenko
Department of Mathematics
Higher School of Economics
Moscow, Usacheva str. 6, 119048
e-mail: pkosenko@hse.ru
Department of Mathematics
University of Toronto
40 St. George St., Toronto, ON, Canada, M5S
e-mail: petr.kosenko@mail.utoronto.ca


	Introduction
	Acknowledgments
	1. Preliminaries
	1.1. Notation
	1.2. Projectivity and homological dimensions
	1.3. Algebra of rapidly decreasing functions
	1.4. Omega1-like admissible sequences for SR

	2. Omega1-like admissible sequences for smooth crossed products
	2.1. Smooth m-tempered actions and smooth crossed products
	2.2. Explicit construction

	3. Obtaining upper estimates for homological dimensions of smooth crossed products by R and T
	References

