A PROOF OF BOREL-WEIL-BOTT THEOREM

MAN SHUN JOHN MA

1. Introduction

In this short note, we prove the Borel-Weil-Bott theorem.
Let \mathfrak{g} be a complex semisimple Lie algebra. One basic question in representation theory is to classify all finite dimensional irreducible representations of \mathfrak{g}. The answer is provided by the highest weight theorem: For any dominant integral weight λ, there exists a unqiue finite dimsnsional \mathfrak{g}-module $V(\lambda)$ with highest weight λ. The Borel-Weil theorem provides an explicit construction of these \mathfrak{g}-modules $V(\lambda)$.
Every complex semisimple Lie algebra \mathfrak{g} corresponds to a complex semisimple Lie group G. The homogenous space G / B, where B is a Borel subgroup of G, is a smooth projective variaty. Every integral weight λ corresponds to a holomorphic line bundle L_{λ} on $G / B . \mathfrak{g}$ acts on the space of global holomorphic sections

$$
\Gamma\left(G / B, \mathscr{O}_{\lambda}\right) \cong H^{0}\left(G / B, \mathscr{O}_{\lambda}\right)
$$

by differentiation. When λ is dominant, the Borel-Weil theorem asserts that $H^{0}\left(G / B, \mathscr{O}_{\lambda}\right)$ is a finite dimensional irreducible \mathfrak{g}-module with highest weight λ.
The Borel-Weil-Bott theorem is a generalization of Borel-Weil theorem. It deals with all integral weights, and consider not only global sections, but also higher cohomology groups $H^{p}\left(G / B, \mathscr{O}_{\lambda}\right)$.
In section 2, we introduce the basic results in Lie groups and Lie algebras. In section 3 we introduce the homogenous space G / B and induced representations. In section 4 we describe how the Casimir element $c_{\mathfrak{g}}$ serves as a handy tool to decompose \mathfrak{g}-modules. In the last two sections, we prove the Borel-Weil theorem and the Borel-Weil-Bott theorem respectively.
If possible, we follow the notations in [3], except that we use \mathfrak{g} instead of L to denote Lie algebras. The proof of Borel-Weil theorem and Borel-Weil-Bott theorem are from [5]. We also use a result from [1], which describe the positivity of the line bundle L_{λ}.

2. Basic Lie theory

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}. As in [3], we have the root space decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha} \tag{2.1}
\end{equation*}
$$

where $\alpha \in \Phi$ are the roots of \mathfrak{g}. If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $h \in \mathfrak{h}$,

$$
\begin{equation*}
\left[h, x_{\alpha}\right]=\alpha(h) x_{\alpha} . \tag{2.2}
\end{equation*}
$$

Let E be the real span of Φ in \mathfrak{h}^{*}. It is known that $(E, \Phi,(\cdot, \cdot))$ forms a root system, where (\cdot, \cdot) is dual to the Killing form κ.
An integral weight is an element in E such that

$$
\begin{equation*}
\langle\lambda, \alpha\rangle:=\frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

for all roots $\alpha \in \Phi$. If a set of positive roots Φ^{+}and simple roots $\Delta \subset \Phi^{+}$are chosen, the positive Weyl Chamber \mathcal{C}^{+}is the set of elements $v \in E$ such that $\langle v, \alpha\rangle>0$ for all $\alpha \in \Delta$.
We write $\lambda \leq \mu$ if $\mu-\lambda \in \overline{\mathcal{C}^{+}}$. An integral weight is called dominant if $\lambda \geq 0$, or $\langle\lambda+\delta, \alpha\rangle>0$ for all $\alpha \in \Delta$, where ([3], section 13)

$$
\begin{equation*}
\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha=\sum_{i=1}^{l} \lambda_{i} \tag{2.4}
\end{equation*}
$$

and λ_{i} are the set of fundamental dominant weight corresponding to Δ.
Let (π, V) be a \mathfrak{g}-module. When restricted to $\mathfrak{h},(\pi, V)$ decomposes into direct sum of weight spaces V_{λ} defined by

$$
\begin{equation*}
V_{\lambda}=\{v \in V: \pi(h) v=\lambda(v) v\} . \tag{2.5}
\end{equation*}
$$

Such $\lambda \in \mathfrak{h}^{*}$ is called a weight of (π, V). The set of all weights is denoted Λ. We will need the following results:

Theorem 2.1. Let (π, V) be a finite dimensional irreducible \mathfrak{g}-modules with weights Λ. Then
(1) There is a unique $\lambda \in \Lambda$ with the highest weight. That is $\mu \leq \lambda$ for all $\mu \in \Lambda$.
(2) The weight space V_{λ} is one dimensional.
(3) Λ is closed under the Weyl group action.
(4) $\lambda \geq 0$.
(5) $\|\mu\| \leq\|\lambda\|$ for all $\mu \in \Lambda$.
(6) $\mu \in \Lambda$ is extremal if and only if $\|\mu\|=\|\lambda\|$, and the Weyl group acts transitively on the set of extremal weights.
(7) $\|\mu+\delta\|<\|\lambda+\delta\|$ if $\mu \in \Lambda$ and $\mu \neq \lambda$.

We also need the Theorem of highest weights: ([3], theorem 21.2)
Theorem 2.2. Up to isomorphism, every dominant weight λ corresponds to a unique finite dimensional irreducible representation $V(\lambda)$ with hightest weight λ.

A Borel subalgebra \mathfrak{b} of \mathfrak{g} is a maximal solvable subalgebra. Examples are

$$
\begin{equation*}
\mathfrak{b}^{ \pm}=\mathfrak{h} \oplus \mathfrak{n}^{ \pm}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{ \pm}} \mathfrak{g}_{\alpha} \tag{2.6}
\end{equation*}
$$

Next we introduce Lie groups. A real (complex) Lie group is a group with a structure of smooth (complex) manifold, such that the group multiplication $(g, h) \mapsto g h$ is smooth (holomorphic). By considering left or right invariant vectors fields, every real (complex) Lie group G corresponds to a real (complex) Lie algebra \mathfrak{g}.
G is called semisimple if its Lie algebra is semisimple. In this case we have ([4], Chapter 6 and 7)
Theorem 2.3. Let G, G^{\prime} be connected complex semisimple Lie groups. Then
(1) G has a compact real form K, that is, a compact Lie subgroup K of G with Lie algebra \mathfrak{k} such that

$$
\begin{equation*}
\mathfrak{k}_{\mathbb{C}}=\mathfrak{k} \oplus i \mathfrak{k} \cong \mathfrak{g} . \tag{2.7}
\end{equation*}
$$

(2) Write $\mathfrak{p}_{0}=i \mathfrak{k}$, then the map $K \times \mathfrak{p}_{0} \rightarrow G$ given by $(k, p) \mapsto$ $k \exp p$ is a diffeomorphism. Thus $K \subset G$ induces the isomorphism $\pi_{1}(K) \cong \pi_{1}(G)$.
(3) Let K^{\prime} be a compact Lie form of G^{\prime}. Then every homomorphisms $K \rightarrow K^{\prime}$ extends to a holomorphic homomorphism $G \rightarrow$ G^{\prime}.
(4) Every representation $K \rightarrow G L(V)$ extends to $G \rightarrow G L(V)$. In particular if V is a faithful representation of K, then the extension is a faithful holomorphic representation of G.
(5) Every finite dimensional holomorphic representation of G is completely reducible.

It is known that every complex semisimple Lie group has a unique structure of an affine algebraic group ([5], section 15). Whenever it is convenient, we would treat complex semisimple Lie groups as an affine algebraic groups.

Definition 2.1. Let G be an affine connected algebraic group with Lie algebra \mathfrak{g}, G is called semisimple if its Lie algebra is \mathfrak{g} semisimple. Let H and B be connected algebraic subgroup of G. H is called a Cartan subgroup if its Lie algebra \mathfrak{h} is a Cartan subalgebra. B is called a Borel subgroup if its Lie algebra \mathfrak{b} is a Borel subalgebra.
From ([5], chapter 15), when G is semisimple, every Cartan subgroup H is abelian and isomorphic to $\left(\mathbb{C}^{*}\right)^{r}$ for some r. Every Borel subgroup B is maximal solvable subgroup of G. When $\mathfrak{b}=\mathfrak{b}^{ \pm}$defined in (2.6), $B=H N$, where N is a an algebraic subgroup with Lie algebra $\mathfrak{n}^{ \pm}$.
We will need the following results. Recall that a character of H is an algebraic homomorphism $H \rightarrow \mathbb{C}^{*}$.

Lemma 2.1. Every charcter $\sigma: H \rightarrow \mathbb{C}^{*}$ extends uniquely to B.
Proof. N is a normal subgroup of B and $B=H N, H \cap N=\{0\}$. Let σ be a character of H. Then one can extend σ to B by $\sigma(b n)=\sigma(b)$. On the other hand, if σ is a character of B, considering its restriction to N. Then the differential is a Lie algebra homomorphism $\mathfrak{n} \rightarrow \mathfrak{g l}_{1}(\mathbb{C})$. As $\mathfrak{n}=[\mathfrak{b}, \mathfrak{b}]$, we have $\mathfrak{n} \rightarrow \mathfrak{s l}_{1}(\mathbb{C})$. Thus the differential is zero and $\left.\sigma\right|_{N}$ is the identity. Hence σ descends to $B / N=H$.
Theorem 2.4. Let G be a semisimple simply connected complex Lie group with Lie algebra \mathfrak{g}. Then $\lambda \in \mathfrak{h}^{*}$ is the differential of a character of H if and only if λ is an integral weight.
Proof. (\Rightarrow) Let (π, V) be a faithful representation of G such that $\pi(H)$ lies in the diagonal subgroup $\left(\mathbb{C}^{*}\right)^{m} \subset G L(V)$ after choosing some basis $\left\{v_{1}, \cdots, v_{m}\right\}$. Each v_{i} corresponds to a character γ_{i} defined by $\pi(h) v_{i}=\gamma_{i}(h) v_{i}$. The differential of γ_{i} corresponds to the weight of the representation (π, V), thus is an integral weight (All weights from a representation are integral). Identifying $H \cong \pi(H)$, we know that all characters on H are restricition of chacracter in $\left(\mathbb{C}^{*}\right)^{m} \subset G L(V)$. As $\gamma_{i}=\left.c_{i}\right|_{H}$, where c_{i} are the obvious generators of the characters of $\left(\mathbb{C}^{*}\right)^{m}, \gamma_{i}$ generates the characters of H. Thus all differential of characters of H are integral weights.
(\Leftarrow) Every integral weight λ lies in the closure of some Weyl chamber and this chamber is positive with respect to some choice of positive roots. Hence it suffices to assume that λ is dominant. By Theorem 2.2, let $V(\lambda)$ be the irreducible \mathfrak{g}-modules with highest weight λ and highest weight vector v_{λ}. The representation $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ corresponds to a homomorphism $G \rightarrow G L(V)$ (still call it π), as G is simply connected. Let $\xi \in \mathfrak{h}$ and $h \in H$ such that $h=\exp (\xi)$. Using $\pi(\xi) v_{\lambda}=\lambda(\xi) v_{\lambda}$, we obtain

$$
\pi(h) v_{\lambda}=\pi(\exp (\xi)) v_{\lambda}=e^{\pi(\xi)} v_{\lambda}=e^{\lambda(\xi)} v_{\lambda} .
$$

Then $\left(\left.\pi\right|_{H}, H\right)$ acts on V_{λ} and λ is the differential of this character.

3. Induced representation

Let G be a complex semisimple Lie group with Lie algebra \mathfrak{g}, and B be a Borel subgroup with Lie algebra $\mathfrak{b} \cong \mathfrak{h} \oplus \mathfrak{n}^{-}$. As in ([5], 14.3), the left coset space G / B can be given a structure of complex manfold such that the action of G is holomorphic. We denote this manifold as \mathcal{M}. \mathcal{M} is compact as $\mathcal{M} \cong K / T$, where T is the maximal torus such that $T=K \cap B$.
Let (σ, Q) be a holomorphic representation of B. Define

$$
G \times_{B} Q=G \times Q / \sim,
$$

where $(g, q) \sim\left(g b^{-1}, \sigma(b) q\right) . G \times{ }_{B} Q$ is given the quotient topology and quotient structure sheaf fromt the quotient map. Let $\pi: G \times B \rightarrow \mathcal{M}$ be the map $\pi([g, q])=g B$, then $\pi^{-1}(g B) \cong g B \times Q$ has a vector space structure. The following results are proved in ([5], 16.1). The first one follows essentially from the holomorphic version of implicit function theorem.

Proposition 3.1. With the projection map $\pi: G \times{ }_{B} Q \rightarrow \mathcal{M}, G \times{ }_{B} Q$ is a G-equivariant holomorphic vector bundle on \mathcal{M}.

Lemma 3.1. $G \times_{B} Q$ is holomorphically trivial if and only if Q is the restriction of a holomorphic representation of G.

The sheaf of holomorphic section on $G \times{ }_{B} Q$ is denoted \mathscr{O}_{σ}. For each open set $U \subset \mathcal{M}$,

$$
\mathscr{O}_{\sigma}(U) \cong\left\{f \in \mathscr{O}\left(\pi^{-1}(U)\right) \otimes Q: f\left(g b^{-1}\right)=\sigma(b) f(g), \quad \forall b \in B\right\}
$$

Note that $\mathscr{O}_{\sigma}(U)$ has a structure of \mathfrak{g}-module: view \mathfrak{g} as the set of right invariant holomorphic vector fields on G, \mathfrak{g} acts on $\mathscr{O}_{\sigma}(U)$ by differentiation.
As \mathcal{M} is compact and \mathscr{O}_{σ} is a coherent sheaf, $H^{p}\left(\mathcal{M}, \mathscr{O}_{\sigma}\right)$ is finite dimensional for all p. Moreover, the action on \mathscr{O}_{σ} induces an \mathfrak{g}-action on each $H^{p}\left(\mathcal{M}, \mathscr{O}_{\sigma}\right)$.
Let λ be an integral weight. By Theorem 2.4 and Lemma 2.4, λ is the differential of a character of B. The induced line bundle with respect to the character is denoted L_{λ}. The sheaf of holomorphic section on L_{λ} is denoted \mathscr{O}_{λ}.

4. The Casimir operator $c_{\mathfrak{g}}$

Let $\mathfrak{U}(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. By definition, any Lie algebra morphism $\psi: \mathfrak{g} \rightarrow A$ of \mathfrak{g} into an associative algebra extends to a morphism $\tilde{\psi}: \mathfrak{U}(\mathfrak{g}) \rightarrow A$ of associative algebras. The Casimir element $c_{\mathfrak{g}} \in \mathfrak{U}(\mathfrak{g})$ is given by

$$
\begin{equation*}
c_{\mathfrak{g}}=\sum_{i} \eta_{i}^{2}+\sum_{\alpha \in \Phi^{+}} h_{\alpha}+2 \sum_{\alpha \in \Phi^{+}} z_{\alpha} x_{\alpha}, \tag{4.1}
\end{equation*}
$$

where $\left\{\eta_{i}\right\}$ is a self dual basis of \mathfrak{h}, and h_{α}, x_{α} and z_{α} are defined as in ([3], section 22). It is known that $c_{\mathfrak{g}}$ is well-defined independent of the choice of \mathfrak{h}, Φ^{+}and $c_{\mathfrak{g}} \in Z(\mathfrak{g})$. As a result, we can use $c_{\mathfrak{g}}$ to decompose any finite dimensional \mathfrak{g}-modules into its eigenspaces.

Proposition 4.1. Let $V(\lambda)$ is the finite dimensional irreducible \mathfrak{g} module with highest weight λ. Then $c_{\mathfrak{g}}$ acts as the scalar $\langle\lambda, \lambda+2 \delta\rangle$.

Proof. By Schur's lemma, we know that $c_{\mathfrak{g}}$ acts as a scalar. To find out this scalar, we apply $\pi\left(c_{\mathfrak{g}}\right)$ to the highest weight vector v_{λ}. As $\pi\left(x_{\alpha}\right) v_{\lambda}=0$ for all $\alpha \in \Phi^{+}$,

$$
\begin{aligned}
\pi\left(c_{\mathfrak{g}}\right) v_{\lambda} & =\sum_{i} \lambda\left(\eta_{i}\right)^{2} v_{\lambda}+\sum_{\alpha \in \Phi^{+}} \lambda\left(h_{\alpha}\right) v_{\lambda} \\
& =\|\lambda\|^{2} v_{\lambda}+\sum_{\alpha \in \Phi^{+}}\langle\lambda, \alpha\rangle v_{\lambda} \\
& =\langle\lambda, \lambda+2 \delta\rangle v_{\lambda} .
\end{aligned}
$$

Note that $c_{\mathfrak{g}}$ also acts on the sheaf \mathscr{O}_{λ} for all integral weight λ.
Proposition 4.2. $c_{\mathfrak{g}}$ acts as the scalar $\langle\lambda, \lambda+2 \delta\rangle$ on \mathscr{O}_{λ}.
Proof. As G acts holomorphically and transitively on \mathcal{M}, it suffices to check at the point $B \in \mathcal{M}$. Let U be an open neigborhood of B and $f \in \mathscr{O}_{\lambda}(U)$. Let $b, b_{1} \in B$, then

$$
f\left(b^{-1} b_{1}\right)=\lambda\left(b_{1}^{-1}\right) \lambda(b) f(e)=\lambda(b) f\left(b_{1}\right) .
$$

Let $b=\exp (t \zeta)$, where $\zeta \in \mathfrak{b}$ and differentiate, we obtain $(\zeta f)\left(b_{1}\right)=$ $\lambda(\zeta) f\left(b_{1}\right)$. In particular,

$$
z_{\alpha} f=0, \quad \eta f=\lambda(\eta) f
$$

on B, where $\eta \in \mathfrak{h}$. As x_{α} corresponds to a holomorphic vector field, $x_{\alpha} f \in \mathscr{O}_{\lambda}(U)$ for all $\alpha \in \Phi^{+}$. Thus $y_{\alpha} x_{\alpha} f=0$. Using equation (4.1), as in the proof of proposition 4.1, one can show that $c_{\mathfrak{g}}$ acts as the scalar $\langle\lambda, \lambda+2 \delta\rangle$.

Corollary 4.1. $c_{\mathfrak{g}}$ acts trivially on \mathscr{O}_{μ} for all $\mu=\omega \delta-\delta$ for $\omega \in W$.
Proof. Note that for all integral weights λ,

$$
\begin{equation*}
\langle\lambda, \lambda+2 \delta\rangle=\|\lambda+\delta\|^{2}-\|\delta\|^{2} . \tag{4.2}
\end{equation*}
$$

If $\mu=\omega \delta-\delta$ for some $\omega \in W$, then $\|\mu+\delta\|=\|\omega \delta\|=\|\delta\|$. Thus the corollary follows from proposition (4.2).

For a general representation Q on B, we have
Proposition 4.3. Let (θ, Q) be a finite dimensional representation of B with weight Λ. Then \mathscr{O}_{θ} decompose into direct sums of $\mathfrak{U}(\mathfrak{g})$-modules S_{t}

$$
\mathscr{O}_{\theta}=\bigoplus_{t} S_{t}
$$

where t ranges over distinct eigenvalues for the action of $c_{\mathfrak{g}}$ on \mathscr{O}_{θ}. If $t=\langle\nu, \nu+2 \delta\rangle$ has multiplicity one, then $S_{t} \cong \mathscr{O}_{\nu}$.

Proof. Let $\operatorname{dim} Q=n$. By considering $\theta_{*}: \mathfrak{b} \rightarrow \mathfrak{g l}(Q)$ and using Lie's theorem, Q has a filtration $\left\{Q_{i}\right\}_{i=0}^{n}$ of B-submodules such that Q_{j} / Q_{j-1} are one dimensional. It is easy to see that B acts on Q_{j} / Q_{j-1} as a character $\nu_{j} \in \Lambda$. On the sheaf level, one has a sequence of subsheafs $\mathscr{O}_{\theta_{j}}$ such that $\mathscr{O}_{\theta_{j}} / \mathscr{O}_{\theta_{j-1}} \cong \mathscr{O}_{\nu_{j}}$. Here θ_{j} is the restriction of θ to Q_{j}. All these are \mathfrak{g} submodules and $c_{\mathfrak{g}}$ acts on them. By Proposition 4.2, $c_{\mathfrak{g}}$ acts on $\mathscr{O}_{\nu_{j}}$ as $\left\langle\nu_{j}, \nu_{j}+2 \delta\right\rangle$. Thus

$$
\begin{equation*}
\Pi_{j}\left(c_{\mathfrak{g}}-\left\langle\nu_{j}, \nu_{j}+2 \delta\right\rangle\right) \tag{4.3}
\end{equation*}
$$

acts as zero on \mathscr{O}_{θ}. Express (4.3) as $\Pi_{t}\left(c_{\mathfrak{g}}-t\right)^{k_{t}}$, where k_{t} is the multiplicity of $t=\left\langle\nu_{j}, \nu_{j}+2 \delta\right\rangle$. Write $S_{t}=\operatorname{ker}\left(c_{\mathfrak{g}}-t\right)^{k_{t}}$, then

$$
\mathscr{O}_{\theta}=\bigoplus_{t} S_{t}
$$

If $k_{t}=1$ for some t, then there is an eigenspace E_{t} of Q with eigenvalue t. As $c_{\mathfrak{g}}$ lies in the center of $\mathfrak{U}(\mathfrak{g}), E_{t}$ is a $\mathfrak{U}(\mathfrak{g})$-module. Since $E_{t} \cong$ Q_{j} / Q_{j-1} for some $j, S_{t} \cong \mathscr{O}_{\nu_{j}}$ as sheaf of $\mathfrak{U}(\mathfrak{g})$-modules.

5. Borel-Weil theorem

We are ready to prove the Borel-Weil theorem. The key argument is in the following lemma.

Lemma 5.1. Let $\omega \in W$ and write $\mu=w \delta-\delta$. Then for all p,
(1) $H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)$ is a trivial \mathfrak{g}-module.
(2) Let $V(\lambda)$ be a finite dimensional irreducible representation of \mathfrak{g} with highest weight λ, then

$$
\begin{equation*}
H^{p}\left(\mathcal{M}, \mathscr{O}_{\omega \lambda+\mu}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right) \otimes V(\lambda) \tag{5.1}
\end{equation*}
$$

as \mathfrak{g}-modules.
Proof. First we show (1). By Corollary 4.1, $c_{\mathfrak{g}}$ acts trivially on \mathscr{O}_{μ}. Hence $c_{\mathfrak{g}}$ acts trivially on $H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)$ for all p. As $H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)$ is finite dimensional, it decomposes into irreducible \mathfrak{g}-modules. Let A_{ϵ} be one of them with highest weight ϵ (thus $A_{\epsilon} \cong V(\epsilon)$). By proposition 4.1, $c_{\mathfrak{g}}$ acts on A_{ϵ} by the scalar $\langle\epsilon, \epsilon+2 \delta\rangle=0$. As ϵ is dominant,

$$
\langle\epsilon, \delta\rangle \geq 0 \Rightarrow \epsilon=0 .
$$

Hence A_{ϵ} is the trivial \mathfrak{g}-module. Hence $H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)$ is a trivial \mathfrak{g} module.
Let $V=V(\lambda)$ and Λ be the set of weight of V. Let G be the simply connected complex Lie group with Lie algebra \mathfrak{g}. We use the same notation V to denote the irreducible representation on G. Let (θ, V) be the restriction of the G-modules V to B. By Lemma 3.1, the induced bundle is trivial $\mathcal{M} \times V$. Thus $\mathscr{O}_{\theta} \cong \mathscr{O} \otimes V$. On the other hand, we twist θ with the weight μ to obtain a representation $\theta \otimes \mu$ on B. The induced bundle is $(\mathcal{M} \times V) \otimes L_{\mu}$ and

$$
\mathscr{O}_{\theta \otimes \mu} \cong \mathscr{O}_{\mu} \otimes V .
$$

Thus, as \mathfrak{g}-modules,

$$
\begin{equation*}
H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right) \otimes V \tag{5.2}
\end{equation*}
$$

Now we show $H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\omega \lambda+\mu}\right)$. By Proposition 4.3, $\mathscr{O}_{\theta \otimes \mu}$ decompose into direct sum of subsheaves S_{t}, where $t=\nu+\mu$ for some $v \in \Lambda$. We know that $\|\lambda+\delta\|>\|\nu+\delta\|$ for all $\nu \neq \lambda, \nu \in \Lambda$. As $\omega \Lambda=\Lambda, \omega(\Lambda+\delta)=\Lambda+\omega \delta=\Lambda+\mu+\delta$. Thus $\omega \lambda+\mu$ will be the unique element in $\Lambda+\mu$ such that $\|(w \lambda+\mu)+\delta\|=\|\lambda+\delta\|$. By (4.2),

$$
\langle(\omega \lambda+\mu),(\omega \lambda+\mu)+2 \delta\rangle=\langle\lambda, \lambda+2 \delta\rangle=: t
$$

and the multiplicity of $\omega \lambda+\mu$ is one. By Proposition 4.3 again,

$$
S_{t} \cong \mathscr{O}_{\omega \lambda+\mu}
$$

and $\mathscr{O}_{\theta \otimes \mu} \cong \mathscr{O}_{\omega \lambda+\mu} \oplus \tilde{S}$, where $\Omega-\langle\lambda, \lambda+2 \delta\rangle$ is injective on \tilde{S}. Also we have

$$
H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}\right)=H^{p}\left(\mathcal{M}, \mathscr{O}_{\omega \lambda+\mu}\right) \oplus H^{p}(\mathcal{M}, \tilde{S})
$$

However, by (5.2), Proposition 4.1 and part one of this lemma, $c_{\mathfrak{g}}$ acts as the scalar $\langle\lambda, \lambda+2 \delta\rangle$ on $H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}\right)$. Thus $H^{p}(\mathcal{M}, \tilde{S})=\{0\}$ for all p and (2) is shown.

Corollary 5.1. The set of integers p such that $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right) \neq 0$ is constant as $\lambda+\delta$ varies over the set of integral weights in a given Weyl chamber.

Theorem 5.1. (Borel-Weil theorem) Let λ be a dominant integral weight. Then
(1) $H^{0}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right) \cong V(\lambda)$ as \mathfrak{g}-modules.
(2) $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)=\{0\}$ for $p \neq 0$.

Proof. Putting $\omega=$ id in (5.1), as $\mu=0$,

$$
\begin{equation*}
H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right) \cong H^{p}(\mathcal{M}, \mathscr{O}) \otimes V(\lambda) . \tag{5.3}
\end{equation*}
$$

When $p=0, H^{0}(\mathcal{M}, \mathscr{O}) \cong \mathbb{C}$ as \mathcal{M} is compact. Thus part one is shown. When $p>0$ ($p<0$ is trivial), we use a result in ([1], Proposition 10.1), which says that L_{λ} is positive if $\lambda \in \mathcal{C}^{+}$. Fix $\lambda \in \mathcal{C}^{+}$, by Kodaira Vanishing theorem [2], $H^{p}\left(\mathcal{M}, \mathscr{O}_{m \lambda}\right)=\{0\}$ for all $p>0$ for m large enough. Replacing λ by $m \lambda$ in (5.3), we obtain $H^{p}(\mathcal{M}, \mathscr{O})=\{0\}$ for all $p>0$. Put this back in (5.3), we conclude $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)=\{0\}$ for all $p>0$.

6. Borel-Weil-Bott theorem

In this last section we prove the Borel-Weil-Bott theorem, which describes the cohomology groups $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)$ for all integral weight λ. First we deal with the case where $\lambda+\delta$ lies in a wall.

Lemma 6.1. If λ is an integral weight and $\lambda+\delta$ lies in a wall, then $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)=\{0\}$ for all p.
Proof. If not, $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)$ would have an irreducible \mathfrak{g}-module with highest dominant weight γ. Using Proposition 4.1, Proposition 4.2 and (4.2), $\|\lambda+\delta\|=\|\gamma+\delta\|$. Then $\lambda+\delta$ and $\gamma+\delta$ are in the same Weyl group orbit, by Theorem 2.1. This implies that $\gamma+\delta$ also lies in some wall, which is impossible as γ is dominant.

The next lemma relates two integral weights lying in adjacent Weyl Chambers, separated by a wall P_{α}.

Lemma 6.2. Let V be a finite dimensional irreducible representation of \mathfrak{g} with weight Λ and highest weight λ. Let $\alpha \in \Phi$. If $\mu \in E$ satisfies $\langle\mu, \alpha\rangle=0$ and $\langle\mu, \beta\rangle>0$ for all $\beta \in \Phi^{+} \backslash\{ \pm \alpha\}$, then the maximal value $\|\mu+\gamma\|$ for $\gamma \in \Lambda$ is achieved at exactly two points λ and $s_{\alpha} \lambda$.

Proof. Since $\nu \mapsto\|\nu\|^{2}$ is a convex function in E, the maximum $\|\mu+\beta\|$ can only occur when $\beta \in \Lambda$ is an extremal weight. Given two extremal
weights γ and $\nu,\|\gamma\|=\|\nu\|$ by Theorem 2.1. This implies

$$
\|\mu+\gamma\|^{2}-\|\mu+\nu\|^{2}=2\langle\mu, \gamma-\nu\rangle
$$

Let $\gamma=\lambda$. Then $\|\mu+\lambda\|=\|\mu+\nu\|$ only when $\lambda=\nu+n \alpha$ for some n. But the only extremal weight of this form is $s_{\alpha}(\lambda)$.
Theorem 6.1. (Borel-Weil-Bott theorem) Let λ be an integral weight.
(1) If $\lambda+\delta=\omega(\nu+\delta)$ for some $\omega \in W$ and some dominant weight ν, then

$$
\begin{equation*}
H^{\ell(\omega)}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right) \cong V(\nu) \tag{6.1}
\end{equation*}
$$

as \mathfrak{g}-modules, where $\ell(\omega)$ is the length of ω.
(2) $H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right)=\{0\}$ for all $p \neq \ell(\omega)$.

Proof. We will proceed by induction on $\ell(\omega)$. When $\ell(\omega)=0$, it reduces to Borel-Weil theorem. Assume that the theorem is true for all Weyl group element of length $\leq k-1$. Let $\omega \in W$ and $\ell(w)=k$. Let ν be any dominant weight. Let $\alpha \in \Phi^{+}$such that $\ell\left(s_{\alpha} \omega\right)=k-1$. Write $\nu^{\prime}=\nu+\delta \in \mathcal{C}^{+}$and

$$
\eta=\left(s_{\alpha} \omega\right) \nu^{\prime}, \quad s_{\alpha} \eta=\omega \nu^{\prime}, \quad \rho=(\omega \delta)+s_{\alpha}(\omega \delta), \quad \tau=\rho-\delta .
$$

The exact formula for ρ is not essential. All we want is an integral weight which satisfies the hypothesis of Lemma 6.2 with respect to $\omega \Phi^{+}$.
Let V be the finite dimensional irreducible G-module with highest weight ν. Let (θ, V) be the restriction of V to B. As in the proof of Lemma 5.1,

$$
\mathscr{O}_{\theta \otimes \tau} \cong \mathscr{O}_{\tau} \otimes V
$$

and

$$
H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \tau}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\tau}\right) \otimes V .
$$

As $\tau+\delta=\rho$ lies in a wall, Lemma 6.1 imply that $H^{p}\left(\mathcal{M}, \mathscr{O}_{\tau}\right)=\{0\}$ for all p. Thus

$$
\begin{equation*}
H^{p}\left(\mathcal{M}, \mathscr{O}_{\theta \otimes \tau}\right)=\{0\}, \quad \forall p \tag{6.2}
\end{equation*}
$$

As $\ell\left(s_{\alpha} \omega\right)<\ell(\omega)$, we have $\left\langle\alpha, s_{\alpha} \eta\right\rangle<0$ and $\langle\alpha, \eta\rangle>0$. In particular, $s_{\alpha} \eta<\eta$ with respect to the ordering defined using Φ^{+}. Let V^{\prime} be the B-submodule of V containing all weights γ with $\gamma<\eta$ and $V^{\prime \prime}=V / V^{\prime}$, Then we have a short exact sequence of B-modules

$$
0 \rightarrow\left(\theta^{\prime}, V^{\prime}\right) \rightarrow(\theta, V) \rightarrow\left(\theta^{\prime \prime}, V^{\prime \prime}\right) \rightarrow 0
$$

Tensoring with τ (treated as B-modules) gives

$$
0 \rightarrow\left(\theta^{\prime} \otimes \tau, V^{\prime}\right) \rightarrow(\theta \otimes \tau, V) \rightarrow\left(\theta^{\prime \prime} \otimes \tau, V^{\prime \prime}\right) \rightarrow 0
$$

By considering the sheaf of holomorphic section on the induced bundles, we obtain a short exact sequence of sheaf on \mathcal{M} :

$$
\begin{equation*}
0 \rightarrow \mathscr{O}_{\theta^{\prime} \otimes \tau} \rightarrow \mathscr{O}_{\theta \otimes \tau} \rightarrow \mathscr{O}_{\theta^{\prime \prime} \otimes \tau} \rightarrow 0 \tag{6.3}
\end{equation*}
$$

By Proposition 4.3 again, $\mathscr{O}_{\theta \otimes \tau}$ can be written as direct sum of subsheaves S_{t}, where t is the generalized eigenspace of $c_{\mathfrak{g}} . t$ might be of the form

$$
t=\langle\gamma+\tau, \gamma+\tau+2 \delta\rangle=\|\gamma+\rho\|^{2}-\|\delta\|^{2}
$$

where $\gamma \in \Lambda$. By Lemma $6.2, s_{\alpha} \eta$ and η are the only two weights in Λ that maximize t. Projecting (6.3) to its t eigenspace gives

$$
0 \rightarrow\left(\mathscr{O}_{\theta^{\prime} \otimes \tau}\right)_{t} \rightarrow\left(\mathscr{O}_{\theta \otimes \tau}\right)_{t} \rightarrow\left(\mathscr{O}_{\theta^{\prime \prime} \otimes \tau \tau}\right)_{t} \rightarrow 0
$$

As $s_{\alpha} \eta \in V^{\prime}$ and $\eta \in V^{\prime \prime}$, both $\left(\mathscr{O}_{\theta^{\prime} \otimes \tau}\right)_{t}$ and $\left(\mathscr{O}_{\theta^{\prime \prime} \otimes \tau}\right)_{t}$ are one dimensional. Thus by Proposition 4.3,

$$
\left(\mathscr{O}_{\theta^{\prime} \otimes \tau}\right)_{t} \cong \mathscr{O}_{s_{\alpha} \eta+\tau}, \quad\left(\mathscr{O}_{\theta^{\prime \prime} \otimes \tau}\right)_{t} \cong \mathscr{O}_{\eta+\tau}
$$

Using (6.2) and the fact that $\left(\mathscr{O}_{\theta \otimes \tau}\right)_{t}$ is a subsheaf of $\mathscr{O}_{\theta \otimes \tau}$,

$$
H^{p}\left(\mathcal{M},\left(\mathscr{O}_{\theta \otimes \tau}\right)_{t}\right)=\{0\}
$$

for all p. Thus the long exact sequence on cohomology induces an isomorphism

$$
\begin{equation*}
H^{p+1}\left(\mathcal{M}, \mathscr{O}_{s_{\alpha} \eta+\tau}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\eta+\tau}\right) \tag{6.4}
\end{equation*}
$$

As $\eta+\tau+\delta=\eta+\rho$ and ρ lies in the hyperplane $P_{\alpha}, \eta+\tau+\delta \in s_{\alpha} C$. So

$$
(\eta+\tau)+\delta=\left(s_{\alpha} \omega\right)(\chi+\delta)
$$

for some dominant integral weight χ. Note that

$$
\left(s_{\alpha} \eta+\tau\right)+\delta=s_{\alpha} \eta+\rho=s_{\alpha}(\eta+\rho)=\omega(\chi+\delta)
$$

By induction hypothesis,

$$
H^{\ell(\omega)-1}\left(\mathcal{M}, \mathscr{O}_{\eta+\tau}\right) \cong V(\chi), H^{p}\left(\mathcal{M}, \mathscr{O}_{\eta+\tau}\right)=0 \text { when } p \neq \ell(\omega)-1
$$

Using (6.4), we have

$$
\begin{equation*}
H^{\ell(\omega)}\left(\mathcal{M}, \mathscr{O}_{s_{\alpha} \eta+\tau}\right) \cong V(\chi), H^{p}\left(\mathcal{M}, \mathscr{O}_{s_{\alpha} \eta+\tau}\right)=0 \text { if } p \neq \ell(\omega) \tag{6.5}
\end{equation*}
$$

As a result, the induction step $\ell(\omega)=k$ have been shown for at least one integral weight λ, where $\lambda=s_{\alpha} \eta+\tau=\omega(\nu+\delta)+\tau$.
But this is good enough: By Lemma 5.1, for all integral weight λ such that $\lambda+\delta=\omega(\chi+\delta)($ or $\lambda=\omega \chi+\mu)$

$$
\begin{equation*}
H^{p}\left(\mathcal{M}, \mathscr{O}_{\lambda}\right) \cong H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right) \otimes V(\chi) \tag{6.6}
\end{equation*}
$$

as \mathfrak{g}-modules and $H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)$ are trivial \mathfrak{g}-modules for all p. Using (6.5) we have

$$
H^{\ell(\omega)}\left(\mathcal{M}, \mathscr{O}_{\mu}\right) \cong \mathbb{C}, \quad H^{p}\left(\mathcal{M}, \mathscr{O}_{\mu}\right)=\{0\} \quad \text { when } p \neq \ell(\omega) .
$$

Putting this back to (6.6), the induction step is verified.

References

1. Raoul Bott Homogeneous Vectors Bundles, The Annals of Mathematics, 2nd Ser., Vol. 66, No. 2. (Sep., 1957), pp. 203-248
2. Phillip Griffiths, Joseph Harris Principles of Algebraic Geometry, Wiley Classics Library, 1994, John Wiley and Sons, Inc.
3. James E. Humphreys Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, (1972), Springer.
4. Anthony W. Knapp, Lie groups beyond an introduction, second edition, Progress in Mathematics 140, Birhäuser
5. Joseph L.Taylor, Several Complex Variables with connections to Algebraic Geometry and Lie Groups, Graduate Studies in Mathematics - Volumn 46, American Mathematical Society
