
A PROOF OF BOREL-WEIL-BOTT THEOREM

MAN SHUN JOHN MA

1. Introduction

In this short note, we prove the Borel-Weil-Bott theorem.
Let g be a complex semisimple Lie algebra. One basic question in

representation theory is to classify all finite dimensional irreducible
representations of g. The answer is provided by the highest weight
theorem: For any dominant integral weight λ, there exists a unqiue fi-
nite dimsnsional g-module V (λ) with highest weight λ. The Borel-Weil
theorem provides an explicit construction of these g-modules V (λ).

Every complex semisimple Lie algebra g corresponds to a complex
semisimple Lie group G. The homogenous space G/B, where B is a
Borel subgroup of G, is a smooth projective variaty. Every integral
weight λ corresponds to a holomorphic line bundle Lλ on G/B. g acts
on the space of global holomorphic sections

Γ(G/B,Oλ) ∼= H0(G/B,Oλ)

by differentiation. When λ is dominant, the Borel-Weil theorem asserts
that H0(G/B,Oλ) is a finite dimensional irreducible g-module with
highest weight λ.

The Borel-Weil-Bott theorem is a generalization of Borel-Weil theo-
rem. It deals with all integral weights, and consider not only global
sections, but also higher cohomology groups Hp(G/B,Oλ).

In section 2, we introduce the basic results in Lie groups and Lie
algebras. In section 3 we introduce the homogenous space G/B and
induced representations. In section 4 we describe how the Casimir
element cg serves as a handy tool to decompose g-modules. In the last
two sections, we prove the Borel-Weil theorem and the Borel-Weil-Bott
theorem respectively.

If possible, we follow the notations in [3], except that we use g instead
of L to denote Lie algebras. The proof of Borel-Weil theorem and Borel-
Weil-Bott theorem are from [5]. We also use a result from [1], which
describe the positivity of the line bundle Lλ.
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2. Basic Lie theory

Let g be a semisimple Lie algebra and h be a Cartan subalgebra of
g. As in [3], we have the root space decomposition

(2.1) g = h⊕
⊕
α∈Φ

gα ,

where α ∈ Φ are the roots of g. If xα ∈ gα and h ∈ h,

(2.2) [h, xα] = α(h)xα .

Let E be the real span of Φ in h∗. It is known that
(
E,Φ, (·, ·)

)
forms

a root system, where (·, ·) is dual to the Killing form κ.
An integral weight is an element in E such that

(2.3) 〈λ, α〉 :=
2(λ, α)

(α, α)
∈ Z

for all roots α ∈ Φ. If a set of positive roots Φ+ and simple roots
∆ ⊂ Φ+ are chosen, the positive Weyl Chamber C+ is the set of
elements v ∈ E such that 〈v, α〉 > 0 for all α ∈ ∆.

We write λ ≤ µ if µ−λ ∈ C+. An integral weight is called dominant
if λ ≥ 0, or 〈λ+ δ, α〉 > 0 for all α ∈ ∆, where ([3], section 13)

(2.4) δ =
1

2

∑
α∈Φ+

α =
l∑

i=1

λi

and λi are the set of fundamental dominant weight corresponding to
∆.

Let (π, V ) be a g-module. When restricted to h, (π, V ) decomposes
into direct sum of weight spaces Vλ defined by

(2.5) Vλ = {v ∈ V : π(h)v = λ(v)v}.
Such λ ∈ h∗ is called a weight of (π, V ). The set of all weights is
denoted Λ. We will need the following results:

Theorem 2.1. Let (π, V ) be a finite dimensional irreducible g-modules
with weights Λ. Then

(1) There is a unique λ ∈ Λ with the highest weight. That is µ ≤ λ
for all µ ∈ Λ.

(2) The weight space Vλ is one dimensional.
(3) Λ is closed under the Weyl group action.
(4) λ ≥ 0.
(5) ||µ|| ≤ ||λ|| for all µ ∈ Λ.
(6) µ ∈ Λ is extremal if and only if ||µ|| = ||λ||, and the Weyl group

acts transitively on the set of extremal weights.
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(7) ||µ+ δ|| < ||λ+ δ|| if µ ∈ Λ and µ 6= λ.

We also need the Theorem of highest weights: ([3], theorem 21.2)

Theorem 2.2. Up to isomorphism, every dominant weight λ corre-
sponds to a unique finite dimensional irreducible representation V (λ)
with hightest weight λ.

A Borel subalgebra b of g is a maximal solvable subalgebra. Ex-
amples are

(2.6) b± = h⊕ n± = h⊕
⊕
α∈Φ±

gα

Next we introduce Lie groups. A real (complex) Lie group is a group
with a structure of smooth (complex) manifold, such that the group
multiplication (g, h) 7→ gh is smooth (holomorphic). By considering
left or right invariant vectors fields, every real (complex) Lie group G
corresponds to a real (complex) Lie algebra g.
G is called semisimple if its Lie algebra is semisimple. In this case we

have ([4], Chapter 6 and 7)

Theorem 2.3. Let G, G′ be connected complex semisimple Lie groups.
Then

(1) G has a compact real form K, that is, a compact Lie subgroup
K of G with Lie algebra k such that

(2.7) kC = k⊕ ik ∼= g .

(2) Write p0 = ik, then the map K × p0 → G given by (k, p) 7→
k exp p is a diffeomorphism. Thus K ⊂ G induces the isomor-
phism π1(K) ∼= π1(G).

(3) Let K ′ be a compact Lie form of G′. Then every homomor-
phisms K → K ′ extends to a holomorphic homomorphism G→
G′.

(4) Every representation K → GL(V ) extends to G → GL(V ).
In particular if V is a faithful representation of K, then the
extension is a faithful holomorphic representation of G.

(5) Every finite dimensional holomorphic representation of G is
completely reducible.

It is known that every complex semisimple Lie group has a unique
structure of an affine algebraic group ([5], section 15). Whenever it is
convenient, we would treat complex semisimple Lie groups as an affine
algebraic groups.
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Definition 2.1. Let G be an affine connected algebraic group with Lie
algebra g, G is called semisimple if its Lie algebra is g semisimple. Let
H and B be connected algebraic subgroup of G. H is called a Cartan
subgroup if its Lie algebra h is a Cartan subalgebra. B is called a
Borel subgroup if its Lie algebra b is a Borel subalgebra.

From ([5], chapter 15), when G is semisimple, every Cartan subgroup
H is abelian and isomorphic to (C∗)r for some r. Every Borel subgroup
B is maximal solvable subgroup of G. When b = b± defined in (2.6),
B = HN , where N is a an algebraic subgroup with Lie algebra n±.

We will need the following results. Recall that a character of H is an
algebraic homomorphism H → C∗.
Lemma 2.1. Every charcter σ : H → C∗ extends uniquely to B.

Proof. N is a normal subgroup of B and B = HN , H∩N = {0}. Let σ
be a character of H. Then one can extend σ to B by σ(bn) = σ(b). On
the other hand, if σ is a character of B, considering its restriction to
N . Then the differential is a Lie algebra homomorphism n → gl1(C).
As n = [b, b], we have n → sl1(C). Thus the differential is zero and
σ|N is the identity. Hence σ descends to B/N = H. �

Theorem 2.4. Let G be a semisimple simply connected complex Lie
group with Lie algebra g. Then λ ∈ h∗ is the differential of a character
of H if and only if λ is an integral weight.

Proof. (⇒) Let (π, V ) be a faithful representation of G such that π(H)
lies in the diagonal subgroup (C∗)m ⊂ GL(V ) after choosing some
basis {v1, · · · , vm}. Each vi corresponds to a character γi defined by
π(h)vi = γi(h)vi. The differential of γi corresponds to the weight of
the representation (π, V ), thus is an integral weight (All weights from
a representation are integral). Identifying H ∼= π(H), we know that
all characters on H are restricition of chacracter in (C∗)m ⊂ GL(V ).
As γi = ci|H , where ci are the obvious generators of the characters
of (C∗)m, γi generates the characters of H. Thus all differential of
characters of H are integral weights.

(⇐) Every integral weight λ lies in the closure of some Weyl chamber
and this chamber is positive with respect to some choice of positive
roots. Hence it suffices to assume that λ is dominant. By Theorem 2.2,
let V (λ) be the irreducible g-modules with highest weight λ and highest
weight vector vλ. The representation π : g → gl(V ) corresponds to a
homomorphism G→ GL(V ) (still call it π), as G is simply connected.
Let ξ ∈ h and h ∈ H such that h = exp(ξ). Using π(ξ)vλ = λ(ξ)vλ, we
obtain

π(h)vλ = π(exp(ξ))vλ = eπ(ξ)vλ = eλ(ξ)vλ .
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Then (π|H , H) acts on Vλ and λ is the differential of this character.
�

3. Induced representation

Let G be a complex semisimple Lie group with Lie algebra g, and B
be a Borel subgroup with Lie algebra b ∼= h⊕ n−. As in ([5], 14.3), the
left coset space G/B can be given a structure of complex manfold such
that the action of G is holomorphic. We denote this manifold as M.
M is compact as M∼= K/T , where T is the maximal torus such that
T = K ∩B.

Let (σ,Q) be a holomorphic representation of B. Define

G×B Q = G×Q/ ∼,

where (g, q) ∼ (gb−1, σ(b)q). G×BQ is given the quotient topology and
quotient structure sheaf fromt the quotient map. Let π : G×B →M
be the map π([g, q]) = gB, then π−1(gB) ∼= gB×Q has a vector space
structure. The following results are proved in ([5], 16.1). The first one
follows essentially from the holomorphic version of implicit function
theorem.

Proposition 3.1. With the projection map π : G×BQ→M, G×BQ
is a G-equivariant holomorphic vector bundle on M.

Lemma 3.1. G×B Q is holomorphically trivial if and only if Q is the
restriction of a holomorphic representation of G.

The sheaf of holomorphic section on G×BQ is denoted Oσ. For each
open set U ⊂M,

Oσ(U) ∼= {f ∈ O
(
π−1(U)

)
⊗Q : f(gb−1) = σ(b)f(g), ∀b ∈ B} .

Note that Oσ(U) has a structure of g-module: view g as the set of
right invariant holomorphic vector fields on G, g acts on Oσ(U) by
differentiation.

As M is compact and Oσ is a coherent sheaf, Hp(M,Oσ) is finite
dimensional for all p. Moreover, the action on Oσ induces an g-action
on each Hp(M,Oσ).

Let λ be an integral weight. By Theorem 2.4 and Lemma 2.4, λ is the
differential of a character of B. The induced line bundle with respect
to the character is denoted Lλ. The sheaf of holomorphic section on
Lλ is denoted Oλ.
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4. The Casimir operator cg

Let U(g) be the universal enveloping algebra of g. By definition,
any Lie algebra morphism ψ : g → A of g into an associative algebra
extends to a morphism ψ̃ : U(g) → A of associative algebras. The
Casimir element cg ∈ U(g) is given by

(4.1) cg =
∑
i

η2
i +

∑
α∈Φ+

hα + 2
∑
α∈Φ+

zαxα ,

where {ηi} is a self dual basis of h, and hα, xα and zα are defined as in
([3], section 22). It is known that cg is well-defined independent of the
choice of h, Φ+ and cg ∈ Z(g). As a result, we can use cg to decompose
any finite dimensional g-modules into its eigenspaces.

Proposition 4.1. Let V (λ) is the finite dimensional irreducible g-
module with highest weight λ. Then cg acts as the scalar 〈λ, λ+ 2δ〉.

Proof. By Schur’s lemma, we know that cg acts as a scalar. To find
out this scalar, we apply π(cg) to the highest weight vector vλ. As
π(xα)vλ = 0 for all α ∈ Φ+,

π(cg)vλ =
∑
i

λ(ηi)
2vλ +

∑
α∈Φ+

λ(hα)vλ

= ||λ||2vλ +
∑
α∈Φ+

〈λ, α〉vλ

= 〈λ, λ+ 2δ〉vλ .
�

Note that cg also acts on the sheaf Oλ for all integral weight λ.

Proposition 4.2. cg acts as the scalar 〈λ, λ+ 2δ〉 on Oλ.

Proof. As G acts holomorphically and transitively onM, it suffices to
check at the point B ∈ M. Let U be an open neigborhood of B and
f ∈ Oλ(U). Let b, b1 ∈ B, then

f(b−1b1) = λ(b−1
1 )λ(b)f(e) = λ(b)f(b1) .

Let b = exp(tζ), where ζ ∈ b and differentiate, we obtain (ζf)(b1) =
λ(ζ)f(b1). In particular,

zαf = 0, ηf = λ(η)f

on B, where η ∈ h. As xα corresponds to a holomorphic vector field,
xαf ∈ Oλ(U) for all α ∈ Φ+. Thus yαxαf = 0. Using equation (4.1), as
in the proof of proposition 4.1, one can show that cg acts as the scalar
〈λ, λ+ 2δ〉. �



A PROOF OF BOREL-WEIL-BOTT THEOREM 7

Corollary 4.1. cg acts trivially on Oµ for all µ = ωδ − δ for ω ∈ W .

Proof. Note that for all integral weights λ,

(4.2) 〈λ, λ+ 2δ〉 = ||λ+ δ||2 − ||δ||2 .

If µ = ωδ − δ for some ω ∈ W , then ||µ+ δ|| = ||ωδ|| = ||δ||. Thus the
corollary follows from proposition (4.2). �

For a general representation Q on B, we have

Proposition 4.3. Let (θ,Q) be a finite dimensional representation of
B with weight Λ. Then Oθ decompose into direct sums of U(g)-modules
St

Oθ =
⊕
t

St ,

where t ranges over distinct eigenvalues for the action of cg on Oθ. If
t = 〈ν, ν + 2δ〉 has multiplicity one, then St ∼= Oν.

Proof. Let dimQ = n. By considering θ∗ : b → gl(Q) and using Lie’s
theorem, Q has a filtration {Qi}ni=0 of B-submodules such that Qj/Qj−1

are one dimensional. It is easy to see that B acts on Qj/Qj−1 as a
character νj ∈ Λ. On the sheaf level, one has a sequence of subsheafs
Oθj such that Oθj/Oθj−1

∼= Oνj . Here θj is the restriction of θ to Qj.
All these are g submodules and cg acts on them. By Proposition 4.2,
cg acts on Oνj as 〈νj, νj + 2δ〉. Thus

(4.3) Πj

(
cg − 〈νj, νj + 2δ〉

)
acts as zero on Oθ. Express (4.3) as Πt(cg − t)kt , where kt is the mul-
tiplicity of t = 〈νj, νj + 2δ〉. Write St = ker(cg − t)kt , then

Oθ =
⊕
t

St .

If kt = 1 for some t, then there is an eigenspace Et of Q with eigenvalue
t. As cg lies in the center of U(g), Et is a U(g)-module. Since Et ∼=
Qj/Qj−1 for some j, St ∼= Oνj as sheaf of U(g)-modules. �

5. Borel-Weil theorem

We are ready to prove the Borel-Weil theorem. The key argument is
in the following lemma.

Lemma 5.1. Let ω ∈ W and write µ = wδ − δ. Then for all p,

(1) Hp(M,Oµ) is a trivial g-module.



8 MAN SHUN JOHN MA

(2) Let V (λ) be a finite dimensional irreducible representation of g
with highest weight λ, then

(5.1) Hp(M,Oωλ+µ) ∼= Hp(M,Oµ)⊗ V (λ)

as g-modules.

Proof. First we show (1). By Corollary 4.1, cg acts trivially on Oµ.
Hence cg acts trivially on Hp(M,Oµ) for all p. As Hp(M,Oµ) is finite
dimensional, it decomposes into irreducible g-modules. Let Aε be one
of them with highest weight ε (thus Aε ∼= V (ε)). By proposition 4.1, cg
acts on Aε by the scalar 〈ε, ε+ 2δ〉 = 0. As ε is dominant,

〈ε, δ〉 ≥ 0⇒ ε = 0 .

Hence Aε is the trivial g-module. Hence Hp(M,Oµ) is a trivial g-
module.

Let V = V (λ) and Λ be the set of weight of V . Let G be the simply
connected complex Lie group with Lie algebra g. We use the same
notation V to denote the irreducible representation on G. Let (θ, V )
be the restriction of the G-modules V to B. By Lemma 3.1, the induced
bundle is trivial M× V . Thus Oθ

∼= O ⊗ V . On the other hand, we
twist θ with the weight µ to obtain a representation θ ⊗ µ on B. The
induced bundle is (M× V )⊗ Lµ and

Oθ⊗µ ∼= Oµ ⊗ V .

Thus, as g-modules,

(5.2) Hp(M,Oθ⊗µ) ∼= Hp(M,Oµ)⊗ V .

Now we show Hp(M,Oθ⊗µ) ∼= Hp(M,Oωλ+µ). By Proposition 4.3,
Oθ⊗µ decompose into direct sum of subsheaves St, where t = ν + µ for
some v ∈ Λ. We know that ||λ + δ|| > ||ν + δ|| for all ν 6= λ, ν ∈ Λ.
As ωΛ = Λ, ω(Λ + δ) = Λ + ωδ = Λ + µ+ δ. Thus ωλ+ µ will be the
unique element in Λ +µ such that ||(wλ+µ) + δ|| = ||λ+ δ||. By (4.2),

〈(ωλ+ µ), (ωλ+ µ) + 2δ〉 = 〈λ, λ+ 2δ〉 =: t

and the multiplicity of ωλ+ µ is one. By Proposition 4.3 again,

St ∼= Oωλ+µ

and Oθ⊗µ ∼= Oωλ+µ ⊕ S̃, where Ω − 〈λ, λ + 2δ〉 is injective on S̃. Also
we have

Hp(M,Oθ⊗µ) = Hp(M,Oωλ+µ)⊕Hp(M, S̃) .

However, by (5.2), Proposition 4.1 and part one of this lemma, cg acts

as the scalar 〈λ, λ + 2δ〉 on Hp(M,Oθ⊗µ). Thus Hp(M, S̃) = {0} for
all p and (2) is shown. �
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Corollary 5.1. The set of integers p such that Hp(M,Oλ) 6= 0 is
constant as λ+δ varies over the set of integral weights in a given Weyl
chamber.

Theorem 5.1. (Borel-Weil theorem) Let λ be a dominant integral
weight. Then

(1) H0(M,Oλ) ∼= V (λ) as g-modules.
(2) Hp(M,Oλ) = {0} for p 6= 0.

Proof. Putting ω = id in (5.1), as µ = 0,

(5.3) Hp(M,Oλ) ∼= Hp(M,O)⊗ V (λ) .

When p = 0, H0(M,O) ∼= C asM is compact. Thus part one is shown.
When p > 0 (p < 0 is trivial), we use a result in ([1], Proposition 10.1),
which says that Lλ is positive if λ ∈ C+. Fix λ ∈ C+, by Kodaira
Vanishing theorem [2], Hp(M,Omλ) = {0} for all p > 0 for m large
enough. Replacing λ by mλ in (5.3), we obtain Hp(M,O) = {0} for
all p > 0. Put this back in (5.3), we conclude Hp(M,Oλ) = {0} for all
p > 0. �

6. Borel-Weil-Bott theorem

In this last section we prove the Borel-Weil-Bott theorem, which de-
scribes the cohomology groups Hp(M,Oλ) for all integral weight λ.
First we deal with the case where λ+ δ lies in a wall.

Lemma 6.1. If λ is an integral weight and λ + δ lies in a wall, then
Hp(M,Oλ) = {0} for all p.

Proof. If not, Hp(M,Oλ) would have an irreducible g-module with
highest dominant weight γ. Using Proposition 4.1, Proposition 4.2 and
(4.2), ||λ+ δ|| = ||γ + δ||. Then λ+ δ and γ + δ are in the same Weyl
group orbit, by Theorem 2.1. This implies that γ + δ also lies in some
wall, which is impossible as γ is dominant. �

The next lemma relates two integral weights lying in adjacent Weyl
Chambers, separated by a wall Pα.

Lemma 6.2. Let V be a finite dimensional irreducible representation
of g with weight Λ and highest weight λ. Let α ∈ Φ. If µ ∈ E satisfies
〈µ, α〉 = 0 and 〈µ, β〉 > 0 for all β ∈ Φ+ \ {±α}, then the maximal
value ||µ+ γ|| for γ ∈ Λ is achieved at exactly two points λ and sαλ.

Proof. Since ν 7→ ||ν||2 is a convex function in E, the maximum ||µ+β||
can only occur when β ∈ Λ is an extremal weight. Given two extremal
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weights γ and ν, ||γ|| = ||ν|| by Theorem 2.1. This implies

||µ+ γ||2 − ||µ+ ν||2 = 2〈µ, γ − ν〉 .
Let γ = λ. Then ||µ + λ|| = ||µ + ν|| only when λ = ν + nα for some
n. But the only extremal weight of this form is sα(λ). �

Theorem 6.1. (Borel-Weil-Bott theorem) Let λ be an integral weight.

(1) If λ+ δ = ω(ν+ δ) for some ω ∈ W and some dominant weight
ν, then

(6.1) H`(ω)(M,Oλ) ∼= V (ν)

as g-modules, where `(ω) is the length of ω.
(2) Hp(M,Oλ) = {0} for all p 6= `(ω).

Proof. We will proceed by induction on `(ω). When `(ω) = 0, it reduces
to Borel-Weil theorem. Assume that the theorem is true for all Weyl
group element of length ≤ k − 1. Let ω ∈ W and `(w) = k. Let ν be
any dominant weight. Let α ∈ Φ+ such that `(sαω) = k − 1. Write
ν ′ = ν + δ ∈ C+ and

η = (sαω)ν ′, sαη = ων ′, ρ = (ωδ) + sα(ωδ), τ = ρ− δ .
The exact formula for ρ is not essential. All we want is an integral
weight which satisfies the hypothesis of Lemma 6.2 with respect to
ωΦ+.

Let V be the finite dimensional irreducible G-module with highest
weight ν. Let (θ, V ) be the restriction of V to B. As in the proof of
Lemma 5.1,

Oθ⊗τ ∼= Oτ ⊗ V
and

Hp(M,Oθ⊗τ ) ∼= Hp(M,Oτ )⊗ V .

As τ + δ = ρ lies in a wall, Lemma 6.1 imply that Hp(M,Oτ ) = {0}
for all p. Thus

(6.2) Hp(M,Oθ⊗τ ) = {0}, ∀p .

As `(sαω) < `(ω), we have 〈α, sαη〉 < 0 and 〈α, η〉 > 0. In particular,
sαη < η with respect to the ordering defined using Φ+. Let V ′ be the
B-submodule of V containing all weights γ with γ < η and V ′′ = V/V ′,
Then we have a short exact sequence of B-modules

0→ (θ′, V ′)→ (θ, V )→ (θ′′, V ′′)→ 0 .

Tensoring with τ (treated as B-modules) gives

0→ (θ′ ⊗ τ, V ′)→ (θ ⊗ τ, V )→ (θ′′ ⊗ τ, V ′′)→ 0 .
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By considering the sheaf of holomorphic section on the induced bundles,
we obtain a short exact sequence of sheaf on M:

(6.3) 0→ Oθ′⊗τ → Oθ⊗τ → Oθ′′⊗τ → 0 .

By Proposition 4.3 again, Oθ⊗τ can be written as direct sum of sub-
sheaves St, where t is the generalized eigenspace of cg. t might be of
the form

t = 〈γ + τ, γ + τ + 2δ〉 = ||γ + ρ||2 − ||δ||2 ,
where γ ∈ Λ. By Lemma 6.2, sαη and η are the only two weights in Λ
that maximize t. Projecting (6.3) to its t eigenspace gives

0→ (Oθ′⊗τ )t → (Oθ⊗τ )t → (Oθ′′⊗τ )t → 0

As sαη ∈ V ′ and η ∈ V ′′, both (Oθ′⊗τ )t and (Oθ′′⊗τ )t are one dimen-
sional. Thus by Proposition 4.3,

(Oθ′⊗τ )t ∼= Osαη+τ , (Oθ′′⊗τ )t ∼= Oη+τ .

Using (6.2) and the fact that (Oθ⊗τ )t is a subsheaf of Oθ⊗τ ,

Hp(M, (Oθ⊗τ )t) = {0}

for all p. Thus the long exact sequence on cohomology induces an
isomorphism

(6.4) Hp+1(M,Osαη+τ ) ∼= Hp(M,Oη+τ ) .

As η+ τ + δ = η+ρ and ρ lies in the hyperplane Pα, η+ τ + δ ∈ sαC.
So

(η + τ) + δ = (sαω)(χ+ δ)

for some dominant integral weight χ. Note that

(sαη + τ) + δ = sαη + ρ = sα(η + ρ) = ω(χ+ δ) .

By induction hypothesis,

H`(ω)−1(M,Oη+τ ) ∼= V (χ), Hp(M,Oη+τ ) = 0 when p 6= `(ω)− 1 .

Using (6.4), we have

(6.5) H`(ω)(M,Osαη+τ ) ∼= V (χ), Hp(M,Osαη+τ ) = 0 if p 6= `(ω) .

As a result, the induction step `(ω) = k have been shown for at least
one integral weight λ, where λ = sαη + τ = ω(ν + δ) + τ .

But this is good enough: By Lemma 5.1, for all integral weight λ
such that λ+ δ = ω(χ+ δ) (or λ = ωχ+ µ)

(6.6) Hp(M,Oλ) ∼= Hp(M,Oµ)⊗ V (χ)
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as g-modules and Hp(M,Oµ) are trivial g-modules for all p. Using
(6.5) we have

H`(ω)(M,Oµ) ∼= C, Hp(M,Oµ) = {0} when p 6= `(ω) .

Putting this back to (6.6), the induction step is verified. �
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