A PROOF OF BOREL-WEIL-BOTT THEOREM

MAN SHUN JOHN MA

1. Introduction

In this short note, we prove the Borel-Weil-Bott theorem.

Let $\mathfrak g$ be a complex semisimple Lie algebra. One basic question in representation theory is to classify all finite dimensional irreducible representations of $\mathfrak g$. The answer is provided by the highest weight theorem: For any dominant integral weight λ , there exists a unque finite dimensional $\mathfrak g$ -module $V(\lambda)$ with highest weight λ . The Borel-Weil theorem provides an explicit construction of these $\mathfrak g$ -modules $V(\lambda)$.

Every complex semisimple Lie algebra \mathfrak{g} corresponds to a complex semisimple Lie group G. The homogenous space G/B, where B is a Borel subgroup of G, is a smooth projective variaty. Every integral weight λ corresponds to a holomorphic line bundle L_{λ} on G/B. \mathfrak{g} acts on the space of global holomorphic sections

$$\Gamma(G/B, \mathscr{O}_{\lambda}) \cong H^0(G/B, \mathscr{O}_{\lambda})$$

by differentiation. When λ is dominant, the Borel-Weil theorem asserts that $H^0(G/B, \mathcal{O}_{\lambda})$ is a finite dimensional irreducible \mathfrak{g} -module with highest weight λ .

The Borel-Weil-Bott theorem is a generalization of Borel-Weil theorem. It deals with all integral weights, and consider not only global sections, but also higher cohomology groups $H^p(G/B, \mathcal{O}_{\lambda})$.

In section 2, we introduce the basic results in Lie groups and Lie algebras. In section 3 we introduce the homogenous space G/B and induced representations. In section 4 we describe how the Casimir element $c_{\mathfrak{g}}$ serves as a handy tool to decompose \mathfrak{g} -modules. In the last two sections, we prove the Borel-Weil theorem and the Borel-Weil-Bott theorem respectively.

If possible, we follow the notations in [3], except that we use \mathfrak{g} instead of L to denote Lie algebras. The proof of Borel-Weil theorem and Borel-Weil-Bott theorem are from [5]. We also use a result from [1], which describe the positivity of the line bundle L_{λ} .

2. Basic Lie Theory

Let \mathfrak{g} be a semisimple Lie algebra and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . As in [3], we have the root space decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha} ,$$

where $\alpha \in \Phi$ are the roots of \mathfrak{g} . If $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $h \in \mathfrak{h}$,

$$[h, x_{\alpha}] = \alpha(h)x_{\alpha} .$$

Let E be the real span of Φ in \mathfrak{h}^* . It is known that $(E, \Phi, (\cdot, \cdot))$ forms a root system, where (\cdot, \cdot) is dual to the Killing form κ .

An **integral weight** is an element in E such that

(2.3)
$$\langle \lambda, \alpha \rangle := \frac{2(\lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$$

for all roots $\alpha \in \Phi$. If a set of positive roots Φ^+ and simple roots $\Delta \subset \Phi^+$ are chosen, the **positive Weyl Chamber** \mathcal{C}^+ is the set of elements $v \in E$ such that $\langle v, \alpha \rangle > 0$ for all $\alpha \in \Delta$.

We write $\lambda \leq \mu$ if $\mu - \lambda \in \overline{C^+}$. An integral weight is called **dominant** if $\lambda \geq 0$, or $\langle \lambda + \delta, \alpha \rangle > 0$ for all $\alpha \in \Delta$, where ([3], section 13)

(2.4)
$$\delta = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha = \sum_{i=1}^l \lambda_i$$

and λ_i are the set of fundamental dominant weight corresponding to Λ

Let (π, V) be a \mathfrak{g} -module. When restricted to \mathfrak{h} , (π, V) decomposes into direct sum of weight spaces V_{λ} defined by

(2.5)
$$V_{\lambda} = \{ v \in V : \pi(h)v = \lambda(v)v \}.$$

Such $\lambda \in \mathfrak{h}^*$ is called a **weight** of (π, V) . The set of all weights is denoted Λ . We will need the following results:

Theorem 2.1. Let (π, V) be a finite dimensional irreducible \mathfrak{g} -modules with weights Λ . Then

- (1) There is a unique $\lambda \in \Lambda$ with the highest weight. That is $\mu \leq \lambda$ for all $\mu \in \Lambda$.
- (2) The weight space V_{λ} is one dimensional.
- (3) Λ is closed under the Weyl group action.
- $(4) \lambda \geq 0.$
- (5) $||\mu|| \le ||\lambda||$ for all $\mu \in \Lambda$.
- (6) $\mu \in \Lambda$ is extremal if and only if $||\mu|| = ||\lambda||$, and the Weyl group acts transitively on the set of extremal weights.

(7)
$$||\mu + \delta|| < ||\lambda + \delta||$$
 if $\mu \in \Lambda$ and $\mu \neq \lambda$.

We also need the **Theorem of highest weights:** ([3], theorem 21.2)

Theorem 2.2. Up to isomorphism, every dominant weight λ corresponds to a unique finite dimensional irreducible representation $V(\lambda)$ with hightest weight λ .

A Borel subalgebra ${\mathfrak b}$ of ${\mathfrak g}$ is a maximal solvable subalgebra. Examples are

(2.6)
$$\mathfrak{b}^{\pm} = \mathfrak{h} \oplus \mathfrak{n}^{\pm} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{\pm}} \mathfrak{g}_{\alpha}$$

Next we introduce Lie groups. A real (complex) Lie group is a group with a structure of smooth (complex) manifold, such that the group multiplication $(g,h) \mapsto gh$ is smooth (holomorphic). By considering left or right invariant vectors fields, every real (complex) Lie group G corresponds to a real (complex) Lie algebra \mathfrak{g} .

G is called semisimple if its Lie algebra is semisimple. In this case we have ([4], Chapter 6 and 7)

Theorem 2.3. Let G, G' be connected complex semisimple Lie groups. Then

(1) G has a compact real form K, that is, a compact Lie subgroup K of G with Lie algebra \mathfrak{k} such that

$$\mathfrak{k}_{\mathbb{C}} = \mathfrak{k} \oplus i\mathfrak{k} \cong \mathfrak{g} .$$

- (2) Write $\mathfrak{p}_0 = i\mathfrak{k}$, then the map $K \times \mathfrak{p}_0 \to G$ given by $(k, p) \mapsto k \exp p$ is a diffeomorphism. Thus $K \subset G$ induces the isomorphism $\pi_1(K) \cong \pi_1(G)$.
- (3) Let K' be a compact Lie form of G'. Then every homomorphisms $K \to K'$ extends to a holomorphic homomorphism $G \to G'$.
- (4) Every representation $K \to GL(V)$ extends to $G \to GL(V)$. In particular if V is a faithful representation of K, then the extension is a faithful holomorphic representation of G.
- (5) Every finite dimensional holomorphic representation of G is completely reducible.

It is known that every complex semisimple Lie group has a unique structure of an affine algebraic group ([5], section 15). Whenever it is convenient, we would treat complex semisimple Lie groups as an affine algebraic groups.

Definition 2.1. Let G be an affine connected algebraic group with Lie algebra \mathfrak{g} , G is called semisimple if its Lie algebra is \mathfrak{g} semisimple. Let H and B be connected algebraic subgroup of G. H is called a **Cartan subgroup** if its Lie algebra \mathfrak{h} is a Cartan subalgebra. B is called a **Borel subgroup** if its Lie algebra \mathfrak{b} is a Borel subalgebra.

From ([5], chapter 15), when G is semisimple, every Cartan subgroup H is abelian and isomorphic to $(\mathbb{C}^*)^r$ for some r. Every Borel subgroup B is maximal solvable subgroup of G. When $\mathfrak{b} = \mathfrak{b}^{\pm}$ defined in (2.6), B = HN, where N is a an algebraic subgroup with Lie algebra \mathfrak{n}^{\pm} .

We will need the following results. Recall that a character of H is an algebraic homomorphism $H \to \mathbb{C}^*$.

Lemma 2.1. Every charater $\sigma: H \to \mathbb{C}^*$ extends uniquely to B.

Proof. N is a normal subgroup of B and B = HN, $H \cap N = \{0\}$. Let σ be a character of H. Then one can extend σ to B by $\sigma(bn) = \sigma(b)$. On the other hand, if σ is a character of B, considering its restriction to N. Then the differential is a Lie algebra homomorphism $\mathfrak{n} \to \mathfrak{gl}_1(\mathbb{C})$. As $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$, we have $\mathfrak{n} \to \mathfrak{sl}_1(\mathbb{C})$. Thus the differential is zero and $\sigma|_N$ is the identity. Hence σ descends to B/N = H.

Theorem 2.4. Let G be a semisimple simply connected complex Lie group with Lie algebra \mathfrak{g} . Then $\lambda \in \mathfrak{h}^*$ is the differential of a character of H if and only if λ is an integral weight.

Proof. (\Rightarrow) Let (π, V) be a faithful representation of G such that $\pi(H)$ lies in the diagonal subgroup $(\mathbb{C}^*)^m \subset GL(V)$ after choosing some basis $\{v_1, \dots, v_m\}$. Each v_i corresponds to a character γ_i defined by $\pi(h)v_i = \gamma_i(h)v_i$. The differential of γ_i corresponds to the weight of the representation (π, V) , thus is an integral weight (All weights from a representation are integral). Identifying $H \cong \pi(H)$, we know that all characters on H are restriction of character in $(\mathbb{C}^*)^m \subset GL(V)$. As $\gamma_i = c_i|_H$, where c_i are the obvious generators of the characters of $(\mathbb{C}^*)^m$, γ_i generates the characters of H. Thus all differential of characters of H are integral weights.

(\Leftarrow) Every integral weight λ lies in the closure of some Weyl chamber and this chamber is positive with respect to some choice of positive roots. Hence it suffices to assume that λ is dominant. By Theorem 2.2, let $V(\lambda)$ be the irreducible \mathfrak{g} -modules with highest weight λ and highest weight vector v_{λ} . The representation $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ corresponds to a homomorphism $G \to GL(V)$ (still call it π), as G is simply connected. Let $\xi \in \mathfrak{h}$ and $h \in H$ such that $h = \exp(\xi)$. Using $\pi(\xi)v_{\lambda} = \lambda(\xi)v_{\lambda}$, we obtain

$$\pi(h)v_{\lambda} = \pi(\exp(\xi))v_{\lambda} = e^{\pi(\xi)}v_{\lambda} = e^{\lambda(\xi)}v_{\lambda} \ .$$

Then $(\pi|_H, H)$ acts on V_{λ} and λ is the differential of this character.

3. Induced representation

Let G be a complex semisimple Lie group with Lie algebra \mathfrak{g} , and B be a Borel subgroup with Lie algebra $\mathfrak{b} \cong \mathfrak{h} \oplus \mathfrak{n}^-$. As in ([5], 14.3), the left coset space G/B can be given a structure of complex manfold such that the action of G is holomorphic. We denote this manifold as \mathcal{M} . \mathcal{M} is compact as $\mathcal{M} \cong K/T$, where T is the maximal torus such that $T = K \cap B$.

Let (σ, Q) be a holomorphic representation of B. Define

$$G \times_B Q = G \times Q / \sim$$
,

where $(g,q) \sim (gb^{-1}, \sigma(b)q)$. $G \times_B Q$ is given the quotient topology and quotient structure sheaf fromt the quotient map. Let $\pi: G \times B \to \mathcal{M}$ be the map $\pi([g,q]) = gB$, then $\pi^{-1}(gB) \cong gB \times Q$ has a vector space structure. The following results are proved in ([5], 16.1). The first one follows essentially from the holomorphic version of implicit function theorem.

Proposition 3.1. With the projection map $\pi: G \times_B Q \to \mathcal{M}$, $G \times_B Q$ is a G-equivariant holomorphic vector bundle on \mathcal{M} .

Lemma 3.1. $G \times_B Q$ is holomorphically trivial if and only if Q is the restriction of a holomorphic representation of G.

The sheaf of holomorphic section on $G \times_B Q$ is denoted \mathscr{O}_{σ} . For each open set $U \subset \mathcal{M}$,

$$\mathscr{O}_{\sigma}(U) \cong \{ f \in \mathscr{O}(\pi^{-1}(U)) \otimes Q : f(gb^{-1}) = \sigma(b)f(g), \forall b \in B \} .$$

Note that $\mathscr{O}_{\sigma}(U)$ has a structure of \mathfrak{g} -module: view \mathfrak{g} as the set of right invariant holomorphic vector fields on G, \mathfrak{g} acts on $\mathscr{O}_{\sigma}(U)$ by differentiation.

As \mathcal{M} is compact and \mathscr{O}_{σ} is a coherent sheaf, $H^{p}(\mathcal{M}, \mathscr{O}_{\sigma})$ is finite dimensional for all p. Moreover, the action on \mathscr{O}_{σ} induces an \mathfrak{g} -action on each $H^{p}(\mathcal{M}, \mathscr{O}_{\sigma})$.

Let λ be an integral weight. By Theorem 2.4 and Lemma 2.4, λ is the differential of a character of B. The induced line bundle with respect to the character is denoted L_{λ} . The sheaf of holomorphic section on L_{λ} is denoted \mathcal{O}_{λ} .

4. The Casimir operator $c_{\mathfrak{g}}$

Let $\mathfrak{U}(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . By definition, any Lie algebra morphism $\psi: \mathfrak{g} \to A$ of \mathfrak{g} into an associative algebra extends to a morphism $\tilde{\psi}: \mathfrak{U}(\mathfrak{g}) \to A$ of associative algebras. The Casimir element $c_{\mathfrak{g}} \in \mathfrak{U}(\mathfrak{g})$ is given by

(4.1)
$$c_{\mathfrak{g}} = \sum_{i} \eta_{i}^{2} + \sum_{\alpha \in \Phi^{+}} h_{\alpha} + 2 \sum_{\alpha \in \Phi^{+}} z_{\alpha} x_{\alpha} ,$$

where $\{\eta_i\}$ is a self dual basis of \mathfrak{h} , and h_{α} , x_{α} and z_{α} are defined as in ([3], section 22). It is known that $c_{\mathfrak{g}}$ is well-defined independent of the choice of \mathfrak{h} , Φ^+ and $c_{\mathfrak{g}} \in Z(\mathfrak{g})$. As a result, we can use $c_{\mathfrak{g}}$ to decompose any finite dimensional \mathfrak{g} -modules into its eigenspaces.

Proposition 4.1. Let $V(\lambda)$ is the finite dimensional irreducible \mathfrak{g} -module with highest weight λ . Then $c_{\mathfrak{g}}$ acts as the scalar $\langle \lambda, \lambda + 2\delta \rangle$.

Proof. By Schur's lemma, we know that $c_{\mathfrak{g}}$ acts as a scalar. To find out this scalar, we apply $\pi(c_{\mathfrak{g}})$ to the highest weight vector v_{λ} . As $\pi(x_{\alpha})v_{\lambda}=0$ for all $\alpha\in\Phi^+$,

$$\pi(c_{\mathfrak{g}})v_{\lambda} = \sum_{i} \lambda(\eta_{i})^{2}v_{\lambda} + \sum_{\alpha \in \Phi^{+}} \lambda(h_{\alpha})v_{\lambda}$$
$$= ||\lambda||^{2}v_{\lambda} + \sum_{\alpha \in \Phi^{+}} \langle \lambda, \alpha \rangle v_{\lambda}$$
$$= \langle \lambda, \lambda + 2\delta \rangle v_{\lambda} .$$

Note that $c_{\mathfrak{g}}$ also acts on the sheaf \mathscr{O}_{λ} for all integral weight λ .

Proposition 4.2. $c_{\mathfrak{g}}$ acts as the scalar $\langle \lambda, \lambda + 2\delta \rangle$ on \mathscr{O}_{λ} .

Proof. As G acts holomorphically and transitively on \mathcal{M} , it suffices to check at the point $B \in \mathcal{M}$. Let U be an open neighborhood of B and $f \in \mathcal{O}_{\lambda}(U)$. Let $b, b_1 \in B$, then

$$f(b^{-1}b_1) = \lambda(b_1^{-1})\lambda(b)f(e) = \lambda(b)f(b_1)$$
.

Let $b = \exp(t\zeta)$, where $\zeta \in \mathfrak{b}$ and differentiate, we obtain $(\zeta f)(b_1) = \lambda(\zeta)f(b_1)$. In particular,

$$z_{\alpha}f = 0, \quad \eta f = \lambda(\eta)f$$

on B, where $\eta \in \mathfrak{h}$. As x_{α} corresponds to a holomorphic vector field, $x_{\alpha}f \in \mathcal{O}_{\lambda}(U)$ for all $\alpha \in \Phi^+$. Thus $y_{\alpha}x_{\alpha}f = 0$. Using equation (4.1), as in the proof of proposition 4.1, one can show that $c_{\mathfrak{g}}$ acts as the scalar $\langle \lambda, \lambda + 2\delta \rangle$.

Corollary 4.1. $c_{\mathfrak{g}}$ acts trivially on \mathscr{O}_{μ} for all $\mu = \omega \delta - \delta$ for $\omega \in W$.

Proof. Note that for all integral weights λ ,

(4.2)
$$\langle \lambda, \lambda + 2\delta \rangle = ||\lambda + \delta||^2 - ||\delta||^2.$$

If $\mu = \omega \delta - \delta$ for some $\omega \in W$, then $||\mu + \delta|| = ||\omega \delta|| = ||\delta||$. Thus the corollary follows from proposition (4.2).

For a general representation Q on B, we have

Proposition 4.3. Let (θ, Q) be a finite dimensional representation of B with weight Λ . Then \mathcal{O}_{θ} decompose into direct sums of $\mathfrak{U}(\mathfrak{g})$ -modules S_t

$$\mathscr{O}_{\theta} = \bigoplus_{t} S_{t} ,$$

where t ranges over distinct eigenvalues for the action of $c_{\mathfrak{g}}$ on \mathscr{O}_{θ} . If $t = \langle \nu, \nu + 2\delta \rangle$ has multiplicity one, then $S_t \cong \mathscr{O}_{\nu}$.

Proof. Let $\dim Q = n$. By considering $\theta_* : \mathfrak{b} \to \mathfrak{gl}(Q)$ and using Lie's theorem, Q has a filtration $\{Q_i\}_{i=0}^n$ of B-submodules such that Q_j/Q_{j-1} are one dimensional. It is easy to see that B acts on Q_j/Q_{j-1} as a character $\nu_j \in \Lambda$. On the sheaf level, one has a sequence of subsheafs \mathscr{O}_{θ_j} such that $\mathscr{O}_{\theta_j}/\mathscr{O}_{\theta_{j-1}} \cong \mathscr{O}_{\nu_j}$. Here θ_j is the restriction of θ to Q_j . All these are \mathfrak{g} submodules and $c_{\mathfrak{g}}$ acts on them. By Proposition 4.2, $c_{\mathfrak{g}}$ acts on \mathscr{O}_{ν_j} as $\langle \nu_j, \nu_j + 2\delta \rangle$. Thus

(4.3)
$$\Pi_j \left(c_{\mathfrak{g}} - \langle \nu_j, \nu_j + 2\delta \rangle \right)$$

acts as zero on \mathscr{O}_{θ} . Express (4.3) as $\Pi_t(c_{\mathfrak{g}}-t)^{k_t}$, where k_t is the multiplicity of $t=\langle \nu_j, \nu_j+2\delta \rangle$. Write $S_t=\ker(c_{\mathfrak{g}}-t)^{k_t}$, then

$$\mathscr{O}_{\theta} = \bigoplus_{t} S_{t} .$$

If $k_t = 1$ for some t, then there is an eigenspace E_t of Q with eigenvalue t. As $c_{\mathfrak{g}}$ lies in the center of $\mathfrak{U}(\mathfrak{g})$, E_t is a $\mathfrak{U}(\mathfrak{g})$ -module. Since $E_t \cong Q_j/Q_{j-1}$ for some j, $S_t \cong \mathscr{O}_{\nu_j}$ as sheaf of $\mathfrak{U}(\mathfrak{g})$ -modules. \square

5. Borel-Weil Theorem

We are ready to prove the Borel-Weil theorem. The key argument is in the following lemma.

Lemma 5.1. Let $\omega \in W$ and write $\mu = w\delta - \delta$. Then for all p,

(1) $H^p(\mathcal{M}, \mathcal{O}_{\mu})$ is a trivial \mathfrak{g} -module.

(2) Let $V(\lambda)$ be a finite dimensional irreducible representation of \mathfrak{g} with highest weight λ , then

(5.1)
$$H^{p}(\mathcal{M}, \mathscr{O}_{\omega\lambda+\mu}) \cong H^{p}(\mathcal{M}, \mathscr{O}_{\mu}) \otimes V(\lambda)$$
 as \mathfrak{g} -modules.

Proof. First we show (1). By Corollary 4.1, $c_{\mathfrak{g}}$ acts trivially on \mathscr{O}_{μ} . Hence $c_{\mathfrak{g}}$ acts trivially on $H^p(\mathcal{M}, \mathscr{O}_{\mu})$ for all p. As $H^p(\mathcal{M}, \mathscr{O}_{\mu})$ is finite dimensional, it decomposes into irreducible \mathfrak{g} -modules. Let A_{ϵ} be one of them with highest weight ϵ (thus $A_{\epsilon} \cong V(\epsilon)$). By proposition 4.1, $c_{\mathfrak{g}}$ acts on A_{ϵ} by the scalar $\langle \epsilon, \epsilon + 2\delta \rangle = 0$. As ϵ is dominant,

$$\langle \epsilon, \delta \rangle \ge 0 \Rightarrow \epsilon = 0$$
.

Hence A_{ϵ} is the trivial \mathfrak{g} -module. Hence $H^p(\mathcal{M}, \mathcal{O}_{\mu})$ is a trivial \mathfrak{g} -module.

Let $V = V(\lambda)$ and Λ be the set of weight of V. Let G be the simply connected complex Lie group with Lie algebra \mathfrak{g} . We use the same notation V to denote the irreducible representation on G. Let (θ, V) be the restriction of the G-modules V to B. By Lemma 3.1, the induced bundle is trivial $\mathcal{M} \times V$. Thus $\mathscr{O}_{\theta} \cong \mathscr{O} \otimes V$. On the other hand, we twist θ with the weight μ to obtain a representation $\theta \otimes \mu$ on B. The induced bundle is $(\mathcal{M} \times V) \otimes L_{\mu}$ and

$$\mathscr{O}_{\theta \otimes \mu} \cong \mathscr{O}_{\mu} \otimes V$$
.

Thus, as g-modules,

(5.2)
$$H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}) \cong H^p(\mathcal{M}, \mathscr{O}_{\mu}) \otimes V .$$

Now we show $H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}) \cong H^p(\mathcal{M}, \mathscr{O}_{\omega \lambda + \mu})$. By Proposition 4.3, $\mathscr{O}_{\theta \otimes \mu}$ decompose into direct sum of subsheaves S_t , where $t = \nu + \mu$ for some $v \in \Lambda$. We know that $||\lambda + \delta|| > ||\nu + \delta||$ for all $\nu \neq \lambda$, $\nu \in \Lambda$. As $\omega \Lambda = \Lambda$, $\omega(\Lambda + \delta) = \Lambda + \omega \delta = \Lambda + \mu + \delta$. Thus $\omega \lambda + \mu$ will be the unique element in $\Lambda + \mu$ such that $||(w\lambda + \mu) + \delta|| = ||\lambda + \delta||$. By (4.2),

$$\langle (\omega \lambda + \mu), (\omega \lambda + \mu) + 2\delta \rangle = \langle \lambda, \lambda + 2\delta \rangle =: t$$

and the multiplicity of $\omega \lambda + \mu$ is one. By Proposition 4.3 again,

$$S_t \cong \mathscr{O}_{\omega\lambda + \mu}$$

and $\mathscr{O}_{\theta \otimes \mu} \cong \mathscr{O}_{\omega \lambda + \mu} \oplus \tilde{S}$, where $\Omega - \langle \lambda, \lambda + 2\delta \rangle$ is injective on \tilde{S} . Also we have

$$H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu}) = H^p(\mathcal{M}, \mathscr{O}_{\omega \lambda + \mu}) \oplus H^p(\mathcal{M}, \tilde{S})$$
.

However, by (5.2), Proposition 4.1 and part one of this lemma, $c_{\mathfrak{g}}$ acts as the scalar $\langle \lambda, \lambda + 2\delta \rangle$ on $H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \mu})$. Thus $H^p(\mathcal{M}, \tilde{S}) = \{0\}$ for all p and (2) is shown.

Corollary 5.1. The set of integers p such that $H^p(\mathcal{M}, \mathcal{O}_{\lambda}) \neq 0$ is constant as $\lambda + \delta$ varies over the set of integral weights in a given Weyl chamber.

Theorem 5.1. (Borel-Weil theorem) Let λ be a dominant integral weight. Then

- (1) $H^0(\mathcal{M}, \mathcal{O}_{\lambda}) \cong V(\lambda)$ as \mathfrak{g} -modules.
- (2) $H^p(\mathcal{M}, \mathcal{O}_{\lambda}) = \{0\} \text{ for } p \neq 0.$

Proof. Putting $\omega = id$ in (5.1), as $\mu = 0$,

(5.3)
$$H^p(\mathcal{M}, \mathcal{O}_{\lambda}) \cong H^p(\mathcal{M}, \mathcal{O}) \otimes V(\lambda) .$$

When p = 0, $H^0(\mathcal{M}, \mathscr{O}) \cong \mathbb{C}$ as \mathcal{M} is compact. Thus part one is shown. When p > 0 (p < 0 is trivial), we use a result in ([1], Proposition 10.1), which says that L_{λ} is positive if $\lambda \in \mathcal{C}^+$. Fix $\lambda \in \mathcal{C}^+$, by Kodaira Vanishing theorem [2], $H^p(\mathcal{M}, \mathscr{O}_{m\lambda}) = \{0\}$ for all p > 0 for m large enough. Replacing λ by $m\lambda$ in (5.3), we obtain $H^p(\mathcal{M}, \mathscr{O}) = \{0\}$ for all p > 0. Put this back in (5.3), we conclude $H^p(\mathcal{M}, \mathscr{O}_{\lambda}) = \{0\}$ for all p > 0.

6. Borel-Weil-Bott Theorem

In this last section we prove the Borel-Weil-Bott theorem, which describes the cohomology groups $H^p(\mathcal{M}, \mathcal{O}_{\lambda})$ for all integral weight λ . First we deal with the case where $\lambda + \delta$ lies in a wall.

Lemma 6.1. If λ is an integral weight and $\lambda + \delta$ lies in a wall, then $H^p(\mathcal{M}, \mathcal{O}_{\lambda}) = \{0\}$ for all p.

Proof. If not, $H^p(\mathcal{M}, \mathcal{O}_{\lambda})$ would have an irreducible \mathfrak{g} -module with highest dominant weight γ . Using Proposition 4.1, Proposition 4.2 and (4.2), $||\lambda + \delta|| = ||\gamma + \delta||$. Then $\lambda + \delta$ and $\gamma + \delta$ are in the same Weyl group orbit, by Theorem 2.1. This implies that $\gamma + \delta$ also lies in some wall, which is impossible as γ is dominant.

The next lemma relates two integral weights lying in adjacent Weyl Chambers, separated by a wall P_{α} .

Lemma 6.2. Let V be a finite dimensional irreducible representation of \mathfrak{g} with weight Λ and highest weight λ . Let $\alpha \in \Phi$. If $\mu \in E$ satisfies $\langle \mu, \alpha \rangle = 0$ and $\langle \mu, \beta \rangle > 0$ for all $\beta \in \Phi^+ \setminus \{\pm \alpha\}$, then the maximal value $||\mu + \gamma||$ for $\gamma \in \Lambda$ is achieved at exactly two points λ and $s_{\alpha}\lambda$.

Proof. Since $\nu \mapsto ||\nu||^2$ is a convex function in E, the maximum $||\mu+\beta||$ can only occur when $\beta \in \Lambda$ is an extremal weight. Given two extremal

weights γ and ν , $||\gamma|| = ||\nu||$ by Theorem 2.1. This implies

$$||\mu + \gamma||^2 - ||\mu + \nu||^2 = 2\langle \mu, \gamma - \nu \rangle$$

Let $\gamma = \lambda$. Then $||\mu + \lambda|| = ||\mu + \nu||$ only when $\lambda = \nu + n\alpha$ for some n. But the only extremal weight of this form is $s_{\alpha}(\lambda)$.

Theorem 6.1. (Borel-Weil-Bott theorem) Let λ be an integral weight.

(1) If $\lambda + \delta = \omega(\nu + \delta)$ for some $\omega \in W$ and some dominant weight ν , then

(6.1)
$$H^{\ell(\omega)}(\mathcal{M}, \mathcal{O}_{\lambda}) \cong V(\nu)$$

as \mathfrak{g} -modules, where $\ell(\omega)$ is the length of ω .

(2)
$$H^p(\mathcal{M}, \mathcal{O}_{\lambda}) = \{0\} \text{ for all } p \neq \ell(\omega).$$

Proof. We will proceed by induction on $\ell(\omega)$. When $\ell(\omega) = 0$, it reduces to Borel-Weil theorem. Assume that the theorem is true for all Weyl group element of length $\leq k-1$. Let $\omega \in W$ and $\ell(w) = k$. Let ν be any dominant weight. Let $\alpha \in \Phi^+$ such that $\ell(s_{\alpha}\omega) = k-1$. Write $\nu' = \nu + \delta \in \mathcal{C}^+$ and

$$\eta = (s_{\alpha}\omega)\nu', \quad s_{\alpha}\eta = \omega\nu', \quad \rho = (\omega\delta) + s_{\alpha}(\omega\delta), \quad \tau = \rho - \delta.$$

The exact formula for ρ is not essential. All we want is an integral weight which satisfies the hypothesis of Lemma 6.2 with respect to $\omega \Phi^+$.

Let V be the finite dimensional irreducible G-module with highest weight ν . Let (θ, V) be the restriction of V to B. As in the proof of Lemma 5.1,

$$\mathscr{O}_{\theta \otimes \tau} \cong \mathscr{O}_{\tau} \otimes V$$

and

$$H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \tau}) \cong H^p(\mathcal{M}, \mathscr{O}_{\tau}) \otimes V$$
.

As $\tau + \delta = \rho$ lies in a wall, Lemma 6.1 imply that $H^p(\mathcal{M}, \mathcal{O}_{\tau}) = \{0\}$ for all p. Thus

(6.2)
$$H^p(\mathcal{M}, \mathscr{O}_{\theta \otimes \tau}) = \{0\}, \quad \forall p .$$

As $\ell(s_{\alpha}\omega) < \ell(\omega)$, we have $\langle \alpha, s_{\alpha}\eta \rangle < 0$ and $\langle \alpha, \eta \rangle > 0$. In particular, $s_{\alpha}\eta < \eta$ with respect to the ordering defined using Φ^+ . Let V' be the B-submodule of V containing all weights γ with $\gamma < \eta$ and V'' = V/V', Then we have a short exact sequence of B-modules

$$0 \to (\theta', V') \to (\theta, V) \to (\theta'', V'') \to 0 \ .$$

Tensoring with τ (treated as B-modules) gives

$$0 \to (\theta' \otimes \tau, V') \to (\theta \otimes \tau, V) \to (\theta'' \otimes \tau, V'') \to 0 \ .$$

By considering the sheaf of holomorphic section on the induced bundles, we obtain a short exact sequence of sheaf on \mathcal{M} :

$$(6.3) 0 \to \mathscr{O}_{\theta' \otimes \tau} \to \mathscr{O}_{\theta \otimes \tau} \to \mathscr{O}_{\theta'' \otimes \tau} \to 0.$$

By Proposition 4.3 again, $\mathcal{O}_{\theta \otimes \tau}$ can be written as direct sum of subsheaves S_t , where t is the generalized eigenspace of $c_{\mathfrak{g}}$. t might be of the form

$$t = \langle \gamma + \tau, \gamma + \tau + 2\delta \rangle = ||\gamma + \rho||^2 - ||\delta||^2,$$

where $\gamma \in \Lambda$. By Lemma 6.2, $s_{\alpha}\eta$ and η are the only two weights in Λ that maximize t. Projecting (6.3) to its t eigenspace gives

$$0 \to (\mathscr{O}_{\theta' \otimes \tau})_t \to (\mathscr{O}_{\theta \otimes \tau})_t \to (\mathscr{O}_{\theta'' \otimes \tau})_t \to 0$$

As $s_{\alpha}\eta \in V'$ and $\eta \in V''$, both $(\mathscr{O}_{\theta'\otimes\tau})_t$ and $(\mathscr{O}_{\theta''\otimes\tau})_t$ are one dimensional. Thus by Proposition 4.3,

$$(\mathscr{O}_{\theta'\otimes\tau})_t\cong\mathscr{O}_{s_{\alpha}\eta+\tau},\ (\mathscr{O}_{\theta''\otimes\tau})_t\cong\mathscr{O}_{\eta+\tau}$$
.

Using (6.2) and the fact that $(\mathcal{O}_{\theta \otimes \tau})_t$ is a subsheaf of $\mathcal{O}_{\theta \otimes \tau}$,

$$H^p(\mathcal{M}, (\mathscr{O}_{\theta \otimes \tau})_t) = \{0\}$$

for all p. Thus the long exact sequence on cohomology induces an isomorphism

(6.4)
$$H^{p+1}(\mathcal{M}, \mathscr{O}_{s_{\alpha}\eta+\tau}) \cong H^{p}(\mathcal{M}, \mathscr{O}_{\eta+\tau}) .$$

As $\eta + \tau + \delta = \eta + \rho$ and ρ lies in the hyperplane P_{α} , $\eta + \tau + \delta \in s_{\alpha}C$. So

$$(\eta + \tau) + \delta = (s_{\alpha}\omega)(\chi + \delta)$$

for some dominant integral weight χ . Note that

$$(s_{\alpha}\eta + \tau) + \delta = s_{\alpha}\eta + \rho = s_{\alpha}(\eta + \rho) = \omega(\chi + \delta)$$
.

By induction hypothesis,

$$H^{\ell(\omega)-1}(\mathcal{M}, \mathcal{O}_{n+\tau}) \cong V(\chi), H^p(\mathcal{M}, \mathcal{O}_{n+\tau}) = 0 \text{ when } p \neq \ell(\omega) - 1.$$

Using (6.4), we have

(6.5)
$$H^{\ell(\omega)}(\mathcal{M}, \mathscr{O}_{s_{\alpha}\eta+\tau}) \cong V(\chi), H^{p}(\mathcal{M}, \mathscr{O}_{s_{\alpha}\eta+\tau}) = 0 \text{ if } p \neq \ell(\omega).$$

As a result, the induction step $\ell(\omega) = k$ have been shown for at least one integral weight λ , where $\lambda = s_{\alpha} \eta + \tau = \omega(\nu + \delta) + \tau$.

But this is good enough: By Lemma 5.1, for all integral weight λ such that $\lambda + \delta = \omega(\chi + \delta)$ (or $\lambda = \omega \chi + \mu$)

(6.6)
$$H^{p}(\mathcal{M}, \mathscr{O}_{\lambda}) \cong H^{p}(\mathcal{M}, \mathscr{O}_{\mu}) \otimes V(\chi)$$

as \mathfrak{g} -modules and $H^p(\mathcal{M}, \mathcal{O}_{\mu})$ are trivial \mathfrak{g} -modules for all p. Using (6.5) we have

$$H^{\ell(\omega)}(\mathcal{M}, \mathscr{O}_{\mu}) \cong \mathbb{C}, \quad H^p(\mathcal{M}, \mathscr{O}_{\mu}) = \{0\} \text{ when } p \neq \ell(\omega) .$$

Putting this back to (6.6), the induction step is verified.

REFERENCES

- 1. Raoul Bott *Homogeneous Vectors Bundles*, The Annals of Mathematics, 2nd Ser., Vol. 66, No. 2. (Sep., 1957), pp. 203-248
- 2. Phillip Griffiths, Joseph Harris *Principles of Algebraic Geometry*, Wiley Classics Library, 1994, John Wiley and Sons, Inc.
- 3. James E. Humphreys Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics 9, (1972), Springer.
- 4. Anthony W. Knapp, Lie groups beyond an introduction, second edition, Progress in Mathematics 140, Birhäuser
- 5. Joseph L. Taylor, Several Complex Variables with connections to Algebraic Geometry and Lie Groups, Graduate Studies in Mathematics Volumn 46, American Mathematical Society