COMPLEX REDUCTIVE ALGEBRAIC GROUPS

MAXIME BERGERON

While an algebraic group over an arbitrary field is said to be reductive if its
unipotent radical is trivial, this definition tends to be rather unenlightening on a
first glance. Fortunately, if one is willing to work over a field of characteristic zero,
this concept can be defined in more transparent ways. For instance, in this case, an
algebraic group is reductive if and only if all of its representations are completely
reducible. As a topologist, one is often interested in complex algebraic groups. In
this setting, one can state this definition under another guise as follows:

A complex algebraic group is reductive if and only if it has a compact real form.

The caveat is that statements such as the one above often appear without reference
in the literature and complete proofs are hard to come by. As such, this note is in
some sense a result of the author’s quest for such a proof whose hardest direction is
now provided in Section 2.3 below.

1. PRELIMINARIES

Throughout these preliminaries, K will denote C or R. The material below is a
mixture of various sources: [OV90], [Hum?75], [HN12], and [FH91]. We will indicate
precise locations of proofs for the most important statements.

1.1. Affine Varieties. In what follows, n—dimensional affine space over K will be
denoted by A™. Recall that an (affine) algebraic variety in A" is the vanishing
locus of a set of polynomials in K[X3,...,X,]. For a variety M C A" we denote
by I(M) the ideal of functions in K[Xjy, ..., X,] vanishing on M and by K[M] :=
K[Xy,...,X,]/I(M) the algebra of polynomials on M. A morphism of a variety
M C A™ into a variety N C A™ is amap f : M — N that may be determined by
polynomials in some coordinates. The algebraic varieties in A" form a basis for the
closed sets of the Zariski topology on A" so that we may endow varieties M C A"
with the subspace Zariski topology. A variety is said to be irreducible if it cannot be
written as a union of two non-empty Zariski closed proper subsets.

Since the distinction is about to become important, let us now denote complex
affine space as A{ and real affine space as Ay. Complex algebraic varieties may
be considered as real algebraic varieties of doubled dimension through an operation

we will call realification (extension of scalars). Explicitly, let us agree to identify
1
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(Z1,...,Zy,) € AL with (X1,..., X, Y1,...,Y,) € A% where X; +iY; = Z;. Now, if
M C A{ is an algebraic variety, we may rewrite the polynomial equations defining it
in real coordinates to realize it as a variety M® C AZ" called the realification of M.
While the real polynomial algebra of M® is generated by the real and imaginary parts

of polynomials in C[M], it is more convenient to consider the “complex” polynomial
algebra of M®:

CIM¥] =RM®¥ ®@r C=Clz,..., 20,71, ..., %]

where the z; are the restriction onto M of coordinate function on A¢ and z; denotes
complex conjugation. From this point of view, Zariski closed subsets of M® are those
defined by equations in the z; and z;; we call them real subvarieties of M. A map
f : M — N between complex varieties is an anitholomorphic morphism if for every
g € C[N] we have go f € C[M] :=C[z, ..., %]

Let now M, C A} be a real variety and denote by M,(C) C AZ its set of complex
zeroes. We call M,(C) the complezification of M,. In this case, there is always
a unique antiholomorphic automorphism x — Z of M,(C) (the associated complex
conjugation) for which M, = {z € M,(C) : T = x}. A real form of a complex affine
variety M is a real subvariety M, C M for which the embedding M, C M extends
to an isomorphism M,(C) = M. One should be aware that this operation inverse to
complexification is not always defined!

1.2. Algebraic Groups. An (affine) algebraic group G is an affine variety endowed
with the structure of a group for which the multiplications and inverse maps are
morphisms of algebraic varieties.

Prototypical example: algebraic matrix groups. Consider the set GL,, x of nx
n invertible matrices with entries in K. This is a group under matrix multiplication
called the general linear group. The set of n x n matrices M, K can be identified with
K" where GL, k is the Zariski open set defined by the nonvanishing of the deter-
minant polynomial. To realize it as a variety, we can identify GL, x with a Zariski
closed subset of K" *! by the map (T;) + (Ti1, Tia, - - ., Tun, 1/det(T};)) where the
T;; are the restrictions of the n? coordinate functions to GL, k. The formulas for
matrix multiplication and inversion (via Cramer’s rule) then make it clear that GL,, x
is an algebraic group.

Many other examples can be constructed using the fact that a Zariski closed sub-
group of an algebraic group is again an algebraic group. As such, we will say that
a subgroup is algebraic if it is Zariski closed. Strikingly, affine algebraic groups can
all be realized as an algebraic subgroup of some GL, x [Hum75, Theorem 8.6]. For
instance, the special linear group SL,x C GL, k is the group of matrices of deter-
minant one. It is clearly a group by the product rule for the determinant and it is
Zariski closed because it coincides with the vanishing of the polynomial det(7;;) — 1.
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Similarly we have the algebraic subgroup of upper triangular matrices which is the
set of zeros of the polynomials {7}; : i > j}, the group of upper triangular unipotent
matrices which is the set of zeros of the polynomials {7;;,T;; — 1 : @ > j} and the
group of diagonal matrices which is the set of zeroes of the polynomials {7, : ¢ # j}.

Two of the most frequently occurring algebraic groups in this note are the mul-
tiplicative group G, = GL;k and the additive group G, = K. An algebraic group
consisting of the direct product of n copies of the additive group (resp. the mul-
tiplicative group) is called an n-dimensional vector group (resp. an n-dimensional
algebraic torus).

We say that the algebraic group G is connected if it is connected in the Zariski

topology, i.e., if it is irreducible as a variety. The connected component of the identity
element is denoted by G?; it is always a normal subgroup of finite index in G and its
cosets coincide with the connected components of G.
Definition. As with varieties, we may consider the realification G¥ of any complex
algebraic group G to realize it as a real algebraic group of double the dimension. A
real algebraic subgroup G, C G is a real form of G if the inclusion G, C G extends
to an isomorphism G,(C) = G.

Example. Consider the n—dimensional complex algebraic torus (C*)™:

(1) The real structure given by the antiholomorphic automorphism
(21, s 20) = (Z1,.. ., Zn)

determines the real form (R*)™ C (C*)".
(2) The real structure given by the antiholomorphic automorphism

(z1,...,z0) = (D)7 ..., @)™

determines the real form T" := {(2z1,...,2,) : |z;] =1, 1 <j <n} C (C)™.

1.3. Semisimple and Reductive Algebraic Groups. Let V be a finite dimen-
sional complex vector space and recall the following elementary definitions from linear
algebra: an endomorphism o of V' is said to be

(1) Nilpotent if o™ = 0 for some n € N.
(2) Unipotent if o — Id is nilpotent.
(3) Semisimple if V' is spanned by eigenvectors of o.

If G € GL, C is an algebraic group, we say that g € G is semisimple (resp. unipotent)
if it is semisimple (resp. unipotent) as an endomorphism of C". One can show that
this definition does not depend on the chosen embedding of G in GL, C [Hum?75,
Chapter VI]. We say that an algebraic group G is unipotent if it consists of unipotent
elements. The prototypical example of this type is the previously mentioned group
of unipotent upper triangular matrices.
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Definition. The following two definitions shall be most important for our purposes:

(1) Any complex algebraic group G possesses a unique maximal normal solvable
subgroup S C G which is automatically Zariski closed. Its identity component
Rad(G) := S° is then the maximal connected normal solvable subgroup of G;
we call it the radical of G.

(2) The subgroup Rad,(G) C Rad(G) consisting of all its unipotent elements is
normal in G; we call it the unipotent radical of G.

An algebraic group G is semisimple (resp. reductive) if Rad(G) (resp. Rad,(G))
is trivial. The prototypical examples are the special linear group SL, g which is
semisimple and the general linear group GL,, x which is reductive.

We summarize the basic properties of connected reductive groups that we shall
need as follows [Hum75, Sections 19.5 and 27.5]:

Basic Structure of Connected Reductive Groups. If G° is a connected reduc-
tive complex algebraic group, then the following holds:

(1) The radical Rad(G°) = Z(G°)° is an algebraic torus.
(2) The derived subgroup [G°, G| is connected, semisimple and normal in G°.
(8) These two subgroups yield the decomposition

G° =[G°,G°| - Z(G°)°.
(4) The intersection Z(G°)° N [G°,G°] is finite.
U

In lieu of a proof, we offer an example:

Example. Consider the complex general linear group GL, C. It is easily seen to
be connected while its centre Z(GL, C) and radical Rad(GL,, C) coincide with the
algebraic subgroup of non-zero scalar multiples of the identity matrix. On the other
hand, its derived subgroup [GL,, C, GL, C]| coincides with the connected semisimple
algebraic subgroup SL,, C. The intersection of these subgroups is therefore the centre
of SL,, C which can be described explicitly as the finite group of n—th root of unity
scalar multiples of the identity matrix.

1.4. Lie Groups and Lie Algebras. A real Lie group G is a smooth real manifold
endowed with the structure of a group for which the group operations are smooth
mappings. If G is a Lie group and g, h € G, we define the mappings

(1) Ly : G — G, Ly(h) == gh

(2) R, : G — G, Ry(h) :=hg
which are always diffeomorphisms. Since G is a smooth manifold, it has a well defined
tangent space at the identity element e € G which we denote by the appropriate lower
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case gothic letter g. We can now define the adjoint linear representation of G on the
vector space g, Ad : G — Aut(g) by the rule

Ad(g) =de(Lyo (Ry) ™) :g— g
We can then consider the differential of the map Ad to obtain a new map:
ad : g — End(g).

and define [X,Y] := ad(X)(Y') to endow g with the structure of a real Lie algebra.
Similar definitions hold in the complex case.

Remark. This can be put to good use for algebraic groups:

(1) A real (resp. complex) algebraic group G is always a nonsingular variety.
Consequently, G admits a unique real (resp. complex) analytic manifold
structure and we may consider GG as a real (resp. complex) Lie group of the
same dimension. As such, we can define the tangent Lie algebra of any real
or complex algebraic group G as the tangent algebra g of the associated real
or complex Lie group.

(2) One should be aware that, although a complex algebraic group is connected
in the Zariski topology if and only if the corresponding complex Lie group is
connected in the Euclidean topology, this no longer holds for real algebraic
groups. Nevertheless, the corresponding real Lie group always has finitely
many connected components in the Euclidean topology. The simplest occur-
rence of this phenomenon is perhaps the multiplicative group R* (compare
with the multiplicative group C*).

We now introduce a special class of Lie algebras which gives us additional control
on the structure of their associated Lie groups. It will play a key role in Section 2.3
where we address the main result in this note.

Definition. A bilinear form b(-,-) on a Lie algebra g is said to be invariant if
b([z,y],2) + by, [z,2]) = 0 for all z,y,2z € g. A Lie algebra g is called compact
if there exists a positive-definite and symmetric invariant bilinear form on g. Notice
that any direct sum of compact Lie algebras is compact.

This definition is motivated by the fact that the Lie algebra of a compact Lie group
is always compact and that every compact Lie algebra can be realized as the Lie
algebra of a compact Lie group. However, one should keep in mind that a non-
compact Lie group may very well have a compact Lie algebra. The simplest instance
of this phenomenon is perhaps the real Lie group R or, more generally, the vector
Lie group R".

Since the main topic of this note concerns the interaction between complex groups
and their real subgroups via realification and complexifications, we now introduce
the analogous notion for Lie algebras:
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Definition. To any Lie algebra £ over R there corresponds a Lie algebra £© := @5 C
over C via an operation called complezification. The complex vector space £* consists
of the symbols X + 1Y where XY € ¢ and its Lie algebra structure is given by the
following operation:

(X +4Y, Z +iT| = [X, Z) = [V, T] +i([Y, Z] + [ X, T)).

If a complex Lie algebra g is isomorphic to £© = £ @ i€ we say that € is a real form of
g. It turns out that, just as for real forms of varieties, the real forms of a complex Lie
algebra g are in one-to-one correspondence with involutive antilinear automorphisms
of the underlying complex vector space up to conjugacy.

Example. Consider once again the n—dimensional algebraic torus (C*)" as a com-
plex Lie group, along with the two real forms previously shown:

(1) The Lie algebra R™ of the real form (R*)™ C (C*)™ is a real form of the Lie
algebra C" of (C*)".
(2) The Lie algebra iR"™ of the (compact) real form T" := {(z1,...,2,) : |zj| =
1, 1 <j<n}C(C*)"is areal form of the Lie algebra C™ of (C*)".
To give the reader more of a sense for the preceding definitions we conclude our

preliminaries with two striking result that will be used later on which can be found
in [OV90, Sections 4.3.4, 5.1.3 and 5.1.4]:

Weyl’s Theorem. FEvery connected semisimple complex algebraic group G has a
compact real form K. The Lie algebra € of K is a compact real form of the Lie
algebra g of G.

O

Knowing that real forms exist in a semisimple complex Lie algebra, one might
wonder how they are related to each other. In fact, the following holds:

Conjugacy of Compact Real Forms. If g is the Lie algebra of a connected
semisimple complex algebraic group G, e.g., if g is a complex semisimple Lie al-
gebra, then any two compact real forms of g are conjugate. More precisely, if € and
t' are two real forms of g, then there is some g € G for which Ad(g)(¢) = ¥.

O

2. CoMPACT REAL FORMS

We now enter the main core of this note. After introducing polar decompositions
and structural results for Lie groups with compact Lie algebras we will embark on the
proof of the main theorem and show that every complex reductive algebraic group
has a compact real form. The material in this section is mostly based on [OV90].
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2.1. Polar Decompositions. Let V' denote a finite dimensional Hermitian vector
space over C. Recall that any matrix g € GL(V') may be decomposed uniquely as a
product g = u - p where u € U(V) and p € P(V), the spaces of unitary and positive-
definite Hermitian matrices. In fact, P(V') coincides with the exponential image of
the space of symmetric matrices S(V') and the map U(V) x S(V) — GL(V') given by
sending
(1) (u,s) = u - exp(s)

is a diffeomorphism. This is the usual polar decomposition in GL(V'). Such decom-
positions exists in some amount of generality and turn out to be a valuable tool in
the study of reductive algebraic groups.

The first case of interest is the setting of so-called self-adjoint groups which was
explored by Mostow in [Mos55]. Essentially all variants of the polar decomposition
are consequences of this version.

Mostow’s Theorem. Let V' be a finite-dimensional Hermitian vector space and let
G C GL(V) be a self-adjoint complez algebraic group (i.e. for every g in G the
corresponding adjoint operator g* is also in G). If K .= GNU((V), P:=GNP((V)
and p :=gNS(V), then the map

Kxp—dGd
given by (1) is a diffeomorphism, e.g., G = K - P.

Proof. Let us show that G = K - P. If g € G, then g*¢g € P and by (what has now
become) a typical exercise in undergraduate linear algebra we have that 1/(g*g) € P.

Now,
(-1
9=9-V(g9) V(g
and k := g - (g*g)(_ ) satisfies k*k = Id so it is an element of K and we are
done. U

For our purposes, we will need to apply polar decompositions in the realm of
complex reductive algebraic groups so we elaborate on this variant below. To do
S0, it is convenient to introduce the concept of a topological real form of a complex
algebraic group G. This is a real Lie subgroup K C G satisfying the following two
properties:

(1) G =K -G° (i.e. K intersects every component of G)
(2) €© =g

Polar Decomposition. Let V' be a complex vector space and let G C GL(V) be a
complex algebraic group. If K C G is a compact topological real form of G, then the
map

K x it — G*
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defined by
(k, iy) = k - exp(iy)
15 a diffeomorphism of real manifolds. Moreover, K is a compact real form of G.

Proof. Since K is compact, it is no loss of generality to assume that V' is endowed with
a K —invariant Hermitian inner-product. In this case, £ consists of skew-Hermitian
operators and p := it consist of self-adjoint operators, e.g., p = gN S(V).

In order to apply Mostow’s Theorem, we need to show that G is self-adjoint. To
do this, let us first show that g is self-adjoint. Suppose that Z € g and consider
the real Lie group automorphism S : GL(V) — GL(V) given by g — (g*)~! whose
differential is given by Z +— —Z*. Since g = £ @ i€ we may write Z = X 4 1Y where
X,Y € & to see that

(X+1Y)—» —(X4+Y) ' =-X"—(GY) = —(—X) - (iY) = X — Y.
Here, we have used the facts that £ consists of skew-Hermitian operators and p = it
consists of self-adjoint operators. Clearly, X — Y € £ @ i so g is indeed self-adjoint
and consequently S(G°) = G°, e.g., G° is self-adjoint. Now G = KG° so any
g € G may be written as g = kh where k € K is unitary and h € G°. Therefore,
g* =h*'k* = h*k™! € G since h* € G° and k™! € K so G is also self-adjoint.

Applying Mostow’s Theorem to G yields a diffeomorphism K x p — G where
K :=Gn U(V). At this point, we would like to claim that K = K. To see this,
notice first that since K consists of unitary operators we have K ¢ GNU(V) = K
and K° = K° since their Lie algebras coincide. On the other hand,

G=K-G°=K - (K°-P)=K-P

where the first equality follows because K is a topological real form of GG, the second
equality follows by Mostow’s Theorem and the third equality follows because K° =
K° Now, G =K -P = K- P soinfact K D K. This completes the proof of the
first assertion in the statement of the theorem.

Finally, since G is self-adjoint, the real Lie group automorphism S : GL(V) —
GL(V) restricts to an antiholomorphic automorphism of the algebraic group G C
GL(V) whose fixed point set is K = K so K is indeed a compact real form of G. [

Remark. Weyl’s Theorem implies the existence of the Polar Decomposition de-
scribed above for all connected semisimple algebraic groups.

Normalizers in Polar Decompositions. If K and G are as above and P :=
exp(it), then
Ng(K) =K x (Z(G)N P).
In particular, if G is semisimple then Z(G) C K so in this case
Ne(K) =K.



COMPLEX REDUCTIVE ALGEBRAIC GROUPS 9

Proof. Intersecting N¢(K) with the Polar Decomposition, we have
Ne(K) = (No(K)NK) - (Na(K)NP) = K - (Na(K) N P)

where we claim that Ng(K)N P = Z(G) N P. Clearly, No(K)NP D> Z(G)N P, so
it suffices to establish the reverse inclusion. Let h € Ng(K) N P, ie., let h € P be
such that h/Kh~! = K. This means that for any k € K we have

(1) hkh'=keK.
On the other hand, for any g € G we have that gPg* = P, in particular:
(t1) Kk 'hk=k*hk=he P.

Combining (1) and (f}) we see that kh = hk = kh so the uniqueness of the polar
decomposition ensures that h = h and £ = k, i.e., h commutes with K. Finally,
since g = €¢ = £ @ i€, this means that the adjoint action of h € Ng(K) N P on g is

trivial and consequently h is central in P C G°. Since G = K - P and h commutes
with both K and P, we conclude that h € Z(G). O

2.2. Compact Lie Algebras. Although Lie groups with a compact Lie algebra
are not necessarily compact, they do have a nice structure theory that we explore
below. To begin, let us revisit the simplest non-compact instance of a Lie group
with a compact Lie algebra: R"™. The reason why such a Lie group has a compact
Lie algebra is that its Lie algebra is abelian so any positive-definite and symmetric
bilinear form will satisfy the definition. As such, the first natural generalization of
groups such as R” in this setting consists of connected abelian Lie groups. Such a
group T always splits as a direct product of a vector group and a compact torus
T = Ax B where A = RP and B = TY9. As it turns out, B is always the unique
maximal compact subgroup of 7. Since T is abelian, so is its Lie algebra t. Therefore,
the ideal b C t corresponding to B has a complement which we call a resulting in
the splitting t = a @ b. The subgroup A C T may then be chosen to coincide with
exp(a). We summarize these facts as follows [OV90, Section 5.2.2]:

Decomposition of Connected Abelian Lie Groups. Let T be a connected
abelian Lie group. Then, its Lie algebra admits a splitting t = a®b where B := exp(b)
is the unique mazximal compact subgroup of T and A := exp(a) is a vector group. We
call A (resp. B) the non-compact (resp. compact) parts of T

Example. Consider once again the algebraic torus (C*)™ but let us shift our per-

spective this time and view it as a real connected abelian Lie group 7. The decom-

position t = a@® b as above corresponds to a splitting C" = R” & ¢R"” resulting in the

decomposition (C*)* = (RT)" x T™ where T = {z € C : |z| = 1} is the unit circle

and R* denotes the (multiplicative) Lie group of strictly positive real numbers.
More generally, the following structural result holds [OV90, Section 5.2.2]:
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Structure of Lie Groups with Compact Lie Algebras. Let G be a Lie group
with finitely many connected components and suppose that its Lie algebra g is com-
pact. Then, there is a decomposition Z(G°)° = A x B of the connected abelian Lie
group Z(G®)® into a non-compact and compact part for which A is a normal subgroup
of G. In this case, G admits a decomposition of the form

G=AxK,G =AxK°
where K is a mazximal compact subgroup of G for which K° = B - [G°, G°|.
O

2.3. Complex Reductive Algebraic groups. We are now ready to tackle the
harder direction of the theorem mentioned in the introduction by generalizing Weyl’s
Theorem to the reductive case. Our proof is based on an argument found in [OV90,
Section 5.2.3].

Theorem. A complex reductive algebraic group has a compact real form.

Proof. Given a complex reductive algebraic group G, we seek to produce a compact
real form K C G. In order to do this, we will proceed in several steps. The idea
guiding our approach will be to apply Weyl’s Theorem to a connected semisimple
subgroup H C G and use the compact real form C' C H it provides as a building
block for K.

Our first step is to find a suitable semisimple subgroup H C G. Recall from the
Basic Structure of Connected Reductive Groups that Rad(G°) = Z(G°)° and that
we have a decomposition

(1) G°=[G° G- Z(G°)°

where H := [G°, G°] is a connected semisimple algebraic subgroup of G. As such, by
Weyl’s Theorem, H has a compact real form C'.

In order to build a compact real form of G from the compact real form C' C H,
we need to understand how C' interacts with elements of G. From this perspective, a
natural subgroup to investigate is the normalizer Ng(C'). Our first key observation
for this subgroup is that the following variant of decomposition (1) holds:

(2) G =[G’ G°] - Ng(C) where C' is a compact real form of H := [G°, G’].

To see this, consider the adjoint action of G on the set of real forms in b and recall
from the Conjugacy of Compact Real forms that the action of H C G on this set
is transitive. Decomposition (2) follows at once since the stabilizer of the real form
¢ C b coincides with Ng(C') and G/ Stab([) acts freely on the orbit G - [ = H - [.
Now that we have a better picture of how C' sits as a subgroup in G via the
normalizer Ng(C'), we ought to see how Ng(C') relates back to C. Once again,
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our first observation will be about the identity component; it admits the following
decomposition:

(3) Ne(C)” = Z(G°)°- C.

Recall from Normalizers in Polar Decompositions for H with respect to C that
Ny (C) = C and, consequently:

N&(C) N G° = No(C) N (Z(G°)° - H) = Z(G°)° - C.

Since Z(G°)° is connected and C' is connected (it is homotopy equivalent to H by
the polar decomposition), we conclude that Ng(C) N G° is connected and therefore
Ng(C)° = Ng(C)NG°.

Having found a decomposition of the identity component Ng(C)° into simpler
groups, we can use it to decompose its Lie algebra. In fact, this decomposition leads
us to the key feature of the normalizer that will allow us to complete our analysis:

(4) the Lie group Ng(C') has a compact Lie algebra.

To see how this follows from (3), consider the induced surjective group homomor-
phism
0 : Z(G%)° x C — Ng(C)°, p(z,¢) ==z -c.

Since ker(yp) = Z(G°)° N C C Z(G°)° N H and this intersection is finite by the
Basic Structure of Connected Reductive Groups, ker(yp) is discrete and it follows
that Z(G°)° x C'is a covering space of Ng(C)°. As such, the Lie algebra of Ng(C) is
isomorphic to t& ¢ where t is the (abelian) Lie algebra of the algebraic torus Z(G°)°
and c¢ is the Lie algebra of C. Finally, (4) is established since t and ¢ are compact
and the direct sum of compact Lie algebras is compact.

Now that we know that Ng(C') has a compact Lie algebra, we seek to apply the
Structure of Lie Groups with Compact Lie Algebras. To do this, we first need to
show that Ng(C) has finitely many connected components. This turns out to be a
consequence of the fact that, in any algebraic group G, the identity component G°
is a normal subgroup of finite index. Indeed, since [G°, G°] C G, it follows from
decomposition (2) that G = Ng(C') - G° and by the Second Isomorphism Theorem
for groups:

G/G* = (Na(C) - G°)/G” = Na(C)/(Na(C) N G°) = Na(C) /Na(C)°.
At last, we can apply the Structure of Lie Groups with Compact Lie Algebras.
Namely, if we consider the splitting of the connected abelian Lie group Z(Ng(C)°)°
into its non-compact and compact parts Z(Ng(C)?)° = A x B, we obtain the follow-
ing decomposition:
(5) Ng(O) =AxK
where K is a compact subgroup of N¢(C) for which K° =B - [C,C] =B -C.
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At this point, we would like to claim that K is a compact real form of G. To see
why this is the case, recall from the Polar Decomposition that we need only check
that K is a topological real form of GG, e.g., we need to check that the following two
conditions hold:

(a) G =G°K and (b) g = €“.
Now, condition (a) follows easily from decomposition (2). Indeed,
G =[G’ G’ -Ng(C)=1[G°G°l- (AxK)

so any g € G may be written as a product g = h-a-k where h € [G°,G°], a € A and
k € K. Since [G°,G°] C G° and A C Z(Ng(C)°)° C G°, we have that h-a € G° as
claimed.

In order to verify condition (b), it is convenient to reinterpret the connected abelian
Lie group used to obtain (5) by observing that:

(6) Z(G°)* = Z(Na(C)%)".

To prove this equality, we proceed in two steps. First, recall from (3) that Ng(C)° =
Z(G°)° - C so we immediately obtain that Z(G°)° C Z(Ng(C)°)°. For the reverse
inclusion, note that if g € Z(Ng(C)°) then g commutes with C' and therefore g
commutes with the Zariski closure of C' which is H = [G° G°]. Moreover, since
Ng(C)° C G°, such a g also commutes with Z(G°)°. Finally since G° = [G°, G°] -
Z(G°)° by (1) and since g commutes with both factors, g also commutes with G°
and thus Z(G°) D Z(Ng(C)°).

We can now determine the Lie algebras of K and G in a suitable form to verify
that £€¢ = g. Let us start with G; consider the surjective group homomorphism
induced from (1):

v (GGl x Z(G)° — G°, W(g,2) =g 2.

Since ker(¢)) = [G°, G°]NZ(G?)° and this intersection is finite by the Basic Structure
of Connected Reductive Groups, ker(y) is discrete and it follows that [G°, G°] x
Z(G°)° is a covering space of G°. As such g = h @ t where b is the Lie algebra of
H = [G° G°] and t is the Lie algebra of Z(G°)°.

On the other hand, as a consequence of the Structure of Lie Groups with Compact
Lie Algebras in (5) we saw that K° = C' - B. Here, (6) ensures that B C Z(G°)° so
that C N B C HN Z(G°)° and the intersection is finite. Proceeding with the same
covering space argument as above, we obtain a splitting £ = ¢ & b where b denotes
the Lie algebra of B. Now, by assumption, ¢ 2 h so it suffices to show that b® = t.

Recall from (6) that Z(G°)° = Z(Ng(C)°)° so that the latter is a connected
algebraic torus isomorphic to 7' = (C*)" for some n. As we have indicated in our
sequence of examples for algebraic tori, the natural decomposition of this torus into
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a non-compact and compact parts is of the form 7' (R*)" x T" = A’ X B in which
case t =2 ib @b, e.g., t = bC. This completes the proof. 0

To conclude, let us mention that once we know a complex reductive algebraic group
G has a compact real form, the argument in the proof of the Polar Decomposition
shows that given a realization G C GL(V) where V is a finite dimensional complex
vector space, a positive definite Hermitian form may be introduced on V relative
to which G is self-adjoint. Since a self-adjoint family of linear transformations is
easily seen to be completely reducible this indicates one path to showing that every
finite dimensional representation of a complex reductive algebraic group is completely
reducible. On the other hand, it is also true that a complex algebraic group for which
every finite dimensional representation is completely reducible is necessarily reductive
[OV90]. It is the author’s understanding that the first proof of the existence of a
compact real form for complex reductive algebraic groups was obtained by Mostow
in [Mosbh5] where he adopts this dual point of view. However, his main goal appears
to have been to prove that if G is any algebraic group of linear transformations on
a real or complex vector space V' for which every finite dimensional representation
is completely reducible, then a positive definite Hermitian form may be introduced
on V relative to which G is self-adjoint. In closing, let us mention that the following
very nice theorem also holds [OV90, Theorem 5.2.12]:

Characterization Theorem for Complex Reductive Algebraic Groups. On
any compact Lie group K there exists a unique real algebraic group structure and the
complezification K(C) is a complex reductive algebraic group. Any complex reductive
algebraic group possesses an algebraic compact real form. Two compact Lie groups
are isomorphic (as Lie groups or as algebraic groups over R) if and only if the
corresponding reductive algebraic groups over C are isomorphic.
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