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Abstract. Let G be a reductive linear algebraic group defined over
an algebraically closed base field k of characteristic zero. A G-variety
is an algebraic variety with a regular action of G, defined over k. An
affine G-variety is called stable if its points in general position have
closed G-orbits. We give a simple necessary and sufficient condition for
a G-variety to have a stable affine birational model.

1. Introduction

Let G be a linear algebraic group, defined over an algebraically closed base
field k of characteristic zero. We shall refer to a reduced but not necessarily
irreducible algebraic variety X (defined over k), with a regular action of G
(also defined over k) as a G-variety. By a morphism X −→ Y of G-varieties,
we shall mean a G-equivariant morphism. The notions of isomorphism,
rational map, birational isomorphism, etc. of G-varieties are defined in a
similar manner. As usual, given a G-action on X, we shall denote the orbit
of x ∈ X by Gx and the stabilizer subgroup of x by Gx ⊆ G. Finally, we
shall say that a property holds for x ∈ X in general position if it holds for
every point x of some dense open subset of X.

In this note we will be interested in studying G-varieties up to birational
isomorphism. In this context it is natural to ask whether or not a given
G-variety X has an affine model. Indeed, there are numerous results and
constructions in invariant theory that are available for affine G-varieties but
not in general, especially if G is reductive; cf. [PV].

Recall that an affine G-variety X is called stable, if the orbit Gx is closed
for x ∈ X in general position. If G is reductive, these varieties have many
nice properties; for a summary, see, e.g., [V, Section 8]. The question we
will address in this note is: Which G-varieties have a stable affine birational
model? Our main result is the following:
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Theorem 1. Let G be a reductive linear algebraic group and X be a G-
variety. Then the following are equivalent:

(a) X is birationally equivalent to a stable affine G-variety.
(b) The stabilizer Gx is reductive for x in general position in X.

In the case where X = G/H is a homogeneous space, Theorem 1 reduces
to a theorem of Matsushima [Ma] which says that G/H is affine if and only
if H is reductive. Moreover, the implication (a) =⇒ (b) of Theorem 1 is an
immediate consequence of Matsushima’s theorem. Indeed, after replacing
X by a stable affine model, we see that for x ∈ X in general position the
orbit Gx ' G/Gx is affine, so that Gx is reductive.

Our proof of the implication (b) =⇒ (a) will be based on the following
more general result:

Theorem 2. Let G be a linear algebraic group and X a G-variety. Denote
by Gx the stabilizer of x ∈ X in G. Assume that either

(i) Gx = {1} for x ∈ X in general position (i.e., the G-action on X is
generically free), or

(ii) the normalizer NG(Gx) is reductive for x ∈ X in general position.
Then X is birationally isomorphic to a stable affine G-variety.

Note that if G and Gx are both reductive then so is the normalizer
NG(Gx); see [LR, Lemma 1]. Thus Theorem 2(ii) proves the implication
(b) =⇒ (a) of Theorem 1.

The rest of this note will be devoted to proving Theorem 2. Our proof of
part (ii) will be based on part (i) and a theorem of Richardson [Ri, Theorem
9.3.1] about the existence of stabilizers in general position.

We remark that the theorems of Matsushima and Richardson mentioned
above were originally proved only for k = C (by analytic methods). An
algebraic proof of Matsushima’s theorem over an algebraically closed field k
of characteristic zero can be found in [L, Section 2]. Richardson’s theorem
is also valid over such k by the Lefschetz principle; it is stated in this form
in [PV, Theorem 7.1]. Nevertheless, it would be interesting to find a direct
algebraic proof.

2. Proof of Theorem 2(i)

We begin with a simple lemma.

Lemma 3. Every linear algebraic group G has a stable generically free linear
representation.

Proof. After embedding G as a closed subgroup in SLn for some n ≥ 1, we
may assume that G = SLn. The action of SLn on Mn(k) by left multiplica-
tion is easily seen to be generically free and stable. ¤

We are now ready to proceed with the proof of Theorem 2(i). Recall that
a G-variety is called primitive if G transitively permutes the irreducible
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components of X. It is easy to see that every X is birationally isomorphic
to a disjoint union of primitive G-varieties; cf. [Re, Lemma 2.2]. Hence we
may assume that X is primitive.

By a theorem of Rosenlicht there exists a rational quotient map

πrat : X 99K Z ,

separating the G-orbits in general position in X; see [Ro1] (for the case
where X is irreducible) and [Ro2] (for general X). Here Z is only defined
up to birational isomorphism, so we may assume without loss of generality
that Z is affine. After replacing X by a dense open G-invariant subset, we
may assume that Gx = {1} for every x ∈ X, and that πrat is regular and
separates the G-orbits in X. Since X is primitive, Z is irreducible.

By Lemma 3 there exists a stable generically free linear representation V
of G. Let V0 be a G-stable dense open subset of V such that every point
v ∈ V0 has a closed orbit (in V ) and trivial stabilizer. By [Re, Proposition
7.1] there is a G-equivariant rational map f : X 99K V whose image contains
a point v ∈ V0. Let Y be the closure of the image of f × πrat : X 99K V ×Z.
Note that Y is G-primitive and affine. Moreover, U = Y ∩ (V0 × Z) is a
G-invariant non-empty (and hence, dense) open subset of Y , and every point
of U has a trivial stabilizer in G and a closed G-orbit in V × Z. Thus Y is
a stable affine generically free G-variety.

It remains to show that f × πrat is a birational isomorphism between X
and Y . Since we are working in characteristic zero, since X is primitive,
and since f × πrat : X 99K Y is dominant, it suffices to check that f × πrat

is injective on a dense open subset of X. Indeed, let W = (f × πrat)−1(U).
Then W is a G-stable nonempty (and thus dense) open subset of X. Now
assume that y = (f × πrat)(x1) = (f × πrat)(x2) for some x1, x2 ∈ W .
Since πrat separates the orbits in X, x2 = g(x1) for some g ∈ G. But then
g ∈ Gy = {1}. We conclude that x1 = x2. ¤

3. Proof of Theorem 2(ii)

We begin with several preliminary reductions. First note that if NG(Gx)
is reductive then Gx itself must be reductive. Indeed, the unipotent radical
Ru(Gx) is trivial, because it is a normal unipotent subgroup of NG(Gx).

Secondly, we may assume, as we did in the previous section, that X is
primitive, i.e., G transitively permutes the irreducible components of X.

Thirdly, by a theorem of Richardson (see [Ri, Theorem 9.3.1] or [PV,
Theorem 7.1]), we may assume that X has a stabilizer S ⊆ G in general
position. In other words, after replacing X by a G-invariant dense open
subset, we may assume that Gx is conjugate to S for every x ∈ X. As we
remarked above, S is reductive. Set N = NG(S), and denote by XS the set
of S-fixed points in X. By comparing stabilizers, we see that

(4) GXS = X



4 Z. REICHSTEIN AND N. VONESSEN

and

(5) if gx1 = x2 for some x1, x2 ∈ XS and g ∈ G, then g ∈ N .

Now let Y be the union of irreducible components of XS of maximal dimen-
sion. Since S acts trivially on Y , we can think of Y as an N/S-variety. By
our assumption Gx is conjugate to S for every x ∈ X. In particular, Gx = S
for every x ∈ XS . Hence, the N/S-action on Y is generically free and, by
Theorem 2(i), there is a stable affine N/S-variety Z, birationally equivalent
to Y .

Our goal is to show that X is birationally isomorphic to the G-variety
X ′ = G ∗N Z. The remainder of the proof will amount to checking that
X ′ is affine and stable and constructing a birational isomorphism between
X and X ′. Some of our arguments are closely related to those in [P, 1.7];
however, for the sake of completeness (and because we are assuming that X
is primitive but not necessarily irreducible), our proof will be self-contained.

First we observe that

(6) GY is dense in X.

Indeed, consider the map f : G×XS −→ X given by (g, x) −→ gx. By (4),
f is surjective. By (5), the fibers of f are precisely the N -orbits in G×XS ,
where N acts by n · (g, x) −→ (gn−1, nx). Since this action is free (i.e.,
the stabilizer of every point is trivial), every fiber has the same dimension
dim N , and (6) follows from the fiber dimension theorem.

Next we recall the definition of the G-variety G∗N Z; cf., e.g., [PV, Section
4.8]. Consider the action of G×N on the affine variety G× Z given by

(7) (g, n) · (h, z) 7→ (ghn−1, nz) .

The variety X ′ = G ∗N Z is, by definition, the categorical quotient of G×Z
for the N -action given by the above formula (where we identify N with the
subgroup {1} × N of G × N). In particular, X ′ is an affine variety. For
future reference, we denote the categorical quotient map for the action of N
by

πcat : G× Z −→ X ′ .
Since the actions of G and N on G × Z commute, the G-action on G × Z
descends to a G-action on X ′, thus giving X ′ the structure of a G-variety.
Theorem 2(ii) is now a consequence of the following:

Lemma 8. (a) The G×N -action on G× Z, given by (7) is stable.
(b) The G-action on X ′ is stable.
(c) Every N -orbit in G×Z is closed. Here we identify N with the subgroup

{1} ×N of G×N , and the N -action on G× Z is given by (7).
(d) X and X ′ are birationally isomorphic as G-varieties.

Proof. (a) The G×N -orbit of (g, z) ∈ G×Z is G×(Nz). Since the N -action
on Z is stable, this orbit is closed for z in general position in Z.
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(b) G-orbits in X ′ are images, under πcat, of G × N -orbits in G × Z.
The desired conclusion now follows from part (b) and the fact that πcat

maps N -invariant closed sets in G×Z to closed sets in X ′; cf. [PV, p. 188,
Corollary].

(c) Assume the contrary: there is a non-closed N -orbit in G × Z. Then
the closure of this orbit contains an orbit of lower dimension. On the other
hand, it is easy to see that the stabilizer N(g,z) = {1} for every (g, z) ∈ G×Z.
Consequently, every orbit has dimension dim N , a contradiction.

(d) Let φ : Z
'99K Y be a birational isomorphism between the N/S-

varieties Z and Y . Define a G-equivariant rational map Ψ: G × Z 99K X
by Ψ(g, z) −→ gφ(z). The N -action on G × Z is stable by part (c); hence,
the categorical quotient map πcat : G× Z −→ X ′ separates closed orbits in
G×Z; see, e.g., [PV, p. 189, Corollary]. This implies that πcat is the ratio-
nal quotient map for the N -variety G×Z (see, e.g, [Re, Remark 2.5]). Since
Ψ sends N -orbits in G×Z to points in X, the universal property of rational
quotients of N -varieties (see e.g., [Re, Remark 2.4]) says that Ψ descends to
a rational map ψ : X ′ 99K X of G-varieties. We claim that ψ is a birational
isomorphism.

To prove the claim, first observe that Ψ (and hence, ψ) is dominant by (6).
Secondly, since the irreducible components of Y have the same dimension
and the N -action on G×Z is stable and free (i.e., the stabilizer N(g,z) = {1}
for every (g, z) ∈ G × Z), we conclude that the irreducible components of
G ∗N Z are also of the same dimension (namely, of dimension, dim G +
dim Y −dim N). Thus in order to show that φ is a birational isomorphism,
we only need to check that ψ is generically one-to-one. More precisely, we
will show that if z1 and z2 belong to a dense open subset of Z on which
φ is defined and one-to-one, and if Ψ(g1, z1) = Ψ(g2, z2), then (g1, z1) and
(g2, z2) lie in the same N -orbit in G× Z.

Indeed, Ψ(g1, z1) = Ψ(g2, z2) can, by definition, be rewritten as φ(z1) =
g−1
1 g2φ(z2). By (5), g−1

1 g2 ∈ N . Setting n = g−1
1 g2, we see that (g1, z1) =

(g2n
−1, nz2), so that (g1, z1) and (g2, z2) are, indeed, in the same N -orbit.

This completes the proof of Lemma 8 and thus of Theorem 2(ii). ¤
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