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1. INTRODUCTION

Many important objects in algebra can be parametrized by a non-abelian
cohomology set of the form H!(K,G), where K is a field and G is a linear
algebraic group defined over K. For example, elements of H'(K,O,) can be
identified with isomorphism classes of n-dimensional quadratic forms over
K, elements of H'(K,PGL,) with isomorphism classes of central simple
algebras of degree n, elements of H'(K,G2) with isomorphism classes of
octonion algebras, etc.; cf. [Sez] or [KMRT]. Recall that H!(K,G) has a
marked (split) element but usually no group structure. Thus, a priori there
are only two types of elements in H'(K, @), split and non-split. However, it
is often intuitively clear that some non-split elements are closer to being split
than others. This intuitive notion can be quantified by considering degrees
or Galois groups of splitting field extensions L/K for «; see, e.g., [T], [RY3].
Another “measure” of how far « is from being split is its essential dimension
(here and in the sequel we assume that K is a finitely generated extension of
an algebraically closed base field of characteristic zero, and G is defined over
k); for details and further references, see Section 2.1 and the first paragraph
of Section 14.

In this paper we introduce and study yet another numerical invariant
that “measures” how far « is from being split. We call this new invariant
the canonical dimension and denote it by cd(a)). We give several equivalent
descriptions of cd(«); one of them is that cd(a) = min trdegy (L), where
the minimum is taken over all generic splitting fields L/K for « (see Sec-
tion 9). Generic splitting fields have been the object of much research in
the context of central simple algebras (i.e., for G = PGL,; see, e.g., [A],
[Ar], [Roqi], [Roqe]) and quadratic forms (i.e., for G = O,, or SO,; see,
e.g., [Kni], [Kng], [KS]); related results for Jordan pairs can be found in [Pe].
Kersten and Rehmann [KR], who, following on the work of Knebusch, stud-
ied generic splitting fields in a setting rather similar to ours (cf. Remark 9.5),
remarked, on p. 61, that the question of determining the minimal possible
transcendence degree of a generic splitting field (or cd(«), in our language)
appears to be difficult in general. Much of this paper may be viewed as an
attempt to address this question from a geometric point of view.

Recall that we are assuming k to be an algebraically closed base field
of characteristic zero, and K/k to be a finitely generated field extension.
In this context every a € H'(K,G) is represented by a (unique, up to
birational isomorphism) generically free G-variety X, with k(X)¢ = K;
see e.g., [Po, (1.3.3)]. We will often work with X, rather than «, writing
cd(X, G) instead of cd(«) and using the language of invariant theory, rather
than Galois cohomology. An advantage of this approach is that cd(X,G)
is well defined for G-varieties X that are not necessarily generically free
(see Definition 3.5), and the interplay between generically free and non-
generically free varieties can sometimes be used to gain insight into their
canonical dimensions; cf., e.g., Lemma 6.1. If S is the stabilizer in general



CANONICAL DIMENSION, OCTOBER 26, 04 3

position for a G-variety X, then c¢d(X,G) can be related to the essential
dimension of S. This connection is explored in Sections 5—6.

In Sections 7-13 we study canonical dimensions of generically free G-
varieties or, equivalently, of classes a € H'(K,G). We will be particularly
interested in the maximal possible value of cd(«) for a given group G; we
call this number the canonical dimension of G and denote it by cd(G).
The canonical dimension c¢d(G), like the essential dimension ed(G), is a
numerical invariant of G; if GG is connected, both measure, in different ways,
how far G is from being “special” (for the definition and a brief discussion
of special groups, see Section 2.8 below). While cd(G) and ed(G) share
some common properties (note, in particular, the similarity between the
results of Section 7 in this paper and those of [R, Sections 3.1, 3.2]), their
numerical values do not appear to be related to each other. For example,
since c¢d(G) = 0 for every finite group G (see Lemma 7.5(b)), the rich theory
of essential dimension for finite groups (see [BR], [BR2], [JLY, Section 8]) has
no counterpart in the setting of canonical dimension. On the other hand,
our classification of simple groups of canonical dimension 1 in Section 13
has no counterpart in the context of essential dimension, because connected
groups of essential dimension 1 do not exist; see [R, Corollary 5.7].

In Section 8 we prove a strong necessary condition for a € H'(K, G) to be
of canonical dimension < 2. A key ingredient in our proof is the Enriques-
Manin-Iskovskih classification of minimal models for rational surfaces; see
the proof of Proposition 8.2. In Sections 11 and 12 we study canonical
dimensions of the groups GL,, /114, SLy, /e, SO, and Spin,,. Our arguments
there heavily rely on the recent results of Karpenko and Merkurjev [Ki],

Our definition of canonical dimension naturally extends to the setting
of functors F from the category of field extensions of k£ to the category of
pointed sets; cd(G) is then a special case of cd(F), with F = H'(_,G) (see
Section 10). A similar notion in the context of essential dimension is due to
Merkurjev [M;]; see also [BF3]| and the beginning of Section 14.

In the Sections 14 — 16 we apply our results on canonical dimension to the
problem of computing the minimal number ed [H, 4] of independent param-
eters, required to define the general degree d hypersurface in P"~!. (For a
precise statement of the problem, see Section 14.) We show that if d > 3 and
(n,d) # (2,3),(2,4) or (3,3), our problem reduces to that of computing the
canonical dimension of the group SL; /pgcd(n,q)- In particular, combining
Theorem 15.1 with Corollary 11.5, we obtain following theorem.

1.1. Theorem. Let n and d be positive integers such that d > 3 and (n,d) #
(2,3), (2,4) or (3,3). Suppose ged(n,d) is a prime power p? for some j > 0.

Then
ed(Hyq) = <”+d‘1) 2y O YI=0
d p’bi]-a Zf]z]-

where P’ is the highest power of p dividing n.
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Ifd<2or (n,d)=(2,3),(2,4),(3,3), then our problem reduces to com-
puting canonical dimensions for certain group actions that are not generi-
cally free; this is done in Section 16. Related results for (n,d) = (2,3) and
(3,3) can be found in [BFy].

ACKNOWLEDGEMENTS

We are grateful to J.-L. Colliot-Thélene, S. Garibaldi, D. W. Hoffmann,
N. Karpenko, B. Kunyavskii, A. Merkurjev, A. Quéguiner-Mathieu, and J-P.
Serre for helpful comments.

2. NOTATION AND PRELIMINARIES

Throughout this paper we will work over an algebraically closed base field
k of characteristic zero. Unless otherwise specified, all algebraic varieties,
algebraic groups, group actions, fields and all maps between them are as-
sumed to be defined over k, all algebraic groups are assumed to be linear
(but not necessarily connected), and all fields are assumed to be finitely
generated over k.

By a G-variety we shall mean an algebraic variety X with a (regular)
action of an algebraic group G. We will usually assume that X is irre-
ducible and focus on properties of X that are preserved by (G-equivariant)
birational isomorphisms. In particular, we will call a subgroup S C G a
stabilizer in general position for X if Stab(x) is conjugate to S for x € X
in general position; cf. [PV, Section 7]. As usual, if S = {1}, i.e., G acts
freely on a dense open subset of X, then we will say that the G-variety X
(or equivalently, the G-action on X) is generically free.

2.1. Essential dimension. Let X be a generically free G-variety. The
essential dimension ed(X, G) of X is the minimal value of dim(Y') —dim(G),
where the minimum is taken over all dominant rational maps X --+ Y of
G-varieties with Y generically free. For a given algebraic group G, ed(X, G)
attains its maximal value in the case where X = V is a (generically free)
linear representation of G. This value is called the essential dimension of G
and is denoted by ed(G) (it is independent of the choice of V). For details,
see [R, Section 3.

2.2. Rational quotients. A rational quotient for a G-variety X is an
algebraic variety Y such that k(Y) = k(X)%. The inclusion k(Y) — k(X)
then induces a rational quotient map 7: X --» Y. Note that Y and 7 are
only defined up to birational isomorphism; one usually writes X/G in place
of Y. We shall say that G-orbits in X are separated by regular invariants if
7 is a regular map and 771 (y) is a single G-orbit for every k-point y € Y. By
a theorem of Rosenlicht, X has a G-invariant dense open subset U, where
G-orbits are separated by regular invariants. For a detailed discussion of
the rational quotient and Rosenlicht’s theorem, see [PV, Section 2.4].
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2.3. Generically free actions and Galois cohomology. Let X be a
generically free variety. Then X may be viewed as a torsor over the generic
point of X/G via the rational quotient map X --+ X/G. Let a be the
class of this torsor in H'(K,G), where K = k(X)“. This class is explicitly
constructed in [Po, (1.3.1)]. Moreover, every a € H!(K, G) can be obtained
in this way, and the G-variety X can be uniquely reconstructed from «, up
to a (G-equivariant) birational isomorphism; see [Po, (1.3.2) and (1.3.3)].
In the sequel we shall say that o € H(K, G) represents the generically free
G-variety X.

2.4. Split generically free varieties. Let X be a generically free G-
variety, where the G-orbits are separated by regular invariants. We will call
a rational map s: X/G --» X a rational section for 7 if som =id on X/G.
(Note that since the fibers of 7 are precisely the G-orbits in X, G-s(X/G) is
dense in X. Consequently, some translate of s will “survive” if X is replaced
by a birationally equivalent G-variety.) We shall say that X is split if one
of the following equivalent conditions holds:

(i) X is birationally isomorphic to G x X/G,

(ii) 7 has a rational section,

(iii) X represents the trivial class in H(K, G),

(iv) ed(X,G) = 0.
For a proof of equivalence of these four conditions, see [Po, (1.4.1)] and [R,
Lemma 5.2].

2.5. The groups GL, /uq and SL, /u.. In this section we will re-
view known results about the Galois cohomology sets H'(K,G), where
G = GL,, /g or SLy, /e, g is the unique central cyclic subgroup of GL,, of
order d, and e divides n.

2.6. Lemma. Let G = GL,, /uq (respectively, G = SLy /u.), f: G —
PGL,, be the canonical projection, and K /k be a field extension. Then

(a) The map f.: H(K,G) — H'(K,PGL,) has trivial kernel.

(b) The image of f. consists of those classes which represent central simple

algebras of degree n and exponent dividing d (respectively, dividing e).

Lemma 2.6 can be deduced from [Sal;, Theorem 3.2]; for the sake of
completeness, we supply a direct proof below.

Proof. (a) The exact sequence 1 — Ker(f) & oa L PGL, — 1 of
algebraic groups, gives rise to an exact sequence
HY(K, Ker(f)) - HY(K,G) L= HY(K,PGL,)

of pointed sets; cf. [Sey, pp. 123 - 126]. It is thus enough to show that
ix is the trivial map (i.e., its image is {1}). If G = GL, /uq this is an
immediate consequence of the fact that Ker(f) = Gy,/uq is isomorphic to
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Gy, and thus H (K, Ker(f)) = {1}. If G = SL,, /e then Ker(f) = pz, and

the commutative diagram

(2.7) 1 fin SL,, PGL, — 1

e

1—>H”HSLn/ueHPGL —1,

of group homomorphisms induces the commutative diagram

HY(K, u,) — HY(K,SL,)

L

H' (K, pn) —> H'(K,SLy, /pie)

of maps of pointed sets. Since the left vertical map is surjective (it is the
natural projection K*/(K*)" — K*/(K*)¢), and H'(K,SL,) = {1}
(see [Seq, p. 151]), we see that the image of i, is trivial, as claimed.

(b) We will assume G = SL,, /jue; the case G = GL,, /g is similar and
will be left to the reader. We now focus on the connecting maps

YK, PGLy,) —— H(K, ji)

-

H(K,SLy /1e) —— H'(K, PGL,) > H(K, i)
induced by the diagram (2.7). It is well known that H?(K, i) is the n-
torsion part of the Brauer group of K and ¢ sends a central simple algebra
A to its Brauer class [A]; see [Sez, Section X.5]. Hence, §'(A) = e - [A], and
Im(f,) = Ker(d’) consists of algebras A of degree n and exponent dividing
e, as claimed. O

2.8. Special groups. An algebraic group G is called special if H'(E,G) =
{1} for every field extension E/k. Equivalently, G is special if every gener-
ically free G-variety is split. Special groups were introduced by Serre [Se]
and classified by Grothendieck [Gro, Theorem 3] as follows: G is special if
and only if its maximal semisimple subgroup is a direct product of simply
connected groups of type SL or Sp; cf. also [PV, Theorem 2.8]. The follow-
ing lemma can be easily deduced from Grothendieck’s classification; we will
instead give a proof based on Lemma 2.6.

2.9. Lemma. GL,, /ug is special if and only if ged(n,d) = 1.

Proof. If n and d are relatively prime then every central simple algebra of
degree d and exponent dividing n is split. By Lemma 2.6, f, has trivial
image and trivial kernel, showing that H'(E,GL, /ug) = {1} for every
E, ie., GL, /uq is special. Conversely, suppose e = ged(n,d) > 1. Let
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E = k(a,b), where a and b are algebraically independent variables over k,
and D = (a,b). = generic symbol algebra of degree e. Then A = M= (D)
is a central simple algebra of degree n and exponent e, with center E. “This
algebra defines a class in H!(E,PGL,); since e divides d, Lemma 2.6 tells
us that this class is the image of some o € HY(E, GLy, /pq). Since A is not
split, @ # 1, and hence GL,, /14 is not special, as claimed. O

3. THE CANONICAL DIMENSION OF A (G-VARIETY

3.1. Definition. Let X be an irreducible G-variety (not necessarily gener-
ically free). We shall say that a rational map F': X --» X is a canonical
form map if F(x) = f(z) - z for some rational map f: X --» G. Here we
think of F'(x) as a “canonical form” of x. Note that F' and f will usually
not be G-equivariant.

3.2. Remark. If the G-action on X is generically free and F': X --» X is a
rational map then the following conditions are equivalent:

(a) F is a canonical form map,
(b) F(x) € G-z for x € X in general position,
(¢c) mo F' =, where m: X --» X/G is the rational quotient map.

The equivalence of (a) and (b) follows from the fact that the rational quotient
map 7: X --» X/G is a G-torsor over a dense open subset of X/G; cf.
Section 2.3. The equivalence of (b) and (c) is a consequence of the theorem
of Rosenlicht mentioned in Section 2.2.

3.3. Remark. If the G-action on X is generically free then the argument
we used to prove that (a) < (b) in Remark 3.2 also shows that the rational
map f: X --» G in Definition 3.1 is uniquely determined by F. On the
other hand, if the G-action on X is not generically free then this may no
longer be the case. For example, if the G-action on X is trivial then every
f: X --» GG gives rise to the trivial canonical form map F' =idx: X --» X.
This means that in working with canonical form maps, we will want to keep
track of both F' and f. In the sequel we will often say that f: X --» G
induces F: X --» X if F(z) = f(x) -z for x € X in general position.

3.4. Example. Let X = M,,, with the conjugation action of G = GL,,. We
claim that the rational map F': M, --+ M, taking A to its companion
matrix

00 ... 0 =—cp

1 0 ... 0 —cp
F(A) = 01 ... 0 —cpo ’

00 ... 1 -

is a canonical form map. Here " 4 c1t" ' + -+ + ¢, = det(t] — A) is the
characteristic polynomial of A.
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To prove the claim, fix a non-zero column vector v € k™ and define f(A)

as the matrix whose columns are v, Av, ..., A" 1v. It is now easy to see that
f: A f(A) is a rational map M,, -+ GL,,, and f(A)- A = f(A)"LAf(A)
is the companion matrix F(A). O

Our definition of a canonical form map is quite general; for example it
includes the trivial case, where f(z) = lg and thus F(z) = x for every
xz € X. Usually we would like to choose f so that the canonical form of
every element lies in some subvariety of X of small dimension. With this in
mind, we give the following:

3.5. Definition. The canonical dimension cd(X,G) of a G-variety X is
defined as

cd(X, @) = min {dim F(X) — dim(X/G)},
where the minimum is taken over all canonical form maps F': X --» X. If
the G-action on X is generically free, and X represents a € H'(K,G) (see
Section 2.3), we will also write cd(«) in place of cd(X, G).

Note that the symbol cd does not stand for and should not be confused
with cohomological dimension.

3.6. Lemma. The integer cd(X, G) is the minimal value of dim F(G-x) for
x € X in general position. Here the minimum s taken over all canonical
form maps F: X --» X.

Proof. Let m: X --+ X/G be the rational quotient map for the G-action on
X. Then for any canonical form map F': X --+ X, we have 1t = 1o F. In
particular, 7 F(X) is dense in X/G. Applying the fiber dimension theorem
to

T rx): F(X) --» X/G,
we see that

dim F(X) —dim X/G =dim F(X)NG -z =dim F(G - z)

for x € X in general position. By Definition 3.5, cd(X, G) is the minimal
value of this quantity, as F' ranges over all canonical form maps F: X --»
X. O

3.7. Example. Let X = M,, with the conjugation action of G = GL,.
Then the canonical form map F constructed in Example 3.4 takes every
orbit in X to a single point. This shows that ¢cd(M,,, GLy,) = 0. The same
argument shows that cd(M,, PGL,) = 0; cf. also Lemma 4.10 below.

4. FIRST PROPERTIES

4.1. Subgroups.

4.2. Lemma. If X is a G-variety and H is a closed subgroup of G then
cd(X,G) +dim X/G < cd(X,H)+dim X/H .
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Proof. The left hand side is the minimal value of dim F(X), as F' ranges
over canonical form maps F': X --+ X induced by f: X --+ G. The right
hand side is the same, except that f is only allowed to range over rational
maps X --+ H. Since there are more rational maps from X to G than from
X to H, the inequality follows. O

4.3. Connected components.

4.4. Lemma. Let X be a G-variety and let GO be the connected component
of G. Then cd(X,G?) = cd(X, G).

Proof. The inequality cd(X, G) < cd(X,GY) follows from Lemma 4.2, with
H = G°. To prove the opposite inequality, let F': X --» X be a canonical
form map such that dim F(G - z) = c¢d(X, G) for z € X in general position.
Suppose F' is induced by a rational map f: X --+ G, as in Definition 3.1.
Since X is irreducible, the image of f lies in some irreducible component
of G. Let g be an element of this component. Then we can replace f by
i X ——» G° where f'(z) = g~ 'f(z), and F by F': X --» X given by
F'(z) = f'(x) -2 = g~' - F(z). (Note that here g is independent of z.)
Since F'(G - x) is a translate of F(G - x), we conclude that cd(X,G?) <
dim F'(G°-z) < dim F/(G - z) = dim F(G - z) = cd(X, G). O

4.5. Direct products.

4.6. Lemma. Let X; be a G;-variety for i = 1,2, G = G1 X Gy and X =
X1 x Xo. Then Cd(X, G) < Cd(Xl, Gl) + Cd(XQ, GQ)

Proof. If F;: X; --+ X; are canonical form maps induced by f;: X; --» G;
(for i = 1,2) then F' = (F1, Fy): X --» X is a canonical form map induced
by f = (fl,fg)i X=X xX9--» G1 X Gg. Clearly,

F(G . 33) = Fl(Gl . 1‘1) X FQ(GQ . 332)
for any x = (z1,22) and thus dim(F - x) = dim(F - x1) + dim(Fy - x2). The
desired inequality now follows from Lemma 3.6. (]

4.7. Split varieties.

4.8. Lemma. Let X be a generically free G-variety and let m: X --» X/G
be the rational quotient map.

(a) If X is split (cf. Section 2.4) then cd(X,G) = 0.
(b) Suppose G is connected. Then the converse to part (a) holds as well.

Proof. (a) Since X is split, we may assume X = G x Xy, where Xy =
X/G; see Section 2.4(i). The map F: X — X, given by F': (g,z9) —
(1g, xo) is clearly a canonical form map (see Remark 3.2), with dim F(X) =
dim(X/G), and the desired equality follows.

(b) After replacing X be a G-invariant dense open subset, we may as-
sume that the G-orbits in X are separated by regular invariants. Suppose
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cd(X,G) = 0, ie., dim F(X) = dim(X/G) for some canonical form map
F: X --» X. Tt is enough to show that mpx): F'(X) --+» X/G is a bira-
tional isomorphism. Indeed, if we can prove this then

ﬁﬁM:Xﬂ§f+FQ3L+X

will be a rational section (as defined in Section 2.4).

To prove that mp(x) is a birational isomorphism, consider the fibers of
this map. If x € X is a point in general position and y = 7w(z) € X/G then
71"}1()() (y) = F(G - z). Since G is connected, G - x is irreducible, and so is
F(G-z). On the other hand, since cd(X,G) =0, Wﬁ,l(x) (y) is O-dimensional.

We thus conclude that 7r‘}1( X) (y) is a single k-point for y € X/G in general

position. Hence, mp(x) is a birational isomorphism (cf., e.g., [Hu, Section
1.4.6]), and the proof is complete. O

4.9. Normal subgroups

4.10. Lemma. Let o: G — al)e a surjective map of algebraic groups and
H = Ker(a). Suppose X is a G-variety or, equivalently, a G-variety with
H acting trivially. Then
(a) cd(X,G) > cd(X,G).
(b) If H is special then cd(X,G) = cd(X, G).
Proof. Part (a) follows from Definition 3.5, because f: X --» G and
f=f(mod H): X -G

give rise to the same canonical form map F': X --+ X.

(b) Reversing the argument of part (a), it suffices to show that every
rational map f: X --» G can be lifted to f: X --» G.

Since a: G — @ separates the orbits for the right H-action on G, it is a
rational quotient map for this action: cf, [PV, Lemma 2.1]. If H is special
then a has a rational section 3: G --» G. (Note that 3 is a rational map
of varieties but not necessarily a group homomorphism.) Moreover, for any
go € G, the map By,: G --» G, given by By, : g — go_lﬂ(oz(go)g) is also a
rational section of a. After replacing 3 by fy,, for a suitable g9 € G, we
may assume that f(X) does not lie entirely in the indeterminacy locus of 3.
Now f = B0 f: X ——» G is the desired lifting of f: X --» G. (]

4.11. Proposition. Let X be a G-variety and H be a closed normal subgroup
of G. If H is special and the (restricted) H-action on X is generically free
then ¢cd(X,G) = cd(X/H,G) = cd(X/H,G/H).

Strictly speaking, the rational quotient variety X/H is only defined up
to birational isomorphism. However, there exists a birational model Y of
X/H, such that the G-action on X descends to a (regular) G/H-action (or
equivalently, a regular G-action) on Y; see [PV, Proposition 2.6 and Corol-
lary to Theorem 1.1]. The symbol X/H in the statement of Proposition 4.11
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denotes Y as above; any two such models will are birationally isomorphic as
G-varieties.

Proof. The equality cd(X/H,G) = cd(X/H,G/H) follows from Lemma 4.6(b);
we shall thus focus on proving that cd(X,G) = cd(X/H, G).

After replacing X by an G-invariant open subset, we may assume that
the quotient map 7: X — X/H is regular. If 7': X/H --+ Z is a rational
quotient map for the G-action on X/H then 7’ om: X --» Z is a rational
quotient map for the G-action on X. In particular, X/G and Z = (X/H)/G
have the same dimension. By Definition 3.5 we only need to show that

(i) given a canonical form map F': X --» X there exists a canonical form
map F': X/H --» X/H such that dim F(X) > dim F’(X) and conversely,
that

(ii) given a canonical form map F': X/H --+ X/H, there exists a canon-
ical form map F: X --» X such that dim F(X) = dim F'(X).

Since H is special and its action on X is generically free, we can choose
a rational section av: X/H --+ X for the quotient map 7: X — X/H.

We now proceed to prove (i). Suppose F' is induced by a rational map
f: X --» G. After translating o by an element of H, we may assume that
the image of o meets the domain of f. Now let F': X/H --» X/H be the
canonical form map induced by f' = foa: X/H --+ G. Then the diagram

(4.12) x- - sx

)k

x/H-">x/H

commutes, and (i) follows.

To prove (ii), choose a Zariski open subset U C X/H, such that « is
regular in U and m: 77 1(U) — U is an H-torsor. In particular, there
is a morphism s: 771(U) — H such that s(z) - x = a(n(z)). Suppose
the canonical form map F': X/H --» X/H is induced by f': X/H --» G.
After replacing f’ by gf’ for a suitable ¢ € G, we may assume without
loss of generality (and without changing dim F'(X/H)) that F'(z) € U for
T € X/H in general position.

We will now construct the canonical form map F': X --» X, whose exis-
tence is asserted by (ii). To motivate this construction, we remark that it is
easy to define a canonical form map F' so that the diagram (4.12) commutes;
such a map is induced by f = f'om: X --» G. However, this diagram only
shows that dim F(X) > dim F'(X/H); equality will not hold in general.
On the other hand, we are free to modify f(x) by multiplying f’(7(z)) by
any element of H on the left (this element of H may even depend on z);
the resulting canonical form map F will still give rise to a commutative di-
agram (4.12). With this in mind, we define F': X --» X as the canonical
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form map induced by f: X --+ GG, where
f(@) = s(f'(n(x)) - 2)f(7(z))

for x € X in general position. As we mentioned above, the diagram (4.12)
commutes; moreover, by our choice of s, F(X) C «(X/H). Hence, 7 re-
stricts to an isomorphism between F(X) and 7(F(X)) = F/(X/H). This
proves (ii). O

4.13. Remark. Lemma 4.10 and Proposition 4.11 may fail if H is not special;
see Example 5.9. If H is special, Proposition 5.9 may still fail if the H-action
on X is not generically free; see Remark 15.5.

5. A LOWER BOUND

5.1. Definition. Let S be an algebraic group and Y be a generically free
S-variety. We define e(Y,S) as the smallest integer e with the following
property: given a point y € Y in general position, there is an S-equivariant
rational map f:Y --» Y such that f(Y) contains y and dim f(Y) < e+
dim(.S).

5.2. Remark. Note that this definition is similar to the definition of the
essential dimension ed(Y,S) of Y; cf. Section 2.1. The difference is that
ed(Y,S) is the minimal value of dim f(Y) — dim(S), where f is allowed
to range over a wider class of rational S-equivariant maps. In particular,
e(Y,S) > ed(Y,S). Note also that e(Y,S) depends only on the birational
class of Y, as an S-variety.

5.3. Remark. In the sequel we will be particularly interested in the case
where Y is itself an algebraic group, S is a closed subgroup of Y, and
the S-action on Y is given by translations (say, by right translations, to
be precise). In this situation, e(Y,S) is simply the minimal possible value
of dim f(Y) — dim(S), where f ranges over all S-equivariant rational maps
Y --» Y. Indeed, after composing f with a suitable left translation g: ¥ —
Y, we may assume that f(Y') contains any given y € Y.

5.4. Lemma. Let Y be a generically free S-variety.

(a) If Y is split (cf. Section 2.4) then e(Y,S) = 0.

(b) Suppose there exists a dominant rational S-equivariant map o: 'V --»
Y, where V is a vector space with a linear S-action. Then e(Y,S) = ed(S5).

(c) If Y = G is a special algebraic group, S is a subgroup of G and the
S-action on'Y is given by translations then e(Y,S) = ed(S).

Note that the condition of part (a) is always satisfied if S is a special
group.

Proof. (a) If Y is split, it is birationally isomorphic to S x Z, where S acts
by translations on the first factor and trivially on the second. In fact, we
may assume without loss of generality that ¥ = S x Z. Now for any 2y € Z
consider f,,: S x Z --» S x Z, given by (s,z) — (s,20). As zp ranges over
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Z, the images of f,, cover Y. Each of these images has the same dimension
as S; this yields e(Y,S) = 0.

(b) Let 3: Y --» Y be the dominant S-equivariant rational map from Y
to a generically free S-variety Y[ of minimal possible dimension, ed(S) +
dim(S); cf. Remark 5.3. Then for any v € V, there is a rational G-
equivariant map v: Yy --» V such that v lies in the image of 7; see [R,
Proposition 7.1]. Taking f = ao~vyo(:Y --»Y in Definition 5.1 and vary-
ing v over V, we see that e(Y,S) < dim(Yp) —dim(S) = ed(S). The opposite
inequality was noted in Remark 5.2.

(c) Let V' be a generically free linear representation of G (and thus of
S). Since G is special, V is split; cf. Section 2.4. Consequently, there is a
dominant rational map V --+ G of G-varieties (and hence, of S-varieties).
The desired conclusion now follows from part (b). O

5.5. Proposition. Let G be a connected group and X be an irreducible G-
variety with a stabilizer S in general position. Then

(a) cd(X,G) > e(G, S), where S acts on G by translations.
In particular,

(b) cd(X,G) > ed(G, S), and

(c) if G is special then cd(X,G) > ed(S).

Proof. (b) and (c) follow from (a) by Remark 5.2 and Lemma 5.4(c) respec-
tively.

To prove part (a), choose a canonical form map F': X --» X such that
dim F(G - x) = c¢d(X, G) for x in general position; cf. Lemma 3.6. Suppose
that F' is induced by a rational map f: X --» G, as in Definition 3.1, and
consider the commutative diagram

!

G--->aG

b, b
Gaz-T>Ga

of rational maps, where ¢: G — G - x is the orbit map, ¢(g9) = ¢ - =, and
F'(g)=f(g-z) =

Now set S = Stabg(x) and observe that F'(gs™!) = F'(g)s™! for every
s € S. In view of Remark 5.3, this implies

dim F'(G) —dim S > ¢(G, 9).

On the other hand, F'(G) is an S-invariant subvariety of G and (because
the above diagram in commutative) F(G - x) = ¢(F'(G)). Finally, since for
any g € G, ¢(gs~!) = #(g) if and only if s € S, we see that the fibers of
the map ¢p(x): F'(X) — F(G - x) are precisely the S-orbits in F'(X).
Consequently,

cd(X,G) = dim F(G - z) = dim F'(G) —dim S > ¢(G, S),
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as claimed. O

5.6. Remark. Proposition 5.5 assumes that the G-action on X has a sta-
bilizer in general position, i.e., there exists a subgroup S C G such that
Stab(z) is conjugate to S for x € X in general position. This condition is
satisfied by many but not all group actions; see [PV, Section 7]. For an ar-
bitrary G-action on X, our proof of part (a) shows that if e(G, Stab(z)) > d
for x in a Zariski dense open subset of X then c¢d(X,G) > d.

Note also that if L, is a Levi subgroup of Stab(z) then by a theorem of
Richardson (see [Ri, Theorem 9.3.1] or [PV, Theorem 7.1]), there exists a
non-empty Zariski open subset U C X such that L, and L, are conjugate in
G. Since ed(Ly;) = ed(Stab(x)) (this is an immediate consequence of [San,
Lemma 1.13]; for a direct geometric proof, see [Ko]), ed(Stab(x)) assumes
the same value for every = € U. In particular, Proposition 5.5(c) remains
valid for an arbitrary G-action, provided that we replace the inequality
cd(X,G) > ed(S) by cd(X,G) > ed(Stab(x)) for z € U.

5.7. Corollary. Let G be a connected group, S be a closed subgroup, and
X =G/S be a homogeneous space. Then

(a) cd(X,G) = e(G, S), where S acts on G by translations.
(b) If G is special then cd(X,G) = ed(S5).

Proof. Part (b) follows from part (a) and Lemma 5.4(c).

To prove (a), note that by Proposition 5.5, we only need to show that
cd(X,G) < e(G,9), i.e., to construct a canonical form map F: X --» X
such that
(5.8) dim F(G - x) =e(G,S5)
for x in general position. We will define F' by reversing the construction in
Proposition 5.5. Let F': G --» G be an S-equivariant rational map (with
respect to the right translation action of S on @), such that dim F'(G)
assumes its minimal possible value, e(G, S) +dim(S); cf. Remark 5.3. Then
f': G --» G given by f'(g9) = F'(g)g~ "' is S-invariant (with respect to the
right translation action of S on G). Hence, f’ descends to f: G/S --» G.
Thus we have a commutative diagram

F/

G --» G
! !
a/s B oays

where F(z) = f(z) - 2. Here F is, by construction, a canonical form map,
and

dim F(G/S) = dim F'(G) —dim S = ¢(G, S),
as desired. ([l

5.9. Example. Let G be a special group and H be a non-special closed
normal subgroup of G. (For example, G = SL,, and H = p,, is the center of
G.)
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(i) Let X = G/H. Then by Corollary 5.7(b), cd(X,G) = ed(H), which
is > 1; cf. [R, Proposition 5.3]. On the other hand, cd(X,G/H) = 0; (cf.
Lemma 4.8(a)). This shows that the equality cd(X,G) = ¢d(X,G/H) in
Lemma 4.10(b) may fail if H is not special.

(ii) Now let X = G (viewed as a G-variety with the translation action).
Then c¢d(X,G) = 0 (cf. Lemma 4.8(a)) but, cd(X/H,G) = ed(H). This
shows that the equality cd(X,G) = c¢d(X/H,G) in Proposition 4.11 may
also fail if H is not special.

6. A COMPARISON LEMMA

6.1. Lemma. Let a: X --» Y be a dominant rational map of irreducible
G-varieties. Suppose dim(G - x) = d and dim(G -y) = e for x € X and
y € Y in general position. Then cd(X,G) < cd(Y,G) +d —e.

Proof. Let F:' Y --» Y be a canonical form map such that dim F(G - y) =
cd(Y,G) for Y in general position. Suppose F' is induced by f: Y --» G,
ie., F(y) = f(y) -y, as in Definition 3.1.

Now consider f' = foa: X --+ G and the induced canonical form map
F': X --» X given by F'(x) = f/(z) - x. The relationship between F and
F' is illustrated by the following commutative diagram, where z is a point
in general position in X and y = a(x) € Y.

/

G-x - FI(G-x)
a | l a
F
Gy --» F(G-y).
Each fiber of a: G- — G - y has dimension d — e. Hence, each fiber of
the right vertical map op(q.,) has dimension < d — e. Applying the fiber
dimension theorem to this map, we obtain
dim F'(G-z) <dim F(G-y)+d—e=cd(Y,G) +d —e,
and the proposition follows; cf. Lemma 3.6. (]
Let X be a G-variety and H be a closed subgroup of G. Recall that
an H-invariant (not necessarily irreducible) subvariety ¥ C X is called a
(G, H)-section if (i) G -Y 1is dense in X and (ii) for y € Y in general
position, g -y € Y < g € H. Note that in some papers a (G, H)-section is
called a relative section (cf. [PV, Section 2.8]) or a standard relative section
with normalizer H (cf [Po, (1.7.6)]).
6.2. Corollary. Let X be an irreducible G-variety.
(a) If X has a (G, H)-section then cd(X,G) < e(G,H) + d — dim(G) +
dim(H), where d = dim(G - x) for x € X in general position.
(b) If X has a stabilizer S in general position then
e(G,S) <cd(X,G) <e(G,N) —dim(S) + dim(N),

where N is the normalizer of S in G.
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Proof. (a) The existence of a (G, H)-section is equivalent to the existence of
a G-equivariant rational map X --+ G/H; see [Po, Theorem 1.7.5]. Thus by
Lemma 6.1, cd(X,G) < cd(G/H,G) —d + dim(G/H). By Corollary 5.7(a)
cd(G/H,G) = e(G, H), and part (a) follows.

(b) The inequality e(G,S) < cd(X,G) follows from Proposition 5.5(a).
To prove the inequality

(6.3) cd(X,G) < e(G, N) — dim(8) + dim(N),

note that by [Po, (1.7.8)], X has a (G, N)-section. Substituting H = N and
d = dim(G) — dim(S) into the inequality of part (a), we obtain (6.3). O

7. THE CANONICAL DIMENSION OF A GROUP

In this section we will define the canonical dimension of an algebraic group
G. We begin with a simple lemma.

7.1. Lemma. Let X be an irreducible G-variety, and let Z be an irreducible
variety with trivial action of G. Then cd(X x Z,G) = cd(X, G).

Proof. The inequality cd(X x Z,G) < cd(X,G) follows from Lemma 6.1,
applied to the projection map a: X x Z — X. To prove the opposite
inequality, let ¢ = ¢d(X x Z,G) and choose a canonical form map F: X X
Z --» X x Z such that dim F(G - (x,z)) = c¢. Suppose F is induced by
f: XXxXZ--+G,ie., F(x,z) = f(x,2) (z,2), as in Definition 3.1. It is now
easy to see that for zp € Z in general position, the map f,,: X --» G given
by f.(x) = f(z,20) gives rise to a canonical form map F,,: X --» X such
that dim Fy(G - x) = c. In other words, cd(X,G) < ¢, as claimed. O

7.2. Proposition. Let V be a generically free linear representation of G.
(a) If X is an irreducible generically free G-variety then cd(X,Q)
cd(V,G).
(b) If W is another generically free G-representation, then cd(V,G) =
cd(W,G).

VAN

Proof. (a) By [R, Corollary 2.20], there is a dominant rational map a: X x
A% =5 V of G-varieties, where d = dim(V), and G acts trivially on A?.

Now
by Lemma 6.1

d(X, )R T (X x AT G < ed(V, @),
as claimed.
(b) cd(W,G) < cd(V,G) by part (a). To prove the opposite inequality,
interchange the roles of V and W. ([

7.3. Definition. We define the canonical dimension cd(G) of an algebraic
group G to be ¢d(V,G), where V is a generically free linear representation
of G. By Proposition 7.2(a) this number is independent of the choice of V.
Moreover, by Proposition 7.2(b) ¢d(G) = max{cd(X, G)}, as X ranges over
all irreducible generically free G-varieties.
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7.4. Corollary. Suppose W is a linear representation of G such that Stabg(w)
is finite for w € W in general position. Then cd(G) < cd(W,G).

Proof. Let V' be a generically free linear representation of G. Then so is
X =V x W. The desired inequality is now a consequence of Lemma 6.1,
applied to the projection map a: V x W — W. O

7.5. Lemma. (a) cd(G) < cd(H) + dim(G) — dim(H), for any closed sub-
group H C G.

(b) cd(G) = cd(GY).

(c) cd(G) = 0 if and only if G° is special.

(d) cd(G1 x G2) < ¢d(G1) + cd(G2).

Proof. (a) Follows from Lemma 4.2, with X = V = generically free linear
representation of G.

(b) Immediate from Lemma 4.4.

0

(c) By part (b), we may assume G = G" is connected. The desired

conclusion now follows from Lemma 4.8.
(d) Follows from Lemma 4.6, by taking X; = V; to be a generically free
representation of G; for i = 1, 2. O

7.6. Example. Consider the subgroup

b1

H={| 4 b5 | A€ GLy 1, br,...,bo1 €k},

n—1

0...0 1

of G = PGL,. The Levi subgroup of H is special (it isomorphic to GL,_1);
hence, H itself is special. (This follows from the theorem of Grothendieck
stated in Section 2.8 or alternatively, from [San, Lemma 1.13].) Since
dim(H) = n? — n, Lemma 7.5(a) yields cd(PGL,) < n — 1. In particu-
lar, cd(PGL32) = 1. (Note that cd(PGL2) > 1 by Lemma 7.5(c)).
Alternatively, we can deduce the inequality ¢d(PGL,) < n—1 by applying
Lemma 6.1 to the projection map M, x M,, — M,, to the first factor,
where PGL,, acts on M,, by conjugation. The PGL,-action on M,, x M,,
is generically free; hence, cd(PGL,,) = cd(M,, x M, PGL,,). On the other
hand, cd(M,,, PGL,) = 0; see Example 3.7. Now Lemma 6.1 tells us that

cd(PGL,) = cd(M,, x M,,, PGL,,) < ¢cd(M,,,PGL,,) +n—1—-0=n—1.
For a third proof of this inequality, see Example 9.9.

8. SPLITTING FIELDS

Throughout this section we will assume that G/k is a connected linear
algebraic group. Unless otherwise specified, the fields E, K, L, etc., are
assumed to be finitely generated extensions of the base field k.
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Let X be a generically free irreducible G-variety, E = k(X)% = k(X/G),
m: X --» X/G be the rational quotient map and F': X --» X be a canonical
form map. Recall that F' commutes with 7, so that F'(X) may be viewed
as an algebraic variety over E.

8.1. Lemma. Let X be a generically free G-variety such that G-orbits in X
are separated by reqular invariants and let F': X --+» X be a canonical form
map. Suppose o € HY(E,G) is the class represented by X. Then for any
field extension K/E the following conditions are equivalent:

(a) ag =1,

(b) X is rational over K,

(c) F(X) is unirational over K,
(d) K-points are dense in F(X),
(e) F(X) has a K-point.

Proof. We begin by proving the lemma in the case where K = FE.

(a) = (b): If @« = 1 then X is birationally isomorphic to X/G x G (over
X/@G). Now recall that the underlying variety of a connected algebraic group
G is rational over k. Hence, X/G X G is rational over X/G, i.e., X is rational
over E.

(b) = (c): The rational map F': X --» F(X) is, by definition, dominant.
If X is rational, this makes F'(X) unirational.

(¢) = (d) and (d) = (e) are obvious.

(e) = (a): An E-point in F'(X) is a rational section s: X/G --» F(X) C
X for w. The existence of such a section implies that X is split, and hence,
so is a; see Section 2.4.

To prove the general case, note that since the G-orbits in X are separated
by regular invariants, we can choose a regular model of the rational quotient
variety X/G, so that the rational quotient map m: X — X/G is regular
and its fibers are exactly the G-orbits in X. After making X/G smaller if
necessary, we may also assume that our field extension K/FE is represented
by a surjective morphism Y — X/G of algebraic varieties. Then ajx is
represented by the G-variety X = X X x/q Y.

We claim that the morphism 7x: Xg — Y (projection to the second
component) separates the G-orbits in Xx. Indeed, if for some 1,29 € X,
z1 = (z1,y) and z2 = (x2,y) € Xk have the same second component then
m(x1) = 7(x2). We conclude that 21 and x5 are in the same G-orbit in X
and consequently, z; and z3 are in the same G-orbit in X, as claimed. This
shows that 7 is a rational quotient map for the G-action on Xg; cf. [PV,
Lemma 2.1].

We now define a rational map Fx: Xi --+ Xg by Fx(x,y) = (F(z),y).
Since mgoFg = Tk, Fi is a canonical form map; see Remark 3.2. Moreover,
Fg(Xk) = F(X) xx/q Y. Replacing X by Xx and F by Fg, we reduce
the lemma to the case we settled at the beginning of the proof (where K =
E). O
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Let @ € HY(E,G). As usual, we will call a field extension K/E a split-
ting field for o if the image ax of a under the natural map H'(E,G) —
HY(K,G) is split. If a is represented by a generically free G-variety X, with
kE(X)¢ = E then we will also sometimes say that K is a splitting field for
X.

8.2. Proposition. Suppose o € H'(E,G).

(a) If cd(a)) = 1 then there exist 0 # a,b € E such that a field extension
K/E splits o if and only if the quadratic form q(z,y, z) = 2% + ay® + bz? is
isotropic over K. In particular, o has a splitting field K/E of degree 2.

(b) If cd(a) = 2 then « has a splitting field K/E of degree 2, 3, 4, or 6.

Note that if K/F is a splitting field for « then [K : E] = 1 is impossible
in either part. Indeed, otherwise « itself is split, and cd(a) = 0 by see
Lemma 4.8(a).

Proof. Choose a canonical form map F': X --» X, such that dim F(X) —
dim(X/G) = cd(a). By Lemma 8.1, F'(X) is unirational over every splitting
field K of o in particular, it is unirational over the algebraic closure E of
E.

(a) Here F(X) is a curve over F, and Liiroth’s theorem tells us that
F(X) is rational over E. It is well known that any such curve is birationally
isomorphic to a conic Z in P% (see, e.g., [MT, Proposition 1.1.1]) and that
K-points are dense in Z if and only if Z(K) # 0 (see, e.g., [MT, Theorem
1.2.1]). Writing the equation of Z C P% in the form 22 + ay® + b2? = 0, we
deduce the first assertion of part (a). The second assertion is an immediate
consequence of the first; for example, K = E(y/—a) is a splitting field for a.

(b) Here F(X) is a surface over F, which becomes unirational over the
algebraic closure E. By a theorem of Castelnuovo, F(X) is, in fact, rational
over E. Let Z be a complete smooth minimal surface, defined over E, which
is birationally isomorphic to F(X) via ¢: F(X) --» Z and let U C Z be
an open subset such that ¢ is an isomorphism over U. Part (b) now follows
from Lemma 8.1 and Lemma 8.3 below. ([

8.3. Lemma. Let E be a field of characteristic zero, Z be a complete minimal
surface defined over E and rational over E, and let U be a dense open subset
of Z (defined over E). Then U contains a K-point for some field extension
K/E of degree 1, 2, 3, 4 or 6.

Proof. By the Enriques-Manin-Iskovskih classification Z is a conic bundle
or a del Pezzo surface; see [I, Theorem 1] or [MT, Theorem 3.1.1]. Note that
7 = P2, listed as a separate case in [I, Theorem 1], is, in fact, a del Pezzo
surface. (We remark however, that the lemma is obvious in this case, since
E-points are dense in P%.)

If f: Z — C is a conic bundle over a rational curve C, then after re-
placing E by a quadratic extension E’, we may assume that Cg ~ IP’}E/. For
every E'-point z € C, f~!(z) is a rational curve over E'. Taking z € Cr so
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that f~1(2) NU # (), we can choose an extension K/E' of degree 1 or 2 so
that f~1(z)x ~ Pk. Now [K : E] =1, 2 or 4, and K-points are dense in
f~%(2), so that one of them will lie in U.

From now on we may assume that Z is a del Pezzo surface. Recall that the
anticanonical divisor —{2z on a del Pezzo surface is ample, and the degree
d = Qyz-Qyz can range from 1 to 9.

If d = 1 the linear system | — 2Qz| defines a (ramified) double cover
f:Z — Q, where Q is a quadric cone in P%,; see [I, p. 30]. Then Qp ~
P2, for some extension E'/E of degree 1 or 2. Now choose an E’-point
r € f(U) C Q and split f~!(x) over a field extension K/E' of degree 1 or
2. Then [K : E] =1, 2 or 4 and U contains a K-point.

If d = 2 then the linear system | — Q| defines a (ramified) double cover
Z — P2 (see [I, p. 30]), and points of degree 2 are dense in Z.

If 3 < d < 9 then it is enough to show that Z(K) # 0 for some field
extension K/E of degree 1, 2, 3, 4 or 6. Indeed, if Z(K) # 0 then Zk is
unirational over K (see [MT, Theorem 3.5.1]) and thus K-points are dense
in Z. Note also that for 3 < d < 9, Z is isomorphic to a surface in P? of
degree d. Intersecting this surface by two hyperplanes in general position,
we see that Z has a point of degree dividing d. This proves the lemma for
d =3, 4, and 6.

For d =5 and 7, Z always has an E-point (see [MT, Theorem 7.1.1}), so
the lemma holds trivially in these cases. For d = 8, Z has a point of degree
dividing 4 and for d = 9, Z has a point of degree dividing 3 (see [MT, p.
80]). The proof of the lemma is now complete. ]

8.4. Example. Suppose o € H'(K,PGL,) is represented by a central simple
algebra of index d. Then the degree of every splitting field for « is divisible by

2,ifd >3

d (cf. e.g, [Row, Theorem 7.2.3]); hence, cd(a) > { 1 -7
3,ifd#1,2,3,4 or 6.
2, if n > 3,

In particular, cd(PGL,,) > _
3,ifn+#1,2,3,4 or 6.

For sharper results on

cd(PGL,), see Section 11.

8.5. Example. Let V be a generically free linear representation of G = Fy,
Eg or By (adjoint or simply connected), K = k(V)¢ and a € H'(K, G) be
the class represented by the G-variety V. Then the degree of any splitting
field L/ K for a € H'(k(V)%, Q) is divisible by 6; [RY2, p. 223]. We conclude
that ¢cd(G) > 2 for these groups.

8.6. Example. c¢d(G) > 3, if G = Eg or adjoint E7; see [RY2, Corollaries
5.5 and 5.8].

8.7. Remark. Let G be a connected linear algebraic group defined over k
and let H be a finite abelian p-subgroup of G, where p is a prime integer.
Recall that the depth of H is the smallest value of 4 such that [H : HNT] = p',
as T ranges over all maximal tori of G; see [RY?2, Definition 4.5]. Note that
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H has depth 0 if and only if it lies in a torus of G. A prime p is called a
torsion prime for G if and only if G has a finite abelian p-subgroup of depth
> 1. (This is one of many equivalent definitions of torsion primes; see [St,
Theorem 2.28].) The inequalities of Examples 8.4 - 8.6 may be viewed as
special cases of the following assertion:

Suppose a connected linear algebraic group G has a p-subgroup H of depth
d

(a) If cd(G) < 1 then p? =1 or 2.

(b) If cd(G) < 2 then p? =1, 2, 3 or 4.
The proof is immediate from Proposition 8.2 and [RY9, Theorem 4.7] (where
we take X to be a generically free linear representation of ).

9. GENERIC SPLITTING FIELDS

9.1. Definition. Let K/E be a (finitely generated) field extension. A
(finitely generated) field extension L/FE is said to be

(a) a specialization of K/E if there is a place ¢: K — LU {00}, defined
over F,

(b) a rational specialization of K/E if there is an embedding K —
L(ty,...,t.), over E, for some r > 0.

In geometric language, (a) and (b) can be restated as follows. Suppose
the field extensions K/E and L/E are induced by dominant rational maps
V --+ Z and W --» Z of irreducible algebraic k-varieties, respectively. Then

(a’) W is a specialization of V if there is a rational map W --» V, such
that the diagram

W--=V

N [

h [

N
N
Z
commutes.

(b’) W is a rational specialization of V if for some r > 0 there is a
dominant map W x A" --+ V such that the diagram
W xA"——>V
N N |
N

N
N

|
y
Z
commutes.

9.2. Remark. In the definition of rational specialization we may assume

without loss of generality that r = max {0, trdeg (L) —trdeg(K)}; see [Roqa,
Lemma 1].

9.3. Definition. Let o € H'(E,G). A splitting field K/E for a is called
generic (respectively, very generic) if every splitting field L/E for « is a
specialization (respectively, a rational specialization) of K/FE.
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9.4. Remark. It is easy to see that a rational specialization is a specializa-
tion (cf. [Saly, Lemma 11.1]). Consequently, a very generic splitting field is
generic.

9.5. Remark. The generic splitting field of o in Definition 9.3 is the same
as the generic splitting field for the twisted group oG defined by Kersten
and Rehmann [KR].

9.6. Lemma. Let G be a connected algebraic group, X be an irreducible
generically free G-variety, E = k(X)® = k(X/G) and F: X -—-» X be a
canonical form map. Then k(F(X))/E is a very generic splitting field for
the class o € HY(E,G) represented by X .

Proof. After replacing X by a G-invariant open subset, we may assume that
G-orbits in X are separated by regular invariants. The generic point of
F(X) is a k(F(X))-point; hence, by Lemma 8.1, F'(X)/FE is a splitting field
for a.

It remains to show that every splitting field L/FE for « is a rational spe-
cialization of k(F(X))/E. After replacing X by a smaller G-invariant dense
open subset, we may assume that L/F is induced by a surjective morphism
Y — X/G of algebraic varieties. Then aj = 1 is represented by the
generically free G-variety X, = X xx/q Y. Since X, is split, it is rational
over L; see Lemma 8.1. The morphisms

x, 5 x L rx) = x/6

now tell us that k(F (X)) — k(Xr) = L(t1,...,t,), over E, where t1,...,t,
are independent variables and r = dim(G). (Here pry is the projection
Xp = X xx/¢ Y — X to the first factor.) This shows that L/E is a
rational specialization of k(F'(X))/E, as claimed. O

9.7. Proposition. Let E/k be a finitely generated field extension. Then for
every a € HY(E,Q),
cd(a) = min {trdegp(K) | K/E is a generic splitting field for o}
= min {trdegy (L) | L/E is a very generic splitting field for o }.
Proof. Let X be a generically free G-variety representing «; in particular,
E = k(X)% = k(X/G). Since cd(X,G) is, by definition, the minimal value
of dim F(X)—dim(X/G) = trdegy k(F(X)), as F ranges over all canonical
form maps X --+ X, Lemma 9.6 tells us that
cd(a) = cd(X,G) > min{trdegy (L) | L/E is a very splitting field for o }.
Now let K/E be a generic splitting field for «. It remains to show that
(9.8) cd(X,G) < trdegp(K)

Choose a variety Y whose function field £(Y') is K; the inclusion £ C K
then gives rise to a rational map Y --+ X/G. By Lemma 9.6 (with F' = id),
k(X)/E is a very generic (and hence, a generic; cf. Remark 9.4) splitting
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field of a.. Since k(X)/E and K/E are both generic splitting fields, each
is a specialization of the other. Geometrically, this means that there exist
rational maps fi: X --» Y and fo: Y --» X such that the diagram

f1 f2
X-——-——->Y-——-—"—-=X
N | s
N | Ve
N 7
N
X/G

commutes. After replacing Y by the closure of the graph of fy in ¥ x X,
and fo by the projection from this graph to X, we may assume that fs5 is a
morphism. Now F' = fy o f; is a well defined rational map X --+ X which
commutes with the rational quotient map 7: X --+ X/G. By Remark 3.2,
F' is a canonical form map. Thus

cd(X,G) <dim F(X) —dim X/G < dim f3(Y) —dim X/G <
dim(Y) — dim(X/G) = trdeg, (K) — trdegy,(E) = trdegp(K)
Thus completes the proof of (9.8) and thus of Proposition 9.7. O

9.9. Example. Let o € H'(E,PGL,) be represented by a central simple
E-algebra A and let K be the function field of the Brauer-Severi variety of
A. Then K/FE is a very generic splitting field for « (see, e.g., [Sala, Corollary
13.9]) and trdegp(K) = n — 1. By Proposition 9.7, cd(a) < n — 1. This
gives yet another proof of the inequality cd(PGL,) < n — 1 of Example 7.6.

10. THE CANONICAL DIMENSION OF A FUNCTOR

The results of the previous section naturally lead to the following defini-
tions. Let F be a functor from the category Fields; of finitely generated
extensions of the base field k& to the category Sets™ of pointed sets. We
will denote the marked element in F(F) by 1g (and sometimes simply by
1, if the reference to the field E is clear from the context). Given a field
extension L/FE, we will denote the image of a € F(F) in F(L) by af.

The notions of splitting field and generic splitting field naturally extend
to this setting. That is, given a € F(E), we will say that L/E is a split-
ting field for o if oy, = 1. We will call a splitting field K/FE for « generic
(respectively, very generic) if every splitting field L/E for « is a specializa-
tion (respectively, a rational specialization) of K/E. Moreover, we can now
define cd(«) by

cd(a) = min {trdegy(K) | K/FE is a generic splitting field for o }
and cd(F) by
cd(F) = max {cd(«) | E/k is a finitely generated extension, o € F(E) }.

Proposition 9.7 says that if G is a connected linear algebraic group and
F = H'(_,G) then the above definition of cd(«) agrees with Definition 3.5.
Moreover, Definition 7.3 tells us that for this F, cd(F) = cd(G).
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Note that none of the above definitions require k to be algebraically closed.
In particular, it now makes sense to talk about the canonical dimension of
an algebraic group defined over a non-algebraically closed field. This opens
up interesting directions for future research, but we shall not pursue them in
this paper. Instead we will continue to assume that k is algebraically closed,
and our main focus will remain on the functors H'(_,G). However, even
in this (more limited but already very rich) context, we will take advantage
of the notion of canonical dimension for a functor by considering certain
subfunctors of H'(_, Q).

We also remark that it is a priori possible that for some functors F, some
fields E/k and some o € F(E) there will not exist a generic splitting field;
if this happens, then, according to our definition, cd(a) = cd(F) = oc.
However, Proposition 9.7 tells us that this does not occur for any functor of
the form H'(_, ), where G is a linear algebraic group, and consequently,
for any of its subfunctors.

10.1. Example. Isomorphic functors clearly have the same canonical di-
mension. In particular, suppose G is a linear algebraic group and U is
a normal unipotent subgroup of G. Then the natural map H'(_,G) —
H'(_,G/U) is an isomorphism (see, e.g., [San, Lemma 1.13]) and hence,
cd(G) = cd(G/U). Taking U to be the unipotent radical of G, we see that
that cd(G) = c¢d(Greq), where Gieq is the Levi subgroup of G.

The following simple lemma slightly extends the observation that isomor-
phic functors have the same canonical dimension. This lemma will turn out
to be surprisingly useful in the sequel.

10.2. Lemma. Suppose 7: F1 — Fa is a morphism of functors with trivial
kernel. Then for every finitely generated field extension E/k,

(a) cd(a) = cd(7()) for any o € F1(E).
(b) cd(F1) < cd(F2).
(¢) Moreover, if T is surjective then cd(F;) = cd(Fa).

Proof. Since 7 has trivial kernel, @ and 7(«) have the same splitting fields
and hence, the same generic splitting fields. This proves part (a). Parts (b)
and (c) follow from part (a) and the definition of cd(F). O

10.3. Example. Recall that the cohomology set H'(_,PSOs,) classifies
pairs (A, o), where A is a central simple algebras of degree 2n with an orthog-
onal involution o of determinant 1; see [KMRT, p. 405]. (Note that [KMRT]
uses the symbol PGO™ instead of PSO.) Consider the morphism of functors
f: HY(_,S02,) — H'(_,PSO2,) sending a quadratic form ¢ of dimension
2n to the pair (Ms, (K), 04), where o, is the involution of My, (K') associated
to g. We claim that f has trivial kernel. Indeed, ¢ € Ker(K) <= ¢ gives
rise to the standard (transposition) involution on Ma, (K) <= ¢ is the 2n-
dimensional form (a,a,...,a,a) for some a € K*; cf. e.g., [KMRT, p. 14].
On the other hand, since we are assuming that K contains an algebraically
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closed base field k of characteristic zero (and in particular, K contains a
primitive 4th root of unity), the form (a,a) is hyperbolic (cf., e.g., [Lam,
Theorem 1.3.2]), and hence, so is q. This shows that f has trivial kernel, as
claimed. Lemma 10.2(b) now tells us that cd(PSOgy,) > ¢d(SOay).

10.4. Example. The exact sequence
1—>,u2—>Spinni>SOn—>1

of algebraic groups gives rise to the exact sequence
0 . *
Son(—) - Hl(—? :U'Q) - Hl(—7 Splnn) s Hl(—? SO”)

of cohomology sets, where § is the spinor norm; see, e.g., [Gar, p. 688].
Since —1 is a square in k, the unit form is hyperbolic, hence § is surjective
and thus m, has trivial kernel. On the other hand, the image of 7, consists
of quadratic forms ¢ of discriminant 1 such that

;) g, ifnis even,
T Vg ), ifnis odd

has trivial Hasse-Witt invariant. Thus cd(Spin,,) = ¢cd(HW,,), where HW,,
is the set of n-dimensional quadratic forms ¢ such that ¢’ has trivial dis-
criminant and trivial Hasse-Witt invariant.

10.5. Example. Define the functors Pf, and GPf, by Pf, (E) = r-fold Pfister
forms defined over E and GPf,(E) = scaled r-fold Pfister forms defined over
E. In other words,

GPf.(FE)={{c)®q|ce E*, ¢ € Pf,(E)}.

Taking ¢ = 1 above, we see that Pf, is a subfunctor of GPf,; hence,
cd(Pf,) < cd(GPf,). On the other hand, since ¢ and (c) ® ¢ have the
same splitting fields for every ¢ € Pf,.(F) and every ¢ € E*, we actually
have equality cd(Pf,) = cd(GPf,).

Now suppose g € Pf,(E). Let ¢’ be a subform of q of dimension 2"~! 4 1.
The argument in [KS, p. 29] shows that K = E(q¢’) is a generic splitting
field for . Recall that E(q’) is defined as the function field of the quadric
hypersurface ¢’ = 0 in Pg_l; in particular, trdegy F(q) = 2"~! — 1. Propo-
sition 9.7 now tells us that cd(q) < 2"~! — 1. On the other hand, if ¢ is
anisotropic, a theorem of Karpenko and Merkurjev [KM, Theorem 4.3] tells
us that, in fact cd(q) = 2”1 — 1. We conclude that

(10.6) cd(GPf,) = cd(Pf,) =271 — 1.

We remark that the setting considered by Karpenko and Merkurjev in [KM]
is a bit different from ours in that they call a field K/FE splitting for a qua-
dratic form ¢/ FE if gk is isotropic, where as we use this term to indicate that
qx is hyperbolic. However, if ¢ is a Pfister form then the two definitions
coincide; cf., e.g., [Lam, Corollary 10.1.6].
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10.7. Example. Consider the exceptional group Go. The functors H'(_, G
and Pf3 are isomorphic; see, e.g., [KMRT, Corollary 33.20]. Hence, cd(G2)
cd(Pf3) = 3; see (10.6).

2)

11. GROUPS OF TYPE A

In this section we will study canonical dimensions of the groups GL, /14
and SL,, /e, where e divides n. We define the functor

(11.1) Chc: Fields, — Sets”

by C (E/k) = {isomorphism classes of central simple E-algebras of degree
n and exponent dividing e}. The marked element in C), .(E/k) is the split
algebra M,,(E). Clearly, Cy, ¢ is a subfunctor of H!(_, PGLy,,).

11.2. Lemma. Let n and d be positive integers and e be their greatest com-

mon diwisor. Then cd(GLy, /ptg) = ¢d(GLy, /pe) = ¢d(SLy, /pte) = ¢d(Chq) =
cd(Cpe).
Proof. By Lemma 2.6, there are surjective morphisms of functors
HY(-,GLy /pta) — Cha,
HY(_,GL, /pte) — Cpne and
Hl(—a SLy, /ﬂe) — Cn,e
with trivial kernels. Basic properties of the index and the exponent of
a central simple algebra tell us that C,, 4 = C,; the rest follows from
Lemma 10.2(c). O
11.3. Lemma. Let n and e be positive integers such that e divides n,
(a) If €' | e and n' | n then cd(SLy, /pe) > cd(SLy /per).
(b) Suppose n = ning and e = ejes, where e; | n; and ny,ne are relatively
prime. Then

cd(SLy, /pte) = ¢d(SLn, /pte; X Sling /ftey) < cd(SLyy /pie;) + cd(SLy, /ptey)

(c) Let n = [[p® be the prime factorization of n (here the product is
taken over all primes p and a, = 0 for all but finitely many primes) and
m =[] p™. Then cd(SLy /pe) = cd(SLy /pte),

Proof. (a) The morphism of functors Cy oo — Cj . given by A +— M= (A)

has trivial kernel. By Lemma 10.2(b), cd(Cy ) > cd(Cyer). The desired
inequality now follows from Lemma 11.2.

(b) First note that the functors
H'(~,SLy /tte; X SLy /ptey) and H'(—,SLy /pre;) X H' (=, SLin, /pic,)

are isomorphic. Thus by Lemma 2.6, there is a surjective morphism of
functors

H'(~,SLn, /tte; X SLny /ie;) — Cryer X Cns e
with trivial kernel. By Lemma 10.2(c),

Cd(SLm //1’61 X San /H€2) = Cd(Cn1,€1 X Cn2,€2)
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and by Lemma 11.2, c¢d(SL, /pe) = cd(Che). The equality in part (b)
now follows from the fact that for relatively prime n, and no the functors
Chy,er X Chy e, and Cp o are isomorphic via (A, A2) — A; ® Az. The
inequality in part (b) is a special case of Lemma 7.5(d).

(¢) By Lemma 11.2, cd(SLy, /pe) = cd(Ch.e) and cd(SLy, /pte) = cd(Chye)-
On the other hand, basic properties of the index and the exponent of a

central simple algebra tell us that the functors ), . and C), . are isomorphic
via A — M,, ), (A). O

11.4. Theorem. Let a € H'(E,PGL,) be the class of a division algebra A
of degree n. = p*, where p is a prime. Then cd(a) =n — 1.

Let X be the Brauer-Severi variety of A. By a theorem of Karpenko [Kj,
Theorem 2.1] every rational map X --» X defined over E is necessarily
dominant. (For a related stronger result, see Merkurjev [Ms, Section 7.2].)
Theorem 11.4 is an easy consequence of this fact; we outline the argument
below.

Proof. The function field K = E(X) is a generic splitting field for A; in
particular, as we pointed out in Example 9.9, cd(a) < n — 1. To prove
the opposite inequality, assume the contrary: A has a generic splitting field
L/FE of transcendence degree < n — 1. Let Y be a variety (defined over E)
with function field L. Since k(X)/E and K/E are both generic splitting
fields for «, each is a specialization of the other. Arguing as in the proof
of Proposition 9.7, we see that there exist rational maps fi: X --+ Y and
f2:Y --+ X such that the diagram

x-Itey-Pox
N | s
N | 7
N s

N

X/G
commutes. Moreover, after replacing Y by the closure of the graph of f
in Y x X, we may assume that f5 is regular. Now f2 o fi is a well defined
rational map X --» X, and

dim fyo f1(X) <dim(Y) <n —1=dim(X),

contradicting Karpenko’s theorem. This concludes the proof of Theorem 11.4.

O
11.5. Corollary. Suppose n = p'ng and e = p’, where ged(p,no) = 1 and
0,if7=0
i>j. Then cd(SLy /pe) =< ifi=0,
pt—1, ij > 1.

Proof. If 5 = 0 then SL, /ue. = SL,, is special and hence, has canonical
dimension 0. Thus we only need to consider the case where j > 1. By
Lemma 11.3(c), cd(SLy /tte) = cd(SLyi /pt,i). Thus we may also assume
that ng =1, i.e., n = p'.
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By Lemma 11.2, c¢d(SL,, /pte) = ¢d(Cp ). Since Cp . is, by definition, a
subfunctor of H'(_,PGL,), Example 7.6 tells us that cd(SLy, /pe) < n —
1 = p’ — 1. To prove the opposite inequality, let A be a division algebra
of degree p' and exponent p/ (such algebras are known to exist; see, e.g.,
[Row, Appendix 7C]) and let a be the class of A in H'(E,PGL,,). Then by
Theorem 11.4, cd(SLy, /pe) > cd(a) = n — 1, as desired. O

11.6. Corollary. Letn = 2ing, wherei > 1 and ng is odd. Then cd(PSp,)) =
20— 1.

Here PSp stands for the projective symplectic group. Note that these
groups are sometimes denoted by the symbol PGSp; see, e.g., [KMRT, p.
347].

Proof. Recall that every a € H'(_,PSp,,) is represented by a pair (4,0),
where A is a central simple algebra of degree 2n and exponent < 2, and o
is a symplectic involution on A. A central simple algebra has a symplec-
tic involution if and only if its exponent is 1 or 2; moreover, a symplectic
involution of a split algebra is necessarily hyperbolic. In other words, the
morphism of functors

Hl(*apspn) — n,2

given by a — A is surjective and has trivial kernel. Here (), 5 is the functor
of central simple algebras of degree n and exponent dividing 2, as in (11.1).
Thus

Cd(PSpn) _ Cd(Cn’Q) by Lem:ma 11.2 Cd(SLn //Lg) by Corogary 11.5 QZ 1 ’

as claimed. O

12. ORTHOGONAL AND SPIN GROUPS

12.1. Lemma. (a) cd(SO,—1) < cd(SOy,) for every n > 2. Moreover, equal-
ity holds if n is even.

(b) cd(Spin,,_;) < c¢d(Spin,,) for every n > 2. Moreover, equality holds if
n s even.

(¢) ¢d(SO,) > cd(Spin,,) for every n > 2. Moreover, if n > 2", where
r > 3 is an integer, then cd(Spin,) > 2"~ — 1.

Proof. (a) The morphism 7: H'(_,S0,_1) — H'(_,S0,), sending a qua-
dratic form ¢ to (1) @ ¢ has trivial kernel. Lemma 10.2(b) now tells us that
cd(SOy,—1) < cd(SOy,).

To prove the opposite inequality for n is even, let ¢ = (a1, ...,a,) € SO,.
Then ¢ = {(a1) ® ¢, where ¢ = (1,aqa2,...,a1a,) lies in the image of 7.
(Note that here we use the assumption that n is even to conclude that ¢ has
discriminant 1.) Since ¢ and ¢ have the same splitting fields, cd(q) = cd(q).
On the other hand, since ¢ lies in the image of 7, Lemma 10.2(a) tells
us that c¢d(§) < ¢d(SO,—1). Thus cd(g) < ¢d(SO,—1) and consequently,
cd(SO;,) < ¢d(SO,—1), as desired.
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(b) is proved by the same argument as (a), using the identity cd(Spin,,) =
cd(HW,,) of Example 10.4. The first assertion follows from the fact that 7
restricts to a morphism HW, | — HW,. In the proof of the second
assertion, the key point is that if a quadratic form ¢ = (a;) ® ¢, of even
dimension n, has trivial discriminant and trivial Hasse-Witt invariant then
so does §; the rest of the argument goes through unchanged.

(c) The first inequality follows from the fact that HW,, is a subfunctor
of H'(_,S0,). To prove the second inequality, note that by part (b) we
may assume n = 2". Since the discriminant and the Hasse-Witt invariant
of an r-fold Pfister form are both trivial for any r > 3, we see that Pf, is a
subfunctor of HW,, and thus

cd(Spin,,) = cd(HW,,) > cd(Pf,) = 2" = 1;

see Example 10.5. O
0,ifn=1or2,

12.2. Example. (a) cd(SO,) =<1, if n = 3 or 4,
3,if n=>5 or 6.

(b) cd(Spin,) =0 for n =3, 4, 5 or 6.
(c) cd(Spin,) =3 forn =7, 8, 9 or 10.

Proof. (a) Note that SO; = {1}, SO3 ~ PGLy, and SOg ~ SLy4 /u2. Hence,
cd(SO1) = 0, and (by Corollary 11.5) ¢d(SO3) = 1 and ¢d(SOg) = 3. The

remaining cases follow from Lemma 12.1(a).

(b) In view of Lemma 12.1(b), it is enough to show that cd(Sping) = 0. By
the Arason-Pfister theorem [Lam, Theorem 10.3.1], the only 6-dimensional
form with trivial discriminant and trivial Hasse-Witt invariant is the split
form. In other words, HWg is the trivial functor and thus

cd(Sping) = cd(HWg) = 0.

Alternative proof of (b): Exceptional isomorphisms of simply connected
simple groups tell us that Sping ~ SLs, Spiny ~ Sp, and Sping ~ SL4 are
all special and hence, have canonical dimension 0; cf. Lemma 7.5(c).

(c) Using the Arason-Pfister theorem once again, we see that every 8-
dimensional quadratic form with trivial discriminant and trivial Hasse-Witt
invariant, is a scaled Pfister form; see [Lam, Corollary 10.3.3]. Thus

cd(Spin;) = cd(Sping) = cd(GPf3) = 3;
see Example 10.5. On the other hand, by a theorem of Pfister every ¢ €
HWj is isotropic, i.e., has the form (1,—1) & ¢/, where ¢ € HWyg; see [Pf,
Proof of Satz 14] (cf. also [KM, Theorem 4.4]).

Applying Lemma 10.2(a) to the morphism HWg — HWjq given by
¢ — (1,—1) & ¢, we see that

cd(q) = cd(q') < cd(HWg) = cd(Sping) .
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This shows that cd(Sping) = cd(Spin;;) < cd(Sping) = 3. The opposite
inequality is given by Lemma 12.1(b). O

12.3. Proposition. ¢d(SOs,,) < M#m for every m > 1.

Proof. Write SOg,,, = SO(q), where ¢ is a non-degenerate quadratic form
on k™. Let X = Gris(m,2m) be the Grassmannian of maximal (i.e., m-
dimensional) g-isotropic subspaces of k2™, i.e., of m-dimensional subspaces
contained in the quadric Q C k?™ given by ¢ = 0. It is well known that X is
a projective variety with two irreducible components X; and X5, each of di-
mension w; see e.g., [GH, Section 6.1]. Using the Witt Extension The-
orem (see, e.g., [Lam, p. 26]), it is easy to see that the full orthogonal group
O(q) acts transitively on X and SO(q) acts transitively on each component
X; (i = 1,2). Fix an isotropic subspace L € X; and let P = Stabggq)(L).
By Lemma 7.5(a), with G = SO(q) and H = P, we have

Cd(SOQm) < Cd(P) + dlm(SOQm) — dlm(P) =
m(m —1)
2

It remains to show that cd(P) = 0. We claim that the Levi subgroup of
P is naturally isomorphic to GL(L) ~ GL,, via f: P — GL(L), where
f(g) = g~ Once this claim is established, Example 10.1 tells us that
cd(P) = cd(GLy,) = 0. (The last equality follows from the fact that GL,,
is special.)

To prove the claim, note that by the Witt Extension Theorem, f is a
surjective homomorphism. It remains to show that Ker(f) is unipotent.
Indeed, choose a basis ey, ..., €2y, of k%™ so that

cd(P) + dim(X;) = cd(P) +

q(z1e1 + -+ Tomeam) = T1Tmy1 + - -+ + TmTom

and L is the span of ey, ..., e,,. Then every g € Ker(f) has the form

(12.4) g= (é’j; g) ,

for some m x m-matrices A and B. (Here O,, and I,,, are, respectively,
the zero and the identity m X m-matrices.) The condition that g € O(q)
translates into

Om Im Transpose __ Om Im
(12.5) g (Im Om) g = (Im Om) .

Substituting (12.4) into (12.5), we see that B = I,,,. Formula (12.4) now
shows that ¢ is unipotent; consequently, Ker(f) is a unipotent group, as
claimed. O

12.6. Conjecture. c¢d(SOg,—1) = ¢d(SOqy,) = m(mT_l) for every m > 1.

12.7. Remark. Conjecture 12.6 was recently proved by Karpenko [Ks]; for
an alternative proof due to Vishik, see [V].
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13. GROUPS OF LOW CANONICAL DIMENSION

13.1. Theorem. Assume that G is simple. Then c¢d(G) = 1 if and only if
G ~ SLay, /2 or PSp,,,,, where m is an odd integer.

Proof. First of all, observe that if G ~ SLay, /u2 or PSpy,,, with m odd,
then indeed, cd(G) = 1; see Corollary 11.5 and Corollary 11.6. Thus we
only need to show that no other simple group has this property. Our proof
relies on the classification of simple algebraic groups; cf., e.g., [KMRT, §24
and 25]. (Note that [KMRT] uses the symbols O™ and PGSp instead of SO
and PSp. Recall also that we are working over an algebraically closed base
field k of characteristic zero.) We begin by observing that cd(G) > 2 for
every simple group of exceptional type; see Examples 8.5, 8.6 and 10.7.

Now suppose cd(G) = 1 and G is of type A. Then G ~ SL,, /e, where
e divides n. Let p be a prime dividing e. Then we can write e = pey and
n = p'ng, where i > j > 1, and ged(p, eg) = ged(p,ng) = 1. Then

by Lemma 11.3(a by Corollary 11.5

) A
1=cd(G) > SLyi /i > p'—1,

which is only possible if p = 2 and ¢ = 1. This implies that e cannot be
divisible by 4 or by any prime p > 3; in other words, e = 1 or 2. If e =1
then G = SL,, is special and thus cd(G) = 0. If e = 2 then ¢ = 1 implies
that n =2 (mod 4), as claimed.

Next suppose G is of type C'. Then G is isomorphic to Spy,,, or PSps,,.
The groups Sps,, are special and thus have canonical dimension 0. By
Corollary 11.6, c¢d(PSps,,,) = 1 if and only if m is odd. This completes the
proof of Theorem 13.1 for groups of type A or C.

Now suppose G is of type B or D. We have already considered some of
these groups. In particular,

e ¢d(SO,) > ¢d(SO5) = 3 for any n > 5 (see Lemma 12.1(a) and
Example 12.2(a)),

o cd(PSO2;,) > ¢d(SOz2;,) > 3 for any n > 3 (see Example 10.3),
e cd(Spin,,) =0 for n = 3,4,5,6 (see Example 12.2(b)), and

e cd(Spin,,) > cd(Spin;) = 3 for any n > 7 (see Lemma 12.1 and
Example 12.2(c)).

We also remark that SOy ~ G,, and SO4 ~ (SLy x SLy)/us are not
simple, and SOz ~ PGLg = SLa /u2 was considered above.

This covers every simple group of type B; the only simple groups of type
D we have not yet considered are G = Spinjfn (n > 2); cf.,, e.g., [KMRT,
Theorems 25.10 and 25.12]. The natural projection 7: Sping, — SOy,
factors through Spinjfn:

m: Spiny, 1, Spiny, — SOy, .
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Since m.: H'(_,Sping,) — H'(_,SOy4,) has trivial kernel (see Exam-
ple 10.4), so does f.: H'(_,Spiny,) — H'(_,Spin, ). Now for any n > 2,

+ by Lemma 10.2(b) by Lemma 12.1(b)
cd(Sping;,) > cd(Spinyg,,) > cd(Sping)

This completes the proof of Theorem 13.1. U

by Example 12.2(c)

3.

13.2. Remark. The above argument also shows that if a simple classical
group G has canonical dimension 2 then either (i) G ~ SLs,, /us, where m
is prime to 3 or possibly (ii) G ~ SLg,, /g, where m is prime to 6. In case
(i), we know that c¢d(G) = cd(PGL3) = 2; see Corollary 11.5. In case (ii),
cd(G) = cd(PGLg) (see Corollary 11.3(c)); we do not know whether this
number is 2 or 3.

14. THE FUNCTOR OF ORBITS AND HOMOGENEOUS FORMS

We now briefly recall the definition of essential dimension of a functor,
due to Merkurjev [M;].

Let F be a functor from the category of all field extensions K of k to
the category of sets. (For our purposes, it is sufficient to consider only
finitely generated extensions K/k.) Given o € F(K), we define ed(«) as
the minimal value of trdeg;, (Ky), where &k C Ky C K and « lies in the image
of the natural map F(Ky) — F(K). The essential dimension ed(F) of
the functor F is then defined as the maximal value of ed(a), as « ranges
over F(K) and K ranges over all field extensions of k. In the special case,
where G is an algebraic group and F = H'(_,G) we recover the numbers
defined in Section 2.1: ed(a) = ed(X, ), where a € H'(K,G) and X is a
generically free G-variety representing . Moreover, ed(H'(_,G)) = ed(G).
For details, see [BFs].

Now to each G-variety X we will associate the functor Orbx ¢ given by
Orbx (L) = X(L)/ ~, where a ~ b for a,b € X(L), if a = g - b for some
g € G(L). Given an L-point a € X (L), we shall denote a (mod ~) by
[a] € Orbx ¢(L). Using this terminology, Definition 3.5 can be rewritten as
follows.

14.1. Proposition. ed[n] = cd(X,G) + dim X/G, where n € X(k(X)) is
the generic point of X.

Proof. Let Y be a variety with function field k(Y') = L. Then z € X (L) may
be viewed as a rational map ¢,: Y --» X and g € G(L) as a rational map
fq: Y --» G. The point g-z of X (L) corresponds to the map F, ;: Y --» X
given by F., 4(y) = f4(y) - ¢-(y). Consequently, the definition of ed [z] can
be rewritten as
14.2 ed|z] = min {trdeg, k(F.q,(Y))}.
(142) = iy {trdegs K(F., (V)

Now set z = n, L = k(X), Y = X, and ¢ = idx. The element g €
G(L) is then a rational map f = f4: X --» G, F = F,,: X --» X is, by
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definition, a canonical form map (see Definition 3.1) and the proposition
follows from (14.2) and Definition 3.5. O

14.3. Remark. By the definition of ed(Orbx ), we have
ed(Orbx ) > ed[n].
We do not know whether or not equality holds in general.

For the rest of this paper we will focus on the following example. Let

N = <n+;i B 1> and let X = A" be the space of degree d forms in n

variables © = (x1,...,2,). That is, elements of AN are forms p(z1,...,x,)
of degree d and elements of PV~! are hypersurfaces p(x1,...,2,) = 0. The
generic point of AY is the “general” degree d form in n variables as

Ond(z) = Z Qiyo iy @ € K2y, .. 20,
i1+ Fin=d

where a;,, . ;, are independent variables, K = k(AN) is the field these vari-
ables generate over k. Then

(144) ed [¢n,d] = ge(I}Iil,fl(K) trdegk k(bil,...,id |’i1 + 41, = d) ,

where

¢n,d(g : 1‘) = Z bil,...,inxill . . m;,n .

The generic point of PN 1 is the “general” degree d hypersurface ¢y, 4(z) =
0 in PY~!(K), which we denote by H, 4.

14.5. Lemma. Let N = <n +§_ 1) and

D = dim(AY/GL,) = dim(PY~!/ PGL,,) = dim(A" /(G,, x GL,)).
(Here G,,, acts on AN by scalar multiplication.) Then
(a) ed [p.a] = D + cd(AN,GL,).

(b) ed[H, 4] = D + cd(PV~1,GL,) = D + cd(P¥~1, PGL,,) =
=D +cd(AN,G,, x GL,).

Proof. Part (a) and the first equality in part (b) are immediate consequences
of Proposition 14.1. To complete the proof of (b), note that

cd(PY 1, GL,) = cd(P¥ 1, PGL,,)
by Lemma 4.10(b), and
cd(PV1 GL,) = cd(A"Y,G,, x GL,)
by Proposition 4.11 (with H = G,,, x {1}). O
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14.6. Corollary. Let K = k(AYN) (as above) and Ko = k(PV). Given
g € GL(K), let Fy be the field extension of k generated by elements of the
form

b

ilv---vin

o where ¢ 4(g - ) = Z biy.. il
J1s-dn i1+ Fin=d
and i1,...,00,J1s---,n = 0 satisfy i1+ - +ip =51+ -+ Jn = d and
bj,..jn 7 0. Then
ed|[H,q4 = min trdeg,(fy;) = min trdeg,(Fy).
[Hn,d] . 2k (Fy) pecim 2k (Fy)
Proof. The first equality is an immediate consequence of the definition of
ed [Hy, q]. To prove the second equality, we use the identity ed [H,, 4] =
D + cd(AN,G,, x GL,,) of Lemma 14.5. Proposition 14.1 now tells us that

ed [H, = min trdeg,.(¢b;, ;|11 +--+1, =d).
[Hr,d] geCLn (). ce k™ 8k (Ciy,..iin | 11 n )

The minimum is clearly attained if ¢ = bj_ll.. ;,» for some (and thus any)

J1,--.,Jn such that b;, ;. # 0, and the corélléry follows. O

In view of (14.4), it is natural to think of ed [¢,, 4] as the minimal number
of independent parameters required to define the general form of degree d in
n variables. Corollary 14.6 says that ed [H,, 4] can be similarly interpreted
as the minimal number of independent parameters required to define the
general degree d hypersurface in P*~!. Comparing the expressions for these

numbers given by (14.4) and Corollary 14.6, we see that they are closely
related.

14.7. Corollary. ed [H,, 4] < ed [¢y, 4] < ed [Hy q) + 1. O

14.8. Remark. Lemma 14.5(b) shows that the number ed [H,, 4] is the es-
sential dimension of the generic form ¢, 4 in the sense of [BFy], i.e., the
essential dimension of the G,,, x GL,-orbit of the generic point of AY. Note
that the emphasis in [BF;] is on the essential dimension of the functor
Hypersurfaces,, ; = Orb,~ ¢ «qr, (which is denoted there by Fy ), and,
more specifically, on the functor Hypersurfaces; ; (which is denoted there
by Cubs). As we pointed out in Remark 14.3, ed(Hypersurfaces,, ;) >
ed [Hy, 4] but we do not know whether or not equality holds.

15. ESSENTIAL DIMENSIONS OF HOMOGENEOUS FORMS I

15.1. Theorem. Letn and d be positive integers such that d > 3 and (n,d) #
(2,3), (2,4) or (3,3). Then

ed [Hn,d] =N - 112 + Cd(GLn /:ud) =N-— ’/L2 + Cd(SLn /.Ugcd(n,d)) >

n—l—d—1>

where N = < d
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Proof. First observe that by Lemma 11.2, ed(GLy, /114) = ¢d(SLy, / figed(n,a))
so only the first equality needs to be proved.

Secondly, under our assumption on n and d, the PGL,,-action on PN ~! is
generically free. For n = 2 this is classically known (cf., e.g., [PV, p. 231]),
for n = 3, this is proved in [B] and for n > 4 in [MM]. Substituting

D = dim(PY¥~!/PCL,) = dim(PY~!) — dim(PGL,) = N — n?
into Lemma 14.5(b), we reduce the theorem to the identity
(15.2) cd(AY,G,, x GL,) = cd(GLy, /1q) -
To prove (15.2), observe that the normal subgroup
S={t"%t)|t€Gn} CGpxGy C Gy x GL,
acts trivially on AY. Since S is special, we have
(15.3) cd(AN,G,, x GL,)
cd(AN, (G x GL,)/8) ™ PN TS q((Gyn x GL,)/S)

where the last equality is a consequence of the fact that the PGL,-action
on PN=1 (and hence, the (G,, x GL,)/S-action on A"V) is generically free.

Finally, consider the homomorphism GL,, — (G,, x GL,)/S given by
g+— (1,9), modulo S. Since we are working over an algebraically closed field
k of characteristic zero, this homomorphism is surjective, and its kernel is
exactly pg. Thus (G, x GL,,)/S ~ GL,, /pq. Combining this with (15.3),
we obtain (15.2). O

by Lemma 4.10(b)

The results of Section 11 can now be used to determine ed [H, 4] for
many values of n and d (and produce estimates for others). In particular,
combining Theorem 15.1 with Corollary 11.5, we deduce Theorem 1.1 stated
in the Introduction.

The number ed [¢,, 4] appears to be harder to compute than ed [H,, 4].
By Corollary 14.7, ed [¢y, 4] = ed [H,, 4] or ed [¢y 4] = ed [Hy 4] + 1, but for
general n and d, we do not know which of these cases occurs. One notable
exception is the case where n and d are relatively prime.

15.4. Corollary. Suppose d > 3, ged(n,d) =1 and (n,d) # (2,3). Then

(o) ealttd = ("5 i ana

) edlond = (")

Proof. Part (a) is a special case of Theorem 1.1 (with j = 0). We can also
deduce it directly from Theorem 15.1 by noting that SL,, is a special group
and thus cd(SLy,) = 0.

(b) In view of Corollary 14.7, we only need to prove that ed[¢,q] >
ed [H, 4] + 1 or equivalently, cd(AY,GL,) > 1; see Lemma 14.5(a). Recall
that the central subgroup jg of GL, acts trivially on AV, and (under our
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assumptions on n and d) the induced GL, /ug-action is generically free.
Thus the stabilizer in general position for the GLj,-action on A" is g, and

by Proposition 5.5(c) by [BR, Theorem 6.2]

cd(AN, GL,) > ed(pq) 1,

as claimed. O
15.5. Remark. We have proved that if n and d are relatively prime then
cd(PN=1 GL,) = 0 but cd(AY,GL,) = 1. In particular, this shows that
the equality cd(X,G) = cd(X/H,G) of Proposition 4.11 fails for X = A,
G = GL,, and H = G,;,. Note that Proposition 4.11 does not apply in this

situation because the H-action on X is not generically free (the subgroup
g acts trivially).

16. ESSENTIAL DIMENSIONS OF HOMOGENEOUS FORMS II

In this section we will study ed [¢,, 4] and ed [H,, 4] for the pairs (n, d) not
covered by Theorem 15.1. We begin with a simple lemma.

16.1. Lemma. ed [Hy 4] < d — 2 for any d > 3.

In the sequel we will only need this lemma for d = 3 and 4. For n > 5,
Theorem 1.1 (with n = 2) gives a stronger result, namely,
d— 2 if d is even,

A [Hy g =
ed [Hy.d] {d—?,ifdisodd.

However, the proof of the lemma below is valid for any d > 3.

Proof. The linear transformation g € GLo(K) given by

aq—1,1
1= T ——, T2 X2
nad70

reduces the generic binary form
$2.a(21,22) = agory + ag_1 25 wa + - + ag 423
to
bo.a(g - (x1,72)) = baor] + ba_goxi 223 + - + by g_1z129 " + b g2d

for some b; q—; € K = k(agg,...,aqp). Composing this linear transforma-
tion with

bo,q

)

Xy — xr1, X2+ T2

1,d—1
(and, by abuse of notation, denoting the composition by g once again), we
may further assume by g_; = by q. The field F; = k(b; 4—i/boq|i=1,...,d),
defined in the statement of Corollary 14.6, now has transcendence degree
< d —2. By Corollary 14.6 we conclude that ed [Hy 4] <n — 2. O

We are now ready to proceed with the main result of this section.
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16.2. Proposition. (a) ed[¢p 1] =ed[Hy 1] = 0.
(b) ed [pn2] =n and ed [Hy 2] =n — 1.
(c) ed[p23] =2 and ed [Ha 3] = 1.
(d) ed [¢p2.4] = 3 and ed [Ha 4] = 2.
(e) ed [H3 3] = 3.

We do not know whether ed [¢3 3] is 3 or 4.

Proof. (a) A linear form [(x1,...,z,) over K can be reduced to just z; by
applying a linear transformation g € GL,(K). Thus ed [¢, 1] = ed [Hp 1] =
0.

(b) Here d = 2, N = n(n+1)/2, and elements of A" are quadratic forms
in n variables. Diagonalizing the generic quadratic form ¢, o over K, we
see that ed [¢n 2] < n and ed [Hy2] < n — 1. In view of Corollary (14.7) it
suffices to show that ed [¢y, 2] = n.

The GL,-action on A has a dense orbit, consisting of non-singular forms.
In particular, D = dim(A" /GL,) = 0, so that by Lemma 14.5(a)

ed [pna] = cd(AY,GL,).

Since the stabilizer of a non-singular form is the orthogonal group O,, AN
is birationally G-equivariantly isomorphic to GL, / O,. Thus

by Corollary 5.7(b)

ed [¢n2] = cd(AYN,GL,) = c¢d(GL,, / O,,, GLy,)

ed(On) by [R, Thg)rem 10.3]

This completes the proof of part (b).

(c) By Lemma 16.1, ed [Hz 3] < 1. Thus in view of Corollary 14.7, we
only need to show that ed [¢2 3] > 2.

Here N = 4, and the GLo-action on A* has a dense orbit consisting of
binary cubic forms with three distinct roots. Applying Lemma 14.5(a), with
D = dim(A*/ GLg) = 0, as in part (b), we obtain

ed [¢a3] = cd(A*, GLy) = cd(GLy /S, GLy) ™ “=Y 57 () |
where S C GLs is the stabilizer of a binary cubic form with three roots, say
of 3 + y3. Note that S is a finite group and that matrices that multiply
and y by third roots of unity form a subgroup of S isomorphic to (Z/37Z).
Thus ed(S) > ed (Z/3Z)? = 2 (cf. [BR, Lemma 4.1(a) and Theorem 6.1]),
as desired.

(d) By Lemma 16.1, ed [H2 4] < 2. In view of Corollary 14.7, it remains
to prove the inequality ed[¢24] > 3. Note that since the invariant field
k(A%)G2 is generated by one element (namely, the cross-ratio of the four
roots of the quartic binary form), we have D = dim(A%/GLy) = 1. Thus
we only need to show that

(16.3) cd(A®, GLy) > 2.
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Let S be the stabilizer of f € A® (i.e., of a degree 4 binary form) in general
position. By Proposition 5.5(c),

cd(A®, GLy) > ed(S).

To compute ed(S), recall that the stabilizer of f in PGLy is isomorphic to
(Z/27)%; cf. e.g., [PV, p. 231]. It is now easy to see that S fits into the
sequence

{1} — 7/47 — S — (Z./27)* — {1} .

In particular, S is a finite group which admits a surjective homomorphism
onto (Z/27)?. Thus S is neither cyclic nor odd dihedral and consequently,
ed(S) > 2; see [BR, Theorem 6.2(a)]. This concludes the proof of (16.3)
and thus of part (d). For the sake of completeness, we remark that since S
is a finite subgroup of GLg, we also have ed(S) < 2 and thus ed(S) = 2.

(e) Here N = 10, and the rational quotient P°/ GLj3 is the j-line, so that
D = dim PY/ GL3 = 1. Thus we only need to show

(16.4) cd(P?, GL3) = 2.

An element of PY (i.e., a plane cubic curve) in general position can be written
as Fy = 23 +12+22+3\zyz. Denote the stabilizer of F by S C GLs3. We will
deduce (16.4) from Corollary 6.2(b). Indeed, let N be the normalizer of S in
GL3. Since GL3 is a special group, e(GL3, S) = ed(S5), e(GL3, N) = ed(NV)
(see Lemma 5.4(c)), and Corollary 6.2(b) assumes the following form:

ed(S) < cd(P?, GL3) < ed(N) — dim(S) + dim(N).

Let S and N be the images of S'and N in PGLg, under the natural projection
GL3 — PGL3. Note that S is a finite group (this follows from the fact that
D = dim PY/ PGL3 = 1). In particular, dim(S) = 1. It thus suffices to show:

(e1) ed(S) > 2,
(e2) N is a finite subgroup of PGL3 (and consequently, dim(N) = 1).
(e3) ed(N) < 2.

The inequality (e;) is a consequence of [RY, Corollary 7.3], with G = S
and

(16.5) H = <diag(1,¢,¢?),0> ~ (Z/37)?,

where ¢ is a cyclic permutation of the variables x,y, z, and ( is a primitive
third root of unity. (Note that [RY;, Corollary 7.3] applies because S has
no non-trivial unipotent elements, and the centralizer of H in S is finite.)
To prove (e3), note that N is the normalizer of S in PGL,,. The natural
3-dimensional representation of S C GLj3 is irreducible (to see this, restrict
to the subgroup H of S defined in (16.5)). Hence, by Schur’s lemma, the
centralizer Cpgr, (S) = {1}, so that N = NpqaL, (S)/CpaL, (S). The last

group is naturally isomorphic to a subgroup of Aut(S), which is a finite
group. This proves (e).
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To prove (e3), consider the natural representation of N C GL3 on A3
(e2) implies that this representation is generically free; cf. [BFy, Section 1].
Consequently, ed(N) < 3 — dim(N) = 2.

This completes the proof of part (e). O
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