CAYLEY GROUPS
NICOLE LEMIRE, VLADIMIR L. POPOV, AND ZINOVY REICHSTEIN

ABSTRACT. The classical Cayley map, X — (In — X)(In + X)fl, is a birational iso-
morphism between the special orthogonal group SO and its Lie algebra son, which is
SOy, -equivariant with respect to the conjugating and adjoint actions respectively. We ask
whether or not maps with these properties can be constructed for other algebraic groups.
We show that the answer is usually “no”, with a few exceptions. In particular, we show
that a Cayley map for the group SLy, exists if and only if n < 3, answering an old question
of LUNA.
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1. Introduction

The exponential map is a fundamental instrument of Lie theory that yields local li-
nearization of various problems involving Lie groups and their actions, see [Boup]. Let
L be a real Lie group with Lie algebra [. As the differential at 0 of the exponential
exp: | — L is bijective, exp yields a diffeomorphism of an open neighborhood of 0 in [
onto an open neighborhood U of the identity element e in L. The inverse diffeomorphism A
(logarithm) is equivariant with respect to the action of L on [ via the adjoint representation
Adp: L — Autl and on L by conjugation, i.e., A(gug™!) = Ad;, g(\(u)) if g € L, u € U
and gug~! € U. This shows that the conjugating action of L on its underlying manifold is
linearizable in a neighborhood of e.

In this paper we study what happens if L is replaced with a connected linear algebraic
group G over an algebraically closed field k: what is a natural algebraic counterpart of A
for such G and for which G does it exist?

In the sequel we assume that char k = 0 (in fact in many places this assumption is either
redundant or can be bypassed by modifying the relevant proof).

1.1. The classical Cayley map. Let g be the Lie algebra of G. One way to look at the
problem is to replace the Hausdorff topology in the Lie group setting by the étale topology,
i.e., to define the algebraic counterpart of A\ as a G-equivariant morphism G — g étale
at e. Then, at least for reductive groups, there is no existence problem: such morphisms
always exist, see the Corollary to Lemma 10.4 below. Properties of some of them has been
studied by KOSTANT and MICHOR in [KM], see Example 10.5 below. Note also that a
G-equivariant dominant morphism G — g exists for every linear algebraic group G; see
Theorem 10.3 below.

In the present paper we look at the problem differently. Our point of view stems from a
discovery made by CAYLEY in 1846, [Ca], cf. [Weyl], [Pos|. It suggests that the most direct
approach, i.e., replacing the Hausdorff topology by the Zariski one, leads to something
really interesting. Namely, let G be the special orthogonal group,

G =80, = {X € Mat,x, | X' X = I},
where I, is the identity n X n-matrix. Then
g=0,:={Y € Mat,x,, | YT = Y},
and the adjoint representation Adg : G — Aut g is given by
(1.2) Adgg(Y)=gYg™!, ge@G, Yeg.
CAYLEY discovered that there exists a birational isomorphism

(1.3) N G- g
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equivariant with respect to the conjugating and adjoint actions of G on the underlying
varieties of G and g respectively, i.e., such that

(14) MgXg™") = Adgg (\(X))

if g and X € G and both sides of (1.4) are defined. His proof is given by the explicit
formula defining such A:

(1.5) A X = (I, — X)(I, + X)!

(one immediately deduces from (1.5) that Y + (I, — Y))(I, +Y) ! is the inverse of )\, and
from (1.2) that (1.4) holds).

1.6. Basic definitions, main problem and examples. Inspired by this example, we
introduce the following definition for an arbitrary connected linear algebraic group G.

Definition 1.7. A Cayley map for G is a birational isomorphism (1.3) satisfying (1.4). A
group G is called a Cayley group if it admits a Cayley map. If G is defined over a subfield
K of k, then a Cayley map defined over K is called a Cayley K-map. If G admits a Cayley
K-map, G is called a Cayley K-group.

Our starting point was a question, posed in 1975 to the second-named author by LUNA,
[Lung]. Using Definition 1.7, it can be reformulated as follows:

Question 1.8. For what n is the special linear group SL,, a Cayley group?

It is easy to show, see Example 1.18 below, that SLs is a Cayley group. POPOV in
[Pops| has proved that, contrary to what was expected, see [Lunj, Remarque, p. 14|, SL3
is a Cayley group as well.

More generally, given Definition 1.7, it is natural to pose the following problem:

Problem 1.9. Which connected linear algebraic groups are Cayley groups?

Before stating our main results, we will discuss several examples. Set

pg=1{a€ Gy |a® =1}
This is a cyclic subgroup of order d of the multiplicative group G,,,. Below we use the same
notation p, for the central cyclic subgroup {al, | a € py} of GL,,.
Example 1.10. If G4,...,G), are Cayley, then G := G x ... x G, is Cayley (the converse
is false, see Subsection 4.10). Indeed, if g; is the Lie algebra of G; and \;: G; 5 gi a
Cayley map, then g=g1 ® ... B g, and Ay X ... X A\,: G --» g is a Cayley map. U
Example 1.11. Consider a finite-dimensional associative algebra A over k with identity
element 1. Let £ 4 be the Lie algebra whose underlying vector space is that of A and whose
Lie bracket is given by
(112) [Xl,XQ] = XlXQ — XQXl.
The group

G .= A*

of invertible elements of A is a connected linear algebraic group whose underlying variety
is an open subset of that of A. This implies that g is naturally identified with £ 4, and
the adjoint action is given by formula (1.2). Hence the natural embedding A : A* — Ly4,

X — X, is a Cayley map. Therefore G is a Cayley group.
Taking A = Mat,, xy, we obtain that G := GL, is Cayley for every n > 1. [
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Example 1.13. Maintain the notation of Example 1.11. For any element a € A, denote
by tra the trace of the operator L, of left multiplication of A by a. Since the algebra A
is associative, a +— L, is a homomorphism of A to the algebra of linear operators on the
underlying vector space of A. From this and (1.12), we deduce that k-1 is an ideal of L 4,
the map

T:Ly— k-1, awtra-l,

is a surjective homomorphism of Lie algebras, and

(1.14) La=KerTdk-1.
The subgroup k*-1 of A* is normal; set
(1.15) G = A*Jk* 1.

As the Lie algebras of A* and k*-1 are respectively £4 and k-1, it follows from (1.14) that
one can identify g with Kerr. Let A* — G, a +— [a], be the natural projection. Then the
formula

(1.16) [a] — %Llg —1

tra

defines a rational map \ : G --» g = Ker 7. Since trzaz~' =tra for any a € A, x € A*, it
follows from (1.16) that (1.4) holds. On the other hand, (1.16) clearly implies that

(1.17) a— [a+1]

is the inverse of A. Thus G is a Cayley group.

If A is defined over a subfield K of k, then the group G and birational isomorphisms
(1.16), (1.17) are defined over K as well. Hence G is a Cayley K-group.

For A = Mat,,x, this shows that PGL,, is a Cayley group for every n > 1. Note that
in this case, % = 75, where Tra is the trace of matrix a. Let K be a subfield of k.
Since every inner K-form G of PGL,, is given by (1.15) for A = D ®k k, where D is an
n?-dimensional central simple algebra over K and the K-structure of A is defined by D,
cf. [Kn], all inner K-forms of PGL,, are Cayley K-groups.

Setting A = @;_, Maty,, xn, we conclude that [[7_; GLy, /k* I, 4. yn,, is a Cayley group.
Here Hle GL,, is block-diagonally embedded in GLy,, 4 4n,. U

Example 1.18. The following construction was noticed by WEIL in [Weil, p. 599]. Namely,
maintain the notation of Example 1.11 (WEIL assumed that A is semisimple, but his con-
struction, presented below, does not use this assumption). Let ¢ be an involution (i.e., an
involutory k-antiautomorphism) of the algebra A. Set

(1.19) G:={ac A |aa=1F

(as usual, S° denotes the identity component of an algebraic group S). The Lie algebra of
G is the subalgebra of odd elements of L 4 for ¢,

g={a€Lla]|a" =—a}
The formula
(1.20) ar— (1—a)(1+a)?
defines an equivariant rational map A: G--»g, and the formula
(1.21) b (1—b)(1+0b)"*
defines its inverse, A™': g--»G. Thus ) is a Cayley map and G is a Cayley group.
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If A and ¢ are defined over a subfield K of k, then the group GG and birational isomor-
phisms (1.20), (1.21) are defined over K as well. Hence G is a Cayley K-group.

For A = Mat,x, and the involution X +> X7, this turns into the classical Cayley
construction for G = SO,, yielding Cayleyness of this group for every n > 1. In particular,
this shows that the following groups are Cayley: G, ~ SOs, see Examples 1.11 and 1.22,
PGLjy ~ SLy/py ~ SOs3, see Example 1.13, (SLa x SLa)/py =~ SOy (here SLy x SLy is
block-diagonally embedded in SLy), Sp,/ps ~ SO5 and SL4/py ~ SOg.

For A=Mata, o, and the involution X v Jo, 1 X T Jon, where Jo,, := [_(}n Ig }, we have

G = Sp,, = {X € Matoyxon | X" Jon X = Jon},
g = 5Py, :={Y € Matouxan | Y Jop = —Jo, Y},

so the contruction shows that (1.5) is a Cayley map for Sp,,,, cf. [Pos, Examples 6, 7]. Thus
Sp,,, is Cayley for every n > 1. In particular, SLy ~ Sping ~ Sp,, Spin, ~ SLy x SL»
and Spins ~ Sp, are Cayley. Below we shall prove that Spin,, is not Cayley for n > 6.

Let K be a subfield of k. Since every K-form G of SO,, or Sp,, is given by (1.19) for
some algebra A and its involution ¢, both defined over K, see [Weil], [Kn], all K-forms of
SO,, and Sp,,, are Cayley K-groups. [

Example 1.22. Every connected commutative linear algebraic group G is Cayley. In
fact, in this case, Condition (1.4) is vacuous, so the existence of (1.3) is equivalent to
the property that the underlying variety of G is rational. CHEVALLEY in [Ch4] proved that
over an algebraically closed field of characteristic zero this property holds for any connected
linear algebraic group (not necessarily commutative). In particular, the algebraic torus G‘fn,
where

Gl =G x...xG, ifd>1, GY =e¢,

d
is a Cayley group for every d > 0 (as G,, = GLj, this also follows from Examples 1.10,
1.11).

Example 1.23. Every unipotent linear algebraic group G is Cayley (G is automatically
connected because chark = 0). Indeed, we may assume without loss of generality that
G C GL,, so that elements of G are unipotent n X n-matrices, elements of g are nilpotent
n X n-matrices, and Ad, is given by (1.2). So we have (I,, — X)" =YY" =0 for any X € G,
Y € g. Hence the exponential map is given by

exp:g — G, Y Z?;ol LY

Therefore exp is a G-equivariant morphism of algebraic varieties. Moreover, it is an iso-
morphism since the formula

(1.24) Ai=In: G —g, Xw—->"'Y1,-X).

i=1 71
defines its inverse.
More generally, by the Corollary of Proposition 4.4 below, every connected solvable linear
algebraic group is Cayley. [

1.25. Notational conventions. In order to formulate our main results we need some
notation and definitions. R
For any algebraic torus 1T', we denote by T its character group,

T .= Homyo (T, G1),



6 NICOLE LEMIRE, VLADIMIR L. POPOV, AND ZINOVY REICHSTEIN

written additively. It is a lattice (i.e., a free abelian group of finite rank).
Let T be a maximal torus of G and let

N=Ngr:={geG|gTg ' =T},
(1.26) C=Cor:={geG|gtg ' =tforalteT},
W =Wg = War = N/C

be respectively its normalizer, centralizer (which is the Cartan subgroup of G) and the
Weyl group. The group C' is the identity component of N, and if GG is reductive, then
C =T, see [Bor, 12.1, 13.17]. The finite group W naturally acts by automorphisms of T.
Since all maximal tori in G are conjugate, W and the W-lattice T do not depend, up to
isomorphism, on the choice of T'.

Definition 1.27. The W-lattice T is called the character lattice of G and is denoted by Xq.

Remark 1.28. The reader should be careful about this terminology: the elements of the
character lattice of G are the characters of T', not of G.

Definition 1.29. A group G is called stably Cayley if G x G¢, is Cayley for some d > 0. If
G is defined over a subfield K of k and G x G is a Cayley K-group for some d > 0, then
G is called a stably Cayley K-group.

We denote by T the generic torus of G, see its definition in Section 3.8, cf. [Vos], [CK].

1.30. Main results. Now we are ready to state our main results.

Theorem 1.31. Let G be a connected reductive algebraic group. Then the following impli-
cations hold:

Xg is sign- (3) G is (b)) Tgis (©) Tg is stably (1) Xg is quasi- () G is stably
permutation Cayley rational rational permutation Cayley

Moreover, the implications (a) and (b) cannot be reversed. In particular, a stably Cayley
group may not be Cayley.

For the definitions of sign-permutation and quasi-permutation lattices, see Section 2.2.
Note that it is a long-standing open question whether or not every stably rational torus is
rational, see [Vos, p. 52]. In particular, we do not know whether or not implication (c) can
be reversed. We also remark that (d) is well-known, see, e.g., [Vos, Theorem 4.7.2].

A proof of Theorem 1.31 will be given in Subsection 3.13. In Section 4 we will partially
reduce Problem 1.8 to the case where G is a simple group.

We will then use Theorem 1.31 to translate results about stable rationality of generic
tori into statements about the existence (and more often, the non-existence) of Cayley
maps for various simple algebraic groups (i.e., groups having no proper connected normal
subgroups). In particular, LEMIRE and LORENZ in [LL] and CORTELLA and KUNYAVSKII
in [CK] have recently proved that the character lattice of SL,, is quasi-permutation if and
only if n < 3. (This result had been previously conjectured and proved for prime n by LE
BRrRUYN in [LB;], [LB2].) Theorem 1.31 now tells us that SL,, is not stably Cayley (and thus
not Cayley) for any n > 4. On the other hand, Example 1.18 shows that SLy is Cayley,
and Popov in [Pops] has proved that SLj is Cayley as well (an outline of the arguments
from [Pops] is reproduced in the Appendix; see also an explicit construction in Section 9).
This settles Luna’s original Question 1.8 about SL,,.
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In a similar manner, we proceed to classify the connected simple groups G with quasi-
permutation character lattices X. For simply connected and adjoint groups this was done
by CORTELLA and KUNYAVSKII in [CK]. In Sections 6 and 8 we extend their results to all
other connected simple groups. Combining this classification with Theorem 1.31, we obtain
the following result.

Theorem 1.32. Let G be a connected simple algebraic group. Then the following conditions
are equivalent:

(a) G is stably Cayley,

(b) G is one of the following groups:

(1.33) SL,, forn <3, SO, forn # 2,4, Spsy,, PGL,, G2.

Remark 1.34. The groups SO3 and SOy are stably Cayley (and even Cayley, see Exam-
ple 1.18) but they are excluded because they are not simple. Note also that, due to excep-
tional isomorphisms, some groups are listed twice in (1.33). (For example, Sp, ~ SLy.)

It is now natural to ask which of the stably Cayley simple groups listed in Theo-
rem 1.32(b) are in fact Cayley. Here is the answer:

Theorem 1.35. Let G be a connected simple algebraic group.

(a) The following conditions are equivalent:
(i) G is Cayley;
il) G is one of the following groups:
(i) 99

(1.36) SL,, forn <3, SO, forn # 2,4, Sp,,, PGL,.
(b) The group Go is not Cayley but the group Gy x G2, is Cayley.

The first assertion of part (b) is based on the recent work of ISKOVSKIKH [Isk4]. The
groups SO,,, Sp,,, and PGL,, were shown to be Cayley in Examples 1.18 and 1.13. The
groups SLj3 and G will be discussed in Section 9.

Remark 1.37. Question 1.8 was inspired by LUNA’s interest in the existence (for reduc-
tive G) of “algebraic linearization” of the conjugating action in a Zariski neighborhood of
the identity element e € G, i.e., in the existence of G-isomorphic neighborhoods of e and 0
in G and g respectively, cf. [Lun;]. In our terminology this is equivalent to the existence of
a Cayley map (1.3) such that A\ and A~! are defined at e and 0 respectively, and A(e) = 0.
Not all Cayley maps have this property. However, note that our proof of Theorem 1.35 (in
combination with [Lunj, p.13, Proposition]) shows that each of the simple groups listed
in (1.36) admits a Cayley map with this property (and so does any direct product of these
groups); see Examples 1.10-1.23, Subsections 9.1, 9.9 and the Appendix.

Let K be a subfield of k. It follows from Theorems 1.32, 1.35 and Examples 1.13,
1.18 that classifying simple Cayley (respectively, stably Cayley) K-groups is reduced to
classifying outer K-forms of PGL, for n > 3 and K-forms of SL3 (respectively, outer
K-forms of PGL,, for n > 3 and K-forms of SL3 and G3) that are Cayley (respectively,
stably Cayley) K-groups. Note that not all of these K-forms are Cayley (respectively,
stably Cayley) K-groups. Indeed, Definitions 1.7, 1.29 imply the following special property
of Cayley (respectively, stably Cayley) K-groups: their underlying varieties are rational
(respectively, stably rational) over K. For some of the specified K-forms this property does
not hold:
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Example 1.38. BERHUY, MONSURRO, and TIGNOL in [BMT] have shown that for every
n = O0mod 4, the group PGL,, has a K-form G of outer type whose underlying variety is
not stably rational over K. Hence G is not a stably Cayley K-group. U

Remark 1.39. The underlying varieties of all outer K-forms of PGL,, with odd n are
rational over K; see [VK]. Note also that the underlying variety of any K-form of a linear
algebraic group of rank at most 2 is rational over K, e.g.,see [Me, p. 189], [Vos, 4.1, 4.9].

1.40. Application to Cremona groups. The Cremona group Crg, i.e., the group of
birational automorphisms of the affine space A<, is a classical object in algebraic geometry;
see [Iske] and the references therein. Classifying the subgroups of Cry up to conjugacy is
an important research direction originating in the works of BERTINI, ENRIQUES, FANO,
and WIMAN. Most of the currently know results on Cremona groups relate to Cro and Crg
(the case d = 1 is trivial because Cr; = PGLy). For d > 4 the groups Cry are poorly
understood, and any results that shed light on their structure are prized by the experts.

Our results provide some information about subgroups of Cry by means of the following
simple construction. Consider an action of an algebraic group G on a rational variety X of
dimension d. Let Gy be the kernel of this action. Any birational isomorphism between X
and A? gives rise to an embedding tx: G/Go — Cryq. A different birational isomorphism
between X and A¢ gives rise to a conjugate embedding, so iy is is uniquely determined
by X (as a G-variety) up to conjugacy in Cry. If Y is another rational variety on which G
acts then the embeddings ¢x and ¢y are conjugate if and only if X and Y are birationally
isomorphic as G-varieties.

Now consider the special case of this construction, where G is a connected linear algebraic
group, X is the underlying variety of G' (with the conjugating G-action), Y = g (with the
adjoint G-action), and the kernel Gy (for both actions) is the center of G; see [Bor, 3.15].
Definition 1.7 can now be rephrased as follows: a connected algebraic group G is Cayley
if and only if the embeddings ¢ and ty: G/Gy = AdgG — Crgimg are conjugate in
Crgimg- In this paper we show that many connected algebraic groups are not Cayley;
each non-Cayley group G gives rise to a pair of non-conjugate embeddings of the form ¢,
tg: AdgG — Crgima-

Definition 1.29 can be interpreted in a similar manner. For every d > 1 consider the
embedding Cry < Crgy; given by writing A1 as A% x A! and sending an element g € Cry
to g X ida1 € Crgq1. Denote the direct limit for the tower of groups Cr; — Cra — ...
obtained in this way by Crs,. Suppose G is a group acting on rational varieties X and Y
(possibly of different dimensions) with the same kernel Gy. Then it is easy to see that
the embeddings tx: G/Gp — Crgim x and ty: G/Gy — Crgimy are conjugate in Cry, (or
equivalently, in Cr,, for some m > max{dim X, dim Y'}) if and only if X and Y are stably
isomorphic as G-varieties.

If Vi and V3 are vector spaces with faithful linear G-actions, then ¢y, and ¢y, are conjugate
in Cry by the “no-name lemma”, cf. Subsection 2.15. We call an embedding G — Cry
stably linearizable if it is conjugate, in Crso, to 4y for some faithful linear G-action on a
vector space V. Definition 1.29 and the “no-name lemma” now tell us that the following
conditions are equivalent: (a) G is stably Cayley, (b) the embeddings ¢ and ¢g: AdgG—
Crgim ¢ are conjugate in Cro, and (c) ¢ is stably linearizable. Once again, the results of
this paper (and in particular, Theorem 1.32) can be used to produce many examples of
pairs of embeddings of the form Ad;G — Crgim ¢ that are not conjugate in Cro.

Now suppose that I' is a finite group and L and M are faithful I'-lattices; see Section 2.2.
Then I' acts on their dual tori, which we will denote by X and Y. It now follows from
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Lemma 2.7 that the embeddings tx: ' < Crpankr and ¢y : I' < Crpank ps are conjugate
in Cry if and only if L and M are equivalent in the sense of Definition 2.4. Taking M
to be a faithful permutation lattice, we conclude that the embedding ¢ x: I' — Crpank x is
stably linearlizable if and only if L is quasi-permutation (cf. Definition 2.6 and Corollary
to Lemma 2.7).

In the special case where L = X is the character lattice of algebraic group G, I' = Wg
is the Weyl group, and X = T is a maximal torus with Lie algebra t, we see that the
following conditions are equivalent: (a) G is stably Cayley, (b) X¢ is quasi-permutation,
(c) the embeddings ¢y and vp: W < Crgimr are conjugate in Cro, and (d) ¢ is stably
linearizable. (Note that (a) and (b) are equivalent by Theorem 1.31, and (c) and (d)
are equivalent because the W-action on t is linear.) Consequently, every reductive non-
Cayley group G gives rise to a pair of embeddings i7, i¢: W < Crpanke which are not
conjugate in Cryo.

Example 1.41. Let G be a simple group of type A,,_1 which is not stably Cayley, i.e.,
G = SL,,/p4, where d|n, d < n,n >4, and (n,d) # (4,2). Then the embeddings ¢7 and
te: Sy, — Cr,_1 are not conjugate in Cryo.

Assume further that n # 6. Then by Holder’s theorem (see [H4l]), S, has no outer
automorphisms. Thus the images t7(S,) and ¢(S,,) are isomorphic finite subgroups of
Cry,—1 which are not conjugate in Croo. U

Acknowledgements. We are grateful to G. BERHUY, V. A. [SKOVSKIKH, and D. LUNA
for stimulating discussions related to the subject matter of this paper.

2. Preliminaries

In this section we collect certain preliminary facts for subsequent use. Some of them are
known and some are new. Throughout this section I' will denote a group; starting from
Subsection 2.2 it is assumed to be finite.

2.1. I'-fields and I'-varieties.

In the sequel we will use the following terminology. A I'-field is a field K together with
an action of I' by automorphisms of K. Let K and Ky be I'-fields containing a common
I-subfield Ky. We say that Ky and Ky are isomorphic as I'-fields (or T'-isomorphic) over
K if there is a ['-equivariant field isomorphism K; — K5 which is the identity on Ky. We
say that Ky and Ky are stably isomorphic as I'-fields (or stably T'-isomorphic) over K if,
for suitable n and m, Ki(x1,...,2z,) and Ks(y1,...,ym) are isomorphic as I'-fields over
Ky. Here, x1,...,x, and y1, ...,y are algebraically independent variables over K; and
K, respectively; these variables are assumed to be fixed by the I'-action.

If I is an algebraic group, a I'-variety is an algebraic variety X endowed with an algebraic
(morphic) action of I'. A T'-equivariant morphism (respectively, rational map) of I'-varieties
is a T'-morphism (respectively, rational T'-map). If X; and X5 are irreducible I'-varieties,
then k(X;) and k(X3) are I'-fields with respect to the natural actions of I'. These fields are
stably F-isomorphic over k if and only if there is a birational I'-isomorphism X; x A" --»
X5 x A® for some r and s, where I' acts on X7 x A" and Xy x Af via the first factors. In
this case, X1 and X, are called stably birationally I'-isomorphic.

2.2. T'-lattices. From now on we assume that I' is a finite group.
A lattice L of rank r is a free abelian group of rank r. A I'-lattice is a lattice equipped
with an action of I' by automorphisms. It is called faithful (respectively trivial) if the
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homomorphism I' — AutzL defining the action is injective (respectively trivial). If H is a
subgroup of I', then L considered as an H-lattice is denoted by L| .

Given a group H and a ring R, we denote by R[H| the group ring of H over R. If K
is a field and L is a T'-lattice, we denote by K (L) the fraction field of K[L]; both K[L]
and K (L) inherit a I'-action from L. We usually think of these objects multiplicatively,
i.e., we consider the set of symbols {z%},c; as a basis of the K-vector space K[L], and
the multiplication being defined by z%z® = z%t*. So ¢ - 2% = 2°¢ for any 0 € I'. If
ayy...,a, is a basis of L, and z; := 2%, then K[L] = K[zy,z7'...,z,,2, ] and K(L) =
K(zq,...,z,). Note that any group isomorphism L — éi\n induces the K-isomorphisms of
algebras K[L] — K[G] ] and fields K(L) — K(G?,), and therefore it induces a K-defined
algebraic action of I' on the torus GJ, by its automorphisms. Any such action is obtained
in this way.

An important example is L = X¢, the character lattice of a connected algebraic group
G, and I' = W, the Weyl group of G. In this case, k(X¢) is the field of rational functions
on a maximal torus of G.

r

Definition 2.3. A I'-lattice L is called permutation (respectively, sign-permutation) if it
has a basis &4, ...,¢, such that the set {ey,...,e,.} (respectively, {e,,—¢1,...,&,,—¢€,}) is
I"-stable.

If X is a finite set endowed with an action of I, we denote by Z[X] the free abelian
group generated by X and endowed with the natural action of I'. Permutation lattices may
be, alternatively, defined as those of the form Z[X]. Since X is the union of I'-orbits, any
permutation lattice is isomorphic to some @;_,Z[I'/T;], where each I'; is a subgroup of I'.

Definition 2.4. ([C-TS;]) Two I'lattices M and N are called equivalent, written M ~ N,
if they become I'-isomorphic after extending by permutation lattices, i.e., if there are exact
sequences of I'-lattices

(2.5) 0—M-—FE—P—0 and 0—N—FE—Q—0
where P and @) are permutation.

For a direct proof that this does indeed define an equivalence relation and for further
background see [C-TS;, Lemma 8] or [Sw].

Definition 2.6. A T'-lattice L is called quasi-permutation if L ~ 0 under this equivalence
relation, i.e., L becomes permutation after extending by a permutation lattice. In other
words, L is quasi-permutation if and only if there is an exact sequence of I'-lattices

0—L—P—@Q—0,
where P and () are permutation lattices.

It is easily seen that the properties of being permutation, sign-permutation and quasi-
permutation are preserved under passing to I'-isomorphic I'-lattices and that replacing
equivalent I'-lattices with I'-isomorphic ones yields equivalent lattices as well.

Lemma 2.7. Let M and N be faithful I'-lattices and let K be a field. Then the following
properties are equivalent:

(i) K(M) and K(N) are stably isomorphic as I'-fields over K,
(ii) M ~ N.
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Proof. See [LL, Proposition 1.4]; this assertion is also implicit in [Sw], [C-TS;] and [Vos,
47. O

Lemma 2.7 and Definition 2.6 immediately imply the following.

Corollary. Let L be a faithful I'-lattice and let K be a field. Then the following properties
are equivalent:
(i) K(L) is stably isomorphic to K(P) (as a I'-field over K) for some faithful permu-
tation F-lattice P,
(ii) L is quasi-permutation.

2.8. Stable equivalence and flasque resolutions. In addition to the equivalence
relation ~ on I'-lattices, we will also consider a stronger equivalence relation ~ of stable
equivalence. Two I'-lattices L1 and Lo are called stably equivalent if L1 ® Py ~ Lo & P, for
suitable permutation I'-lattices P; and Ps.

A T-lattice L is called flasque if H=1(S, L) = 0 for all subgroups S of I'. Every I'-lattice
L has a flasque resolution

(2.9) 0—L—P—Q—0

with P a permutation I'-lattice and @ a flasque I'-lattice. Moreover, @) is determined by L
up to stable equivalence: If 0 — L — P’ — Q' — 0 is another flasque resolution of L, then
Q =~ Q'. Following [C-TS;], we will denote the stable equivalence class of @ in the flasque
resolution (2.9) by

p(L).
Note that by [C-TS;, Lemme 8], for F—lattic(es)M , N,
(2.10) M ~N < p(M)=p(N).
Dually, every I'-lattice L has a coflasque resolution
(2.11) 0—R—P—L—0

with P a permutation I'-lattice and R a coflasque T-lattice, that is, H!(S, R) = 0 holds for
all subgroups S of I'. Similarly, R is determined by L up to stable equivalence. Note that
the dual of a flasque resolution for L is a coflasque resolution for L* since the finite abelian
group H'(S, L) is dual to H™!(S, L*). For details, see [C-TS1, Lemme 5]. Note that since
H*! is trivial for permutation modules, Hil(F, L) depends only on the stable equivalence
class [L] of L and therefore is denoted by H*'(T, [L]).

Following COLLIOT-THELENE and SANsuc, [C-TS;, C-TS;], we define
IT(T', M) = (,er Ker (Res,: H(T', M) — H'((a), M)).

for any Z[I']-module M. Of particular interest for us will be the case where M is a I-lattice
L and i=1 or 2.

The following lemma is extracted from [C—TSs, pp. 199-202]. For a proof, see also [LL,
Lemma 4.2].

Lemma 2.12. (a) For any exact sequence of Z[I']-modules
00— M —P—N—0

with P a permutation projective T'-lattice, TI?(T', M) ~ IIIY(T", N).
(b) HYT, p(L)) ~ II*(T", L) for any T-lattice L.
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(¢c) If L is equivalent to a direct summand of a quasi-permutation T'-lattice, then

II12(S, L) = 0 holds for all subgroups S of T.

In particular, IIT?(T, -) is constant on ~-classes.
The following technical proposition will help us show that certain I'-lattices are equiva-
lent.

Proposition 2.13. Let X and Y be I'-lattices satisfying the exact sequence
0— X —Y —Z/dZ—0

where T' acts trivially on Z/dZ.
(@) If (d,[T)) =1, then X ®Z ~Y ®Z so that X =Y and X* =~ Y*.
(b) If the fized point sequence

0— X% 5 vyS (Z/dZ)S — 0
is exact for all subgroups S of I', then X* ~ Y™ as I'-lattices.

Proof. (a) This follows directly from Roiter’s form of Schanuel’s Lemma [CR, 31.8] applied
to the sequence of the proposition and

0—22%7 —7/dZ — 0.

(b) We claim that any coflasque resolution
0—Ci—P—X—0
for X can be extended to a coflasque resolution
0—Cy,—P&@—Y —0

for Y so that the following diagram commutes and has exact rows and columns:

0 0 0
} y }
0— C; P X 0
| | |
(2.14) 0—C,—>PoQ—>y —0

| | |

| | |

0 0 0

Here C1, Cy are I'-coflasque and P, @) are I'-permutation. Indeed, as is described in [C-TSj,
Lemme 3|, given a surjective homomorphism 7 from a permutation I'-lattice Py to a given
I'-lattice X, to form a coflasque resolution of X, we need only adjust Py to P = Py &
S ¢ Z[['/S] ® X¥ where the sum is taken over all subgroups S of I' for which 7 : P° —
X% is not a surjection, and adjust 7 to # such that Tlzr/sjexs = €s ® id with eg the
augmentation map. Then # maps P° surjectively onto X for all subgroups S of T so that
H!(S,Ker ) = 0 as required. To obtain a compatible coflasque resolution for Y, extend
the surjection from the permutation lattice P onto X to a surjection from the permutation
lattice P @ Qg onto Y and then adjust this surjection P & Q¢ — Y to one with a coflasque
kernel P @& Q — Y as above. Then the top two rows are exact and commutative. The
bottom row is obtained via the Snake Lemma.
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Let S be a subgroup of I'. Taking S-fixed points in (2.14), we obtain

0 0 0
| } |
0—C PS X5 0
| } |
0—Cf —PSaQ° y*s 0
| | |
0—yS Q° (Z./dZ)% — 0
| | J
0 0 0

Since C7,Cy are coflasque and P, Q) are permutation, we find that the first two rows and
columns are exact. By hypothesis, the third column is exact. Then a diagram chase shows
that the bottom row is exact. But then this means that U is coflasque since

0— U° — Q% — (2/dZ2)° — HY(S,U) — HY(S,Q) =0
is exact. Applying [LL, Lemma 1.1] to
0—U—Q—7Z/dZ — 0,
we find that U is also quasi-permutation as it satisfies
0 —U—QeZ—7Z—0.

So as U is coflasque, this sequence splits and U is in fact stably permutation with U & Z ~
Q@ Z. The first column of the first commutative diagram then shows us that C1 U G Z ~
Co®Z sothat C1 QP Z = Cy P Z. Since

0 —X"—P—C; —0, 0—Y" —PapQ—C; —0

are flasque resolutions of X* and Y™, this implies p(X*) = p(Y*) (i.e., that the corre-
sponding flasque lattices are stably equivalent). By [C-TS;, Lemme 8|, we conclude that
X ~Y* O

2.15. Speiser’s Lemma. Let m : Y — X be an algebraic vector bundle. We call it
an algebraic vector I'-bundle if I' acts on X and Y, the morphism 7 is ['-equivariant and
g: 7 Yz) — 7 (g(x)) is a linear map for every x € X and g € I.

The first of the following related rationality results is an immediate consequence the
classical Speiser’s Lemma; the others follow from the first. In a broader context, when
I' is any algebraic group, results of this type appear in the literature under the names of
“no-name method” ([Do]) and “no-name lemma” (see [C-T]).

Lemma 2.16. (a) Suppose E is a I'-field and K is a T'-subfield of E such that T acts on K
faithfully, E = K(x1,...,2y) and Kz, + ... + Kz, is [-stable. Then E = K (t1,...,tm),
where tq,. ..ty are U-invariant elements of Kx1 + ...+ Kxpy,.

(b) Let m: ' Y — X be an algebraic vector I'-bundle. Suppose that X is irreducible and the
action of I' on X is faithful. Then 7 is birationally U'-trivial, i.e., there exists a birational

I'-isomorphism ¢ : Y S5 X x k™, where I' acts on X x k™ wvia the first factor, such that
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the diagram

Y- % =X x km
X

is commutative (11 denotes projection to the first factor).

(c) Let Vi and V3 be finite dimensional vector spaces over k endowed with faithful linear
actions of I'. Then Vi and Va are stably I'-isomorphic.

(d) Suppose L is a field and

0—S-"N-"P—0

is an exact sequence of I'-lattices, where S is faithful and P is permutation. Then the I'-field
L(N) is I'-isomorphic over L to the I'-field L(S)(t1,...,t,), where the elements ti,...,t,
are T'-invariant and algebraically independent over L(S).

Proof. (a) follows from Speiser’s Lemma, [Spe], cf. [HK, Theorem 1] or [Sh, Appendix 3].

(b) Recall that, by definition, algebraic bundles are locally trivial in the étale topology,
but algebraic vector bundles are automatically locally trivial in the Zariski topology, see
[Se]. This implies that after replacing X by a I'-stable dense open subset U and Y by
77 1(U) we may assume that Y = X x k™ (but we do not claim that T' acts via the first
factor!) and 7 is projection to the first factor.

Using the projections Y — X and Y — k™, we shall view k(X)) and k(k™) as subfields of
E(Y). Put E:=k(Y), K := k(X) and let z1,..., 2z, be the standard coordinate functions
on k™. If g € I' and b € X, then the definition of I'-bundle implies that g(xi)|—1() €
kxilz—1() + -+ + kEZTm|z—1(). In turn, this implies that the assumptions of (a) hold. Part
(b) now follows from part (a).

(c) Applying part (b) to the projections V; «— V;j x Vo — V3, we see that both V; and V5
are stably I'-isomorphic to V; x Va.

(d) Identify S with ¢(S); then K := L(S) is an I'-subfield of £ := L(N). Putx; =1€ FE
and choose z2...,zy, € N C E such that 7(x2),...,7(xy,) is a basis of P permuted by I'.
The elements xo,...,x,, are algebraically independent over K. If g € I', then for every 1%
there is a j such that a;; := g(x;) —2; € Ker7 =S C K; so g(x;) = agjx1 + xj. This shows
that the assumptions of (a) hold. The claim (with » = m — 1) now follows from part (a).
U

2.17. Homogeneous fiber spaces. Let H be an algebraic group and let S be a closed
subgroup of H. Consider an algebraic variety X endowed with an algebraic (morphic)
action of S and the algebraic action of S on H x X defined by

(2.18) s(h,z) = (hs™',s(z)), s€S, (hz)eHxX.
Assume that there exists a geometric quotient, [MFK], [PV, 4.2],
(2.19) HxX — (H x X)/S.

This is always the case if every finite subset of X is contained in an affine open subset of X
(note that this property holds if the variety X is quasi-projective), [Se, 3.2], cf. [PV, 4.8].
The variety (H x X)/S, called a homogeneous fiber space over H/S with fiber X, is denoted
by H x3X. If H is connected and X is irreducible, then H x5X is irreducible. We denote
by [h, z] the image of a point (h,z) € H x X under the morphism (2.19).
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The group H acts on H x X by left translations of the first factor. As this action
commutes with the S-action (2.18), the universal property of geometric quotients implies
that the corresponding H-action on H x %X,

B'h,z) = [W'h,2], KW ,heH, veX,

is algebraic. It also implies that since the composition of the projection H x X — H
with the canonical morphism H — H/S is constant on S-orbits of the action (2.18), this
composition induces a morphism

(2.20) T=m7 :H x5X — H/S, [h,x] — hS.

This morphism is H-equivariant and its fiber over the point o € H/S corresponding to
S is S-stable and S-isomorphic to X; in the sequel we identify X with this fiber. Since
H acts transitively on H/S and 7 is H-equivariant, the H-orbit of any point of H xS X
intersects X. If Z is an open (respectively closed) H-stable subset of X, and ¢ : Z — X
is the identity embedding, then H x°Z — H x° X, [h, z] ~ [h,1(2)], is the embedding of
algebraic varieties whose image is an H-stable closed (respectively open) subset of H x5 X.
Every H-stable closed (respectively open) subset of H x X is obtained in this way.

If the action of S on X is trivial, then H x°X = H/S x X and 7 is the projection to
the first factor.

The morphism 7 is a locally trivial fibration in the étale topology, i.e., each point of H/S

H,S,X

has an open neighborhood U such that the pull back of 7=1(U) = U over a suitable étale
covering U—Uis isomorphic to the trivial fibration U x X — U, (y,x) — x, see [Se, §2],
[PV, 4.8]. If X is a k-vector space and the action of S on X is linear, then (2.20) is an
algebraic vector H-bundle, so 7 is locally trivial in the Zariski topology, i.e., 7~ *(U) = U
is isomorphic to U x X — U, (u,z) — z, for a suitable U, see [Se].

If 9 is a (not necessarily H-equivariant) morphism (respectively rational map) of H x X
to H x°Y such that

(2.21) T
then we say that ¢ is a morphism (respectively rational map ) over H/S.

Lemma 2.22. (a) If ) : H x°X — H x°Y is an H-morphism over H/S, then 1|x
is an S-morphism X — Y. The map ¥ — 1|x is a bijection between H-morphisms
H x5X — H x°Y over H/S and S-morphisms X — Y. Moreover, 1 is dominant (re-
spectively, an isomorphism) if and only if ¥|x is dominant (respectively, an isomorphism).

(b) Let H be connected and let X and 'Y be irreducible. Then the statements in (a) hold
with “morphism” and “isomorphism” replaced by respectively “rational map” and “bira-
tional isomorphism”.

H,8x — Tgsy © ¥,

Proof. (a) Since X = 75's x(0), Y = 7'y (0), the first statement follows from (2.21). As

every H-orbit in H x°X intersects X and 1 is H-equivariant, v is uniquely determined
by ¢|x. If ¢ : X — Y is an S-morphism, then H x X — H x Y, (h,z) — (h,p(x)), is a
morphism commuting with the actions of S (defined for H x X by (2.18) and analogously
for H x Y) and H. By the universal property of geometric quotients, the H-map 1 :
H x%X — H x%Y, [h,2] = [h,¢()], is a morphism over H/S. We have ¢|x = ¢. The
same argument proves the last statement.

(b) Since 1 is H-equivariant, its indeterminacy locus is H-stable. As every H-orbit in
H x° X intersects X, this locus cannot contain X. Consequently, Y|x : X --» H x5Y is
a well-defined rational S-map. In view of (2.21), its image lies in Y. Now (b) follows from
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(a) because rational maps are the equivalence classes of morphisms of dense open subsets,
and all H-stable open subsets in H x° X are of the form H x°Z where Z is an S-stable
open subset of X. [J

3. Cayley maps, generic tori, and lattices

3.1. Restricting Cayley maps to Cartan subgroups. Let G be a connected linear
algebraic group and let T be its maximal torus. Consider the Cartan subgroup C| its
normalizer N and the Weyl group W defined by (1.26). Let g, t and ¢ be the Lie algebras
of G, T and C' respectively.

Since C'is the identity component of N and the Cartan subgroups of G are all conjugate
to each other, [Bor, 12.1], assigning to a point of G/N the identity component of its G-
stabilizer (respectively, the Lie algebra of this G-stabilizer) yields a bijection between G /N
and the set of all Cartan subgroups in G (respectively, all Cartan subalgebras in g). So
G/N can be considered as the variety of all Cartan subgroups in G (respectively, the variety
of all Cartan subalgebras in g).

Moreover the Cartan subgroups in G (respectively the Cartan subalgebras in g) paramet-
rized in this way by the points of G/N naturally “merge” to form a homogeneous fiber space
over G/N with fiber C' (respectively, ¢). More precisely, consider the homogeneous fiber
space G xVC over G/N defined by the conjugating action of N on C (respectively, the
homogeneous fiber space G x "¢ over G/N defined by the adjoint action of N on ¢). Then
for any g € G, the map W&}Nyc(g(o)) — gCg7', [g9,¢] — gcg™! (respectively, the map
W&}N7c(g(0)) — Adgg(c), [g,2] — Adgg(x)), is a well defined isomorphism (we use the
notation of Subsection 2.17 for H = G, S = N).

Consider the conjugating and adjoint actions of G respectively on G and g. Then the
definition of homogeneous fiber space implies that

(3.2) Yo G xNCo — @G, g, c] — geg 1, ’yc:Gch—>g, lg,x] — Adg g(x),

are well defined G-equivariant maps, and the universal property of geometric factor implies
that they are morphisms.

Lemma 3.3. (a) The morphisms vy, and . in (3.2) are birational G-isomorphisms.
(b) Any rational G-maps G xNC --» G xN¢ and G xN¢ -—-» G xNC are rational maps
over G/N.

Proof. (a) Since the Cartan subgroups of G are all conjugate and every element of a dense
open set U in G belongs to a unique Cartan subgroup, [Bor, §12], every fiber val(u), where
u € U, is a single point. As char k = 0, this means that v, is a birational isomorphism. For
v, the arguments are analogous because ¢ is a Cartan subalgebra in g, Cartan subalgebras
in g are all Ad;G-conjugate and a general element of g is contained in a unique Cartan
subalgebra, [Bous, Ch. VIIJ.

(b) Since a general element of T' (respectivelyt) is regular, C' (respectively¢) is the
unique Cartan subgroup (respectively subalgebra) containing 7" (respectively t), [Bor, §13],
see [Bous, Ch. VII]. This implies that C' and ¢ are the fixed point sets of the actions of T’
on G xNC and G xN¢ respectively. Since the maps under consideration are G-equivariant,
this immediately implies the claim. [

Remark 3.4. The group varieties of C' and ¢ are the “standard relative sections” of
respectively G and g induced by the rational G-map m . © 751 : G --» G/N and
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TN © vt g --» G/N; in particular, this yields the following isomorphisms of invariant
fields:

(35) HG) = KON, frflon k@) = k@Y, f o flo
see [Pops, Definition (1.7.6) and Theorem (1.7.5)].

Lemma 3.6. (a) G is Cayley if and only if C and ¢ are birationally N-isomorphic.
(b) G is stably Cayley if and only if C and ¢ are stably birationally N -isomorphic.

Proof. (a) By Lemma 2.22, the existence of a birational N-isomorphism ¢: C s implies
the existence of a birational G-isomorphism v : G xNC -=» G xN¢. Then Lemma 3.3 shows
that v, o9 o 761 (G- g is a Cayley map.

Conversely, let A : G s g be a Cayley map. Then ¢ := v oXoy, : GxNC 2 G xNe
is a birational G-isomorphism. By Lemma 3.3, ¢ is a rational map over G/N. Hence, by
Lemma 2.22, ¢|¢ : C =5 ¢ is a birational N-isomorphism.

(b) If C' and ¢ are stably birationally N-isomorphic, it follows from rationality of the

underlying variety of any linear algebraic torus that for some natural d there exists a
birational N-isomorphism

(3.7) CxGL =5 cakd,

where k% is the Lie algebra of G¢, and N acts on C'x G%, and ¢@ k¢ via C and ¢ respectively.
Clearly C x G4, is the Cartan subgroup of G x G¢, with normalizer N x G¢, and Lie algebra
¢ @ k9, and the birational isomorphism (3.7) is N x G¢ -equivariant. Now (a) implies that
G x G¢ is Cayley and hence G is stably Cayley.

Conversely, assume that G x G¢ is Cayley for some d. Then the above arguments and
(a) show that there exists a birational N-isomorphism (3.7). Since the group varieties of

G2 and k¢ are rational, this means that C' and ¢ are stably birationally N-isomorphic.
O

For reductive groups, Lemma 3.6 translates into the statement resulting also from [Lunjy,
p. 13, Proposition]:

Corollary. Let G be a connected reductive linear algebraic group.

(a) G is Cayley if and only if T and t are birationally W -isomorphic.
(b) G is stably Cayley if and only if T and t are stably birationally W -isomorphic.

Proof. Since G is reductive, C = T and ¢ = t. As T is commutative, this implies that
the actions of N on T and t descend to the actions of W. The claim now follows from
Lemma 3.6. U

3.8. Generic tori. We now recall the definition of generic tori in a form suitable for our
purposes; see [Vos, 4.1] or [CK, p.772]. We maintain the notation of Subsections 2.17, 3.1.

Assume that G is a connected reductive linear algebraic group; then C =T and ¢ = t.
According to the discussion in the previous subsection, G/N may be interpreted in two ways:
first, as the variety of all maximal tori in G, and second, as the variety of all mazimal tori
in g. The maximal torus in G (respectively, in g) assigned to a point g(o) € G/N is gTg~*
(respectively, Adgg(t)); it is naturally identified with the fiber over g(o0) of the morphism
Tong i GXNT — G/N (respectively, : G xNt — G/N).

Ta N
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Definition 3.9. The triples
T = (G x"T,7y . G/N) and tg:= (G x"t, 7, ,G/N)
are called respectively the generic torus of G and the generic torus of g.

We identify the field k(G /N) with its image in k(G x¥T) under the embedding TGN T

Definition 3.10. The generic torus T is called rational if k(G xNT) is a purely trans-
cendental extension of k(G/N). If T, qa is rational for some d, then T is called stably
rational.

Equivalently, T is called rational if there exists a birational isomorphism
(3.11) G xNT -5 G/N x A"

over G/N (then r = dim 7). The arguments used in the proof of Lemma 3.6 (b) show that
stable rationality of T is equivalent to the property that there exists a purely transcen-
dental field extension F of k(G x™VT) such that E is a purely transcendental extension of
kE(G/N). There are groups G such that the generic torus T is not stably rational (and
hence not rational), [Vos], [CK].

Of course, for the generic torus tg in g, one could also introduce the notions analogous
to that in Definition 3.10. However in the Lie algebra context the rationality problem of
generic tori is quite easy: since 7, v, G xNt — G/N is a vector bundle, it is locally
trivial in the Zariski topology, and hence tg is always rational, i.e., there exists a birational
isomorphism

(3.12) GxNt-Z5 G/N x A"
over G/N.

3.13. Proof of Theorem 1.31.

Implication (a): By the Corollary of Lemma 3.6, it is enough to construct a W-equiva-
riant birational isomorphism ¢: T’ it

Using the sign-permutation basis of T, we can W-equivariantly identify the maximal
torus T' with G7,,, where r is the rank of G and every w € W acts on GJ, by

(3.14) (b1 te) = (B £,

for some o € S, and some €1,...,e, € {£1} (depending on w). The Lie algebra t is the

tangent space to GJ, at e = (1,...,1); it follows from (3.14) that we can identify it with k"
where w acts by

(3.15) (1,5 20) = (E1T5(1)s - - 5 ErTo(r))-

From (3.14) and (3.15) we easily deduce that the formula
(try.ote) = (A—t) @ +t) o =t +t) )

defines a desired birational W-isomorphism ¢: T -=»t. This completes the proof of impli-
cation (a).

To see that implication (a) cannot be reversed, consider the group G := SLj3. First note
that this group is Cayley; see Proposition 9.2. On the other hand, W ~ S5 and since the
character lattice X has rank 2, it can not be sign-permutation. Indeed, if it were, then Sg
would embed into (Z/27)? x Sy, which is impossible.
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Implication (b): By the Corollary of Lemma 3.6, there is a birational N-isomorphism

T-=st. By Lemma 2.22, this implies that there is a birational G-isomorphism G x VT =
G xNt over G/N. Tts composition with the birational isomorphism (3.12) is a birational
isomorphism (3.11) over G/N. Hence T is rational.

To see that implication (b) cannot be reversed, consider the exceptional group Ga. The
generic torus of Gy is rational; see [Vos, 4.9]. On the other hand, Gy is not a Cayley group;
see Proposition 9.11.

Implication (c): This is obvious from the definition.

FEquivalence (d): This is well-known, see, e.g., [Vos, Theorem 4.7.2].

Equivalence (e): Let V be any finite dimensional faithful permutation W-module over
k (for instance, the one determined by the regular representation of W). Then clearly
kE(V) = k(P) for some permutation W-lattice P. Since the action of W on t is faithful,
[Bor|, we deduce from Lemma 2.16(c) that k(t) and k(P) are stably W-isomorphic over
k. Therefore, since k(T) = k(f), applying the Corollary of Lemma 3.6 implies that G is
stably Cayley if and only if k(f) and k(P) are stably W-isomorphic over k. On the other
hand, the latter property holds if and only if the W-lattice T is quasi-permutation, see the
Corollary of Lemma 2.7, whence the claim. [

Example 3.16. The character lattice ZA,,_1 of PGL,, is defined by the exact sequence
0 — ZA,_1 — Z[Sn/Sn_1] — Z — 0,

where € is the augmentation map and the Weyl group W = S,, acts trivially on Z and
naturally on Z[S,,/S,—1], see Subsection 6.1. Thus ZA,,_1 is quasi-permutation. By Theo-
rem 1.31, we conclude that PGL,, is stably Cayley. We know that in fact PGL,, is even
Cayley; see Example 1.13. 0O

4. Reduction theorems

The purpose of this section is to show that to a certain extent classifying arbitrary Cayley
groups is reduced to classifying simple ones.

As before, let G be a connected linear algebraic group. Denote by R and R, respectively
the radical and the unipotent radical of G. Recall that a Levi subgroup of G is a connected
subgroup L, necessarily reductive, such that G = L x R,; since char k = 0, Levi subgroups
exist and are conjugate, [Bor, 11.22].

In this section we will address the following questions:

(a) If a Levi subgroup of G is (stably) Cayley, is G (stably) Cayley?
(b) Let G be reductive. If G/R is (stably) Cayley, is G (stably) Cayley?

(c) Let G be reductive and let Hy,..., H, be a complete list of its connected normal
simple subgroups. What is the relation between (stable) Cayleyness of G and that
of Hl,... ,Hn7

4.1. Unipotent normal subgroups. We will need a generalization of Example 1.23. Let
U be a normal unipotent subgroup of G. Denote by u the Lie algebra of U. The group G
acts on U by conjugation and on u by Adg|y.

Lemma 4.2. There exists a G-isomorphism of G-varieties U — u.

Proof. We may assume without loss of generality that G C GL,,. Since Ad is given by
(1.2), it follows from (1.24) that In: U — u is a G-morphism. By Example 1.23, it is an
isomorphism, whence the claim. [
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4.3. The Levi decomposition.

Proposition 4.4. Let L be a Levi subgroup of G.

(a) If L is Cayley, then so is G.
(b) G is stably Cayley if and only if L is stably Cayley.

Proof. Let T be a maximal torus of L. It is a maximal torus of G as well, [Bor, 11.20]. Using
the notation of (1.26) and Subsection 3.1, we have C' = T'x U where U is a unipotent group,
[Bor, 12.1]. Let u be the Lie algebra of U and let d = dimU. As T and U are respectively
the semisimple and unipotent parts of the nilpotent group C, they are stable under the
conjugating action of N, and C, as an N-variety, is the product of the N-varieties T' and U.
Consequently, t and u are stable under the adjoint action of N, and ¢, as an N-variety, is the
product of N-varieties t and u. By Lemma 4.2, there exists an isomorphism of N-varieties

(4.5) 7: U —

(a) Assume that L is Cayley. Then by Corollary of Lemma 3.6, there is a birational
W, r-isomorphism ¢: T' - t. Since the action of W on T (respectively, t) is faithful,
W, r can be considered as a transformation group of T' (respectively, t). By [Bor, 11.20],
it coincides with the transformation group {T' — T, t — ntn~! | n € N} (respectively,
{t—=t, x+— Adgn(z) | n € N}). Therefore the map ¢ is N-equivariant. Hence

exT1:C=TxU--»tdu=c

is a birational N-isomorphism. Lemma 3.6 now implies that G is Cayley.

(b) Since L x GZ is the Levi subgroup of G' x G | it follows from (a) that if L is stably
Cayley, then G is stably Cayley.

To prove the converse, it suffices to show that if G is Cayley, then L is stably Cayley. In
turn, Lemma 3.6 and its Corollary reduce this to proving that if there exists a birational
N-isomorphism

a:C=TxU -"stxu=rc,
then 7" and t are stably birationally W, r—isomorphic. We shall prove this last statement.

Since 7' is the identity component of N; 7 = N N L and T acts trivially on C' and ¢, the
actions of N p on C, ¢, T, t, U and u descend to actions of Wy, = N 7/T. Moreover, C
(respectively, ¢), as an W, p-variety, is the product of Wy, p-varieties T and U (respectively,
t and u), and « is a birational W, p-isomorphism.

Since Wp, r acts linearly on u, Lemma 2.16(b) implies that there are birational Wi, -
isomorphisms

ﬂ:TxAd—iTxu and vztxu—itxAd,
where W, r acts on T' x A% and t x A? via the first factors. Considering the composition
of the following birational Wy, r-isomorphisms

-
T A= o Pt T P - st u— =t x Al

we now see that 7" and t are indeed stably birationally Wy, p-isomorphic. [

Remark 4.6. The converse to Proposition 4.4(a) fails for G := Gy x G2. Indeed, the first
factor is the Levi subgroup of G. By Proposition 9.11, it is not Cayley. Consider the group
H := G x G2, Both G and H have the same Lie algebra g. By Proposition 9.13, H is

Cayley; let A : H = g be a Cayley map. Fix a birational isomorphism of group varieties
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§: G2 . G2,. Since the second factors of G and H lie in the kernels of conjugating and

adjoint actions, Ao (id x 0): G s g is a Cayley map. Thus G is Cayley.
Corollary. FEvery connected solvable linear algebraic group G is Cayley.

Proof. A Levi subgroup L of G is a torus, [Bor, 10.6]. By Example 1.22, L is Cayley. Hence
by Proposition 4.4(a), G is Cayley as well. [

4.7. From reductive to semisimple.

Proposition 4.8. Let G be a connected reductive group and let Z be a connected closed
central subgroup of G.

(a) If G/Z is Cayley, then so is G.

(b) G is stably Cayley if and only if G/Z is stably Cayley.

Proof. Since G is reductive, R is a torus and the identity component of the center of GG, see
[Bor, 11.21]. Thus Z is a subtorus of R. Let T' be a maximal torus of G. We have R C T,
see [Bor, 11.11], T'/Z is a maximal torus of G/Z and the natural epimorphism G — G/Z
identifies W with W7 1/, (we use the notation of (1.26) and Subsection 3.1), see [Bor,
11.20]. Since Z is central, it is pointwise fixed with respect to the action of W. Thus we
have the following exact sequence of W-homomorphisms of tori

e— 72 —T—T/Z —e
which in turn yields the exact sequence of W-lattices of character groups
0— 1% — T —Z—0.

Note that W acts trivially on Z. In particular, Zisa permE‘@tion W-lattice, and the last
exact sequence tells us that the character lattices T and T/Z are equivalent, see Defini-
tion 2.4. Thus, by Lemma 2.7 and its Corollary, if one of them is quasi-permutation, then
so is the other. Part (b) now follows from Theorem 1.31.

Since the W-fields k(T') and k(T/Z) are W-isomorphic to k(T) and k(T/Z) respectively,
we deduce from Lemma 2.16(d) that T" is birationally WW-isomorphic to T'/Z x A™, where
W acts on T/Z x A™ via the first factor and m = dim Z.

On the other hand, let f and 3 be the Lie algebras of T/Z and Z respectively. Then,
since the Lie algebras t and § @ 3 are W-equivariantly isomorphic and W acts on 3 trivially,
we see that t, as a W-variety, is isomorphic to f x A™, where W acts on f x A™ via the
first factor.

Now to prove part (a), assume that G/Z is Cayley. Then by the Corollary of Lemma 3.6,

there is a birational W-isomorphism ¢ : T'/Z . f. This gives a birational W-isomorphism
id
T/Z x A™ RS f x A™ . Applying the Corollary of Lemma 3.6 once again, we conclude
that G is Cayley. This completes the proof of part (a). O
Setting Z = R, we obtain

Corollary. Let G be a connected reductive group and Gss := G/R.
(a) If Gy is Cayley, then so is G.
(b) G is stably Cayley if and only if Gss is stably Cayley. O

Remark 4.9. The converse to statement (a) of Corollary fails for G = Gy x G2,. Indeed,
G is Cayley by Proposition 9.13 and G/R ~ Gy is not Cayley by Proposition 9.11.
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4.10. From semisimple to simple. Let GG1,...,G,, be connected linear algebraic groups
and let g; be the Lie algebra of GG;. If each G; is Cayley, then so is G1 X ... X G, see
Example 1.10. The converse fails for n = 2, G; = Ga, G2 = G2, by Proposition 9.11,
Example 1.22 and Proposition 9.13.

Lemma 4.11. G1 X ... X Gy, is stably Cayley if and only if each G; is stably Cayley.

Proof. The “if” direction follows from Definition 1.29 and Example 1.10. To prove the
converse, we use the fact that the underlying variety of each G is rational over k, see [Chy].
This implies that the underlying variety of G1 x ... x GG,, as a (G;-variety, is birationally
isomorphic to G; x G% with the conjugating action via the first factor and d; = > i dim Gj.
The “only if” direction now follows from Definition 1.29 and the fact that the underlying
variety of the Lie algebra of G x ... x Gy, as Gj-variety, is isomorphic to g; ® k% with the
adjoint action via the first summand. [

As usual, given subgroups X and Y of G, we denote by (X,Y) the subgroup generated
by the commutators zyz'y~! with x € X, y € Y.

Proposition 4.12. Assume G is a connected reductive group and let Hy,...,H,, be the
connected closed normal subgroups of G such that

(i) (Hy\ Hy) = e for all i # j,

(il) G=Hy...Hpy.
Let H; be the subgroup of G' generated by all H;’s with j # i. If G is stably Cayley, then
each G/H; ~ H;/(H; N H;) is stably Cayley.

Proof. Since Hy,...,H,, are connected, each H; is connected, see [Bor, 2.2]. Since G is

reductive, all H; and fIZ are reductive.
It follows from (i) and (ii) that

H1><...><Hm—>G, (hl,...,hm)th...hm,

is an epimorphism of algebraic groups. Let T; be a maximal torus of H;. Then T} x...x T},
is a maximal torus of Hy X ... X H,,. Therefore its image T := T} ...T,, under the above
epimorphism is a maximal torus of G, see [Bor, 11.14]. The same argument shows that the
group S; of T' generated by all T;’s with j # ¢ is a maximal torus of H;.

It follows from (i) that N; := Np, 1, is a subgroup of N = Ngr and S; is pointwise
fixed under the conjugating action of N; on T. Since the subgroup T; of N; acts on T
trivially, this action descends to an action of W; := Wy, 1, = N;/T;. Since H; is connected
reductive, any maximal torus of H; coincides with its centralizer in H;, see [Bor, 13.17]. As
T; is such a torus, this yields the equality T'N H; = T;. It shows that W;, considered as a
transformation group of 7', is the image of N; under the natural projection N — N/T = W.

Let m; : Hi — H;/(H; N fIZ) be the natural epimorphism. Then 7;(7;) is a maximal
torus of H;/(H; N H;). Tt follows from (i) and [Bor, 11.20, 11.11] that 7; identifies W; with
WHi J(HiO ) (T3 5O that the natural isomorphism T} /(T; ﬂ}NIZ) — m;(T;) is Wi-equivariant.

The above argument applied to ﬁz and S; instead of H; and T; shows that TN I:TZ =5;.
This, in turn, implies that

ﬂﬂf]i:ﬂﬂsi.
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Thus a maximal torus of HZ/(HZHFIZ) is Wy-isomorphic to T; /(T;N.S;). In turn, T;/(T;NS;)
is Wi-isomorphic to T'/S; because T' = T;S;. Therefore there is an exact sequence of W;-
homomorphisms of tori

e— S — T —T;/(T;NS;) — e

Passing to the character groups, we deduce from it the following exact sequence of W;-
lattices

0—T;/(TinS;) — T — §; — 0.
As the action of W; on S; is trivial, ,SA”Z is a trivial and, in particular, a permutation W;-

lattice. Hence the above exact sequence shows that T;/(7; N S;) and T are equivalent
W;-lattices. R

Assume now that G is stably Cayley. Then Theorem 1.31 implies that T is quasi-
permutation as a W-lattice, and hence as a W;-lattice because W; is a subgroup of W.

o —

Therefore the equivalent W;-lattice T;/(S; N T;) is quasi-permutation as well. Since the
latter is the character lattice of H;/(H; N H;), Theorem 1.31 implies that H;/(H; N H;) is
stably Cayley. O

Corollary. Let G be a connected semisimple group. Let Hy,...,Hy, be the minimal ele-
ments among its connected closed normal subgroups. Define H; as in Proposition 4.12. If
G is stably Cayley, then each H;/(H; N H;) is stably Cayley.

Proof. By [Bor, 14.10], the assumptions of Proposition 4.12 hold. [

Remark 4.13. In Proposition 4.12, if G is stably Cayley, H; is not necessarily stably
Cayley. For example, take G = GL,, m = 2, H; = G,, diagonally embedded in GL,, and
Hy = SL,,. Then G is Cayley by Example 1.11, and H, is not stably Cayley for n > 3 by
Theorem 1.32.

5. Proof of Theorem 1.32: an overview

In this section we outline a strategy for proving Theorem 1.32; the technical parts of the
proof will be carried out in Sections 6-8.

By Theorem 1.31, it will suffice to determine which connected simple groups have a stably
rational generic torus (or, equivalently, a quasi-permutation character lattice). CORTELLA
and KuNyavskii in [CK, Theorem 0.1] have classified all simply connected and all adjoint
connected simple groups that have quasi-permutation character lattice. These are precisely
SO2+1, Spy,, PGL,, SL3, and Gg. Therefore in order to complete the proof of The-
orem 1.32, we need to determine which intermediate (i.e., neither simply connected nor
adjoint) connected simple groups have a quasi-permutation character lattice.

Recall that intermediate connected simple groups exist only for types A,, and D,,. Con-
nected simple groups of type A,_; are precisely the groups SL,,/u,, where d is a divisor
of n. Among them, intermediate groups are those with 1 < d < n. In Section 7 we will
prove the following.

Proposition 5.1. Let d be a divisor of n, where 1 < d < n and (n,d) # (4,2). Then the
character lattice of the group SL,,/py is not quasi-permutation.

As we saw in Example 1.18, the group SLy/pu, is Cayley; in particular, by Theorem 1.31,
its character lattice is quasi-permutation.



24 NICOLE LEMIRE, VLADIMIR L. POPOV, AND ZINOVY REICHSTEIN

The intermediate connected simple groups of type D,, are SO, for any n > 3 and the
half-spinor groups Spin;é2 for even n > 4. The latter are defined as follows. Consider the
spinor group Spin,,, for even n > 4. Its center is isomorphic to gy X p9, see [Cha|, [KMRT,
§25], and consequently contains precisely three subgroups of order 2. One of them is the
kernel of the vector representation, so the quotient of Spin,,, modulo it is SO3,,. T'wo others
are the kernels of the half-spinor representations of Spin,,,. They are mapped to each other

by an outer automorphism of Spin,,, so the images of the half-spin representations are

isomorphic to the same group that is Spin;/f.

By Example 1.18, the groups SO, are Cayley. If n = 4, the group of outer automor-
phisms of Spin,,, is isomorphic to S3 (for n > 4, it is isomorphic to S2) and acts transitively

on the set of all subgroups of order 2 of the center of Spin,,. Therefore Spiné/ 2~ SOs,

whence it is Cayley. Thus we only need to consider the half-spin groups Spin%2 for even
n > 4. In Section 8 we will prove the following.

Proposition 5.2. The character lattice of the half-spinor group Spin%2 for evenn >4 is
not quasi-permutation.

Thus in order to complete the proof of Theorem 1.32, we need to prove Propositions 5.1
and 5.2. This will be done in the next three sections.

6. The groups SL,,/u, and their character lattices

6.1. Lattices Qy(d). For any divisor d of n, the Weyl group W of the group G = SL,,/u
is isomorphic to the permutation group S,, of the set of integers {1,...,n}. The character
lattice X is described as follows.

Let €1,...,e, be the standard basis for the permutation S,-lattice Z[S,,/S,—1] on which
o €S, acts via

(6.2) o(e;)) =€ forali=1,... n.
We naturally embed Z[S,,/S,—1] into the Q-vector space Z[S,,/S,—1] ®z Q endowed with the
Euclidean structure such that €1,...,¢, is the orthonormal basis and we naturally extend

the action of S,, to this space.
The root system of type A,,_1 is the subset

Anfltz{éi—6j|1<i7§j<n}.

of Z[S,/Sn—1] ®z Q. The Weyl group W (A,_1) of A,_1 is S,, acting by (6.2), and the
standard base of A,,_1 is a1,...,a,_1, where

(6.3) QG = & — Ej+1, ’i:1,...,n—1,
see [Boug|. The kernel of augmentation map

Z[Sn/snfl] ;) Z7 Zzﬁzl aig; — Z?:l ag,
is the root S,-lattice ZA,,_1 of A,_1,

(6.4) ZAn_1 =201 & ... ® Loy = {> 1y ae; | Yiq a; = 0}.
The character lattice of SL,,/p, is isomorphic to the following S,,-lattice
(65) Qn(d) = ZA,_1 + Zdwoy, where wy = g1 — % Z?:l E;-

The vector w; is the first fundamental dominant weight of the root system A,_; with
respect to the base aq,...,a,_1.
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Observe that the character lattice of SL,,/pu,, = PGL, is the root S,-lattice Q,(n) =
ZA,—1, the character lattice of SL,,/u; = SL,, is the weight S,-lattice A,, of type A,_1,
and that the following sequences of homomorphisms of S,,-lattices are exact:

(6.6) 0— ZAn-1 — Qn(n/d) — Z/dZ — 0,

(6.7) 0 — Qun(d) — A, — Z/dZ — 0.

Here Z/dZ denotes the cyclic group of order d with trivial Sg-action. Note that
(6.8) Quld)* = Qu(n/d).

In this section we will prove a number of preliminary results about the lattices @, (d). In
the next section we will use these results to prove Proposition 5.1.

6.9. Properties of Q,,(d). We begin by recalling a simple lemma which computes the
cohomology HY(T', ZA,,_1) for all subgroups I' of S,,. The first part is extracted from [LL,
Lemma 4.3].

Lemma 6.10. For any subgroup I' of S,,, we have
HY (T, ZA,—1) ~Z/ Y, |O|Z,

where O runs over the orbits of T in {1,...,n}. More explicitly, the connecting homomor-
phism of the cohomology sequence induced by the augmentation sequence

(6.11) 0 — ZA,_1 — Z[Sp/Sp_1] — Z — 0,
s given by
1o}
Z = Z[Sn/Sn-1]/ZAn—1 — H' (T, ZA,_1), mey + ZAn_1 — [0 — m(e,q) — 1)),
where the image is the class of the given 1-cocycle from T' to ZA,_1.

Proof. From the cohomology sequence that is associated with (6.11), one obtains the exact
sequence Z[S,/Sp_1]" = 7Z LA HY(T,ZA,,_1) — 0 which implies the asserted description of
HY(I',ZA,,_1). The calculation of the connecting homomorphism 0 follows directly from

the identification of Z with Z[S, /Sn—1]/ZA,—1 and an application of the Snake Lemma.
O

Lemma 6.12. For any subgroup T' of S,,, the exact sequence (6.6) induces the following
connecting homomorphism in cohomology:

Z)dZ = Qu(n)d)/ZA, 1 2 HY(T,ZA, 1), m+dZ— 22+, |0|Z,

where the sum on the right runs over the orbits O of T' in {1,...,n}. In particular, if
[HY(T, ZA,,_1)| divides n/d, then O is the zero map.

Proof. Since Qn,(n/d) has Z-basis §wi,e1 —€2,...,6n_2 — n—1 Where w; is given by (6.5),
we conclude that Qn(n/d)/ZA, 1 is generated by 5w + ZA,, 1. Using the Snake Lemma,
one sees that the connecting homomorphism Z/dZ = Qn(n/d)/ZA,-1 LA HY(T,ZA, 1)
sends %ty + ZA,_1 to the class of the 1-cocycle [0 — Z(e,1) — €1)] in HY(T',ZA,_1). An
application of Lemma 6.10 and the identification Z/dZ = Q,(n/d)/ZA,_1 completes the

proof of the first statement. The second statement follows directly from the first. 0O

Lemma 6.13. Let I' be a subgroup of S, which fixes at least one integer i € {1,...,n}.
Then HY(T, Q,(d)) = 0.
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Proof. Note that in this case, {e; —¢; | t # i} is a permutation basis for ZA,_; so that both
ZA,_1 and A,, = (ZA,_1)* are permutation I-lattices. This implies that H!(T', ZA,,_1) =
0 =H'(I',A,). Observe that v; =¢; — 231" | & € AL and that v; + Q,(d) = @1 + Qn(d)
since v; —wy = g;—€1 € ZA,—1 C @Qn(d). Then applying cohomology to the exact sequence
(6.7), we obtain

AL — 2,/dZ — HA(T, Qu(d)) — H!(I', A,) = 0.

Since A,,/Qn(d) = Z/dZ is generated by wi + @Qn(d), the above argument shows that the
map AL — Z/dZ is surjective so that H'(T', Q,,(d)) = 0, as required. [

For a sequence of integers 1 < iy < ... <1, < n, set
S{il,...,’ir} = {O- € Sn | O-(j) = ] for every j g {il) s 7ir}}'
This is a subgroup of S,; in particular, Sy; 3 = Sp. The map
Wiryin} & Sr = Sfiy,ivds ity ir}(a)(is) =45 forall o and s,

is an isomorphism. In the sequel, the subgroup Sty ) X S{mo1,..2m) of Som is denoted
simply by S,, X S;,. For a sequence of integers

I<u<.. . <ip<ip<...<jp<...<h<...<l<n,
the image of the embedding
Sr - S”’ g [/{Zlasz}(o—)L{jlvdr}(o—) U L{llv"'vlr}(o—)7
is called the copy of S, diagonally embedded in Sgiy i gy jrrysle}-

Lemma 6.14. Let n = td. Then the following properties hold:
(a) Let X4 be the copy of Sy diagonally embedded in S,,. Then

ZAn-1|x, = ZA4—1 & Z[Sa/Sa-1])""".

Th(b) Let Yq:= S ay X X4 where X is the copy of Sq diagonally embedded in S{dt1,..n}-
en
ZAn-1ly, ~ ZA2g-1ls,xs, © Z[(Sq % Sa)/(Sa x Sa—1)]" 2.

Proof. For the first statement, note that

{EZ‘—EdJri’i:1,...,(t—1)d}U{€1—Eg,...,z’fd,l—fd}

is a basis for ZA,,_1, since {o; =¢&; —€;41 | i =1,...,n — 1} is a basis for ZA,_; and
d+i—1
€i —Edt+i = D 4—; Ok

fori=1,...,(t —1)d. But then
ZAn1lx, = S0y (i vyas Z(ei—€as)) ® o) Z(es—€ip1) = Z[Sa/Saa]' "  ©ZA 1.
For the second statement, similarly note that
{ei—egrili=d+1,...,(t —1d}U{e; —ea,...,694-1 — €24}
is a basis for ZA,,_1 so that
ZAnlvy = 302 (S g Z(ei —€ari) @ 308 Zlei — €i41)
~ Z[(Sa x Sa)/(Sa x Sa-1)" 2 ® ZAga1ls,xs, O
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7. Stably Cayley groups of type A,

7.1. Restricting Q,(d) to some subgroups. In this section we will prove Proposi-
tion 5.1. We will first show that @,,(d) restricted to certain appropriate subgroups of S, is
equivalent in each case to a smaller more manageable sublattice. We will then show that
the smaller lattices are not quasi-permutation.

Proposition 7.2. Suppose d|n and let p be a prime divisor of n/d. Let X, be the copy
of Sp diagonally embedded in Sy, and let Y, =S¢y 1 X Xp, where X, is the copy of Sp
diagonally embedded in Sgpy 1, ny. Then the following equivalencies hold:

(a) Qn(d)|x, ~ Ap.

(b) Qn(d)’Yp ~ A2p’Sp><Sp-

Proof. Recall that we have the exact sequence (6.6). The definition of p implies that n = Ip
for a positive integer [. By Lemma 6.14,

ZAn_1lx, ~ ZA,—1 ® Z[S,/Sp—1]' ",
ZAorly, = ZAgyls, s, © Z{(Sy X $)/(Sy x Syl

Using this and Lemma 6.10, we see that H(T',ZA,,_1) = HY(T',ZA,_1) = 0 or Z/pZ
for all subgroups I' of X,, and that HY(T',ZA,—1) = HY(I',ZAg,_1) = 0 or Z/pZ for all
subgroups I' of Y,,. Then by Lemma 6.12 and the fact that p divides n/d shows that the
connecting homomorphism (Z/dZ)" — HY(T,ZA,_1) is zero for all subgroups I' of X,
or of Y,. But then the sequence above restricted to X, or Y}, satisfies the conditions of
Proposition 2.13(b). This means that

Qn(d)|x, = Qu(n/d)*|x, ~ (ZAn-1)"|x, ~ (ZAp-1)" = Ay,
Qn(d)ly, = Qu(n/d)"ly, ~ (ZAn-1)"|y, ~ (ZA2p—1)*[s,xs, = A2pls,xs,- O

7.3. Lattices A, and A,. The following lemma is essentially a rephrasing of a result
proved by BESSENRODT and LE BRUYN in [BLB]:

Lemma 7.4. Let p > 3 be prime. Then A, is not a quasi-permutation Sy-lattice.

Proof. Tensoring the augmentation sequence for Z[S,,/S,—1] with ZA,_1, we obtain the
exact sequence

(75) 0— (ZAn,1)®2 — ZAnfl & Z[Sn/sn,ﬂ L> ZAn,1 — 0.
We have
ZA,_1 ® Z[Sn/Sn_l] ~ Z[Sn/sn_g]
One can show that {(e; —¢j) ® ¢ | i # j} is the set of elements of a permutation basis for
ZA,—1 ® Z[Sp/Sn—1]. The map 7 then sends (g; — €;) ® €5 to & — ¢j.
For p prime, BESSENRODT and LE BRUYN in [BLB] show that

0 — (ZAp—1)%? — Z[Sp/Sp-2] — ZA,-1 — 0
is a coflasque resolution of ZA,_; as an S,-lattice. They also show that (ZA,_1)®? is
permutation projective as an Sy-lattice but is only S,-stably permutation if p = 2,3. By
duality, the stable equivalence class of ((ZA,—1)®2)" is p(Ap), see Subsection 2.8). The

statements above then imply that A, is not a quasi-permutation S,-lattice for any p > 3.
O
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Proposition 7.6. Let p be a prime and let
I''=(1,....p),(p+1,...,2p)) <Sp xSp < Sop.
Then

(a) II*(T, Agp) = 0. In particular, a lattice in the stable equivalence class p(Aap) is
coflasque as an I'-lattice.

(b) If p is odd, Agp is not quasi-permutation as an I'-lattice and hence is not quasi-
permutation as an S, X Sp-lattice.

Proof. (a) The second statement follows from the first. Note that any proper subgroup of
[ is cyclic, so that by the claim I11%(S, Ag,) = 0 for all subgroups S of T'. Then if

0— ANy —Q —M—0

is a flasque resolution of Ay, considered as an S-lattice, then H'(S, M) = I11%(S, Ag,) = 0
by Lemma 2.12.

To prove the first statement, we need to first compute HY(T', Ag,) and H?(T', Agy).

We have HY (T, Ag,) = H™1(T', ZAg,_1) by duality. Then

H™ (I, ZAgy—1) = Kerza,, , (Nr)/IrZAgy_1,
where Nr is the endomorphism I — )  pal, and It is the augmentation ideal of Z[I'],
[Br]. We need to compute Np on a basis for ZAg, 1: we have Np(e; — €i41) = 0 for
i=1,...,p—1,p+1,....2p—1,and Nr(ep —ept1) =ple1+ - +&p —€pp1 — -+ — €2p).
Then
Ker Ny = Span{e; —€2,...,6p—1 — €p,Ep+1 — Ep+2, -+ sE2p—1 — E2p}-

But IrZAs,—1 = KerNp as ((1,...,p) —id)(epy1 —€i) = & —€ip1, ¢ = 1,...,p — 1,
((p+1,...,2p)—id)(e1 —&;) = i —€i1, i = p+1,...,2p— 1. This shows that H} (T, Ag,,) =
HY(T,ZAg,—1) = 0.

To determine H?(T', Ag,), we use the restriction of the sequence

0 — Z — Z[Sp/Sap-1] — Agp — 0
to I'. Let
(7.7 Ci=(1,...,p), Co=((p+1,...,2p)) and P, =2Z['/Cy], P, =Z[l'/Ci].
Then we have the following exact sequence of I'-lattices
0—>Z—>P1@P2—>A2p—>0.

Taking cohomology of this sequence, we get
0=HYT,Ayy) — H*([,Z) — HXT, P,) @ HY(T, P»)
— HA([, Agy) — H3(T,Z) — H3 ([, P, @ P»).
But by Shapiro’s Lemma, we have H?(T, P;) = H*(Z/pZ,Z) = Z/pZ and H3(T,P;) =
H3(Z/pZ,7) = 0 for i = 1,2. Also, by the Kiinneth formula, [Weib, p. 166],
H"([,2) =&, j_, H(Z/pZ,Z) © W (Z/pZ, L)
® @By jp i1 Tory (H(Z/pZ, ), W (Z/pZ, 7)),

so that, in particular, H3(T', Z) = Z/pZ and H3(I',Z) = (Z/pZ)?. This all yields an exact
sequence
0 — (Z/pZ)* — (Z/pZ)* — H*(T', Asp) — Z/pZ — 0,



CAYLEY GROUPS 29

and so H2(T, As,) = Z/pZ.

To show that II1%(T", Ag,) = 0, it would suffice to find a cyclic subgroup C of I for which
Resy, : H2(T, Ag,) — H2(C, Agp) is injective.

Take C' = C4. Since H!(T', Ag,) = 0, we have that the sequence

Inf Res

0 — H%(I'/C, Ag’) H2(T, Agy) —>

is exact. So it suffices to show that H*(T'/C, A2p) =
The fundamental dominant weights for Ay, are

ot t 2p —
wt—zizlei—% Lie, t=1,...,2p—1.

== H2(C, Agp)

Let v; = &; — == fplsl,z:l,...,Qp. Note that

2p
V=1, =W — W 1,t=2,...,2p— 1, vop = —0p 1.
This shows that vy,...,v,, @p11,...,w2p—1 is another basis for Ay, and that

2p—1 _
Agple = @?:1 Lv; ® @iszrl Zw; = Z[C|® ZP L
This shows that
c _ 2p—1 21 M2
AS, =Z(3 0 vi) @ @zperl = @igp Lw; = P; gp+l L
But I'/C permutes vpy1,...,v9, cyclically so that Ag’;, ~ Z[I'/C]. This implies that
H%(T/C, A%,) = 0 as required.

(b) To prove that Ag, is not I'-quasi-permutation, we will construct a coflasque I'-
resolution of ZAg,_i. By duality, this will give us a flasque resolution of Aj,. We will
then show that the lattice in the stable equivalence class p(Ag,) is not permutation projec-
tive as an I'-lattice.

As aq,...,ap—1 and oy, . .. agp—1 are the standard bases of the root subsystems of type
A,—1, we denote the I'-sublattice of ZAg,_1 generated by them simply by ZA,_; © ZA,_;.

Let ¢ be its natural embedding into ZAg,_;. It is easily seen that o, + ZA,_1 © ZA,_1 is
I'-stable. This implies that there is an exact sequence of I'-lattices

0— ZAp,1 D ZAp,1 SN ZAzpfl — Z — 0.
A coflasque resolution of the I'-lattice ZA,_; ® ZA,_; is given by
0 — 72 — PL® Py — ZAp,_1 ®ZA,—1 — 0

where P; and P, are defined by (7.7) and the generator of the I'-lattice P; (respectively
P,) is sent to v (respectively apy1).
We now extend ¢ to a coflasque resolution of the I'-lattice ZAg,_1. Let

P OoPoZl oL 2 ZAy

be a map of I'-lattices where pp,gp, = ¢, 0 sends 1 € Z[I'] to «,, and p sends the 1 € Z
to > & — Z?ﬁm_l gi = 2w,. It is easily verified that g is surjective (in fact g|zr is
surjective).
Let L = Ker p. To check that L is coflasque and hence that
0—L—POROLI®Z 2 ZAy | — 0

is a coflasque resolution of ZAs,_1, we need only verify that for R := Py @ P, @ Z[I'| @ Z,
we have o(RE) = (ZAg,—1)¥ for all subgroups K of T.
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For K = T or a cyclic subgroup generated by a disjoint product of two p-cycles,
(ZA2p—1)E = 72w, so that o(ZE) = o(Z) = (ZAgp—1)¥ and so o(RE) = (ZAg,—1)E.

The only other subgroups are C; and Cy. As the arguments are similar, we just consider
Cy: the lattice (ZAgp,l)Hl has basis 2w, api1, ..., a2p—1, and we have p(Z) = Z2w; and
o(P3") = o(Py) = &7 1 Za;. This shows that

0—L—POPROLIGZ 2 ZAy 1 — 0
is a coflasque resolution. Dualizing, we obtain a flasque resolution for Ag):

We have II1*(T', Ag,) = HY(T,L*) = 0. This shows that L is flasque and coflasque as a
T"-lattice.
We have the following commutative diagram with exact rows and columns:

0 0 0
| | |

0 7> Po P, - ZAp_l D ZAp—l — 0
} | |

(7.8) 0—>L—>P®P@Z®Z —2>7ZAyy | —= 0
| | o

0—Ul(p) Zl e Z Z 0
' | |
0 0 0

where U(p) is the kernel of the induced map 6. Now 2w, = ’;:_11 i(oy + agp—i) + poy,. So

0 sends 1 € ZI' to @, and sends 1 € Z to pa,. This shows that
is a set of elements of a Z-basis for U(p). Note that U(p) also satisfies
0 — U(p) — Z[I'l — Z/pZ,

so that QU (p) ~ QIT'].

From the above diagram, we then see that QL ~ Q[I'] ® Q2. By [CW, Lemmas 2, 3],
to determine whether or not L is permutation projective is equivalent to checking whether
F,L is a permutation module for F,[I'].

Tensoring the diagram (7.8) with I, leaves it exact so we have the following commutative
diagram with exact rows and columns:

0 0 0
\ll \L id®e J/
0 FI% Fppl D ]FPPQ FpAp—l & FpAp—l — 0

| | |

0—F,L—F,PLoF,PLeF,'loF, FpAgp 1 —0
' | id®0 /

0 —FpU(p) Fp[l] & Fp Fp 0
| | |
0 0

0

id®o




CAYLEY GROUPS 31

Suppose that ), L is permutation. Then since L is coflasque, the sequence
0— L' 2 o' — (L/p)' —0
is exact so that (F,L)'' = L'/pL'. Since Q[L] ~ Q[I'] ® Q?, rank L' = 3. But then
dimp_ (F,L)'' = 3. This means that F,L must then have three transitive components. Since
rank L = p? + 2 and p > 2, this means that F,L = F,[[] & IFIQ,.

Looking at the Z-basis for U(p) given above, it is clear that F,U(p) ~ F, @ F,Ir where
F,Ir is the augmentation ideal of F,[I']. Then the left column of the last commutative
diagram implies that we have a surjective map F,[I'] & IFIQ, — F, ®F,Ir. Since (FpIr)l =0,
this would imply that we have a surjective map F)[I'] — F,Ir or equivalently that F,Ir
is a cyclic F,[['l-module. But since F,[I'] is a local ring with unique maximal ideal F,Ir,
Nakayama’s Lemma implies that F,Ir is a cyclic F,[[']-module if and only if F,Ir/(F,Ir)?
is generated by one element over F,. As dimg, FpIp/(F,Ir)? = 2, this is impossible. By
contradiction, there is no such surjective map from F,[I'] to F,Ir. This implies that F,L
is not permutation and hence L is not permutation projective as an Z[I']-module. This

implies in turn that A, is not quasi-permutation as a I'-lattice or as an S, x S,-lattice.
O

Remark 7.9. Note that this argument fails for p = 2. Indeed, we showed that rank L =
p?+2 and if F, L were permutation, it would have three transitive components. For p > 2, we
used these facts to conclude that F,L = F,[[']&F2. For p = 2, this is not so; here F2L may
have three permutation components, each of rank 2. Indeed, if I' = (g, h) ~ Z /27 x Z/2Z,
then one can define a surjective Fs[I']-homomorphism

Fo[I'/(g9)] & Fa[l'/(h)] & Fo[T'/(gh)] — Faolr & Fy

by sending the generator of the first component to (1 4 g,0), the generator of the second
component to (1 + h,0) and that of the third component to (0, 1).

In fact, by Proposition 7.2, we see that Q4(2)|r ~ A4|p. Since Q4(2) is the character
lattice of the Cayley group SL4/py ~ SOg, by Theorem 1.31 it must be quasi-permutation
as an Sy-lattice and hence as an I'-lattice. Alternatively, one could show directly that @ 4(2)
is a sign-permutation Sy-lattice and hence is quasi-permutation.

7.10. Completion of the proof of Proposition 5.1. It now suffices to prove the
following proposition to complete the proof of Proposition 5.1:

Proposition 7.11. Suppose n/d is divisible by a prime p.

(a) If p > 2, then the Sy-lattice Qy,(d) is not quasi-permutation.
(b) If n > p?, then the Sy, -lattice Q,(d) is not quasi-permutation.

Indeed, by part (a), the S,-lattice @Q,,(d) is not quasi-permutation if the prime factoriza-
tion of n/d includes a prime larger than 2. On the other hand, if n/d = 2¥, then, by part (b),
the S,,-lattice @, (d) is not quasi-permutation, for any (n,d) # (4,2), and Proposition 5.1
follows.

Proof. (a) Proposition 7.2 shows that Q,(d)ly, is equivalent to Agy[s,xs, which is not quasi-
permutation by Proposition 7.6. Thus @, (d) is not quasi-permutation as an Y),-lattice and
hence as an S,,-lattice as well.

(b) We have n = tp with ¢ > p. Following the proof of Proposition 4.1(i) in [LL], we
define a subgroup I' ~ Z/pZ x Z/pZ of S,, as follows. Arrange the numbers from 1 to n
into a rectangular table with p columns and ¢ rows, so that the first row is 1,...,p, the
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second row is p+1,...,2p, etc. Let o; be the p-cycle that cyclically permutes the ith row
and leaves elements of all other rows fixed. Note that o1,...,0; are commuting p-cycles;
explicitly

oi=((i—1p+1,6i—1p+2,...,ip).
We now set I' := («, 3), where

= Hf;% o; and B:=[[Z) o H§=p+1 ;.

The subgroup I" has orbits O; = {(i—1)p+1,(i —1)p+2,...,ip}, i = 1,...,t, all of length
p and every cyclic subgroup C of I' has fixed points. ThlS means that by Lemma 6.10

HY,ZA,_1) ~ Z/pZ but HY(C,ZA,_,) =0.
Also by Lemma 6.13, we find that
H'(C, Qn (n/d)) =

Then, Lemma 6.12 and the fact that p divides n/d shows that Z/dZ 2 HYT,ZA,_1) is
the zero map. The following commutative diagram

Z/dZ 0 - HYT,ZA, 1) H! (T, Q,, (n/d))

l Res l Res l Res

HaeFZ/dZ—>HaeF (( > ZAn - 1)_0—>Ha€F < >7Qn (n/d)) -
shows that

Z/pZ ~ YT, ZA, 1) < IIHT, Q, (n/d))
Now if M were a flasque lattice with p(Q,(d)) = stable equivalence class of M, then M*
is a coflasque lattice satisfying
0— M*— P — Qn(n/d) —0,

so that by Lemma 2.12(a), III*(T, M*) ~ IIIY(T, Q,(n/d)) # 0. Lemma 2.12(c) now shows
that M™* cannot be a direct summand of a quasi-permutation lattice and hence not stably
permutation. This implies that M cannot be stably permutation and so @, (d) cannot be
quasi-permutation. [

8. Stably Cayley groups of type D,,

8.1. Root system of type D,,. Let €1,...¢, be the same as in Subsection 6.1. The root
system of type D,, is the set
Dp,={feixe; |1 <i<j<n}

It has a base a1, ..., a,, where aq,...,a,_1 are given by (6.3) and «,, = €,-1 + &,. The
fundamental dominant weights of D,, with respect to this base are w; = 1 + --- + ¢&; for
i=1,....n—2,

222151 —en and wn—szlel—f— =Ep,.

The Weyl group W( n) of Dy is (Z/2Z)"~! x S,,, where (Z/2Z)"~! consists of all even
numbers of sign changes on {e1,...,e,} and S, acts via (6.2). The root and weight W (D,,)-
lattices of D,, are respectively ZD,, and A(D,,) := Zw1 @ ... ® Zw,.
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8.2. Lattices Ya,, and Zs3,,. As we explained in Section 5, we are interested in the case
where n is even, n = 2m, m > 2. There are precisely the following three lattices between
A(Dzm) and ZDQmZ

(8.3)  Xaom :=ZDop, + Zw1, Yom = ZDop, + Zwapm—1 and Zay, := ZDay, + Zwwop,.
The character lattice of Spiniﬁ (see Section 5) is isomorphic to either of the lattices Yoy,
and Zo,, while Xo,, is isomorphic to the character lattice of SQy,,. Note that €1,...,¢&, is
the sign-permutation basis for Xo,,; this is consistent with the fact that SOy, is Cayley,
see Theorem 1.31(a). Also note that

{%(51 +e9 +e3—e4), %(81 +e9 —e3+¢€4), %(51 — &9 +e3+¢e4), %(—61 +egtesteq)}
is the sign-permutation basis for Y4, and

{%(51 +e9 4 €3 + €4), %(61 +e9 — 3 —€4), %(51 —eg + €3 —¢€4), %(—51 +eg+e3—¢€4)}
is that for Zg4; this is consistent with the fact that Spiné/ % is Cayley, see Section 5.

Our goal is to prove Proposition 5.2. In view of the aforesaid, this is equivalent to proving
the following.

Proposition 8.4. The W (Day,)-lattices Yo, and Zay, are not quasi-permutation for any
m > 2.

Proof. For the subgroup S, of W(Das,,) acting by (6.2), we consider the Sso,,-lattices
Yomls,,, and Zopls,,, and compare them to the Sop,-lattice Q2 (m) defined by (6.5) and
(6.4),

(8.5) Qaom(m) =Zoy + ...+ Zagym—1 + Z3, where [ :=me; — % 212211 €45

that is isomorphic to the character lattice of SLo,,/u,,, see Subsection 6.1.
First we observe that

Q1y.. ., 02m—2,%,E2m—2 + E2m—1, Where 7y := %Z;’il & — %Z?;nm+1 €4,
is a basis for Y, if m is odd, and for Zs,, if m is even. Since a7, ..., @9m_2,82m—2 + Eom_1
is a basis for ZDgy,—1, (8.3) implies that proving this claim is equivalent to proving the
equality
ZDoy, + Zwoom—1 if m is odd,
(8.6) DDy + Loy = { O 22m T mamet
ZDoy, + Zwwom if m is even.

Note that
Wom-_1— Y = Z?;nn;lrl g; € ZDoy,—1 if m is odd,
Wom + 7= ity & € ZDgy—1 if m is even.
Therefore proving (8.6) is equivalent to proving the inclusion
ZD2y, € ZDop—1 + L,
which in turn is equivalent to proving the inclusions
€om—1 L €om € ZDoy,—1 + Zry.
Finally, the last inclusions indeed hold as we have
27+ (e2m—1 +€am) = Y 10 6 — Z?Z;?A €i € ZDop—1,

2y — (52m71 - 52m) = Z;Zl(fi - 5m+i) + (5m - 52m71) € ZDap,—1.
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Thus the claim is proved.
Further, the easily checked equalities

B=v+Xr (m =i,
Qzm-1 =2y = Ly dai — 37 (m — D)y
and (8.5) imply that aq,...,anm—2,7 is a Z-basis for Qo (m).
We thus obtain the following exact sequences of So,,-lattices:
0 — Qam(m) — Yomls,,, — Z — 0

if m is odd and
0— Q2m(m) - Z2m|ng — 24— 0

if m is even. Here the So,,-lattice Z is generated by €9,,—2 + £2n—1, modulo Q2,,(m). We
claim that the So,,-action on this lattice is trivial. Indeed, on the one hand, the alter-
nating subgroup of So,, has to act on this lattice trivially because it has no non-trivial
one-dimensional representations. On the other hand, as m > 2, the transposition (1,2)
acts trivially on €9,,—2 + €2;m—1. Since the alternating subgroup and the transposition (1, 2)
generate S, this proves the claim.

The above exact sequences thus tell us that Youls,,, ~ Qam(m) if m is odd, and
Zom|sy,, ~ Qam(m) if m is even. By Proposition 5.1, the Sy,,-lattice Q2,,(m) is not
quasi-permutation for any m > 2. Thus for m > 2, the W (Dgy,)-lattice Yy, is not
quasi-permutation if m is odd, and the W (Da,,)-lattice Zsg,, is not quasi-permutation if
m is even, as their restrictions to S, are not quasi-permutation. Since Yy, ~ Z,, as
W (Dayy, )-lattices, this completes the proof. [

9. Which stably Cayley groups are Cayley?

In this section we will prove Theorem 1.35. The groups G = SO,,, Sp,,, and PGL,, are
shown to be Cayley in Examples 1.18 and 1.13. It thus remains to consider SL3 and Gs.

9.1. The group SL3.
Proposition 9.2. The group SLj is Cayley.

The proof below is based on analysis of the explicit formulas in [Vos, 4.9] and the geomet-
ric ideas of the proof of Proposition 9.2 given in [Popsy]. We present it in a form that will
also help us prove that Go x G2, is Cayley, see Proposition 9.13 below. On the other hand,
the spirit of arguments in [Pops] is close to that in [Isk4]. Since [Isky] is the main ingredient
we will use in showing that Go is not Cayley, see Lemma 9.11 and Proposition 9.12 below,
we will give an outline of the proof of Proposition 9.2 from [Pops] in the Appendix.

Proof. The Weyl group W of SLg is S3. Consider the following subalgebra D of Matsys:
(9.3) D := {diag(a1, a2, a3) € Matsys | a; € k}

and the action of Sg on D given by

(9.4) o(diag(ai,az,a3)) := diag(as(1), @(2), do(3)) Where o € Ss.

The S3-stable subvarieties

(9.5) T={XeD|detX =1} and t={Y eD|trY =0}

are respectively the maximal torus of SLj3 and its Lie algebra, considered as W-varieties. By
the Corollary of Lemma 3.6, it suffices to show that 7" and t are birationally Ss-isomorphic.
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Let D\ {0} — P(D), X — [X], be the natural projection. Denote by P%g—natural and
P§3_twisted the projective plane P(D) endowed respectively with the natural and “twisted”
rational actions of Sg given by

o([X]) == [0(X)] and o([X]) :=[0(X)%®"], where o € S3,X € D.

Let m : SLs — PGL3 be the natural projection. Since d.7 is an isomorphism between
the Lie algebras of SLs and PGL3, and PGL3 is a Cayley group, see Example 1.13, the
Corollary of Lemma 3.6 tells us that t is birationally S3-isomorphic to the maximal torus
m(T) of PGL3. In turn, we have the following birational Ss-isomorphisms of Ss-varieties:

W(T) - P%g—naturalv W(X) = [X]7

P¢ visted ——> T [diag(as, ag, a3)] — diag(az/as, a3/a1, a1/az).

Thus we only need to show that P§3_natural and P%g—twisted are birationally Sg-isomorphic.

We shall establish this in three steps.
Step 1. Consider the action of S3 on t x t given by
(9.6) (Y. Z) = (o(Y),0(2)) %f o %s even,
(0(2),0(Y)) if ois odd,
It determines the action of S3 on the surface P(t) x P(t). Denote by (P(t) X P(t))s,-twisted
the surface endowed with this action.

We claim that the Ss-varieties P§3_twisted and (P(t) x P(t))s,-twisted are birationally Ss-
isomorphic. Indeed, it is immediately seen that the rational map

¥ P%g—twisted -2 (P(t) X P(t))S3—twisteda [X] — ([X - %13], [X_l — %Ig]),

is Ss-equivariant and we shall now construct a rational map inverse to . Note that for
Y,Z € tin general position, Y, Z, I3 form a basis of the vector space D. Thus there are
unique «, 3,y € k such that

where 0 € S3, Y, Z € t.

oaZ +BY +~+I =-YZ
Note that «, 3, and v are, in fact, bihomogeneous rational functions of Y and Z of bidegree
(1,0), (0,1) and (1,1), respectively. We now consider the map
(0E (P(t) X P(t))S3-tWiSted - P%3—twisted’ ([Y]7 [Z]) = [Y + O[Ig].

To compute ¥ o, note that if Y = X — %13 and Z =X"1— @1—3, then expanding

-1
L= (v +20n) (74 "X,
we see that o = % and thus ¥([Y],[Z]) = [X]. Thus ¢ o ¢ = id, and hence ¢ is a
birational S3-isomorphism.
Step 2. We now consider the linear action of S3 on t ® t determined by the action (9.6)
and the corresponding action of S3 on P(t ® t). Then the Segre embedding
(P(t) x P(t))ss-twisted — P(t @ t)

is Ss-equivariant. Its image is a quadric @ in P(t ® t) described as follows. Choose a basis
Dy :=diag(1,(,¢?), Do := diag(1,¢2,¢) of t, where ( is a primitive cube root of unity. Set
Dij =D;® Dj. Then

(97) Q = {(all P2 Qo a22) | 110022 = 01120(21},
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where (a1 @ aq2 @ g1 : ag) is the point of P(t ® t) corresponding to 11 D11 + a12D12 +
a1 Da1 + Do € t® L.
Step 3. Decomposing t ® t as a sum of Ssz-submodules, we obtain

(9.8) tRt=V eV, Vs,

where Vi = kD11 + kD95 is a simple 2-dimensional submodule and Vo = kD19, V3 = kDo
are trivial 1-dimensional submodules. Since the Ss-fixed point (0 : 0:1:0) € Pt ® t)
corresponding to V3 lies on @), the stereographic projection @@ --» P(V; @ V2) from this
point is a birational Sz-isomorphism.

Finally, the Ss-module D is isomorphic to V3 @ V2. Hence P(V; @ V3) and P%g—natural are
Ss-isomorphic.

To sum up, we have established the existence of the following birational Ss-isomorphisms:

Stepl Step2 Step3

P%s—twisted -=> (P(t) X P(t))ss-tWiSted L Q - P%g—natural’

This completes the proof of Proposition 9.2. [

9.9. The group Go.

The Weyl group of Go is the dihedral group Sg x Ss of order 12. The maximal torus of
G2 and its Lie algebra are S3 x Sp-isomorphic respectively to 7" and t given by (9.5), where
the action of the first factor of Sz x Sg is defined, as in the case of SL3, by (9.4), and that
of the nontrivial element 6 of the second factor by

(9.10) 0(X):=X'for XeT and O(Y):=-Y forY ct.
We begin with the following surprising recent result due to ISKOVSKIKH, [Isky].
Lemma 9.11. The S3 X Sg-varieties T and t are not birationally S3 x So-isomorphic.

Proof outline. Since T and t are rational surfaces, the theory of rational G-surfaces, due
to MANIN [Ma] and ISKOVSKIKH [Isk;], [Isks], can be applied; this is precisely what is
done in [Isky]. Minimal rational Sg x Sg-surfaces are known, and any equivariant bira-
tional isomorphism between two such surfaces can be written as a composition of so-called
“elementary links”, which are completely enumerated in [Isks]. The argument in [Isky]
amounts to constructing suitable minimal models for T" and t, and explicitly checking that
it is impossible to get from one to the other by a sequence of elementary links. [

Proposition 9.12. Gs is not a Cayley group.

Proof. By the Corollary of Lemma 3.6, this follows from Lemma 9.11. [
The following result illustrates how delicate the matter is.

Proposition 9.13. Gy x G2, is a Cayley group.

Proof. By Corollary of Lemma 3.6, it suffices to show that T'x A? and tx A? are birationally
S3 X Se-isomorphic, where in both cases S3 x Sy acts via the first factor. We shall define a
birational S3 X Ss-isomorphism between them in three steps.

Step 1. Let (t X t)g,xS,-twisted D€ the variety t x t endowed with the action of S3 x So
given by

(oc(Y),0(Z)) if signo =signe,

(0(2).0(Y)) otherwise where (0,¢) € S3x Sy, Y, Z € t.

(9.14) (0,)(Y, Z):= {
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The latter determines the action of S3x Sy on P(t)xP(t). Denote by (P (t) xP(t))s, xS,-twisted
the surface endowed with this action. Then

(t X t)Sg><Sg—twisted B (P(t) X P(t))SgXSQ—tWiStedv (Y7 Z) — ([Y]7 [Z])a

is an algebraic vector S3 x So-bundle of rank 2. Since S3 xSy acts on (P (t) X P(t))g, xS, -twisted
faithfully, Lemma 2.16(b) shows that (t x t)s, xS,-twisted a0d (P(t) X P(t))s; xS,-twisted X A2,
where Sg x Sy acts via the first factor, are birationally Sg x So-isomorphic.

Step 2. Let P%3Xs2_twisted be the projective plane P(D) endowed with the action of Sgx Sy
given by

(0,)([X]) := [0(X)¥&"7 589¢] where (o,) € S5 x Sa, X € D.

Then the rational maps

P%ngQ_twiSted --» T, [diag(ai,as,as)] — diag(ag/ag, ag/al,al/ag), and
X _ X!
P%ngg—twisted = (P(t> X P(£))Sg><82—twisted7 [X] = ([X - tr(3 )13]7 [X 1 3 )13])7

are birational S3 X Sp-isomorphisms —the arguments are similar to those in the proof of
Proposition 9.2.

Step 3. Since
(t X t)85xSo-twisted — ¢, (t1,12) /> t1 — Lo,
is an algebraic vector Sg x So-bundle of rank 2 and S3 x Sy acts on t faithfully, applying
Lemma 2.16(b) once again we conclude that (t X t)g;xS,-twisted 1S birationally Ss X So-
isomorphic to t x A2, where Sg x Sy acts via the first factor.
To sum up, we have established the existence of the following birational S3 X Ss-isomor-
phisms:

Step2 Stepl Step3

T x A% - = (P(t) X P(O)Sssz—twisted x A? = (t X t)Ss><32-tv\listed - tx A2,
This completes the proof of Proposition 9.13. [
Remark 9.15. We do not know whether or not Ga X G, is a Cayley group.

10. Generalization

The notions of Cayley map and Cayley group naturally lead to generalizations which
will be considered in this section.

10.1. Generalized Cayley maps. Let G be a connected linear algebraic group and let g
be its Lie algebra. We consider G and g as G-varieties with respect to the conjugating and
adjoint actions respectively and denote by Ratg(G, g) the set of all rational G-maps G --» g
endowed with the natural structure of a vector space over k(G)®. Set Morg(G, g) := {p €
Ratg (G, g) | ¢ is a morphism}.

Definition 10.2. An element ¢ € Ratg(G,g) (respectively, ¢ € Morg(G,g)) is called a
generalized Cayley map (respectively, generalized Cayley morphism) of G if ¢ is a dominant
map.

We are now ready to state the main result of this subsection.

Theorem 10.3. Every connected linear algebraic group admits a generalized Cayley mor-
phism.
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Our proof of Theorem 10.3 will proceed in three steps. First we will construct a ge-
neralized Cayley morphism for every reductive group (Corollary to Lemma 10.4), then a
generalized Cayley map for an arbitrary linear algebraic group (Proposition 10.6), then a
generalized Cayley morphism for an arbitrary linear algebraic group.

Our construction in the case of reductive groups relies on the following known fact; see
[Lung, Lemme III.1], cf. [PV, 6.3].

Lemma 10.4. Assume that the group G is reductive. Let X be an affine algebraic variety
endowed with an algebraic action of G and let x € X be a nonsingular fixed point of G. Let
T, be the tangent space of X at x endowed with the natural action of G. Then there is a
G-morphism € : X — T, étale at x (hence dominant) and such that e(x) = 0.

Proof. We can consider X as a G-stable subvariety of a finite dimensional algebraic G-
module V| see [PV, Theorem 1.5]. Since z is a fixed point of H, we can replace X by
its image under the parallel translation v — v — z and assume that x = 0. The tangent
space T, is identified with a submodule of V. Since G is reductive, the G-module V is
semisimple. Hence V' =T, & M for some submodule M. Now we can take ¢ = 7| x, where
m:V — T, is the projection parallel to M. [

Taking X = G with the conjugating action and x = e, we obtain the following.

Corollary. Assume that G is reductive. Then there is a generalized Cayley morphism ¢
of G étale at e and such that ¢(e) = 0.

The following special case of this construction was considered by KOSTANT and MICHOR,

Example 10.5. Assume that G is reductive. Consider an algebraic homomorphism v :
G — GL(S), where S is a finite dimensional vector space over k. Then the k-vector space
V := End(S) has a natural G-module structure defined by g(h) := v(g)hv(g) ! for every
g € G and h € V. If v is injective, identify G with the image of tov, where ¢ : GL(S) — V
is the natural embedding. Then G is a G-stable subvariety of V' and the restriction to
g = T, of the G-invariant inner product (z,y) — tray on V is nondegenerate. This yields
the G-module decomposition V = g®g', where g* is the orthogonal complement to g with
respect to (, ). The restriction to G of the projection V' — g parallel to g is a generalized
Cayley morphism ¢ : G — g étale at e such that ¢(e) =0. O

Proposition 10.6. Every connected linear algebraic group G admits a generalized Cayley
map.

Proof. We use the notation of Proposition 4.4 and its proof. The group W r is finite,
hence reductive, and e € T is its fixed point. Therefore Lemma 10.4 implies that there
is a dominant Wp p-morphism € : T — t. The arguments in the proof of part (a) of
Proposition 4.4 show that ¢ is N-equivariant. Consider an N-isomorphism (4.5). Then

exT7:C=TxU—tpu=rc,
is a dominant N-morphism. Hence by Lemma 2.22, there is a dominant G-morphism
0:GxNC — G xNe¢
such that #|c = € x 7. Now, since, by Lemma 3.3, the G-morphisms v and ~, given by

(3.2) are birational G-isomorphisms, .06 o 751 € Ratg(G, g) is a generalized Cayley map.
U



CAYLEY GROUPS 39

Our next task is to deduce Theorem 10.3 from Proposition 10.6. Our argument will rely
on the following simple lemma.

Lemma 10.7. Every semi-invariant for the conjugating action of G on itself is, in fact,
an tnvariant.

Proof. Suppose t € k[G] is a semi-invariant. That is, there exists an algebraic character
x: G — Gy, such that t(ghg™!) = x(g9)t(h) for every g,h € G. We may assume ¢ is not
identically zero. Setting g = h in the above formula, we obtain

t(g) = x(g)t(g) for every g € G.

Since G is connected and ¢ is not identically zero, this implies that x(g) = 1 for every
g€G,ie,tck[G]®. O

Theorem 10.3 is now an immediate consequence of Proposition 10.6 and Proposition 10.8
below.

Proposition 10.8. Let o€ Ratg(G,g). Then there is f€k[G]® such that
(i) {g € G| f(g) = 0} is the indeterminacy locus of ¢,
(i) fo € Morg(G, g).
Moreover, if ¢ is a generalized Cayley map of G, then (ii) may be replaced by
(i) fo is a generalized Cayley morphism G — g.

Proof. We may assume that ¢ is not a morphism. Then the indeterminacy locus of ¢ is
an unmixed closed subset X of G of codimension 1. Since, by [Pop;, Theorem 6], the
Picard group of the underlying variety of G is finite, this implies that there is t € k[G]
such that {g € G | t(9) = 0} = X. As ¢ is G-equivariant, X is G-stable. Hence,
by [PV, Theorem 3.1], ¢ is a semi-invariant of G' and therefore ¢ € k[G]“ by Lemma 10.7.
Consequently the function f = ¢"" satisfies (i) and (ii) for a sufficiently large positive integer
m. The second assertion of the proposition follows from Lemma 10.9 below. [

Lemma 10.9. Let ¢ : X --+ V be a dominant rational map, where X 1is an irreducible
algebraic variety, V a vector space over k and dim X = dim V. Then for every nonzero
function t € k(X), at least one of the maps o := ty) and 3 := t>) is dominant.

Proof. Put h; := ¢*(x;) € k(X), where z1,...,x, are the coordinate functions on V' with
respect to some basis. Then K := ¢*(k(V)) = k(hy,...,hy), K1 = a*(k‘(m)) =
k(thi,...,th,) and Ky := 3*(k(8(X))) = k(t*h1,...,t*hy), where bar denotes the closure
in V. All three fields contain the subfield K¢ := k(... ,h;/hj,...). We have trdeg, K = n.
Therefore trdeg; Ko =n — 1.

Assume the contrary: neither t1) nor t?t) is dominant. Then trdeg,K; = trdeg, Ko =
n—1. Since K1 = Kq(th;) and Ky = Ko (t?h;) for any i, this implies that both th; and t2h;
are algebraic over Ko. Hence h; = (th;)?/t?h; is algebraic over Ky. Thus K is algebraic
over K. Hence trdeg, K = trdeg;, Ko = n — 1, a contradiction. [

10.10. The Cayley degree. Note that every generalized Cayley map ¢ : G --+ g

has finite degree, i.e., deg ¢ := [k(G) : ¢*(k(g))] < co. By Definition 1.7, Cayley maps are

exactly generalized Cayley maps of degree 1. This naturally leads to the following definition

of a “measure of non-Cayleyness” of G.

Definition 10.11. The Cayley degree of G is the number Cay(G) := min deg ¢, where ¢
[

runs through all generalized Cayley maps of G.
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Clearly G is a Cayley group if and only if Cay(G) = 1. Theorem 1.35 may thus be
interpreted as a classification of connected simple algebraic groups of Cayley degree 1 and,
consequently, as a first step towards the solution of the following general problem:

Problem 10.12. Find the Cayley degrees of connected simple algebraic groups.

For example, composing the natural projection Spin,, — SO,, with the classical Cayley
map SO,, --» so,, yields a generalized Cayley map Spin, — SO, --» so0, = spin, of
degree 2. Combining this with Theorem 1.32, we conclude that

2 formn

6,
1 forn<5

>
Cay(Spin,,) = { g

Other examples can be found in [LPR, Section 10]. Note that Definition 10.11 and Prob-
lem 10.12 have natural analogues in the case where G is defined over a subfield K of k
(here we consider only generalized Cayley maps ¢ defined over K). We intend to address
Problem 10.12 and its variants in a separate publication.

Appendix. Alternative proof of Proposition 9.2: an outline

Step 1. Consider D, see (9.3), as an open subset of P? given by zo # 0, and extend the
Sz-action (9.4) up to P3 by

o(ag:ay:az:az) = (ao: ay(1) : Gx(2) : Ag(3)), Where o € S3.

The closure X of T in P3, see (9.5), is the rational cubic surface given by z1z9w3—23 = 0.
It has exactly three fixed points

=(1:e':e':e%),i=1,2,3, =1, e#1,
and three singular (double) points
=(0:1:0:0), s2=(0:0:1:0), s3=(0:0:0:1).

The hyperplane section of X given by x¢g = 0 is H := Iy + lo + l3, where [; is the line given
by zg = x; = 0.

Since H is Sg-invariant, the Sg-action on X lifts to the surface X obtained from X by the
simultaneous blowing up p : X — X of S1, S2, s3. The surface X is smooth and T is its
open Ss-stable subset.

Step 2. We have p*(H) = > . t; + Zij m;; where t; is the proper inverse image of I;
and p1(s;) = my; Umge, {3, j,r} = {1,2,3}. The curves t;, m;; are isomorphic to P! and
form a 9-gon as shown on the figure below. Their intersections are transversal and the
self-intersection indices are (¢;,t;) = —1, (m4;, m;;) = —2.
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My3
Computing the canonical classes gives Kx = —H and K¢ = p*(—H). Hence
(A1) (Kg,Kg)=(—H,—H) =deg X = 3.

Step 3. By the Castelnuovo criterion, the curves t; are exceptional, so they can be
simultaneously blown down: v: X — Y. The surface Y is smooth, and the Ss-invariance
of t1 + t9 4 t3 implies that the action of S3 on X descends to Y. We can consider 7' as an
open Ss-stable subset of Y.

It follows from (A1) that

(A2) (Ky,Ky) =6,

and Pic T = 0 implies that (Pic )58 is generated by D := vi(D_;; mij). Hence Ky =nD
for some nonzero integer n. Rationality of Y implies n < 0. From this, the Nakai—-Moishezon
criterion and (A2) one deduces that — Ky is ample. In turn, using this fact, the Riemann—
Roch theorem, the Castelnuovo rationality criterion and the Kodaira vanishing theorem,
one shows that

(A3) dim H*(Y,O(-Ky)) = 1.

Applying the Riemann—Roch theorem again, one further deduces that the linear system
| — Ky| has no fixed components. Using this, (A3), Bertini’s theorem, the Riemann-Roch
theorem and (A2) one shows that | — Ky | has no base points.

Step 4. Thus | — Ky | defines a morphism Y — P® equivariant with respect to a certain
action of S3 on PS. Using (A2), one shows that in fact it is an embedding. We keep the
notation Y for its image.

Consider on Y the linear system |R| of all hyperplane sections in P® containing the fixed
point a; € T'C Y and singular at a;. Such hyperplanes are tangent to Y at ay, so

(A4) dim |R| = 4.

This system |R| is an Sz-stable subsystem of |- Ky-|. Using Bertini’s theorem, one deduces
that its general element is an irreducible rational curve whose singular locus is the double
point a;. This system has no fixed components, and (A4) implies that a; is its unique base
point.

Step 5. Let v: Y — Y be the blowing up of a;. The action of S lifts to Y. The proper
inverse image |R| of |R| is a 4-dimensional Sz-stable lincar system on Y. It has no base
points and separates points of an open subset of Y. Hence |R[ defines an S3-equivariant
morphism : Y — P3 with respect to a certain Ss-action on P3. Its image Z := @b(f’) is
an Sz-stable quadric in P32, and - Y — Z is a birational Ss-isomorphism.

Step 6. Since the point a} := 1oy~ !(az) € Z is fixed by S3, it follows from the complete
reducibility of representations of reductive groups that there is an Ss-stable plane L ~ P?
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in P3 not passing through a}. Consider the stereographic projection 7: Z --» L from a;
it is S3-equivariant. The map 7 is defined at 1oy~ !(a3) and a} ;== motpoy~1(az) € Lis a
fixed point of S3. Using the complete reducibility argument again, we conclude that there
is an Sg-stable line [ C L such that af € L\ [. Thus we obtain a faithful linear action of
Sz on A%2 ~ L\ [. But there is a unique 2-dimensional faithful linear representation of S,
namely that on t given by (9.4), (9.5). This completes the proof. O
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