REDUCTION OF STRUCTURE FOR TORSORS OVER
SEMILOCAL RINGS

V. CHERNOUSOV, P. GILLE, AND Z. REICHSTEIN

ABSTRACT. Let G be a reductive affine group scheme defined over a
semilocal ring k. Assume that either G is semisimple or k is normal
and noetherian. We show that G has a finite k-subgroup S such that
the natural map H'(R,S) — H'(R,G) is surjective for every semilo-
cal ring R containing k. In other words, G-torsors over Spec(R) ad-
mit reduction of structure to S. We also show that the natural map
H'(X,S8) — H'(X,G) is surjective in several other contexts, under
suitable assumptions on the base ring k, the scheme X/k and the group
scheme G/k. These results have already been used to study loop al-
gebras and essential dimension of connected algebraic groups in prime
characteristic. Additional applications are presented at the end of this

paper.
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Let G be a linear algebraic group defined over a field k. In [CGR] we
showed that, under mild assumptions on G and k, G has a finite k-subgroup
S such that every G-torsor over a field K/k admits reduction of structure
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to S, i.e., the natural map of Galois cohomology sets H'(K,S) — H' (K, Q)
is surjective. In several subsequent applications, a more general version of
this result was needed, with the field k£ replaced by a base ring, the group
G by a reductive group scheme over k and the field K/k by a k-scheme X.
The goal of this paper is to extend the main result of [CGR] to this more
general setting.

All schemes in this paper will be assumed to be locally noetherian. Of par-
ticular interest to us will be k-schemes X satisfying the following condition:

(1.1) Pic(X’) = 0 for every generalized Galois cover X'/X.

Here by a generalized Galois cover X’ — X we mean a I'-torsor, for some
twisted finite constant group scheme I' defined over X. In other words,
I' = ,C, where C is a finite constant group scheme over X and [a] €
H' (X, Aut(C)). (The term “Galois cover” is usually reserved for the case
where T is itself a finite constant group scheme.) The class of schemes sat-
isfying condition (1.1) includes, in particular, affine schemes of the form
X = Spec(R), where R is a semilocal ring containing k. If K is a k-field of
characteristic 0, we can also take R to be a polynomial ring K[x1,...,zy,]
(see §8) or a Laurent polynomial ring K[z, ... 2;F!] (see Remark 8.3).

We are now ready to state the main results of this paper. Recall that
an X-group T of multiplicative type is called isotrivial if T x x X' is split
for some finite étale surjective map X’ — X. For the definition and basic
properties of groups of multiplicative type, we refer the reader to [SGA3,
X].

1.2. Theorem. Let k be a commutative base Ting and G be a smooth affine
group scheme over k whose connected component G° is reductive. Assume
further that one of the following holds:

(a) k is an algebraically closed field, or

(b) k =7Z, G° is a split Chevalley group, and the order of the Weyl group
of the geometric fiber Gs is independent of s € Spec(Z), or

(c) k is a semilocal ring, G is connected, and the radical torus rad(G) is
isotrivial.

Then there exist a mazximal torus T C G defined over k and a finite k-
subgroup S C Ng(T), such that

(1) S is an extension of a twisted constant group scheme by a finite
k-group of multiplicative type,

(2) the natural map HY(X,S) — HY(X,Ng(T)) is surjective for any
scheme X/k satisfying condition (1.1).

Of course, if G is connected then (a) is a special case of (c¢). Note also that
in case (b) we can take G to be the automorphism group Aut(Gp) of some
semisimple Chevalley group scheme Gy. In this case the cohomology set
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H'(X, Q) classifies the semisimple group schemes over X, which are étale
locally isomorphic to Gy xz X.

Combining Theorem 1.2(c) with Grothendieck’s existence theorem for
maximal tori (reproduced as Theorem 5.2 below), we obtain the following
stronger result in case (c); cf. §7.

1.3. Theorem. Let k, G and S be as in Theorem 1.2(c). Then the map
HY(R,S) — HY(R,G) is surjective for any semilocal ring R/k.

Note that the assumption on the radical of G is superfluous if G is a
semisimple group scheme or if £ is normal and noetherian, because all tori
defined over such rings are isotrivial; see [SGA3, X.5.16].

The symbol H!(X, G) in the statements of Theorems 1.2 and 1.3 denotes
the flat cohomology set, which classifies G-torsors over X; see §2. If G
is smooth then every G-torsor over X is also smooth and is trivialized by
an étale covering [M, IIL.4]. So in this case the natural map H}(X,G) —
H'(X,G) is bijective, and we may replace H!(X,G) by HL (X, G).

In particular, suppose that k is an algebraically closed field and G/k and
S/k are as in Theorem 1.2(a). If K is a perfect field containing k and K is
the separable closure of K then

HY(K,G) = H'(Gal(K,/K),G(KS))

and

HY(K,S) = H'(Gal(K,/K), S(K5)) .
In other words, in this situation the flat cohomology sets appearing in the
statement of Theorem 1.2(a) can be replaced by Galois cohomology. More-
over, since S is finite, S(k) = S(K;) (with Gal(K/K) acting trivially on
both sides) and hence,

H' (Gal(KS/K>7 S(k)) - Hl(Gal(Ks/K)7 S(Ks)> :

Thus in this setting Theorem 1.2(a) implies the following characteristic-free
result about Galois cohomology. The assertion about |S| := dimy k[S] is
immediate from the construction of S in §4.

1.4. Corollary. Let G be a linear algebraic group defined over an alge-
braically closed field k, whose connected component G° is reductive. Then
there exists a finite k-subgroup S of G, such that every prime factor of |S]|
divides the order of the Weyl group W(G), and the map

HY(Gal(K,/K),S(k)) — H' (Gal(K,/K),G(KS))
is surjective for any perfect field K /k. O
Corollary 1.4 generalizes [CGR, Theorem 1.1(a)], which yields the same
conclusion if char(k) = 0. This corollary has been used to study essential
dimension of connected algebraic groups in positive characteristic in [GR].

An application of Theorem 1.2 to the study of loop algebras can be found
in [GP]; cf. Remark 8.3. We will give additional applications in §§7 and 8.
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A further application of Theorem 1.2 will appear in the forthcoming pa-
per [CGP].

We are grateful to M. Florence for pointing out a mistake in the proof of
[CGR, Theorem 1.1(a)]. This mistake is corrected in the course of the proof
of Lemma 3.2. For details, see Remark 4.1.

2. PRELIMINARIES

We begin by recalling some known facts about affine group schemes G of
finite type over an arbitrary base scheme X.

A pseudo G-torsor (formellement principal homogéne, in [SGA3|) E over
X is an X-scheme equipped with a right action of G such that the mapping
Exx G — Exx FE given by (z,g) — (z,x.g) is an isomorphism; see [SGA3,
IV.5.1]. A pseudo G-torsor E is a G-torsor (fibré principal homogéne) if
it is locally trivial in the fppf topology, i.e., if there exists a faithfully flat
morphism X’ — X, locally of finite type, such that £ xx X' = G xx X'.
Here, as usual, the acronym fppf stands for “fidelement plate de présentation
finie” or “faithfully flat and finitely presented”.

For such a covering X' — X, we define

ZNX'/X,G) = {g € G(X"xx X') | pia(9)p33(9) = Pis(9)}
and
HYX'/X,G):=ZY(X'/X,G)/G(X),
where G(X') acts on Z1(X'/X,G) by g-z = pi(g) 2 p3(9)~'; see [K, Chapter
III]. Here p; j: X' xx X' xx X' — X’ xx X' is the projection

(), w9, 23) — (5, 7)),

and pj 5(9), p33(9), i 3(g9) are viewed as elements of G(X' xx X' xx X').
The pointed set H!(X’/X,G) classifies G-torsors over X which are trivial-
ized by the base change X'/ X, i.e., G-torsors E satisfying

Exx X 5Gxx X',
see [M, III.4, page 120]. We now define
HYX,G):=1mH"(X'/X,G),
X/
where the limit is taken over all coverings X’/X in the fppf topology. The
pointed set H'(X,G) classifies G-torsors over X.

If P is a G-torsor over X, we denote by ©G the associated twisted X-
group scheme; it is the twisted inner form of G and can be defined as the
scheme of G-automorphisms of P. We then have a canonical bijection (the
“torsion” map)

HY(X,G) = H'(X,PG)
mapping a G-torsor @ to the scheme Isomq(P, Q) of G-isomorphisms of P

into @; see [Gir, I11.2.6]. In particular, the torsion map takes P to the trivial
P G-torsor.
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We say that G is connected if the fiber G, is connected for any point
x € X. Here we view G, = G xx Spec(k(x)) as an algebraic group over
the residue field x(x) of z. If G/X is smooth, then G contains a unique
maximal open connected normal subgroup defined over X; [SGA3, VIp,
Thm. 3.10]. As usual, we will denote this subgroup by G°/X and refer to
it as the connected component of G. Note that G is smooth over X and it
is a closed subgroup of G; in particular, it is affine over X.

We say that G/ X is reductive if it is smooth and all of its geometric fibers
Gz are (connected) reductive groups [SGA3, XIX.2.7]. A subgroup 7'/X of
G/X is a maximal torus if it is an X-torus and all of its geometric fibers are
maximal tori [SGA3, XII.1.3]. The radical torus rad(G) of G is the unique
maximal torus of the center of G [SGA3, XXII.4.3.6].

Similarly a subgroup B/X of a reductive group scheme G/X is a Borel
subgroup if it is smooth and finitely presented and all of its geometric fibers
are Borel subgroups [SGA3, XXIIL.5.2.3].

We refer to [SGA3, XXII.1] for the definitions of split group schemes
and to [SGA3, XXIV.3| for the definition of the Dynkin scheme of G and
quasi-split reductive group schemes.

Let G be a split adjoint semisimple group over X, T a maximal split
torus in G defined over X, B a Borel subgroup containing 7" and D/X the
corresponding Dynkin scheme of G. Following [SGA3, XXIV.3.5], we will
denote the group scheme representing the functor of automorphisms of D
(as a Dynkin scheme) by Autpy, (D). By [SGA3, XXIV, Théoreme 1.3 and
3.6]

Aut(G) = G x Autpy, (D).
Moreover, there exists a canonical splitting
h: Autpy,(D) — Aut(G)

such that the image of h preserves T' and B. Every quasi-split adjoint group
scheme G’ of the same type as G is X-isomorphic to the twist ho(a)G of G
for some cocycle

a € Z}(X, Autpy,(D)).

3. A FIRST STEP TOWARDS THE PROOF OF THEOREM 1.2

The purpose of this section is to prove the following proposition, which
will play a key role in the proof of Theorem 1.2.

3.1. Proposition. Let k be a commutative base ring and
1-T->N&Zw-o1

be an exact sequence of smooth group schemes defined over k, where T is
an isotrivial torus, split by a Galois extension k'/k of degree d, and W is a
tunsted finite constant group of order n. Suppose N has a finite k-subgroup
S’ such that p(S’) = W. Then there exists a finite k-subgroup S C G
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containing S' such that the natural map H'(X,S) — H'(X, N) is surjective
for any k-scheme X satisfying condition (1.1).

Moreover, we can take S to be the subgroup of N generated by S’ and
d,1(S"NT), where m = nd and ¢p,: T — T is the map taking t € T to t™.

Proof. Denote by q: S — W and ¢': S — W the restrictions of the projec-
tion p: N — W to S and S’, and by p = SNT and ¢/ = S"NT the kernels
of these maps, respectively. Let X be a k-scheme satisfying condition (1.1)
on Picard groups. We will prove the surjectivity of H'(X,S) — H'(X,N)
fiberwise, with respect to the mapping p, : H'(X, N) — H'(X, W) induced
by p. Fix [b] € H'(X, N); our goal is to show that [b] lifts to H!(X,S).

3.2. Lemma. Let [a] = p.([b]) € HY(X,W). Then
[a] € Im (HY(X,S) & HY(X, W)).
Proof of Lemma 3.2. The obstruction to lifting [a] to H'(X,S) is the class
A(la]) € H*(X, ap),

where 41 denotes the group p twisted by the torsor a [Gir, IV.4.2.8]. We
now use the commutative diagram

1 W s L w 1
N N ||

(3.3) 1 [ s 2w 1
N N ||

1 T N 2w 1

with exact rows and the functoriality of the obstruction A([a]). If A’([a]) €
H?(X, 4') is the obstruction to lifting [a] to H*(X,S"), viaq, : H*(X,S") —
H(X, W), then A([a]) is the image of A’([a]) under the natural map H?(X, ') —
H?(X, o).

The commutative diagram

1 aul aT t— (t mod p') a(T/,Uz/) -1

(3.4) n I l

t— (t™ mod p')
a

1 alt oI

(T/u) —— 1
with exact rows gives rise to the commutative exact diagram

HYX, o(T/n') —— HY(X, op) —— H*(X,  T)

] l ]

HY(X, o(T/1)) —— H*X, op) —— H*(X, T)
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which we will now analyse. Recall that the middle vertical map sends
A([a]) € H3(X, opt) to A([a]) € H?(X, ou). Since we are given that [a]
lifts to [b] € H'(X, N), we have

A'([a]) € ker (H2(X, i) — H2(X, aT))

and thus
A([a)) € Im (H'(X, o(T/1)) = HX(X, o) ).

In order to prove the lemma (i.e., to prove that A([a]) = 0), it now suffices
to show that the vertical map

HY(X, o(T/1'))
(3.5) ml

HY(X, o(T/u"))
in the above diagram is trivial.
If p: X’ — X is a cover (i.e., a finite étale map) of degree m and H is a
commutative affine X-group scheme, we will denote the trace morphism by
Nxi/x : Rxryx(H) — H; cf. [CTS, 0.4]. If p has degree m, the composition

Ny
H — Ryyx(H) —5 H

of Nx:/x with the natural map H — R/, x(H) is multiplication by m.

Now let Y — X be the W-torsor associated to a and apply the above facts
to the generalized Galois covering X' = Y x; k' — X of degree m = nd,
with H = ,(T/i'). Note that this covering trivializes a and splits 7. The
map (3.5) can be decomposed as

H' (X, oT) — H'(X,Rx//x (a(T/1)) — H' (X, o(T/1)).
Shapiro’s lemma and condition (1.1) imply that
HY (X, Ryryx (o(T/1'))) = HY(X',o(T/4)) = Pic (X')**™) = 0.

Hence the map (3.5) is trivial, as claimed. The proof of Lemma 3.2 is now
complete. O

We are now ready to finish the proof of Proposition 3.1. Let [c] €
H'(X,S) be such that q.([c]) = [a]. The bottom two rows of (3.3) give
rise to the diagram

Hl(Xac,U/) - Q*_I(a) CHI(XWS)
f |
Hl(X,CT) _ p;l(a)CHl(X,N)

where the horizontal arrows are the “torsion” maps (see §2). Recall that our
goal is to show that [b] € py1([a]) C H'(X, N) lies in the image of H'(X, S).
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If X = Spec(K) for some field K/k then a twisting argument [Se, 1.5.5] shows
that the map

HY (K, .T) — p ' ([a])

is surjective. The same twisting argument goes through for any k-scheme
X [Gir, IT1.3.2.4]; in this case we can also conclude that the map

HY(X, T) — p;([a])

is surjective. Thus it suffices to prove that the vertical map f in the above
diagram is surjective as well. The exact sequence

t— (t™ mod p’/

(3.6) 1 ol T ) T/ —— 1

gives rise to the exact sequence
HY(X, o) —— HY(X, .T) —— H'X, o(T/n)).
It thus remains to show that the map
(3.7) HY(X,T) = H'(X,o(T/1))
in this sequence is trivial. Indeed, since the group homomorphism
I — o(T/1)

in (3.6) factors through

xm: o(T/p') —"— o(T/4),
the map (3.7) factors through

xm : HY(X, o(T/u')) — HY(X, (T/))

which we showed to be trivial at the end of the proof of Lemma 3.2. We
conclude that the map (3.7) is trivial, as claimed. This completes the proof
of Proposition 3.1. O

3.8. Remark. Let k be a ring, T' is a maximal k-torus in an affine algebraic
k-group G and N = Ng(T). This is a natural setting, where Proposition 3.1
can be applied. However, it is not a priori clear for which G one can construct
a finite group S’ as in Proposition 3.1. In fact, it is not even clear in general
which affine k-groups G contain a maximal k-torus 7. If we can find a
maximal k-torus T C G and a finite k-subgroup S” C N = Ng(T') with
desired properties, we would also like to know under what circumstances
one can conclude that the map H'(X,S) — H'(X,G) is surjective. In
the sequel we will give partial answers to these questions, under additional
assumptions on k.
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4. PROOF OF THEOREM 1.2(A) AND (B)
(a) Let T be a maximal k-torus of G and N = Ng(T'). Since
N°c (Neo(T))’ =T C N,

we have N = T. Hence, N is smooth and W is a finite constant group. Let

p: N — W = N/T be the natural projection. By Proposition 3.1 it suffices

to construct a finite k-subgroup S’ C N such that p(S’) = W. In fact, we

will construct S’ so that p’ be the n-torsion subgroup of T', where n = |[W].
Consider the exact sequences

1-T—->NZW—-1 and 1-4->T3T-1.

According to [DG, II.2, Proposition 2.3] (cf. also [SGA3, XVII, App. 1.3.1,
page 622]), extensions of W by T are classified by the Hochschild cohomol-
ogy group Hg(W’, T). Since W is a constant group scheme, Hg(W, T) is
isomorphic to the usual cohomology group H?(W,T(k)); see [DG, 111.6.4,
Proposition 4.2]. Thus the first sequence yields a class in H?(W, T'(k)). Since
n- H*(W,T(k)) = 0, the second sequence tells us that this class comes from
H?(W, i/ (k)). In other words, there is an extension S’ C N of W by ' such
that NNV is the push-out of S’ by the morphism p’ < T. This completes the
construction of S’.

(b) Let T be a maximal split torus of G defined over Z. Note that W =
N(T)/T is a constant finite group scheme; this follows from the fact that W
is representable by a Z-group scheme which is finite étale [SGA3, XII1.2.1.b].

It remains to construct a finite subgroup S’ C N which surjects onto W;
the desired conclusion will then follow from Proposition 3.1.

Our construction of S’ will be based on schematic adherence, which as-
sociates to a closed Q-subscheme V' C G its Zariski closure V' in Ggz.
Schematic adherence induces a one-to-one correspondence between Q—subchemes
of G and flat closed Z-subchemes of Gz [BT, 1.2.6]. In particular, it maps
Q-subgroups of G into flat Z-group subschemes of G [BT, 1.2.7] (see also
[GM, §3)).

Let n = |W| and T = GJ,,, where r is the rank of G. As pointed out by
Tits [T], the fact that H'(Z,T) = Pic(Z)" = 0 implies that the sequence

0—-T(Z)— N(Z)—- W — 1.

is exact. Since T(Z) = {£1}", N(Z) is a finite group. View N(Z) as a finite
constant Q-subgroup of G and let S’ be its schematic adherence in N/Z.
Then S’ is a finite flat Z-subgroup scheme of N. Since N(Z) surjects onto
W, so does S'. O

4.1. Remark. In the case where X = Spec(K) for some field K/k, The-
orem 1.2(a) reduces to [CGR, Theorem 1.1(a)], and our proof proceeds
along similar lines. Note however, that there is a small mistake in the
proof of [CGR, Theorem 1.1(a)]. On page 565 in [CGR], in the setting of
Lemma 3.2 above, we said that the obstruction A(a) (denoted by d([a])
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there) to lifting a to H'(X, S) lies in H?(X, p1), instead of H?(X, 4p). This
mistake is corrected in the proof of Lemma 3.2 in the present paper. As
a consequence, the (corrected) argument in this paper is a bit longer than
n [CGR], and the group S is a bit larger; here SNT = 2T, where as
in [CGR] SNT =, T.

5. TORAL TORSORS AND A THEOREM OF GROTHENDIECK

Let X be a scheme and G be a smooth affine group scheme over X.
Assume that the connected component GV is reductive. We say that a G-
torsor E over X is toral if the twisted X-group scheme #G admits a maximal
torus defined over X. We denote by H! (X,G) C H*(X,G) the set of toral

toral
classes. The following lemma is well known.

5.1. Lemma. Assume that G°/X admits a mazimal X -torus T. Then

H. (X,G) = Im(Hl(X, Ne(T)) — HY(X, G)) .

oral (

Proof. Let E/X be a G-torsor. The functor 7 /X of maximal tori of £G is
representable by a separated smooth scheme ¥ of finite type over X [SGA3,
XII.1.10]. In fact, ¥ is the E-twist of homogeneous space G/Ng(T') (whose
points represent maximal tori in G); equivalently, ¥ can be thought of as the
quotient E/Ng(T') (see [SGA3, XXIV.4.2.1]). So the following are equiva-
lent:

(1) G has a maxunal X-torus,
(2) T(X) #
(3) (E/Na(T ))(X) # 0.
By [DG, III, §4, Prop. 4.6], condition (3) is equivalent to
[E] € Tm (H' (X, Ng(T)) — H'(X,G)) .
and the lemma follows. ]

The following theorem of Grothendieck tells us that if G is a reductive
group scheme over a semilocal ring k then every G-torsor over k is toral.

5.2. Theorem. ([SGA3, XIV.3.20]). Let G be a reductive group scheme
defined over a semilocal ring k. Then G admits a mazimal k-torus T'. [

The corollary below will be of particular interest to us in the sequel.

5.3. Corollary. Let G be a smooth affine reductive groups scheme defined
over a semilocal ring k. Suppose T is a mazimal k-torus of G. Then the
natural map H'(R, No(T)) — H'(R, Q) is surjective for any semilocal ring
R/Ek.

Proof. By Theorem 5.2 every G-torsor over Spec(R) is toral. That is,
HY(R,G)torar = H' (R, G).

The corollary now follows from Lemma 5.1. U
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6. PROOF OF THEOREM 1.2(C)

Throughout this section k will denote a semilocal ring and G an affine
connected reductive group scheme defined over k. Suppose that the radical
torus of G is isotrivial. We will now proceed to prove Theorem 1.2(c) in four
steps.

Case 1. G split, semisimple and adjoint. That is, G = Gy Xz k, where
G is an adjoint split group defined over Z. Let T be a maximal split torus
in G defined over Z and let S}, C Ng,(Tp) be the finite subgroup satisfying
the conditions of Proposition 3.1 constructed in the previous section. Then
S" = S5 ®yzk satisfies the same conditions in G, relative to the maximal torus
T =Ty®zk of G. The desired conclusion now follows from Proposition 3.1.

Case 2. (G is a quasi-split semisimple and adjoint. In this case G is
k-isomorphic to the twist 1, () (G1), where (1 is a split adjoint group scheme
over k of the same type as G,

a € Z}(k, Autpyn (D))

and D is the Dynkin scheme of G, relative to a maximal split k-torus
Ty C Gi; see §2. The cocycle hy(a) preserves the maximal torus 77 and
the finite subgroup of N¢, (71) constructed in Case 1. In Case 1 we called
this finite subgroup S’; now we will denote it by S]. Recall that S} satisfies
the conditions of Proposition 3.1 relative to T7; that is, S} normalizes T}
and projects surjectively onto W1 = Ng,(11)/T1. Now observe that the
group j, (4)(S7) satisfies the same conditions in G' = 5, (4)(G1), relative to
the maximal k-torus j,(4)(71). The desired conclusion now follows from
Proposition 3.1.

Case 3: G is semisimple and adjoint. In this case G is k-twisted form
of a Chevalley group Gy [SGA3, XXIIL5.7]. In other words, there exists a
cocycle b € Z'(k,Aut(Gyp)) such that G = ,Go. Let a be the image of b
under the projection

Zjl”ppf(k7AUt(G0)) - Z}ppf(k,Aut (D)),

where D is the Dynkin scheme of Gg. Consider the following commutative
exact diagram of pointed sets

H'Y(k, Aut(Go)) —— HY(k, Aut(D))

fh*(a)T faT

H(k, () Go) —— H'(k, j, () Aut(Go)) —— H'(k, o Aut(D))

where f,, (o) and f, stand for the “torsion” bijections; see §2. By a diagram
chase, there exists [¢] € H'(k, j,(4)Go) such that G is isomorphic to the
twisted group C(h*(a) Go), i.e., G is a k-inner form of the quasi-split group
he(a)GO-
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By Case 2 we know that Theorem 1.2(c) holds for G1 = j, (4)Go. That
is, there exists a maximal torus 77 C G; defined over k and a finite k-
subgroup S1 C Ng(7T1), such that S; is an extension of a twisted constant
group scheme by a finite k-group of multiplicative type and the natural map
H'(k,S1) — H'(k,Ng,(T})) is surjective. Moreover, by Corollary 5.3 the
map H'(k, Ng,(T1)) — H'(k,G1) is also surjective. We conclude that the
map H'(k,S;) — H'(k,Gy) is surjective. We may thus assume that ¢ takes
values in Sj.

Now set S := .S1. Then S embeds in .17. Consider the diagram

HY(X,S)) —— HYX,Ng,(T1))

| |

HY(X,.S1) —— HYX,Ng(.T))

where the vertical arrows are the “torsion” bijections; see §2. Since mg is
surjective, so is 7.

Case 4. @ is reductive and the radical torus C = rad(G) is isotrivial.
Consider the semisimple k-group H = [G,G|. Let Z be the center of H,
G'=G/Z and f : G — G’ be the natural projection. Then G’ ~ C’ x H’,
where C' = C/C N H and H' = H/Z is an adjoint semisimple group. Since
we are assuming that C' is an isotrivial k-torus, there exists a finite étale
surjective covering k/k which splits C. Note that k is a semilocal ring and
O’ 1, k is also a split torus. N

Let m be the degree of the covering k/k and let p be the m-torsion
subgroup of C’. Note that the canonical mapping H'(k,u) — H'(k,C") is
surjective. Indeed, the restriction-corestriction formula [CTS, 0.4]

Xm = CorEoResE . HY(k,C") — H' (k,C")

together with the fact that H'(k, C’) = 0 (Hilbert’s Theorem 90) imply that
the map

xm: H'(k,C") — H'(k,C")
is trivial.

Let 7" and S C Np/(T') be the subgroups constructed in Case 3 for
H' and let X/k be a scheme satisfying condition (1.1). Then the canonical
morphism 7' : HY(X, ux S") — HY(X, Ng/(T")) is surjective. We claim that
S = f~Y(pux S is as required, i.e. H'(X,S) — H' (X, Ng(T)) is surjective
where T = f~1(C’ x T").

Indeed, the exact sequences 1 — Z — Ng(T) — Ng/(T') — 1 and
1— 27— 88— S5 — 1 give rise to a commutative diagram

HY(X,Z) —— HY(X,Ng(T)) —2— HY(X,Ne(T")) —£— H2(X,Z)

I d | dl

HY(X,Z) —— HY(X,S) - HYX,uxS) —2- HY(X,Z)



G-TORSORS 13

Here g9, ho are connecting homomorphisms [Gir, IV.4.3.4]. Fix an element
[a] € HY(X,Ng(T)) and let [b] = g1([a]). Since 7’ is surjective, there is a
class [c] € H' (X, u x S) such that 7/([c]) = [b]. Since ha([c]) = g27'([c]) =
0, there is [d] € H'(X, S) such that hi([d]) = [c]. Thus the classes [a] and
7([d]) have the same image in H'(X, Ng/(T")). A twisting argument shows
that the map HY(X,4Z) — gy (g91([a])) is surjective; see [Gir, T11.3.2.4].
Since Z C S, we have 47 C 4S implying [a] € Im7. This completes the
proof of Theorem 1.2(c). O

7. PROOF OF THEOREM 1.3 AND AN APPLICATION

Theorem 1.3 stated in the introduction is an easy consequence of Theo-
rem 1.2(c) and Corollary 5.3. Indeed, choose T" and S as in Theorem 1.2(c)
and let R be a semilocal ring containing k. Since X = Spec(R) satisfies
condition (1.1), Theorem 1.2(c) tells us that the natural map H'(R,S) —
H'(R,N(T)) is surjective. By Corollary 5.3 the map H'(R, Ng(T)) —
H!(R, Q) is also surjective, and Theorem 1.3 follows. O

We will now discuss an application of Theorem 1.3. Let G be a linear
algebraic group defined over a field k and 7: Y — X be a G-torsor over a
k-scheme X. As usual, we will say that m admits reduction of structure to a
k-subgroup S C G if the class in H'(X, G) represented by 7 lies in the image
of the natural map H'(X,S) — H'(X,G). Equivalently, 7 admits reduction
of structure to S if there exists a G-equivariant morphism Y — Gx/Sx.

Suppose U — X is a morphism and Yy is the pull-back of Y to U:

YU—>Y

o
U — X.

We say that Y admits reduction of structure to S over U if the G-torsor
7wy : Yy — U admits reduction of structure to S.

7.1. Proposition. Let G be a linear algebraic group defined over a field k.
Assume that the connected component G° is reductive and either G is con-
nected or k is algebraically closed. Then there exists a k-subgroup S C G with
the following property. For any G-torsor w: Y — X over an affine k-scheme
X and any finite collection of (not necessarily closed) points x1,...,x, € X,
there exists an open subscheme U C X containing x1, ..., x, such that 7w ad-
mits reduction of structure to S over U.

Proof. Let R = Oy, ... 2, be the semilocal ring of X at z1,...,z,. By The-
orem 1.3 7 admits reduction of structure to S over Spec(R) C X. That is,
there exists a G-equivariant morphism ¢: Yr — Gr/Skg.

Since R is, by definition, the direct limit of Ox(U), as U ranges over
the open subsets of X containing x1,...,x,, ¢ extends over some open sub-
scheme X of X containing x1,...,x,. In other words, m admits reduction
of structure to S over Xj. O
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8. TORSORS ON AFFINE SPACES

Let k be a field of characteristic 0, and k be an algebraic closure of k. In
this section we will apply Theorem 1.2(c) in the case where X is the affine
space A/". The key observation here is that AE" is simply connected. By the

fundamental exact sequence for m; [SGA1, I1X.6.1], we have an isomorphism
7 (A2, 0) = Gal(k/k),

where 71 (A/",0) stands for the algebraic fundamental group of A;" relative

to the base point 0 : Spec(k) — A;”. In other words, every finite étale
cover of A is of the form A, where K/k is an étale k-algebra. Since
Pic(Ag) = 0, this implies that X = A" satisfies condition (1.1).

8.1. Proposition. Let k be a field of characteristic zero, n > 0 be an integer,
and G be a (connected) reductive group over k. Then

H' (k,G) = H' (AL, @ioral-
In other words, every toral torsor on A} is constant.
Proof. Since k is a field, Theorem 1.2(c) applies to G. Let S C G be the
finite k-subgroup as in Theorem 1.2. As we noted before the statement of
the proposition, X = A, satisfies condition (1.1). Thus the natural map
HY(A™ S) — HY(A*, N(T)) is surjective. By Lemma 5.1, the map
Hl(Akn) S) - Hl(Akn7 G)toral
is also surjective. The kernel of the natural map H'(A",S) — H! (A, 5)
consists of those S-torsors on A;" which become trivial on AE”. Since

Az — Ay is a Galois cover, with Galois group Gal(k/k), this kernel is
H(k,S (Af')), where H ! stands for Galois cohomology. Since S (AF) =

S(k), this yields an exact sequence
1— H'(k,S(k)) — H' (A, S) — H' (A, S).
Since A is simply connected, H 1 (AEH’ S) =1, and hence the map
H'(k,S(k)) — H'(A[",S)
is surjective. The commutative exact diagram of pointed sets
HY'(k,S(k)) —— HY(AMS) —— 1

| |

Hl (kv G) - Hl (Akn, G)toral

l |

1 1

shows that the natural map H'(k,G) — Hl(Ak”, G)toral 1s surjective. This
map is also injective. Indeed, suppose G-torsors T3 — Spec(k) and T —
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Spec(k) map to the same G-torsor Y — A", ie., Y =~ T; Xgpeer) Ay for
i = 1,2. Then both T} and T3 are isomorphic to the fiber of Y over 0 € A"
Hence, T} and Tj represent the same class in H'(k,G). We conclude that
the map H'(k,G) — Hl(Ak”, G)toral 1s an isomorphism. O

8.2. Remark. There are examples of non constant G-torsors P over affine
spaces; see Ojanguren-Sridharan [OS] (cf. also [K, VIL.10]). Proposition 8.1
tells us that in these examples the twisted groups G do not carry maximal
tori.

8.3. Remark. As we pointed out in the introduction, the scheme

X = Spec(k[z7, ..., 2]

n

also satisfies condition (1.1) (in characteristic zero), so in this case the map
HY(X,S) — HY(X,Q)tora is also surjective. This fact is used in [GP].
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