SYMMETRIC FUNCTIONS AND THE PHASE PROBLEM
IN CRYSTALLOGRAPHY

J. BUHLER AND Z. REICHSTEIN

ABSTRACT. The calculation of crystal structure from X-ray diffraction
data requires that the phases of the “structure factors” (Fourier coeffi-
cients) determined by scattering be deduced from the absolute values of
those structure factors. Motivated by a question of Herbert Hauptman,
we consider the problem of determining phases by direct algebraic means
in the case of crystal structures with n equal atoms in the unit cell, with
n small. We rephrase the problem as a question about multiplicative in-
variants for a particular finite group action. We show that the absolute
values form a generating set for the field of invariants of this action, and
consider the problem of making this theorem constructive and practical;
the most promising approach for deriving explicit formulas uses SAGBI
bases.

1. INTRODUCTION

If the unit cell of a crystal has n atoms, located at positionsrj, 1 < j < n,
then the structure factor associated to a reciprocal lattice vector v is

n
E, = Z a; exp(2miv - r;),
j=1

where the a; are the scattering amplitudes determined by the electron charge
distribution in the j-th atom. This is, in effect, a Fourier transform coef-
ficient, and the structure of the crystal can be determined from the F; by
an inverse Fourier transform. However, in standard diffraction experiments,
it is impossible to measure the F, — only their absolute values are observ-
able. The “phase problem” of crystallography is to determine the phases
of the Fy given magnitudes |E,/| for sufficiently many v’; this problem is
fundamental in the subject, and has received considerable attention ([Gial,
[Ha2]). The problem of retrieving phase information from absolute values,
together with other physical constraints, occurs in several other areas of
physics, astronomy, and engineering.
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In the crystallographic context, the phases can be determined in principle
only up to an additive constant, which is equivalent, via a Fourier transform,
to the indeterminacy of the origin of the crystal. It is natural to consider
“structure invariants,” which are multiplicative combinations of structure
factors that are invariant under change of origin, i.e., additive translation
of the phase. In addition, structure invariants play an important role in
commonly used stochastic methods for phase retrieval. The function

(1) Ev,Ey,...Ey,

is easily seen to be a structure invariant when the reciprocal lattice vectors
vi sum to zero. The most common case is m = 3, i.e., the “triplet-structure
invariant”

EviEvyE vy v,

Exact formulas for phases of triplet structure invariants are known in
terms of magnitudes for n = 1,2,3 [Hal]. Herbert Hauptman asked one of
us for a formula for arbitrary n, and the purpose of this paper is to show
that, at least in the case in which all atoms in the crystal have the same a;,
such a formula exists, and to explore techniques for finding such formulas
explicitly.

In this paper we shall only consider crystals with equal atoms (or equal
polyatomic clumps); we will set the identical scattering factors a; equal to 1.
In addition, it is convenient to assume that the space group is the most basic
group P1 (isomorphic to the group Z3 of translations); see [Hal, Appendix
1] for a description of how to generalize to arbitrary space groups.

Under these assumptions the triplet phase determination problem can be
converted to a question about multiplicative invariant functions. Somewhat
to our surprise, this question seems to be new.

To express the triplet phase problem to a problem in symmetric func-
tions, start by noting that the phase ¢y, v, of the triplet structure factor
Ey,Ev,E_y, v, satisfies

EviEv, B vy—v, = ‘EVI‘ |EV2‘ |E—V2—V2| exp(i¢V17V2)'

Thus the cosine of the phase can be expressed in terms of absolute values
and the sum of the triplet-structure invariant and its complex conjugate.
We want to express the phase ¢y, v, in terms only of absolute values

2 *
|Eavl+sz| = EaV1+bV2Eav1+bV2 = EaV1+bV2E—tIV1—bV2

corresponding to reciprocal lattice vectors avi + bve, where a and b are
integers.
Fix vq and vo and let

xj = exp(2mivy - 1)), y; = exp(2mive -rj), 1<j<n
X:(ﬂfl,"',.fl?n), Y:(yla)yn)
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Then
n n
by, = ij and FEy, = Zyj :
j=1 J=1

Using the fact that z + z* = 2|z|cos(¢) if z is a complex number with
absolute value |z| and argument ¢, we see that we need to express

EQ(Xv Y) = EviEvE vi—v, T EviE v, Evitv,
= ‘EV1’ ‘Evz‘ |E*V V2| 2COS(¢V1 V2)

S RDOND RIS I S

X
1 Y
n n
_ Z LYk 1 Z TiYr
X X;
jhi=1 W Ty Yk

in terms of the magnitudes

Qap(T1,. . Tny Y1, Yn) = EyE_y

zx zw A

JIJyJ

for suitable integers a and b; here v = avy + bvg is an arbitrary reciprocal
lattice vector.

We will call g, an “observable” since it is (the square of) an absolute
value and therefore it is possible to observe it physically. Thus our goal
is to express F as a rational function of the observables g, ;. From now
on we will treat this as a question about variables x; and y;, ignoring the
fact that they are complex numbers of absolute value one. A simple Zariski
density argument shows that this does not change the underlying problem,
i.e., we are not going to “miss” any identities by assuming that z; and y; are
arbitrary complex numbers, rather than just those of absolute value one.

Example 1.1. The reader can easily verify that for n = 2 the triplet phase
invariant is a polynomial in three observables:

Ey(X,Y) =2(q10+ g1 +q11) — 8.

Example 1.2. The formula for n = 3 is considerably more elaborate, and
was discovered by Hauptman [Hal]; it takes the form FE3(X,Y) = N/D,
where

T
D—C]01+Q10+Q113—3+Z< + ¥ Zyz)
SN Y Ty
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N = 135-31D+ D*+ 2(q1,0q0,1 + q1,01,1 + q0,1q1,1)
+(q0,192,1 + 10912 + q1,-191,1)
—5(q12 +q21 +q1,-1) — 2(qo2 + @22 + @2,0) -
(For another formula, see Example 6.5.)

Higher order generalizations of triplet structure invariants are defined as
a product of structure factors E, where the v sum to 0. If a structure
invariant is the product of m factors (1) for arbitrary m, then this gives rise,
in a similar manner, to the problem of expressing

n
L1513 2255 + - - Tmyj L1j -« Tmj
(2) Bu(X1yo Xp) o= Y (PRI ST
L. 1 .212‘13 e .Cl?m] xljlxgm e .’Emjm
J5J15-Jm=

as a rational function in observables

n 1 T'm
(3) o ...
q""lv---,"’m T xT’1. xT‘mA )
igj=1"1""""mj
where 71, ..., 1, are integers.
Note that the rational function f = FE,, has the following invariance
properties.

a: f is of weight 0 in each n-variable vector

X1 = (2115, T10)s ooy X = (Tml, - Tmn) -
That is, f(c1X1,...,emXm) = f(X1,..., Xm) for any non-zero scalars
C1,...,Cm, or, more succinctly: f(cjxi;) = f(x45).

b: f is self-reciprocal in the sense that it remains unchanged if every
variable x;; is simultaneously replaced by Jci_jl, ie, f (x;l) = f(x4j).
c: f is multi-symmetric in the sense that it remains unchanged if the
variables in each array X; are (simultaneously) permuted by the
same permutation o € Sy, i.e., f(7;(;)) = f(zi5)-
Our main results are summarized in the following theorem. Both parts
answer questions posed by H. Hauptman.

Theorem 1.3. (1) (Theorem 5.1 or Theorem 6.1) Every rational function
f(zij) in mn variables, satisfying the invariance properties a, b, c, can be
expressed as a rational function of the observables qc, .. c,,- In particular,
E,, can be expressed as a rational function of the observables qc, ... c,, for
any m > 1.

(2) (Proposition 7.1(b)) Suppose n > 4. Then E,, is not a polynomial in
the observables q., ... c,, for any m > 2.

Our proof of Theorem 1.3 requires the consideration of all f satisfying the
invariance properties a, b, ¢, even if one is only interested in the structure
invariants FE,,. This is true of most of our other proofs and algorithms.
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The overall outline of the paper is as follows. In Section 2 we prove
(a slightly more precise version of) Theorem 1.3(2) for m = 1 using basic
Galois theory and some combinatorial arguments; the proof is not obviously
constructive. In Section 3 we consider two possible approaches to making the
argument constructive. In the subsequent section we give a fast algorithm
for n < 4, based on SAGBI bases. In Section 5 we turn our attention
to the multi-array case, i.e., m > 1. In Section 6 we reduce the problem of
computing the invariant F,, to that of expressing certain invariant functions
in terms of observables in the single array case (m = 1). We then use the
SAGBI basis algorithm of Section 4 to obtain new expressions for Fs in the
case where n = 3 and 4; see Examples 6.5 and 6.6. In Section 7 we prove
Theorem 1.3(2). Finally, in Section 8 we study the structure of the field
of rational functions f satisfying the invariance properties (a) - (c) as an
abstract field, without reference to the observables.

In the course of our work on this paper, we have encountered a phe-
nomenon that often arises in the interstices between mathematics and its
applications. Depending on the context, solving a mathematical problem
can mean many different things, e.g.,

(a) proving a theorem,
(b) giving a constructive proof, or
(c) giving an algorithmic proof, suitable for practical computations.
As one moves down this list, the problem can become more difficult, requir-

ing different techniques and ways of thinking. However, there is usually a
subtle but important interplay between these different modes of solution.
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2. ONE SET OF VARIABLES

Fix a field k of characteristic 0. Let X = (z1,...,x,) be an n-tuple of
independent variables over k. We will operate on n-tuples as if they were
diagonal matrices, so X! = (:1:1_1, o ap ) (X)) =21 + -+ @y, ete.

Let k(X))o C k(x1,---,x,) be the field of rational functions in the x;
of total degree 0; in other words, an element f € k(X)y is a quotient of
homogeneous polynomials of the same degree. Equivalently, k(X)o is the

field generated by the x;/x;:
k‘(X)O = k‘(.%'z/(]}] 1< i,j < n,i #]) .

We note that the field k£(X)o can also be viewed as the function field of the
projective space P"~ 1,
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The symmetric group S,, acts on k(X)o = k(x1, - ,2,)o by permuting

the variables z1,- - - , z, in the natural way. In addition, we let 7 denote the
automorphism that takes X to X1, i.e.,
1
T(z;))=—, 1<i<n.
T

This automorphism is obviously of order two, and we let T = {1,7} denote
the corresponding group. The actions of S,, and T commute so that the
group
G:=8S,xT

acts on k(X)g. This action is faithful for n > 3. If n =2, G = Sg x T has
order 4, and the kernel of its action on k(z1, z2)g is the subgroup of order 2
generated by (o, 7), where o is the nontrivial element of Ss.

The main theorem of this section is that the observables

n T r
4 = tr(X)tr(XTT) = =
(@) i () = Y (2)
i,j=1
generate the invariant field k(X)§. (Note that here m = 1, so that the
observables (3) have only one subscript.)

Theorem 2.1.
K(X)§ = k(g |1 <7 <n(n—1)/2) .

Before proving the theorem, we prove two lemmas, one combinatorial and
the other algebraic.
Let n > 2 be an integer, N = n(n — 1), and A be the N-element set

(5) A={(d) | ij=1,...,nand i £ j}.
When convenient we will sometimes omit the comma and write (ij) instead
of (i,7). In addition, we tend to visualize the elements of A as the off-
diagonal positions in an n by n matrix.

There is a natural action of G = S,, x T on A, where T acts by transposition

7(i,5) = (J,9)
and the symmetric group S,, acts simultaneously on the rows and columns:

o(i,j) = (0(i),0(j)), o € Sn.

This gives a map from G to the symmetric group Sy = S,,2_,, = Sym(A) of
all permutations of A, and this map is an injection for n > 3, in which case
we will usually just choose to regard G as a subgroup of Sy. In the case
n = 2 the map is surjective with kernel of order two as described earlier.

We will say that elements x = (i,5) and 2’ = (i/,5’) of A are opposite
if x is the transpose of 2/, i.e., i = j' and j = ¢/. If exactly one of these
equalities holds, i.e., 2’ is not opposite to z, but it lies in the same row or
column as the transpose of z, then we say that z and z’ are adjacent. Note
that opposite pairs are not also adjacent.
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We will say that g € Sy preserves adjacency (respectively opposition)
if for any adjacent (respectively, opposite) elements x, 2’ € A, the images
g(z) and g(z') are also adjacent (respectively, opposite). Our combinatorial
lemma says that for n > 2, G = S,, x T is precisely the subgroup of Sy that
preserves both of these relations.

We note that for n = 2 the situation is simple: G maps onto Sy = So
and the nontrivial element of Sy preserves both adjacency and opposition.
So from now on we consider n > 3.

Lemma 2.2. Let n > 3. Then h € Sy preserves both adjacency and oppo-
sition if and only if h € G C Sy.

Proof. 1t is immediate from the definition that every h in G preserves both
adjacency and opposition, so we only need to prove that any element pre-
serving these relations lies in G.

Suppose h € Sy preserves both adjacency and opposition. To show that
h € G, we will multiply A by elements of G until we arrive at the identity
permutation of A.

It is easy to see that S,, acts transitively on A. Thus, after composing h
with an element of S,, C G, we may assume h(12) = (12).

We claim that we may also assume that h(13) = (13). Indeed, since h
preserves opposition, h(12) = (12) implies h(21) = (21). Suppose h(13) =
(ij). Since (21) and (13) are adjacent, so are (21) and (ij), i.e., either
i=1orj =2 If i =1 then j > 3; thus after replacing h by [3, j]h, we
obtain h(12) = (12) and h(13) = (13), as desired. (Here [3,j] denotes the
transposition in S,, that interchanges 3 and j.) On the other hand, if j = 2
then i # 1,2 and, after replacing h by [3,i][1,2]7h, we once again obtain
h(12) = (12) and h(13) = (13). This proves the claim.

Since h preserves opposition, h(13) = (13) implies that h(31) = (31).
Now, since (23) is the unique pair adjacent to both (31) and (12), and h(23)
is the unique pair adjacent to both h(31) = (31) and h(12) = (12), we
conclude that H(23) = (23). Since h preserves opposition, we also have
h(32) = (32). Thus h fixes (ij) for 1 <i,j < 3. This completes the proof of
Lemma 2.2 for n = 3; from now on we will assume that n > 4.

Suppose h(1i) = (ab) for some i > 4. Since (21) and (17) are adjacent, so
are (21) and (ab). That is, either a = 1 or b = 2. Repeating this argument
with (31) in place of (21), we see that either a = 1 or b = 3. Since b
cannot be equal to both 2 and 3, we conclude that @ = 1. In other words,
h(1i) = (10(7)), where o is a permutation of 4,5,...,n. After replacing h
by o~ th, we reduce to the case where h fixes (17) (and thus (i1)), for every
1=2,...,n.

We claim that h is the identity permutation, i.e., that h(ab) = (ab) for
every (ab) € A. Since we know this in the cases where a = 1 or b = 1, we
may assume a,b > 2. In this case (ab) is the unique element of A that is
adjacent to both (1a) and (b1). Hence, h(ab) = (ab), as claimed. O
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Next, we prove an algebraic lemma from which the theorem will follow
easily. Let

n N
0= T (-2) e
) i i=0
i, =1
iF# ]
be the polynomial of degree N = n(n — 1) whose roots are the z;/x;, i # j.
The coefficients ¢; are the elementary symmetric functions in those roots,
and since the reciprocals of roots are themselves roots, the polynomial f

satisfies t"V f(1/t) = f(t), which is equivalent to
¢ =cn_i, 0<1<N.
The elements ¢, = tr(X")tr(X ") are symmetric functions of the z;/x;
are hence polynomials in the ¢;; we let
K :=k(g-|r=1,2,--+)

be the field generated by the observables ¢;.

As we will see, the proof of Theorem 2.1 basically comes down to deter-
mining the Galois group of f over the field K.
Lemma 2.3. With the above notation,

(a) klc1,...,cr) = K[q,...q] for anyr, 1 <r < N.

(b) K =k(c1,....enp2) = kg1, -, any2)-

(c) k(X)o is the splitting field of f(t) over K.

Proof. Since

g —n=te(X)tr(X ") —n = (z:/2;)"
i#j
is the sum of the m-th powers of the roots of f(t), part (a) follows from New-
ton’s formulas that express the symmetric polynomials ¢q,--- , ¢, in terms
of the power sums ¢, -+ , gr.

Part (b) follows from part (a) and the symmetry of the ¢;. Part (c) follows
from (b) and the fact that k(X)o = k(z;/x;). O

We are now ready to finish the proof of Theorem 2.1. Clearly, K C k(X )OG .
Consider the tower

of field extensions. By the lemma, k(X )o is a Galois extension of K. Identify
the set of roots of f(t) with the set A = {(¢,7) |7 # j}, letting ;/x; < (i, 7).
The action of G = S,, x T on the set of roots is the same as its action on A
described earlier.
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The notions of adjacency and opposition in A have a natural interpretation
in this context. If x = (ab) and 2’ = (ed) are elements of A let r = x,/x, and
r" = x./x4 be the corresponding roots of f(t). Then x and 2’ are adjacent
if and only if 77/ is again a root of f(¢) and opposite if and only if rr’ = 1.
Thus any Gal(k(X)o/K) acts on the set of roots in a way that preserves both
adjacency and opposition. Lemma 2.2 now tells us that Gal(k(X)o/K) = G.
Thus k(X)§ = K. This completes the proof of Theorem 2.1.

Remark 2.4. Since S,, C G acts transitively on the roots of f(t), we con-
clude that f(t) is irreducible over k(X)§.

3. CONSTRUCTIVE PROOFS

The proof in the last section ultimately relies on a fundamental and beau-
tiful result in Galois theory: anything fixed by all elements of a Galois group
lies in the ground field. We will now discuss a constructive proof, which could
be viewed as the result of tracing through the argument of the previous sec-
tion, rendering the underlying Galois theory explicit at each step. We note
that both proofs rely on Lemma 2.2.

We begin by letting k[X*']y be the k-algebra whose elements are k-linear
combinations of Laurent monomials 7™ ... z%" of total degree 0, i.e., where
the a; are integers whose sum is 0. Note that k[X*1]y is generated, as a
k-algebra, by elements of the form z;/x;; in particular, the field k(X)o is
the field of fractions of k[X*!]g. Note also that k[X*!]y is a G-invariant
subring of k(X)o.

Let z;; be a set of N = n(n — 1) algebraically independent variables over
k, where ¢ and j are distinct integers between 1 and n. For notational
convenience, we also set z; = 1 for every ¢ = 1,...,n. We now define a
surjective k-algebra homomorphism

¢: k[zij] — k[X:tl]o

by ¢(zij) = xi/x;. Let s, be the rth elementary symmetric polynomial in
the IV variables z;; and p, = Zi# zfj be the sum of the rth powers of these
variables. Here sy = 1 and ¢(s,.) is the element of k[ X*!] we called ¢, in the
statement of Lemma 2.3. We let Sy denote the group of all permutations
of {2 : i # j}, and identify G = S,, x T with the subgroup that acts on the
Zij by U(Zl'j) = Zo(i)o(j)s for o € Sn, and T(Zij) = Zj;-

Define three polynomials D1, Dy, D € k[z;;] of N variables by

D (zi5) = I1 (2abZea — 1),
(ab) and (cd) € A
are not opposite

D?(Zij) = H (Zabzcd - Zef) .
(ab) and (cd) € A
are not adjacent

and D = Dy D;y. As we shall see below, ¢(D) is a “universal denominator”,
such that if f € k[X*!]§ then ¢(D)f is a polynomial in the observables.
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Lemma 3.1. (a) Suppose g € G. Then ¢(gD) = ¢(D) # 0
(b) Suppose g ¢ G. Then ¢(gD) = 0.

Proof. (a) Clearly gD; = D; and gDy = Dy, because g preserves both
adjacency and opposition. Thus gD = D, so that ¢(gD) = ¢(D). To show
that ¢(D) # 0, note that if the image under ¢ of a factor of D; is zero then
Lg Tc
——=1.
Ty Tq
This implies that (ab) and (cd) are opposite elements of A, which is excluded
by the definition of D;. This shows that ¢(D;) # 0. Similarly, ¢(zqpzcq —
zer) = 0 if and only if (ab) and (cd) are adjacent in A. Thus ¢(D3) # 0, and
consequently, ¢(D) # 0.

(b) If g € S,, is not in G then by Lemma 2.2 at least one of the following
holds: (i) g does not preserve opposition or (ii) g does not preserve adjacency.

If (i) holds then g~! does not preserve opposition either. In other words,
there exists a pair of non-opposite elements (ab) and (cd) such that g(ab)
and g(cd) are opposite, say, by = ¢1. Then zgz.q — 1 is a factor of Dy and
¢(9(zabzed — 1)) = 0. Hence, ¢(g(D1)) = 0 and thus ¢(g(D)) = 0.

Similarly, if (ii) holds then there exists a pair of non-adjacent elements
(ab) and (cd) such that g(ab) = (a1b1) and g(ed) = (c1dy) are adjacent, say,
b1 =C1. Now

Tay Tey  Tay
¢(g(zab20d “g 1(a1d1))) ¢(Za1b1201d1 Zaldl)) Lo, Ta, Ta, 0

so that ¢(g(D2)) = 0 and thus ¢(g(D)) = ¢(g9(D1))d(g(D2)) =0, as claime%

With the universal denominator ¢(D) in hand, we can now state our
algorithm.
Algorithm 3.2.

Input: A function f(z1,...,2,) in k(X)§.

Output: A rational function in the ¢, representing f.

Step 1: Write f = fi/f2 of a quotient of elements f; that are in
k[X*1§; apply each of the subsequent steps to f1 and fa (to simplify
the notation we just assume from now on that f € k[X*!|§).

Step 2: Find an element F' € k[z;;] such that ¢(F) = f.

Step 3: Set A=) g(DF), write the numerator and denominator

of
9(A)

2n! ¢(D)
as polynomials in the ¢, and output the result.

geESN

We comment on each step in turn.

Step 1: To express an invariant degree 0 rational function f as a quotient
of invariant polynomials, recall that f is a quotient of two polynomials of
equal degree, say of degree d. Dividing top and bottom by le, we can write
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f in the form f; = a/b, where a and b are in K[X*']g (but a and b may not
be G-invariant). Since f is G-invariant,

1 g(a f
fZQ—n!ZQ( 2n'z !

geG

where the numerator and denominator f; are G-invariant polynomials in
K[ X*1§. Tt suffices to express f; and fo as rational functions in the g,, and
we can therefore assume that f is in k[X*1]§ from now on.

Step 2: To lift f to an element F' € k[z;;], write f(z1,...,2y,) as a k-linear
combination of degree-0 Laurent monomials :L‘i” ooz o withar+-- - 4ay =
O Any such monomial is a product of a finite number of terms of the form

. Write all of the monomials in f in this form and replace each I* by 2ij

to obtaln the desired F' € k[z;].

Step 3: By Lemma 3.1 the only non-zero terms in the sum

= 3 olg(D)slg(F))

geESN

correspond to g € G. Thus

=Y $(g(D)p(g(F)) =D ¢(D)g(¢(F)) = 2n! ¢(D) £,

geG geG

as claimed.

The only remaining thing that needs to be done is to explain how to
write ¢(A) and ¢(D) as polynomials in the g,.. Clearly A is a symmetric
polynomial in the z;;, where 1 < 4,5 < n. It is therefore a polynomial in
the elementary symmetric functions s;, 1 < ¢ < N, and a polynomial in
the power sums p,. = > 2j; by Newton’s formulas. Slnce o(pr) = qr —m it
follows that ¢(A) can be wrltten as a polynomial in the g,, as desired.

From the formula

216(D) = 3 o(9(D) = 3 slg(D) =6 [ 3 g(D)

geG geESN gESN

it follows that, once D is symmetrized over Sy, the same procedure can be
used to express 2nl¢(D) in terms of the observables.

Remark 3.3. The above procedure can be modified to produce polynomials
in the ¢, with » < N/2. Indeed, recall that ¢(sy—;) = cn—i = ¢; = ¢(si)-
Thus the image under ¢ of a polynomial P(sq,---,sy) in the elementary
symmetric functions is unchanged if s; is replaced by sy_; for i > N/2.

Note also that if one only wants to express f(x1,...,2,) as a rational
function in ¢, for 1 < r < N, rather than 1 < r < N/2, then the algo-
rithm of [St1, Proof of Proposition 1.1.2] can be used to write A and the
symmetrization of D directly as polynomials in the power sums p; without
going through elementary symmetric polynomials.
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4. INITIAL TERMS AND SAGBI BASES

It is natural to try to apply Grobner bases to our problem. Although
Grobner bases are usually applied to rings, they can be adapted to solve
problems in function fields. This was first noticed in detail by Sweedler [Sw],
and has since been extended in several theoretical and practical ways; see,
e.g., [M]. In our context we would have a G-invariant polynomial f(X) in
xi/x; that, by Theorem 2.1, lies in the field k(g;) C k(X)o. By introducing
extra variables and calculating the Grobner basis of a suitably chosen ideal,
an explicit expression can be found for f as a rational function in the g;.

Unfortunately, all of our implementations of this idea suggest that it has
the same trouble as implementations of the constructive algorithm given in
the previous section: they are far too slow. The purpose of this section is
to introduce a faster algorithm, for n < 4, using a variant of Grébner bases
called SAGBI bases.

We shall always assume that f € k[X ]00; the general case reduces to this
one (cf. Algorithm 3.2, Step 1).

The subduction algorithm. Given an element
p(z1,...,2n) = anxa € k(X = k[, ... 2t

where a = (a1,...,an) € Z", 2% = z7* ... 2% and ¢, € k. We will write
in(p) for the initial exponent p, i.e., the lexicographically largest exponent
a such that ¢, # 0. If R is a subalgebra of k[X*!] then {in(p)|p € R} is
clearly a subsemigroup of Z"; this semigroup is usually denoted by in(R).
We are interested in the case where R = k[X*1]§/; in this case in(R) consists

of elements a = (aq,...,a,) € Z" satisfying the following conditions:

(i)ar+---+a, =0,
(6) (ii) @y > -+ > ay, and
(iii) (a1, ...,an) = (—an,...,—ay).

Here and in the sequel, > denotes the lexicographic order on Z".

Proposition 4.1. Suppose B is subset of R = k[X*1]§ chosen so that the
elements in(b) generate in(R) as a semigroup, as b ranges over B. Then
R = k[B].

Our proof below is based on the subduction algorithm of Robbiano-
Sweedler [RS] and Kapur-Madlener [KM] for expressing a given element
«a € R as a polynomial in elements of B.

Proof. We want to write @« € R as a polynomial in elements of B. If
a = 0, we are done. Otherwise write in(a) = ejin(by) + --- + erin(b,),
where b1,...,b. € B and ey, ..., e, are non-negative integers. Then « and
bi' ... b¢" have the same leading exponent; thus for some ¢ € k,

a; = o —cbit .. by
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has a lexicographically smaller leading monomial than «. If a3 = 0, we are
done. If not, we can replace o by 1 and apply the same procedure. That
is, after subtracting a monomial in elements of B from a7, we obtain as € R
with a smaller initial exponent, etc.

In order to complete the proof of the proposition, it is enough to show that
the resulting sequence o = ag, a1, a9,... in R will terminate, i.e., a, = 0
for some r > 0. This is a very special case of [Re, Proposition 6.5]; for the
sake of completeness we give a direct proof below.

By our construction in(ag) > in(aq) > in(ag) > .... Thus it suffices
to prove that for any given a = (ay,...,a,) € in(R) there are only finitely
many a’ = (af,...,a),) € in(R) such that a > da’. Indeed, if a > @’ then 0 <
a} < a;. Now condition (iii) says that a), > —a} > —a1, and condition (ii)
says that —a; < a;, < a; < a} < a;. Thus @] may assume only finitely many
values for every ¢ = 1,...,n. This completes the proof of Proposition 4.1.

O

For computational purposes, we are interested in those cases, where the
set B in Proposition 4.1 can be chosen to be finite, i.e., in(R) is a finitely
generated semigroup. In such cases we shall refer to B as a SAGBI basis
of G; cf. [Re, Introduction]. (Here SAGBI stands for “subalgebra analog to
Grobner bases for ideals”; this term is due to Robbiano and Sweedler [RS].)

Unfortunately, by [Re, Theorem 1.6] k[ X*!]§ has a SAGBI basis only for
n = 2, 3 and 4; see also [Re, Example 7.3]. Moreover, the situation cannot
be remedied by replacing the lexicographic order with a different term order.
On the other hand, for n < 4 the subduction algorithm is much faster than
Algorithm 3.2.

Explicit SAGBI bases. Let ¢; be the ith elementary symmetric polyno-
mial in z;/x;, as in Lemma 2.3. (Here i and j are distinct integers ranging
from 1 to n.) Recall that ¢; = ¢; — n = tr(X)tr(X 1) — n.

Lemma 4.2. The following elements form a SAGBI basis of k[X*']§ .
(a) c1, if n = 2.
(b) c1 and ca, if n = 3.
(c) c1,ca,c3 and p, if n = 4. Here p = s3(X)so(X 1), where

SQ(X) = T1x2 + r1x3 + -+ r3x4

is the second symmetric polynomial in X = (x1,...,x4).

Proof. Let S = in(k[X*1]§) be the subsemigroup of Z" given by (6).
(a) If n = 2 then S is clearly generated by (1, —1) = in(c;) as a semigroup.

(b) For n = 3, S is generated, as a semigroup, by the elements \; =
(1,0,—1) = in(cy) and A2 = (2,—1,—1) = in(c2). Indeed, every element of
w € S is of the form p = (a, —c, —b), where b > ¢ > 0 and a = b+ ¢. Thus
= cA1 + (b— c)A2 lies in the semigroup generated by A; and Ag.
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(¢) We want to show that any pu = (a,b,c,d) € S can be written as a
non-negative integer linear combination of

)\1 = (1,0,0, *1) = in(cl),

)\2 = (2,0, *1, *1) = in(Cg),

)\3 = (3, —1, —1, —1) = in(03) and
A= (1,1,—1,—1) =in(p).

If b < 0 then the desired linear combination is given by
= (c—d A+ (b—c)ra+ (—b)As.
If b > 0 then, after replacing p by p — by, we can assume b = 0 and apply
the above formula. O
Corollary 4.3. (a) If n = 2 then k[X*|§ = k[c1] = k[q1].
(b) If n = 3 then k[ XFY§ = kle1, co] = klq1, q2]-
(c) If n =4, k[ XF§ = kle, ca, c3, 0] = K[q1, g2, g3, D]

Proof. Immediate from Lemma 4.2, Proposition 4.1 and Newton’s formulas;
cf. Lemma 2.3(a). O

Example 4.4. Let n = 3. Corollary 4.3 tells us that ¢; and ¢y form a
SAGBI basis for k[ X il]OG. For instance, applying the subduction algorithm,
we obtain:

B (X, X) =2(cf +¢1 — a).
Similarly,
Fo(X, X?) =263 + 5¢2 — 5c1e + 9¢p — 12¢9 + 18.

These identities will be used in Section 6.

Example 4.5. n = 4. Using the subduction algorithm of Proposition 4.1
to express c3 and ¢4 in terms of the SAGBI basis cy, 2, ¢3, p, we obtain the
following relations in the ring k[X*]§:

c% = QC%p — 160% — 8cico — clp2 + 15c1p — 48¢1 +
3cop — 12¢9 + c3p — 2p* + 18p — 36
cy = 3C%—|—6162 —3cip+ 17cy 4+ co — 3c3 —|—p2— 10p + 21.

Eliminating p? and solving for p gives

6+ T+ 7c% + 30? — 10¢co — Beieo + C%CQ — c% — 6cg — 3c1c3 — 2¢4 — C1C4
B 24c1+c? —3ca—c3 '

p

This shows that p € k(cy, c2, ¢3,¢4) or, equivalently, p € k(q1,...,q4). Thus
by Corollary 4.3 k(X)§ = k(q1,q2,q3,q1). Recall that Theorem 2.1 asserts
only that k(X)§ = k(qi,...,qs); we have thus shown that the last two of
these generators are not needed.
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To obtain explicit expressions for ¢5 and cg as rational functions in ¢y, . . ., ¢4,
we use the subduction algorithm once again:
c; = c:{’ — 60% —dcico + Teip — 38¢y + cop — Teg + b3 — 2p2 + 20p — 42
e = —2ci+cip+6eica —5eip + 2Ter — 2cap + ey — Tez +
2p? — 18p + 34,
then substitute the above formula for p.

Note also that for n = 3, Theorem 2.1 says that k(X)§ = k(q1,q2,q3),
but g3 is not needed by Corollary 4.3(b). We do not know whether or not
any of the generators listed in Theorem 2.1 can be left out for n > 5.

5. MORE SETS OF VARIABLES

The purpose of this section is to generalize Theorem 2.1 to the multi-array
case. That is, instead of considering a single array of independent variables

X = (z1,...,%,), we shall consider m arrays:
Xl == (xlh cee 7'7;171) ’
X2 - ([B217 cee 7'%.271) )
Xim = (Tmi1s- -y Tmn) -

We shall view such n-tuples as diagonal n X n-matrices and operate with
them as we did in Section 2. For example,

XiX; = (xixj1, .- Tinxjn) ,  tr(Xy) =z + -+ xin
the observables (3) can be written as
(7) Try e (X1, oy X)) = to( XL X )t (X LX)
and the functions E,, that arise in the phase transition problem (2) as

(8) Em(Xi,..., Xm) =tr(X1) .. tr(Xpn)tr( X1 X0 +

m

tr(X; 1) . tr(X Dt (X L X o)

Let k(X1,..., Xn)o be the subfield of k(x11, x12, ..., Tmn) Whose elements
are rational functions in x;; homogeneous of degree 0 in each n-tuple of
variables Xj;. In other words, k(Xi,...,X,,)o is the function field of the
variety (P"~1)™. In Section 2 we studied the action of the group G =
S, x T on P* ! this action extends to an action of G x --- x G = G™
on (P"~1)™. We shall be interested in the invariants for the action of the
diagonal subgroup of G" which we shall also denote by G. In concrete
terms, the symmetric group S,, acts on the function field k(X7, ..., X;,)o of
(Pn=1™ by simultaneously permuting the variables z;1,. .., z;, for each i.
The 2-element group T = {1, 7} acts on k(X1,...,Xmm)o by

(9) T:xij—>;foreveryi:1,...,mandj:1,...,n.
ij
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These two actions commute and thus induce an action of G = S,, x T on
E(X1,..., Xm)o-
Theorem 5.1. The field k(X1,...,X,)§ is generated (over k) by the fol-
lowing elements:

Q1,...,1 = tI‘(Xl .. .Xm)tr (Xl .. .Xm)_l

and
qr0,...0 = tr(X])tr(X; "),
qo,r,....0 = tr(Xg)tr(X;"),

Q.0 = tr(X5)tr(X,"),
where T ranges from 1 to (n(n —1))/2.

We will give a proof that generalizes the proof in Section 2, and then
discuss the prospects for a more constructive proof. Note that our earlier
results for m = 1 will be used in the proof.

We begin by disposing of the case n = 2. This case is anomalous in that
G does not act effectively on k(Xi,..., Xm)o; the kernel of this action is
the 2-element subgroup of G = So x T generated by (o,7), where o is the
non-trivial element of So and 7 is the non-trivial element of T. Thus for
n =2

(X1, Xm)§ = k(X1 XD s
here 7 acts via the involution (9). Setting

T4l
tp =4
T42

we see that k(X1, ..., X;n)o = k(t1,...,tn,) and 7 acts on this field by taking

t; to tl for each ¢ = 1,...,m. It is now a simple exercise in Galois theory to

show éhat in this case

1 1 1
E(ti,....tm) =k(t1+ —, ... )t + —,t1 ...t + ).
Since t; + % = tr(X;)tr(X; ) — 2 and
1
t ot + = tr(X1... Xp)tr (X1, X)) 7t =2,
t1...tm

this proves Theorem 5.1 for n = 2.
From now on we will assume that n > 3. Let K be the field generated
over k by the observables listed in the theorem. For h =1,...,n let

Lhi
(10) fu® =11 =27
i#] hj
By Lemma 2.3 the coefficients of each f5(¢) liein K. The field k(X1,..., Xm)o
is clearly the splitting field of the product

f@) = fi(t) - fm(?)
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over K. The Galois group of f contains G and is naturally embedded in the
product G™ of the Galois groups of the f;.

Lemma 5.2. Assume n > 3. An element g = (g1,...,9m) of G™ fizes
Qo1 =tr(X . Xt (X1 X)) T e R(X, ., Xn)S
if and only if g1 = -+ = gm.-

Proof. One direction is obvious: (g1, ..., g1) fixes g1, 1 for every g; € G. For

the purpose of proving the converse, we may replace g by (g7 Lo, 97 Dg
and thus assume g; = id. In other words, we want to prove that if g =
(id,g2,...,9n) fixes q1,.1 then go = ... gy =id in G.

Fori=2,...,m,let g; = (0;,€¢;) € G =8, xT. Here T = {1, 7} is written
multiplicatively, i.e., 7 is written as —1 and each ¢; = 1. In particular,

) (xhi o Lhoy, (3) €n
Lhj Thop(5)

(1792)' -y9m) -
Writing out ¢1,. 1 explicitly in terms of the x;; (cf. (3)), we obtain
TUTH | Tmi

i) 15 425 mj

q1,..1 —nN=

and

T1i ,L209(i Lo (i
Qo == g0 —n) = Y (2D (o),
i#j 1j 202(7) mom(j)

Comparing the terms of the last two equations, we see that for each h =
2,...,m, either (i) ¢, = 1 and op,(i) = ¢ for every i = 1,...,n, i.e., o5 = id,
or (ii) ¢, = —1 and o3,(i) = j for every pair of distinct integers i, j between
1 and n. In case (ii), o(i) assumes every value between 1 and n other than
i, which is impossible for n > 3. We conclude that go = -+ = g, as
claimed. ([

This shows that G is the Galois group of k(X1,- -+, Xin)o over K. Exam-
ining the tower
E(X1,...,Xm)o
|
(X1, Xm)§

|
K

we conclude that k(X1,...,X,,)§ = K, thus completing the proof of the
theorem.

We now remark that Algorithm 3.2 (for m = 1) can be extended to
the multi-array case by means of a suitable universal denominator. The
generalization is not entirely straightforward because of the “new” generator

qr1=tr(X1 . X))t (X X))t
that connects the different X;.
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Let k[X:E' ..., X1y be the k-linear combinations of Laurent mono-
mials z{{' ... 2% such that a;; + -+ + @, = 0 for every i = 1,...,m.
Note that k[Xlil, ..., XE!, is generated, as a k-algebra, by elements of the
form i—g, in particular, the field (X7, ..., X;,)o is the field of fractions of
k(XY ..., XAo. Note also that k[XT!, ..., X! is a G-invariant subring
of k}(Xl, oo ,Xm)o.

Let zpi; be a set of mN algebraically independent variables over k, where
N =n(n—1), i and j are distinct integers between 1 and n, and h ranges
from 1 to m. Let ¢ be another independent variable and let

gb: ]C[Zhij,t] — k[Xitl, ce ,X$1]0
be the surjective k-algebra homomorphism given by
Lhi

(2nij) = Ty and ¢(t) = q1,..1 —n.

We note that S} acts on k[zpi;,t] and where the h-th component permutes
the zp;; and fixes t.

Our universal denominator is a polynomial E € k[z;,t] that has the
property that for oq,...,0, € Sy

o(F) ifor=---=o0,€q,
0 in all other cases.

A1) #((on. .. 0m)E) = {

Here, as before, we view G as a subgroup of Sy for n > 3.
The polynomial F is defined by

E(zhij,t) == D(z145) - -+ - - D(2mij) E1(2nij, t)

where D is the polynomial defined in Section 3 and

Ex(znijot) = [ [(t =D z16220205) - - 2mgm(in))
1#]

the product is taken over all g,..., g, € G such that at least one g; # 1,
and the sum is taken over all pairs of distinct integers ¢ and j between 1 and
n.

As in the m = 1 case one can verify that E satisfies (11). The algorithm
for expressing invariants in terms of observables is now similar to the m =1
case, and we leave the details to the reader.

6. REDUCTION TO ONE SET OF VARIABLES

We now return to the problem of writing a G-invariant multihomogeneous
rational function f(z11,z12,...,ZTmns) of total degree 0 in each group of vari-
ables X1 = (z11,...,Z1n), -+, Xm = (Tm1, ..., Tmn), as a rational function
in the “observables” ¢, ... r,.-

In principle, the algorithm sketched in the preceding section is a solution
to this problem. As one might expect, it is too slow to be of practical
significance. On the other hand, the approach we took in Section 4 cannot
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be extended to m > 2, even for small n, because suitable (finite) SAGBI
bases do not exist; see [Re, Theorem 1.6 and Example 7.3]. This motivated
our search for an algorithm that would reduce computations in the multi-
array case (m > 2) to computations in the single-array case (m = 1). In this

section we discuss such an algorithm and use it to generate explicit formulas
for F5(X,Y) for n = 3 and 4.

Another generating set of observables. We begin by proving another
variant of Theorem 1.3(a).

Theorem 6.1. The field k(X1,...,X,,)S is generated (over k) by the ele-
ments

¢ = ¢r(X1) = @ro,....0 = tr(X7)tr(X] ")

and
¢t = gs 10,0 = tr( X Xo)tr (X0 X5 1),
qgm) = Qs,0..01 = tr(Xme)tr(stX;Ll) .
where r = 1,...,@ and s =0,...,n(n—1) — 1.

Informally speaking, the element ¢; . 1 of Theorem 5.1 ties Xy,...,X,,

together, where as the elements q,(«i) of Theorem 6.1 relate X; to X7 for each
1=2,...,m.

Proof. Let K = k(X1,...,Xm)o = k(zij/zq), and let KV be a vector space
of dimension N = n(n — 1) over K. We shall write elements of KV as (z;;),
where (4,7) € A, i.e., ¢ and j are distinct integers between 1 and n, as in (5).
The natural action of G = S, x T on A induces a permutation action on
KN,

Given an n-tuple A = (ay,...,a,), we will denote the N-tuple of ratios
a“—;'_ by p(A). Then p: K" — K is a G-equivariant map. Finally, for
h=1,...,mlet Z, be the N-tuple of variables (23i;), where (i, j) € A.

We want to show that any f(X1,..., X.) € k(X1,...,Xn)¢ can be writ-
ten as a rational function in the observables listed in the statement of the the-
orem. We begin with several reductions. First of all, we may assume without
loss of generality that f(Xi,...,Xn) € k[Xlil, o, XEUE by writing an in-
variant rational function as a quotient of invariant polynomials. Secondly,
f(X1,...,Xm) can be lifted to a G-invariant polynomial F(Z1,...,Z,) in
Zpij such that

F(Xtse s Xom) = F(p(X1), ., p(Xim))

Thirdly, we may assume without loss of generality that F(Zy,...,Z,) is
a homogeneous polynomial in the arrays of variables Z1,..., Z,, of multi-
degree (di,...,dy). Indeed, any G-invariant F' can be written as a sum of
G-invariant multihomogeneous components, say, F' = F} + - - - + F}., and we

may replace f by fi; = Fi(p(X1), ..., p(Xm))-
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Multilinearizing F', we obtain a G-invariant multilinear polynomial M in
d=dy+---+d, N-variable arrays such that

(12) (X1 Xon) = M(p(X), o, p(X1)s s p(Ki) o (X)) -

~~

di times dm times

Next we observe that by the Vandermonde argument

(13) p(1),p(X1), ..., p(X] 1)

form a K-basis of KV; here I stands for the identity n-tuple (1,...,1). In
particular, for every 2 < ¢ < m, we can write

(14) p(Xi) = Xiop(I) + Xirp(X1) + -+ + An—1p(X] ).

for some A, ..., A\;ny_1 € K. Substituting this into (12) and expanding,
we see that f(Xi,...,X,,) can be written as a sum of terms of the form

(monomial in \;j) M(p(X1),..., p(Xi’i)).

(In fact, iy = --- = ig, = 1 in each term, but we shall not use this in the
sequel.) Since M is G-invariant, each

M(p(X1), ..., p(X1")

is an element of k[X1]§, and thus, by Theorem 2.1, it can be written as a
rational function in the observables ¢, = ¢,(X1).

Thus it remains to show that each );; lies in the field L generated by the
elements listed in the statement of the theorem. Note that by Theorem 2.1
the observables g, lie in L for every r (and not just for r = 1,...N/2).
Taking the dot product of both sides of (14) with p(I), p(X1),..., p(X7 1),
and remembering that

p(XD) - p(X]) = qirj — n and p(X;) - p(X]) = ¢ —n,

we obtain the following linear system:

N
(15) Z(Qi+j —n)\; = qy) —n, wheret =0,1,...,N — 1.
i=1

Since p(I), p(X1),...,p(XN71) form a basis of KV, the matrix

qgo— "N qgq—-—n ... (gN-1—TN
(16) Q= qg—n @Q—-—n ... (gN-1—TN
gN-1—Nn gN—T ... (2N-2—T

of this system is non-singular. Solving the linear system (15), we conclude
that each A; lies in L, as claimed. O
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Multilinear invariants. Our proof of Theorem 6.1 reduces the computa-
tion of a given element f of k(Xi,...,X,,)§ to computing finitely many
elements in k[X1]§. Note that this reduction is constructive. The result-
ing algorithm is cumbersome in general; however, it simplifies considerably

in the case where the polynomial F(Z1,...,Zy,) is itself multilinear, i.e.,
dp=--+-=d, =1and M = F. This is exactly what happens in that case
of greatest interest to us, namely, f = E,, (cf. (2)); here
n
F(Zl,...,Zm) = Z 211« - Bmgmi T 2151 - - - Zmggm -
Jiyeesdmyg=1

Proposition 6.2.

N-—1
Ep(X1,..., Xm) = Z A2iy e Amig, B (X1, X2, .., X))

12400 yim =0

where
Aio q(()lj) -n
Ain | 0! ¢ —n
AiN—1 q](\lf)_l '_ n

and @ is the N x N-matriz (16).

Proof. The first formula is obtained by substituting (14) into

Em(Xh s 7Xm) = F(p(X1)7 s 7p(Xm))

and expanding the right hand side. (Note that the specific form of F' is not
used here; we only use the fact that F' is multilinear.) The second formula
comes from solving the linear system (15). O

Remark 6.3. Proposition 6.2 remains valid if F,, is replaced by any f
in k[XT, ..., XENS such that f(Xi,...,Xm) = F(p(X1),...,p(Xm)) for
some G-invariant multilinear polynomial F(Zy,...,Z,) in m N-variable
arrays Zi, ..., 4m.

Explicit determination of the triplet phase invariant. For m = 2 the
formula of Proposition 6.2 can be rewritten in the matrix form:

do,1 — 7N
(17) E>(X,Y) = (eo,oen-1) Q7 [ T
gN-11—T"N

where e; = ¢;(X) = E»(X, X?). Here, as usual, we write X for X; and Y
for Xo; cf. (2). We have thus reduced the computation of Es(X,Y’) to the
computation of ¢; = E(X, X") for i = 0,..., N — 1. Note that ey = 2nq,
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so there are only N — 1 elements eq,...,eny_1 we need to compute. We can
further reduce this number by using the basis

pXTN2), p(XTNIEH) L p(x N
of K" instead of (13). This has the effect of shifting the subscripts in (17)
as follows:
Proposition 6.4.

d_N/21 — T
EQ(X7Y) = (e—N/27€1—N/2""76]\//2—1) ‘R I-Nj211 =0 ’
dN/2—1,1 — 1

where g = qr0, €; = E2(X, X?), and R is the N x N-matriz

qg-Nn —T g-Ny1—T ... (G-1—T
R— q—-N+1—N g-Ny2—T ... go — 1N
q-1—"n qgo—mn cve gN—2—T

O
Keeping in mind the identities e; = e_1_; and ey = 2nq;, we see that
the formula of Proposition 6.4 reduces the computation of F2(X,Y’) to the
computation of e; = Eo(X, X?) for i = 1,...,(N/2) — 1. We also note that
since q_, = ¢, the matrix R involves ¢, only for » = 1,..., N, as opposed
tor=1,...,2N — 2 for the matrix (16).
The calculation of the e; involves only one set of variables. For n = 3 we
have the following explicit results.

Example 6.5. Let n = 3. Then N =6, ¢y = 9, and Proposition 6.4 gives
q-31—3
Es(X,Y) = (e2,e1,6q1,6q1,e1,e0) R [ 17217 ? ;
G2, — 3
where R is the 6 x 6-matrix
%—3 ¢—3 @4—3 @3—-3 @—-3 -3
-3 @u—3 ¢3—3 @—-3 q—3 6
po|®—3 -3 -3 a«a-3 6 qa-3
@3—3 -3 -3 6 q@—-3 ¢@-3
©2—-3 -3 6 @a-3 @—-3 ¢-3
an—3 6 ¢a-3 -3 3—3 q—3
Recall that e; and ey were computed in Example 4.4 by using SAGBI basis
techniques:

el = 20% + 2¢1 — 2¢o
2c§’ + 56% — 5c1eg 4+ 9¢1 — 12¢9 + 18.

€2
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These can be easily expressed in terms of ¢; and g2 by using Newton’s
identities, which here amount to

c1=q1—3 and c2 = ((q1 —3)% = (2 — 3))/2.
The explicit formula for E5 that results is quite different from, and consid-

erably more elaborate than, the formula given in Example 1.2.

Example 6.6. Let n = 4. Then N = 12, ¢ = 16, and the formula of
Proposition 6.4 reduces to

q-61—4

_ oy —4
Eao(X,Y) = (e5, €4, €3, €2, €1,8q1, 81, €1, €2, €3, €q,¢5) - R~ - | 1721

¢51 — 4
where R is the 12 x 12-matrix
q2—4 qu—4 ... 3—4 @—-4 ¢-4
qi1—4 qo—4 ... @—4 -4 12
R= q10—4 QQ—4 q1—4 12 q1—4
@ —4 12 ... g@—4 qo—4 qu—4
The elements ey, . .., e5 can again be explicitly determined using the SAGBI
basis subduction algorithm; the result is:
e1 = 2(:%4—801 —2¢c9 —4p + 20
ey = 20? + 40% —dcico —cip+ T7cp — Heo +3c3+2p 4 2
e3 = 2} +4c¢ — T3y + 3cip — 412 — 3leicy

+7cic3 — 201102 + 40c1p — 154c¢1 + 8cap — 28c¢o
+2¢3p + 24c5 — 8p? + 72p — 136

es = 26 +4ct — 9o + 13c3p — 131¢3 — 80c3 ey + 9cies
—7c%p2 + 1440%]) — 6510% + 24cicop — 186¢1¢co + Tcicsp
+43c1c3 — 2901])2 4+ 379c1p — 1136¢1 — beacy + 21cop
—120¢9 + 3esp + T8¢s — 34p? + 334p — 688

es = 2654 4c) — 11ciey + 27cip — 243c] — 142¢3cy
+11c ez — 14cip® + 289¢ip — 1317¢3 + 46cicap
—429¢% ey + 14ctesp + 53cics — 66¢ip? + 892¢ip
—2830c3 — 17cicacs + 8leycop — 4T1cico + 19¢ic3p
+135¢1c3 + 2¢1p° — 137¢1p? + 1286¢1p — 3039¢; — 265
—35¢cacs + 27cop — 167¢co + 30§ — 203p2 —c3p
+171eg + 8p> — 150p? + 856p — 1402
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Then we eliminate p, by using the formula in Example 4.5. to express
e1,...,e5 as rational functions in ¢y, c3 and c3. Finally, we use Newton’s
identities to rewrite each e; as a rational function of ¢, g2 and ¢3.

Remark 6.7. The SAGBI basis algorithms were implemented explicitly in
magma [BCP], and are very efficient, though of course they are limited to
n < 4.

7. REGULAR INVARIANTS

Theorems 5.1 and 6.1 tell us that if we allow 71, ..., r,, to range over the
integers then the observables ¢, . (X1,..., X;) generate (X1, ..., Xm)OG
as a field extension of k. H. Hauptman asked us whether the functions E,,
in (8) that arise in the phase determination problem (2) can be written
as polynomials, rather than rational functions in the ¢, . ., . More gener-
ally, we can ask whether the the observables ¢, . ., generate the k-algebra
E[XTEL, ..., XS In this section, we will show that the answer is generally

[43 7

no
Proposition 7.1. Assumen > 4.
(a) The function

f(X) = Bo(X, X) = tr?(X)tr(X %) + tr? (X Htr(X?)

cannot be written as a polynomial in the observables q,, as r ranges over the
integers.

(b) Suppose m > 2. Then function En,(X1,...,Xm) given by (8) cannot
be written as a polynomial in the observables gy, . ., @S T1,...,7m TANGE
over the integers.

(¢) For any m > 1 the k-algebra k[XT', ..., XE1S is not generated by
the observables g;, . as i1, . ..,y range over the integers.

--7Z‘nL7
By Corollary 4.3(a) and (b), f can be written as a polynomial in the
observables if n = 2 or 3; i.e., part (a) is not true for n = 2 or 3. Also, part
(b) is not true for m = 1 (indeed, F is itself an observable).
Curiously, as we saw in the Section 5, the observables ¢;, .. ;,, come close

to generating the k-algebra k[X fﬂ, o, XENS in the following sense: every
a € KX XA can be written in the form
__8
o(E)

for some 8 € kg, .. i, |- Here ¢(E) is a fixed nonzero element of kg, . .1,
independent of a.

Proof. Part (b) is easily deduced from part (a) by specializing X; and X,
to a single array of indeterminates X = (x1,...,x,), and X3, ..., X,, to the
“identity array” I = (1,...,1). Part (c) is a consequence of parts (a) (for
m = 1) and (b) (for m > 2), since f € k[X]§ and E,, € k[XT',..., XE§
for every m > 2.



SYMMETRIC FUNCTIONS 25

Thus we only need to prove (a). Let
p: A" — {1 ...z, =0} — AV

be the map given by

_mm @

18 ) = (52 .
(19) plan, ) = (2L P

To prove part (a), we claim that it suffices to exhibit n-tuples z and y with
nonzero coordinates such that

(i) f(z) # fly) and (i) p(z) ~ p(y),
where two N-tuples u and v are equivalent, written u ~ v, if one is a
permutation of the other.

Indeed, assume that (i) and (ii) are true. Since the observables ¢, are
symmetric functions in {x;/z;}, where ¢, = 1,...,n, i # j, the fact that
p(x) ~ p(y) implies that ¢.(x) = ¢.(y) for every integer r. Thus ¢(z) = q(y)
for every q € k[q1,qo,...]; given that f(z) # f(y), we immediately deduce
that f & k[q1,qo,...] as desired. Note that it is sufficient if the coordinates
of x and y lie in the algebraic closure of the field k.

First consider the case n > 4. Let z be a primitive n-th root of unity.
(Recall that we are assuming that char (k) = 0, so that z exists in the
algebraic closure of k.) We claim that the points

r = (1,1,23, 23,24, ... 2"
Yy = (2,2722,22,24,"' 1Zn_1)
satisfy conditions (i) and (ii). Here z is obtained from the point (1, z, 22, -- - , 2"~ 1)
by replacing z by 1, and 22 by 23, and y is obtained from (1, z,2%,--- , 2"71)
by a similar alteration of two coordinates. Note that
(19) tr(z’) +tr(y’) =21+ 2 4+ 2% + -+ 207D =0

for any i # 0 (mod n). In particular, tr(z?) = —tr(y*) for i = £1,42 and
consequently, f(z) = —f(y). Thus, in order to check (i), we only need to
verify that f(x) # 0. This is easily done; substituting

tr(z’) =1 — 2" — 2% 4+ 2% = (1 — 2°)(1 — 2%)
into f(x) = tr?(z)tr(z=2) + tr?(x~1)tr(2?), we see that
F(@) = 2751 — 2)2(1 - 22 (1 — 2% £ 0
for any n > 4.
Now we have to show that p(x) ~ p(y). To do this let G,(t) denote the
formal generating function
Gu(t) =242 +t* + - "L € Z}t]/(t" — 1)

in which the coefficient of ¢* is the number of times that z° appears as a
coordinate in z. Then G, (¢)G.(t~1) € Z[t]/(#" — 1) is the formal generating
function of p(z). Thus (ii) is equivalent to

(20) G ()G (™) = G, ()G, (t™Y) in Z[t]/(t" - 1).
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Using the factorization t" —1 = (t— 1)(75”—1 +---41), we get an isomorphism
Z[t])/(t" — 1) ~ Z & R, where R := Z[t]/(t" ' + - + 1).

Here ¢ maps to 1 in the first summand. We see that in order to prove (20)
it suffices to check that the two sides have the same images in Z and in R.
The image in Z is obtained by evaluating at 1, and G5(1) = Gy(1) = n, so
the desired identity is immediate in Z. If g, and g, denote the images of G
and Gy in R, then a calculation similar to (19) show that g,(t) = —g.(t).

It follows immediately that g,(¢)g.(t™!) = g,(t)gy(t™1) as desired. This
finishes the proof for n > 4.

For n = 4 we have to consider a more carefully crafted example. Let z be
a primitive 13-th root of unity, and set

(21) z=(1,22%29), y=(1,z2z2%2").

An easy calculation, which we will leave to the reader, shows that f(z) =
—f(y) # 0, and a generating function argument shows that p(z) ~ p(y).
(This choice of = and y is based on the fact that {0,1,4,6} and {0,1,4,11}
are inequivalent planar difference sets for the cyclic group Z/13Z; cf. [Ry,
Chapter 9].)

This completes the proof of Proposition 7.1. U

8. RATIONALITY

In this section we investigate the structure of the field k(X1 ..., X,,)§,

without specific reference to the observables. The main result, Proposi-
tion 8.1 below, was communicated to us by M. Lorenz.

Recall that a field extension K/k is called rational (or equivalently, K is
said to be rational over k) if K = k(t1,...,t,) for some elements ¢i,...,t, €
K, algebraically independent over k. The extension K/k is called stably
rational if there exists a field L, containing K, which is rational over both K
and k. In other words, for some finite collection of indeterminates s1,..., s,
the field L = K(s1,..., S,) is rational over k.

Proposition 8.1. (a) For m = 1, k(X)§ is rational over k.
(b) For anym > 1, k(X1,..., Xp)§ is stably rational over k.

Proof. (a) First assume n = 2. Then k(X)¢ C k(X)o = k(z1/z2), and
the desired conclusion follows from Liiroth’s theorem. For n > 3, part
(a) is a special case of a theorem of N. Lemire; see [L, Theorem 7.7]. To
see how Lemire’s theorem applies, note that the elements x;/z; (viewed
additively, with the natural S,-action) form the root system A,_;. The
group G = S, x T is the automorphism group of this root system, and
kE(X)o = k(M), where M is the lattice (i.e., the multiplicative subgroup of
k(X)g) generated by {z;/x;|i,j =1,...,n}.

(b) We argue by induction on m. The base case, m = 1, is part (a). For
the induction step, assume m > 2. Let K,, = k(X1,...,Xn)o and L =
Kpy—1(x1,...,2zy), where X, = (z1,...,2,). By the induction assumption,
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Kg_l is stably rational over k; thus it is enough to show that K,% is stably
rational over Kﬁ_l. We will do this by proving that L is rational over
both K§ and K& ;.

Note that since L = K,(x1) = Kyp—1(z1,...,2,) and the G-action on
K,,_1 is faithful, the desired conclusion would follow from the no-name
lemma, if G-acted linearly (or, more precisely, semi-linearly) on the variables
T1,...,Zn; see e.g., [EM, Proposition 1.1] or [Sh, Appendix 3]. However, the
no-name lemma cannot be used directly in this setting because our G-action
is not semi-linear (7 acts by inversion!).

Fortunately, our action can be easily linearized, following an argument of
Hajja and Kang [HK, Lemma 2.3(i)]. Let y; = ;ii Then S,, permutes

L= Km(yl) = Kmfl(yla s 7yn)'

Now the no-name lemma tells us that L& is rational over both K& and

K& |, as claimed. O

Y1, ---,Yn and T sends each y; to —y;. Since x; = we have

Remark 8.2. Let H be the subgroup of index 2 in G = 5,, X T consisting
of pairs of the form (o, 7%8"?). Hajja and Kang [HK, Theorem 3.2] have
shown that k(Xi, ..., X,,){ is rational over k.
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