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Abstract. We study actions of linear algebraic groups on central sim-
ple algebras using algebro-geometric techniques. Suppose an algebraic
group G acts on a central simple algebra A of degree n. We are inter-
ested in questions of the following type: (a) Do the G-fixed elements
form a central simple subalgebra of A of degree n? (b) Does A have a
G-invariant maximal subfield? (c) Does A have a splitting field with a
G-action, extending the G-action on the center of A?

Somewhat surprisingly, we find that under mild assumptions on A
and the actions, one can answer these questions by using techniques from
birational invariant theory (i.e., the study of group actions on algebraic
varieties, up to equivariant birational isomorphisms). In fact, group
actions on central simple algebras turn out to be related to some of the
central problems in birational invariant theory, such as the existence of
sections, stabilizers in general position, affine models, etc. In this paper
we explain these connections and explore them to give partial answers
to questions (a)—(c).
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1. Introduction

In this paper we study actions of linear algebraic groups G on central
simple algebras A in characteristic zero. As usual, we will denote the center
of A by Z(A) and the subalgebra of G-fixed elements of A by

AG = {a ∈ A | g(a) = a ∀g ∈ G} .

We will be interested in questions such as the following:

(1.1) (a) Is AG a central simple algebra of the same degree as A?
(b) Does A have a G-invariant maximal subfield?
(c) Can the G-action on Z(A) be extended to a splitting

field L, and if so, what is the minimal possible value of
trdegZ(A) L?

Actions of finite groups on central simple algebras have been extensively
studied in the 1970s and 80s in the context of group actions on noncom-
mutative rings; for an overview see [M]. More recently, torus actions were
considered in [RV1] and [RV2], and actions of solvable groups in [V3], all by
purely algebraic methods (cf. also [V1, V2]). Inner actions of compact groups
were studied in [Sa]. The purpose of this paper is to introduce a geometric
approach to the subject by relating it to “birational invariant theory”, i.e.,
to the study of group actions on algebraic varieties, up to birational isomor-
phism. In particular, we will see that the questions posed in (1.1) are related
to some of the central problems in birational invariant theory, such as ex-
istence of affine models, quotients, stabilizers in general positions, sections,
etc. (For an overview of birational invariant theory, see [PV, Chapters 1, 2,
7] and [P, Part 1].) To make the algebro-geometric techniques applicable, we
always assume that the centers of our simple algebras are finitely generated
field extensions of a fixed algebraically closed base field k of characteristic
zero. All algebraic groups are assumed to be linear and defined over k.

Let G be an algebraic group and A be a finite-dimensional central simple
algebra. Of course, we are primarily interested in studying G-actions on A
which respect the structure of G as an algebraic (and not just an abstract)
group. The following definition is natural in the geometric context.

It is well known that a finitely generated field extension of k can be inter-
preted as the field of rational functions k(X) on some irreducible variety X,
where X is unique up to birational isomorphism. Similarly, a central simple
algebra A of degree n is isomorphic (as a k-algebra) to the algebra kn(X) of
PGLn-equivariant rational functions X 99K Mn(k), where X is an irreducible
variety with a generically free PGLn-action. Here X is unique up to bira-
tional isomorphism of PGLn-varieties. For details, see [RV4, Theorem 7.8
and Section 8].

We will say that a G-action on a central simple algebra A = kn(X) is
geometric, if it is induced by a regular G-action on X, via

(1.2) (gf)(x) = f(g−1x)
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for x ∈ X in general position. One can check that all rational functions
gf : X 99K Mn(k) lie in kn(X) (i.e., are PGLn-equivariant) if and only if the
actions of G and PGLn on X commute. So a regular G-action on X induces
a G-action on A = kn(X) precisely if X is a G×PGLn-variety. To sum up:

1.3. Definition. An action of an algebraic group G on a central simple
algebra A of degree n is said to be geometric if there is an irreducible G ×
PGLn-variety X such that A is G-equivariantly isomorphic to kn(X). We
will call X the associated variety for this action.

The second part of the definition makes sense since the associated variety
X is unique up to birational isomorphism (as a G × PGLn-variety); see
Corollary 3.2. Note that the PGLn-action on X is necessarily generically
free, since A ' kn(X) is a central simple algebra of degree n; see Lemma 2.8.
Conversely, any G×PGLn-variety X, which is PGLn-generically free, is the
associated variety for the geometric action of G on the central simple algebra
A = kn(X) given by (1.2).

From an algebraic point of view it is natural to consider another class
of actions, introduced in [V3, §2] (and in the special case of torus actions
in [RV2, §5]). We shall call such actions algebraic; for a precise definition,
see Section 5. The relationship between algebraic and geometric actions
is discussed in Sections 5 and 8. In particular, every algebraic action is
geometric; see Theorem 5.3.

We are now ready to address the questions posed in (1.1), in the context
of geometric actions.

1.4. Theorem. Consider a geometric action of an algebraic group G on a
central simple algebra A of degree n, with associated G× PGLn-variety X.

(a) The fixed algebra AG is a central simple algebra of degree n if and
only if for x ∈ X in general position,

StabG×PGLn(x) ⊆ G× {1} .

(b) The fixed algebra AG contains an element with n distinct eigenvalues
if and only if for every x ∈ X in general position there exists a torus
Tx of PGLn such that

StabG×PGLn(x) ⊆ G× Tx .

We now turn to question (b) in (1.1).

1.5. Theorem. Consider a geometric action of an algebraic group G on a
central simple algebra A of degree n, with associated G× PGLn-variety X.

(a) A has a G-invariant maximal étale subalgebra if and only if there
exists a G×PGLn-equivariant rational map X 99K PGLn/N , where
N is the normalizer of a maximal torus in PGLn and G acts trivially
on the homogeneous space PGLn/N .
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(b) If A has a G-invariant maximal étale subalgebra, then for every x ∈
X in general position there exists a maximal torus Tx of PGLn such
that

StabG×PGLn(x) ⊆ G×N(Tx) .

Here N(Tx) denotes the normalizer of Tx in PGLn.
(c) If the orbit Gx has codimension < n2−n in X for x ∈ X in general

position, then A has no G-invariant maximal étale subalgebras.

Here by an étale subalgebra of A we mean a subalgebra of A which is an
étale algebra over Z(A); cf. 2.9. If A is a division algebra, the maximal étale
subalgebras are just the maximal subfields.

The converse to Theorem 1.5(b) is false in general; see Proposition 15.3.
Note that the points of the homogeneous space PGLn/N parameterize the
maximal tori in PGLn (see the beginning of §9). The converse to part (b)
is thus true if and only if the tori Tx can be chosen so that x 99K Tx is a
rational map. We also remark that Theorem 1.4(b) gives a necessary and
sufficient condition for A to have a G-invariant maximal étale algebra of the
form Z(A)[a], where a ∈ AG; see Corollary 6.3.

Our final result addresses question (c) in (1.1). We begin with the follow-
ing definition.

1.6. Definition. Suppose a group G acts on a central simple algebra A of
degree n. We will say that A is G-split, if A is G-equivariantly isomorphic
to Mn(Z(A)) = Mn(k)⊗k Z(A), where G acts via the second factor. We will
say that a G-equivariant field extension L/ Z(A) is a G-splitting field for A
if A⊗Z(A) L is G-split.

Note that if G acts trivially on A, then a G-splitting field is just a splitting
field for A in the usual sense. Note also that a G-action on a split central
simple algebra (i.e., a matrix algebra over a field) need not be G-split (cf.
Example 6.2).

1.7. Theorem. Every geometric action of an algebraic group G on a central
simple algebra A of degree n has a G-splitting field of the form L = k(X0),
where X0 is a G-variety and trdegZ(A)(L) = n2 − 1. Moreover, if G acts
algebraically on A, then X0 can, in addition, be chosen to be affine.

In general, the value of trdegZ(A) L given in Theorem 1.7 is the smallest
possible; see Proposition 13.1(b). If G is connected, we give a different
construction of G-splitting fields in Section 11.

At the end of the paper we will present four examples illustrating our main
results, Theorems 1.4, 1.5, and 1.7, and two appendices. Appendix A deals
with inner actions on division algebras which need not be geometric, while
Appendix B treats regular actions of algebraic groups (see Definition 5.1)
on prime affine PI-algebras. Using Theorem 1.7, we show that such actions
are “induced” by regular actions on commutative domains. Further results
on geometric actions will appear in the paper [RV5].



GROUP ACTIONS 5

2. Preliminaries

2.1. Conventions. We work over a fixed algebraically closed base field k
of characteristic zero. All algebras are k-algebras, and division algebras
and central simple algebras are assumed to be finite-dimensional over their
centers, which in turn are assumed to be finitely generated field extensions
of k. All actions on algebras are by k-algebra automorphisms. Algebraic
groups are always assumed to be linear algebraic groups over k, and G will
always denote an algebraic group. Regular actions are meant to be regular
over k; similarly for algebraic actions (see Definition 5.2). If K is a field, we
shall denote the algebra of n× n matrices over K by Mn(K). If K = k, we
will write Mn in place of Mn(k). We will sometimes view Mn as a k-algebra
and sometimes as an algebraic variety, isomorphic to the affine space An2

.

2.2. G-varieties. By a G-variety X we mean an algebraic variety with a
regular action of G. By a morphism X −→ Y of G-varieties, we mean a G-
equivariant morphism. The notions of isomorphism, rational map, birational
isomorphism, etc. of G-varieties are defined in a similar manner. As usual,
given a G-action on X, we denote the orbit of x ∈ X by Gx and the stabilizer
subgroup of x by StabG(x) ⊆ G. Throughout this paper we use [PV] as a
reference for standard notions from invariant theory, such as rational and
categorical quotients, stabilizers in general position, sections, etc.

2.3. Definition. We shall say that a G-action on X is
(a) faithful if every 1 6= g ∈ G acts nontrivially on X,
(b) generically free if StabG(x) = {1} for x ∈ X in general position, and
(c) stable if the orbit Gx is closed in X for x ∈ X in general position.

2.4. Lemma. Suppose the group G is either (a) finite or (b) diagonalizable.
Then every faithful irreducible G-variety X is generically free.

Proof. (a) Since the G-action is faithful, Xg = {x ∈ X | gx = x} 6= X for
every 1 6= g ∈ G. Since each Xg is a closed subvariety of X, every point of
the Zariski dense open subset X − ∪1 6=g∈G Xg has a trivial stabilizer in G.

Part (b) is an immediate corollary of a theorem of Richardson [Ri, The-
orem 9.3.1]; see also [PV, Theorem 7.1]. ¤

The following example shows that, contrary to the assertion in [PV,
Proposition 7.2], Lemma 2.4 fails if we only assume that the connected
component of G is a torus. We shall return to this example in §14.

2.5. Example. Consider the natural linear action of the orthogonal group
G = O2 on A2. This action is faithful but not generically free: StabG(v)
has order 2 for v ∈ k2 in general position. Indeed, for every non-isotropic
vector v in k2, there is a unique non-trivial element of O2, leaving v invariant;
this element is the orthogonal reflection in v. Note also O2 is a semidirect
product of a one-dimensional torus with Z/2Z.
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2.6. Lemma (Popov). Let G be a reductive group, X be an affine G-variety
and V be a G-representation. Suppose the G-orbit of x ∈ X is closed in X
and Stab(x) ⊆ Stab(v) for some v ∈ V . Then there exists a G-invariant
morphism f : X −→ V such that f(x) = v.

Proof. In the case where Stab(x) = {1}, this lemma is stated and proved in
[P, Theorem 1.7.12]. The same argument goes through in our slightly more
general setting. ¤

2.7. Algebras of rational maps. If X is a PGLn-variety, we will denote
by RMapsPGLn

(X, Mn) the k-algebra of PGLn-equivariant rational maps
f : X 99K Mn, with addition and multiplication induced from Mn.

2.8. Lemma. Let Y be an irreducible PGLn-variety. Then the following are
equivalent:

(a) The PGLn-action on Y is generically free.
(b) A = RMapsPGLn

(Y, Mn) is a central simple algebra of degree n.

If (a) and (b) hold then the center of A is RMapsPGLn
(Y, k) = k(Y )PGLn.

Here elements of k are identified with scalar matrices in Mn.

Proof. (b) ⇒ (a): Note that the center of A contains k(Y )PGLn . Choose
f1, . . . , fn2 ∈ A which are linearly independent over k(Y )PGLn . By [Re,
Lemma 7.4], f1(y), . . . , fn2(y) are k-linearly independent in Mn for y ∈ Y in
general position. Now consider the PGLn-equivariant rational map

f = (f1, . . . , fn2) : Y 99K (Mn)n2
.

For y ∈ Y in general position, Stab(f(y)) = {1}, so that also Stab(y) = {1}.
Hence Y is PGLn-generically free.

The implication (a) ⇒ (b) and the last assertion of the lemma are proved
in [Re, Lemma 8.5] (see also [Re, Definition 7.3 and Lemma 9.1]). ¤

If the PGLn-action on X is generically free, we will denote the central
simple algebra RMapsPGLn

(X,Mn) by kn(X).

2.9. Maximal étale subalgebras. Let A be a central simple algebra of de-
gree n. By an étale subalgebra of A we mean a subalgebra of A which is an
étale algebra over Z(A), i.e., a finite direct sum of (separable) field exten-
sions of Z(A). Note that since we are working in characteristic zero, the term
“étale” could be replaced by “commutative semisimple”. We are interested
in maximal étale subalgebras, i.e., étale subalgebras E of A satisfying the
following equivalent conditions:

(a) dimZ(A) E = deg(A),
(b) E is maximal among commutative subalgebras of A;

cf. [Ro2, Exercise 7.1.1]. Using the double centralizer theorem, one easily
verifies that every étale subalgebra of A is contained in a maximal étale sub-
algebra, see, e.g., [J, Theorem 4.10 and Exercise 4.6.12] and [Ro2, Exercise
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7.1.2]. Of course, if A is a division algebra, then maximal étale subalgebras
are just maximal subfields.

We will repeatedly use the following characterization of maximal étale
subalgebras, which follows easily from [B, §V.7.2, Proposition 3].

2.10. Lemma. Let A be a central simple algebra of degree n with center K.
Let a ∈ A. Then K[a] is a maximal étale subalgebra of A if and only if the
eigenvalues of a are distinct. ¤

3. The uniqueness of the associated variety

Recall that given a generically free PGLn-variety X, we write A = kn(X)
for the algebra of PGLn-equivariant functions a : X 99K Mn. A PGLn-
equivariant dominant rational map f : X ′ 99K X induces an embedding
f∗ : A ↪→ A′ of central simple algebras, where A′ = kn(X ′) and f(a) =
a ◦ f : X ′ 99K Mn.

We now deduce a simple consequence of the functoriality of the maps
X 7→ kn(X) and f 7→ f∗; see [RV4, Theorem 1.2]. Recall that if X has a G-
action, which commutes with the PGLn-action, then (1.2) defines a G-action
on A = kn(X), which we call geometric.

3.1. Lemma. Let X and X ′ be G × PGLn-varieties, which are PGLn-
generically free.

(a) If f : X ′ 99K X is a dominant rational map of G × PGLn-varieties
then the induced embedding f∗ : kn(X) ↪→ kn(X ′) of central simple
algebras is G-equivariant.

(b) Every G-equivariant embedding j : kn(X) ↪→ kn(X ′) induces a dom-
inant rational G× PGLn-equivariant map j∗ : X ′ 99K X.

Proof. (a) By [RV4, Theorem 1.2], since the diagram

X ′ f //___

g

²²

X

g

²²
X ′ f //___ X

commutes for every g ∈ G, so does the induced diagram

kn(X)
f∗ //

g−1

²²

kn(X ′)

g−1

²²
kn(X)

f∗ // kn(X ′).
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(b) Conversely, since the diagram

kn(X)
j //

g−1

²²

kn(X ′)

g−1

²²
kn(X)

j // kn(X ′)

commutes, so does the induced diagram

X ′ j∗ //___

g

²²

X

g

²²
X ′ j∗ //___ X

¤
3.2. Corollary. Given a geometric action of an algebraic group G on a
central simple algebra A, the G× PGLn-variety associated to this action is
unique up to birational isomorphism.

Proof. Suppose two G×PGLn-varieties X and X ′ are both associated varie-
ties for this action, i.e., kn(X) and kn(X ′) are both G-equivariantly isomor-
phic to A. In other words, there are mutually inverse G-equivariant alge-
bra isomorphism i : kn(X) '−→ kn(X ′) and j : kn(X ′) '−→ kn(X). Applying
Lemma 3.1, i and j induce mutually inverse dominant G×PGLn-equivariant
rational map i∗ : X ′ '99K X and j∗ : X

'99K X ′. We conclude that X and X ′
are birationally isomorphic G× PGLn-varieties. ¤
3.3. Example. Let G be a subgroup of PGLn, and consider the conjugation
action of G on A = Mn(k). We claim that the associated G×PGLn-variety
for this action is X = PGLn, with G acting by translations on the right
and PGLn acting by translations on the left. More precisely, for (g, h) ∈
G× PGLn and x ∈ X, (g, h) · x = hxg−1. Consequently for f ∈ kn(X),

(g · f)(x) = f
(
(g, 1)−1 · x)

= f(xg) ,

see (1.2). Note that since X is a single PGLn-orbit, every PGLn-equivariant
rational map f : PGLn 99K Mn is necessarily regular. It is now easy to check
that the k-algebra isomorphism

φ : kn(X) = RMapsPGLn
(PGLn, Mn) '−→ A = Mn

given by φ(f) = f(1) is G-equivariant.

3.4. Example. Let m ≥ 2, and consider the PGLn-variety X = (Mn)m,
where PGLn acts by simultaneous conjugation, i.e., via

g · (a1, . . . , am) = (ga1g
−1, . . . , gamg−1) .

Since m ≥ 2, this action is generically free. The associated division algebra
kn(X) is called the universal division algebra of m generic n × n-matrices
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and is denoted by UD(m,n). Identify the function field of X with k(x(h)
ij ),

where for each h = 1, . . . ,m, x
(h)
ij are the n2 coordinate functions on copy

number h of Mn, and identify the algebra of all rational maps X 99K Mn

with Mn

(
k(x(h)

ij )
)
. Now we can think of UD(m, n) as the division subalgebra

of Mn

(
k(x(h)

ij )
)

generated by the m generic n × n matrices X(h) = (x(h)
ij ),

h = 1, . . . , m. Here X(h) corresponds to projection (Mn)m −→ Mn given
by (a1, . . . , am) 7→ ah. For details of this construction, see [Pr2, Section 2]
or [lB, Theorem 5].

Now observe that the GLm-action on X = (Mn)m given by

(3.5) g · (a1, . . . , am) = (
m∑

j=1

g1jaj , . . . ,
m∑

j=1

gmjaj)

commutes with the above PGLn-action. Here g = (gij) ∈ GLm, with gij ∈ k.
Using formula (1.2), we see that this gives rise to a GLm-action on UD(m,n)
such that for g ∈ GLm,

(3.6) g ·X(h) =
m∑

j=1

g′hjX
(j) ,

where g−1 = (g′ij). In other words, this GLm-action on UD(m,n) is geo-
metric, with associated G × PGLn-variety X = (Mn)m. We will return to
this important example later in this paper (in Example 5.5 and Sections 13
and 14), as well as in [RV5].

3.7. Remark. The k-subalgebra of UD(m,n) generated by X(1), . . . , X(m)

is called the generic matrix ring generated by m generic n× n matrices; we
denote it by Gm,n. Note that the action (3.6) of GLm on UD(m,n) restricts
to an action on Gm,n. Consequently, the GLm-action on Gm,n is induced by
the GLm-action on (Mn)m in the sense of formula (1.2).

4. Brauer-Severi varieties

Let A/K be a central simple algebra of degree n. Throughout much of
this paper, we associate to A a PGLn-variety X/k such that A is the algebra
of PGLn-equivariant rational maps X 99K Mn(k). Another variety that can
be naturally associated to A is the Brauer-Severi variety BS(A), defined over
K. Any algebra automorphism g : A −→ A, defined over the base field k,
induces k-automorphisms of K and BS(A) such that the diagram

BS(A)
g∗ //

²²

BS(A)

²²
Spec(K)

(g|K)∗
// Spec(K) ,

commutes; conversely, g can be uniquely recovered from this diagram. If
a group G acts on A, it is natural to ask if BS(A) can be G-equivariantly
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represented by an algebraic variety over k. In this short section we will
address this question, following a suggestion of the referee. Our main result,
Proposition 4.1 below, will not be used in the sequel.

4.1. Proposition. Consider a geometric action φ of an algebraic group G
on a central simple algebra A/K of degree n. Then there exists a morphism
σ : S −→ Y of irreducible G-varieties (of finite type over k) such that

(a) S is a Brauer-Severi variety over Y ;
(b) k(Y ) = K and σ−1(η) is the Brauer-Severi variety of A, where η is

the generic point of Y ;
(c) the G-actions on S and Y induce the action φ on A.

Proof. Let X be the G×PGLn-variety associated to φ and H be the maximal
parabolic subgroup of PGLn consisting of matrices of the form



∗ 0 . . . 0
∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗


 .

Consider the natural dominant rational map σ : X/H 99K X/PGLn given
by the inclusion k(X)PGLn ↪→ k(X)H . Recall that the rational quotient
varieties X/H and X/PGL are a priori only defined up to birational iso-
morphism. However, we can choose models for these varieties such that the
induced G-actions are regular; cf. [PV, Proposition 2.6 and Corollary 1.1].
For notational convenience, we will continue to denote these G-varieties by
X/H and X/PGLn. Note also that since the actions of G and PGLn on X
commute, the resulting map σ : X/H 99K X/PGLn is G-equivariant.

By [RV4, Section 9], X/H is a Brauer-Severi variety over a dense open
subset U of X/PGLn, and is isomorphic to BS(A) over the generic point
of X/PGLn. Since σ is G-equivariant, X/H is a Brauer-Severi variety over
g(U), for every g ∈ G. Setting Y to be the union of the g(U) inside X/PGLn,
as g ranges over G, and setting S to be the preimage of this set in X/H, we
obtain a G-equivariant morphism σ : S −→ Y with desired properties. ¤

5. Algebraic actions

5.1. Definition. We shall say that the action of an algebraic group G
on a (not necessarily commutative) k-algebra R is regular1, if every finite-
dimensional k-subspace of R is contained in a G-invariant finite-dimensional
k-subspace V , such that the G-action on V induces a homomorphism G −→
GL(V ) of algebraic groups.

Every regular action of a connected algebraic group on a division algebra
(or even a field) must be trivial (see, e.g., [V2, A.1]), so this notion is too

1Such actions are usually called rational; we prefer the term regular, since the term
“rational action” has a different meaning in the context of birational invariant theory.
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restrictive for our purposes. However, it naturally leads to the following
definition, made in [V3, §2]. (The special case where G is a torus had been
considered earlier in [RV2, §5].)

5.2. Definition. Let G be an algebraic group acting on a k-algebra A by
k-algebra automorphisms. We call the action algebraic2 (over k) if there is
a G-invariant subalgebra R of A and a G-invariant multiplicatively closed
subset S of R consisting of central nonzerodivisors of R such that (1) G acts
regularly on R, and (2) A = RS−1.

Note that a regular action on A is algebraic (use S = {1}). We shall be
primarily interested in the case where A is a central simple algebra; in this
case R is an order in A (and in particular, R is prime). For basic properties
of algebraic actions, see [V3, §2].

The purpose of this section is to investigate the relationship between
algebraic and geometric actions (cf. Definition 1.3).

5.3. Theorem. (a) Algebraic actions are geometric.
(b) Let G be an algebraic group acting geometrically on a central simple

algebra A of degree n. Then the action of G on A is algebraic if and only if
there is an associated G×PGLn-variety X with the following two properties:
X is affine, and the PGLn-action on X is stable (cf. Definition 2.3(c)).

We begin with a result which is a G-equivariant version of [RV4, Theo-
rem 6.4].

5.4. Proposition. Let G be an algebraic group acting regularly on a finitely
generated prime k-algebra R of PI-degree n. Then there is an n-variety Y
with a regular G-action such that R is G-equivariantly isomorphic to kn[Y ].

See [RV4, 3.1] for the definition of kn[Y ], the PI-coordinate ring of Y . The
action of G on kn[Y ] is induced from the action of G on Y as in formula (1.2).

Proof. We may assume that G acts faithfully on R. There is a finite-
dimensional G-stable k-subspace W of R which generates R as a k-algebra.
Set m = dimk(W ), and consider the generic matrix ring Gm,n with its GLm-
action as in Remark 3.7. Denote by V the k-subspace of Gm,n generated by
the m generic n× n matrices. Let ψ0 : V → W be a k-vector space isomor-
phism. Define a regular action of G on V by making ψ0 G-equivariant. The
action of G on V extends to a regular action on Gm,n. By the universal map-
ping property of Gm,n, ψ0 extends to a G-equivariant surjective k-algebra
homomorphism ψ : Gm,n → R. Replacing G by an isomorphic subgroup of
GLm, we may assume that G acts on V as in (3.6). Then the action of G on
Gm,n is induced (as in (1.2)) from the action of G on (Mn)m given by (3.5).
Note that the actions of G and PGLn on (Mn)m commute.

2In [V3], S is not required to be central; it is, however, proved there that S can always
be chosen to be central if A is a central simple algebra.
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Let I be the kernel of ψ, and let Y = Z(I) ⊂ (Mn)m be the irreducible
n-variety associated to I, see [RV4, Corollary 4.3]. Note that Y is G-stable
for the action of G on (Mn)m. By [RV4, Proposition 5.3], I(Y ) = I, so that
R is G-equivariantly isomorphic to kn[Y ] = Gm,n/I(Y ) = Gm,n/I. ¤
Proof of Theorem 5.3. (a) Let G be an algebraic group acting algebraically
on a central simple algebra A of degree n. Let R be a G-stable finitely
generated prime PI-algebra contained in A such that A is the total ring of
fractions of R. By Proposition 5.4, there is an n-variety Y with a regular
action of G such that R is G-equivariantly isomorphic to kn[Y ]. Then A
is G-equivariantly isomorphic to the total ring of fractions of kn[Y ], i.e., to
kn(Y ), see [RV4, Proposition 7.3]. As the proof of Proposition 5.4 showed,
(Mn)m is a G × PGLn-variety (where G acts via some subgroup of GLm

as in (3.5)), and Y is a G-stable subset of (Mn)m. Hence the closure X
of Y in (Mn)m is an affine G × PGLn-variety. It is clear that kn(Y ) and
kn(X) are G-equivariantly isomorphic, and that the PGLn-action on X is
generically free and stable. So G acts geometrically on A, and the associated
G× PGLn-variety X has the two additional properties from part (b).

(b) If the action of G on A is algebraic then an associated G × PGLn-
variety X with desired properties was constructed in the proof of part (a).

Conversely, assume that there is an associated G×PGLn-variety X which
is affine and on which the PGLn-action is stable. We may assume that
A = kn(X). So A is a central simple algebra with center K = k(X)PGLn ;
cf. Lemma 2.8. Since X is affine, and since PGLn-orbits in X in general
position are closed, k[X]PGLn separates PGLn-orbits in general position, so
that Q(k[X]PGLn) = k(X)PGLn = K; see [PV, Lemma 2.1]. (Here Q stands
for the quotient field.) Denote by R the subalgebra of A consisting of the
regular PGLn-equivariant maps X → Mn. It is clearly G-invariant. Note
that G acts regularly on k[X]. Consequently, G acts regularly on Mn(k[X]),
the set of regular maps X → Mn. Hence, G also acts regularly on its
subalgebra R. It remains to show that R is a prime subalgebra of A, and
that its total ring of fractions is equal to A.

Let v ∈ (Mn)2 be a pair of matrices generating Mn as k-algebra, and let
x ∈ X be such that its stabilizer in PGLn is trivial and such that its PGLn-
orbit is closed. Then by Lemma 2.6, there is a PGLn-equivariant regular
map X → (Mn)2 such that f(x) = v. Write f = (f1, f2), where f1 and f2 are
PGLn-equivariant regular maps X −→ Mn, i.e., elements of R. Since f1(x)
and f2(x) generate Mn, the central polynomial gn ([Ro1, p. 26]) does not
vanish on R. Since gn is t2-normal, it vanishes on every proper K-subspace
of A, see [Ro1, 1.1.35]. Consequently RK = A, and R is prime and has PI-
degree n. Clearly, R contains k[X]PGLn . Since R Q(k[X]PGLn) = RK = A,
Q(R) = A. Hence, G acts algebraically on A. ¤
5.5. Example. It follows easily from Definition 5.2 that the action (3.6) of
GLm on UD(m,n) is algebraic. So by Theorem 5.3(b), there is an associated
GLm × PGLn-variety X with the following two properties: X is affine, and
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the PGLn-action on X is stable. Indeed, the natural associated variety
X = (Mn)m has these properties.

6. Proof of Theorem 1.4

We begin with the following simple observation:

6.1. Remark. Consider a geometric action of an algebraic group G on a
central simple algebra A, with associated G×PGLn-variety X. Elements of
A are thus PGLn-equivariant rational maps a : X 99K Mn. Such an element
is G-fixed if and only if it factors through the rational quotient map X 99K
X/G. In other words, AG is isomorphic to RMapsPGLn

(X/G,Mn).

We are now ready to proceed with the proof of Theorem 1.4.
(a) We may assume that A = kn(X). Combining Remark 6.1 with

Lemma 2.8, we see that AG is a central simple algebra of degree n if and
only if Y = X/G is a generically free PGLn-variety. The latter condition is
equivalent to StabG×PGLn(x) ⊆ G× {1} for x ∈ X in general position.

(b) First suppose that there is an a ∈ AG with n distinct eigenvalues.
Adding to a some constant in k, we may assume that the eigenvalues of a are
distinct and nonzero. Hence for x ∈ X in general position, the eigenvalues
of a(x) ∈ Mn are also distinct and nonzero. The stabilizer of a(x) in PGLn

is thus a maximal torus Tx of PGLn. Let (g, p) ∈ StabG×PGLn(x). Then
a(x) = g(a)(x) = a(g−1(x)) = a(p(x)) = p a(x)p−1. Thus p ∈ Tx, so that
StabG×PGLn(x) ⊆ G× Tx.

We will now prove the converse. Assume StabG×PGLn(x) is contained
in G × Tx for some torus Tx of PGLn (depending on x). Denote by Y
the rational quotient PGLn-variety X/G. To produce an a ∈ AG with
distinct eigenvalues, it suffices to construct a PGLn-equivariant rational map
a : Y 99K Mn whose image contains a matrix with distinct eigenvalues. By
our assumption, StabPGLn(y) is contained in a torus Tx ⊂ PGLn for y ∈ Y in
general position. Hence, StabPGLn(y) is diagonalizable (and, in particular,
reductive). By [RV3, Theorem 1.1], after replacing Y by a birationally
equivalent PGLn-variety, we may assume that Y is affine and the PGLn-
action on Y is stable.

We are now ready to construct a map a : Y 99K Mn with the desired
properties. Let y ∈ Y be a point whose orbit is closed and whose stabilizer
S is diagonalizable, and let v ∈ Mn be a matrix with distinct eigenvalues.
Then Stab(v) is a maximal torus in PGLn; after replacing v by a suitable
conjugate, we may assume S ⊆ Stab(v). Now Lemma 2.6 asserts that there
exists a PGLn-equivariant morphism a : Y −→ Mn such that a(y) = v. This
completes the proof of Theorem 1.4. ¤
6.2. Example. Let G be a subgroup of PGLn, acting by conjugation on
A = Mn(k). The associated variety for this action is X = PGLn, with
G× PGLn acting on it by (g, h) · x = hxg−1; see Example 3.3. Since all of
X is a single PGLn-orbit, the stabilizer of any x ∈ X is conjugate to the
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stabilizer of 1PGLn , which is easily seen to be {(g, g) | g ∈ G}. So in this
setting, Theorem 1.4(b) reduces to the following familiar facts:

(a) Mn(k)G = Mn(k) if and only if G = {1}, and
(b) Mn(k)G contains an element with n distinct eigenvalues if and only

if G centralizes a maximal torus in GLn, i.e., if and only if G is
contained in maximal torus of PGLn.

Using Lemma 2.10, we can rephrase Theorem 1.4(b) in a way that makes
its relationship to Question 1.1(b) more transparent.

6.3. Corollary. Consider a geometric action of an algebraic group G on a
central simple algebra A of degree n, with associated G × PGLn-variety X.
The following conditions are equivalent.

(a) A has a maximal étale subalgebra E of the form E = Z(A)[a] for
some a ∈ AG.

(b) AG contains a separable element of degree n over Z(A).
(c) For x ∈ X in general position, StabG×PGLn(x) is contained in G×Tx,

where Tx is a torus in PGLn. ¤
Here by a separable element of A we mean an element whose minimal

polynomial over Z(A) is separable, i.e., has no repeated roots.

6.4. Remark. It is necessary in Corollary 6.3(b) to require that a is sep-
arable over Z(A). Indeed, in Example 6.2 set n = 2, A = M2(k) and
G = {( 1 g

0 1

) | g ∈ k}. Then the fixed algebra AG consists of all matrices of
the form

(
a b
0 a

)
with a, b ∈ k. In particular, AG contains elements of degree

n = 2 over Z(A) = k, but the minimal polynomial of any such element has
repeated roots.

7. The G-action on the center of A

Throughout this section, we consider a geometric action of an algebraic
group G on a central simple algebra A of degree n with associated G×PGLn-
variety X. It is sometimes possible to deduce information about the G-action
on A from properties of the G-action on the center Z(A). In this section, we
find conditions on the G-action on Z(A) which allow us to answer question
(a) in (1.1).

Recall that the field of rational functions on X/PGLn is G-equivariantly
isomorphic to the center Z(A) of A (see Lemma 2.8). Of course, a priori
X/PGLn is only defined up to birational isomorphism. From now on we
will fix a particular model W equipped with a regular G-action and a G-
equivariant rational quotient map for the PGLn-action on X

π : X 99K W .

It will not matter in the sequel which model W of X/PGLn we use. Note
that the G-variety W is just a birational model for the G-action on Z(A).
In many (perhaps, most) cases, W is much easier to construct than X; for
an example of this phenomenon, see Section 15.
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We begin with a simple observation, relating stabilizers in X and W .

7.1. Lemma. Let X be a G×PGLn-variety which is PGLn-generically free.
Denote by π : X 99K X/PGLn the rational quotient map for the PGLn-
action. Then for x ∈ X in general position, the projection G×PGLn −→ G
onto the first factor induces an isomorphism between StabG×PGLn(x) and
StabG(π(x)).

Proof. For x ∈ X in general position, π is defined at x, the fiber over π(x)
is the orbit PGLnx, and StabPGLn(x) is trivial. For such x, the projection p
restricts to a surjective map

StabG×PGLn(x) −→ StabG(π(x))

whose kernel is StabPGLn(x) = {1}, and the lemma follows. ¤
7.2. Proposition. (a) Suppose that for w ∈ W in general position, the

stabilizer StabG(w) does not admit a non-trivial homomorphism to
PGLn. Then AG is a central simple algebra of degree n = deg(A).

(b) Suppose that for w ∈ W in general position, StabG(w) is an abelian
group consisting of semisimple elements and the n-torsion subgroup
of StabG(w)/StabG(w)0 is cyclic. Then there exists an a ∈ AG with
n distinct eigenvalues.

Note that the condition of part (a) is satisfied if the G-action on W is
generically free.

Proof. (a) By Lemma 7.1, StabG×PGLn(x) ⊆ G×{1} for x in general position
in X. The desired conclusion follows from Theorem 1.4(a).

(b) Let H be the projection of StabG×PGLn(x) to PGLn. By Lemma 7.1,
H is an abelian group consisting of semisimple elements, and H/H0 is a
homomorphic image of StabG(w)/StabG(w)0. Using the fundamental the-
orem of finite abelian groups, one checks that surjective homomorphisms
of finite abelian groups preserve the property that the n-torsion subgroup
is cyclic. By [St, Corollary 2.25(a)], H is contained in a maximal torus of
PGLn. (Note that the torsion primes for PGLn are the primes dividing n;
see [St, Corollaries 1.13 and 2.7].) The desired conclusion now follows from
Theorem 1.4(b). ¤

We will now use Proposition 7.2, to study inner actions. Recall that an
automorphism φ of a central simple algebra A is called inner if there exists
an invertible element a ∈ A such that φ(x) = axa−1 for every x ∈ A, and
outer otherwise. By the Skolem-Noether theorem φ is inner if and only
φ(x) = x for every x ∈ Z(A).

7.3. Corollary. Let G be a finite group or a torus acting geometrically on
a central simple algebra A of degree n. The elements of G that act by inner
automorphisms form a normal subgroup of G; denote this subgroup by N .

(a) If N = {1} (i.e., if G acts on A by outer automorphisms), then AG

is a central simple algebra of degree n.
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(b) If N is a cyclic group, then there is an element a ∈ AG with n
distinct eigenvalues.

In the case where the group G is finite, part (a) is proved by algebraic
means and under weaker hypotheses in [M, Theorem 2.7 and Corollary 2.10].
Note also that since every action of a finite group on a central simple algebra
is algebraic (see Definition 5.2), our assumption that the action is geometric
is only relevant if G is a torus. Moreover, if G is a torus then every geometric
action is algebraic; see Corollary 8.4.

Proof. We may assume that the action is faithful. Indeed, if K ⊆ G is the
kernel of this action, we can replace G by G/K and N by N/K.

Now let W be an irreducible G-variety whose function field k(W ) is G-
equivariantly isomorphic to Z(A) (over k); see the beginning of Section 7.
Clearly an element of G acts trivially on W if and only if it acts on A by
an inner automorphism. Now recall that if G is a finite group or a torus
then the stabilizer in general position for the G-action on W is precisely the
kernel N of this action; cf. Lemma 2.4.

The desired conclusions in parts (a) and (b) now follow from parts (a)
and (b) of Proposition 7.2, respectively. ¤

8. Which geometric actions are algebraic?

Theorem 5.3(a) says that every algebraic action is geometric. It is easy
to see that the converse is not true. For example, let Y be a generically
free PGLn-variety (e.g., we can take Y = PGLn where PGLn acts on Y by
translations), and consider the G × PGLn-variety X = (G/P ) × Y , where
G is a non-solvable connected algebraic group, and P is a proper parabolic
subgroup. Here G acts by translations on the first factor, and PGLn acts
on the second factor. Since the PGLn-action on X is generically free, A =
kn(X) is a central simple algebra of degree n. On the other hand, since
G/P is complete, it is easy to see that X is not birationally isomorphic to
an affine G × PGLn-variety; hence by Theorem 5.3(b), this action is not
algebraic.

Nevertheless, we will now show that under fairly mild assumptions, the
converse of Theorem 5.3(a) holds, i.e., every geometric action is, indeed,
algebraic.

8.1. Lemma. Let G be an algebraic group, and let X be an irreducible G×
PGLn-variety which is PGLn-generically free. Assume that X has a stable
affine model as a G×PGLn-variety. Then the induced action of G on kn(X)
is algebraic.

Proof. We may assume without loss of generality that X itself is affine and
stable as a G×PGLn-variety. By Theorem 5.3(b) it suffices to show that X is
stable as a PGLn-variety, i.e., that PGLn-orbits in general position in X are
closed. Let x ∈ X be a point in general position. Then the G×PGLn-orbit
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(G×PGLn)x is closed in X and can be naturally identified with the homo-
geneous space (G×PGLn)/H, where H = StabG×PGLn(x). The PGLn-orbit
(PGLn) · x is then identified with the image Z of PGLn in (G× PGLn)/H.
It thus remains to show that Z is closed in (G×PGLn)/H. Indeed, Z is also
the image of the product PGLnH, which is a closed subgroup of G×PGLn

(because PGLn is normal; see [H, §7.4]). Since PGLnH is a closed subgroup
of G×PGLn containing H, its image Z in (G×PGLn)/H is closed; see [H,
§12.1]. ¤

8.2. Corollary. Let G be an algebraic group, and let X be an irreducible
G × PGLn-variety which is G × PGLn-generically free. Then the induced
action of G on kn(X) is algebraic.

Proof. By [RV3, Theorem 1.2(i)] X has a stable affine birational model
as a G × PGLn-variety. The desired conclusion is now immediate from
Lemma 8.1. ¤

The criterion for a geometric action to be algebraic given by Lemma 8.1
can be further simplified by considering the G-action on the center of A, as
in Section 7.

8.3. Proposition. Consider a geometric action of an algebraic group G on
a central simple algebra A, and let W be a birational model for the G-action
on Z(A). Then the G-action on A is algebraic, provided one of the following
conditions holds:

(a) The G-action on W is generically free.
(b) The normalizer H = NG(Gw) is reductive for w ∈ W in general

position.
(c) G is reductive and the stabilizer Gw is reductive for w ∈ W in general

position.
(d) G is reductive and W has a stable affine model as G-variety.

Proof. Let X be an associated G × PGLn-variety for the G-action on A.
Recall that the PGLn-action on X is generically free and W is the rational
quotient X/PGLn. In view of Lemma 8.1, it suffices to show that X has a
stable affine model as a G× PGLn-variety.

(a) Immediate from Corollary 8.2 and Lemma 7.1.

(b) Choose x ∈ X in general position, and set w = π(x) ∈ W . Let
Sx = StabG×PGLn(x). We claim that NG×PGLn(Sx) is reductive for x ∈ X
in general position. The desired conclusion follows from this claim by [RV3,
Theorem 1.2(ii)].

The proof of the claim is based on two simple observations. First of all,
if H = NG(Gw) is reductive, then so is Sx ' Gw. Indeed, the unipotent
radical of Ru(Gw) is characteristic in Gw, hence, normal in H. Since H is
reductive, this implies Ru(Gw) = {1}, i.e., Gw is reductive, as claimed.
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Secondly, by Lemma 7.1, the normalizer NG×PGLn(Sx) is a priori con-
tained in H × PGLn, i.e.,

NG×PGLn(Sx) = NH×PGLn(Sx) .

Since both H × PGLn and Sx are reductive, the normalizer NH×PGLn(Sx)
is reductive as well; see [LR, Lemma 1.1]. This concludes the proof of the
claim and thus of part (b).

(c) If G and Gw are both reductive then using [LR, Lemma 1.1] once again
we see that NG(Gw) is also reductive. Part (c) now follows from part (b).

(d) After replacing W by a stable affine model, we see that for w ∈ W in
general position, the orbit Gw ' G/Gw is affine, so that Gw is reductive by
Matsushima’s theorem, see [PV, Theorem 4.17]. Now use part (c). ¤
8.4. Corollary. Let G be an algebraic group whose connected component is
a torus. Then every geometric action of G on a central simple algebra is
algebraic.

Proof. In this case, every subgroup of G is reductive, so that part (c) of
Proposition 8.3 applies. ¤

9. Proof of Theorem 1.5

9.1. The generic torus. Let T be a maximal torus in GLn, and let N
be the normalizer of the image of T in PGLn. Since PGLn permutes the
maximal tori in GLn transitively, one can think of PGLn/N as the variety
of maximal tori of GLn (or equivalently, of PGLn). We briefly recall how
one can construct a PGLn-equivariant rational map

π : Mn 99K PGLn/N

which sends a non-singular matrix α ∈ Mn with distinct eigenvalues to the
unique maximal torus in GLn containing α. The map π is sometimes called
the generic torus of GLn; cf. [Vos, 4.1].

Denote by Gr(n, n2) the Grassmannian of n-dimensional subspaces of Mn.
The action of PGLn on Mn induces a regular action of PGLn on Gr(n, n2).
Define a rational, PGLn-equivariant map π1 : Mn 99K Gr(n, n2) by sending
a non-singular matrix α with distinct eigenvalues to Span(1, α, . . . , αn−1).
The unique maximal torus T(α) of GLn containing α is characterized by
Span(T(α)) = π1(α). The image of π1 consists thus of a single PGLn-orbit O.
Since the stabilizer of both T and Span(T ) is N , gN 7→ g Span(T )g−1 defines
an isomorphism π2 : PGLn/N → O. Here T is the maximal torus in GLn

which we chose (and fixed) at the beginning of this section and N is the
normalizer of the image of T in PGLn. Now π = π−1

2 ◦ π1 is a PGLn-
equivariant rational map Mn 99K PGLn/N such that for any α as above,
π(α) = gN if and only if gTg−1 is the unique torus of GLn containing α.

9.2. Proof of Theorem 1.5. (a) Suppose A = kn(X) has a G-invariant
maximal étale subalgebra E. It follows easily from the primitive element
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theorem that there is an a ∈ E so that E = Z(A)[a]. Choose one such
a. By Lemma 2.10, a has distinct eigenvalues. Adding some constant in
k to a, we may assume that the eigenvalues of a are distinct and nonzero.
Then for x ∈ X in general position a(x) is a matrix whose eigenvalues are
distinct and nonzero. We now define a rational map ϕ : X 99K PGLn/N by
ϕ(x) = π(a(x)). This map is PGLn-equivariant by construction. Moreover,
for every g ∈ G, g(a) ∈ E commutes with a. Thus, for x ∈ X in general
position, a(x) and g−1(a)(x) = a(g(x)) lie in the same maximal torus, and
consequently, ϕ(x) = ϕ(g(x)).

Conversely, suppose there exists a G × PGLn-equivariant rational map
X 99K PGLn/N . After removing the indeterminacy locus from X, we may
assume this map is regular. We may also assume that PGLn acts freely on
X. Let X0 be the preimage of the coset N ∈ PGLn/N in X. Note that X0

is G × N -invariant, that X = PGLn · X0, and that the N -action on X0 is
generically free. Moreover, X is birationally isomorphic as PGLn-variety to
PGLn ∗N X0, see [P, Theorem 1.7.5].

Let ∆ ' An be the variety of diagonal n×n-matrices. By [Re, Proposition
7.1] there exists an N -equivariant rational map a : X0 99K ∆ whose image
contains a matrix with distinct eigenvalues. (Note that here we use the fact
that ∆ is a vector space and N acts on it linearly.) This rational map then
naturally extends to a PGLn-equivariant rational map

X ' PGLn ∗N X0 99K PGLn ∗N ∆ ' Mn

induced by (g, x0) 7→ (g, a(x0)). By abuse of notation, we denote this ex-
tended rational map by a as well.

We now view a as an element of A = kn(X). Since the image of a contains
a matrix with distinct eigenvalues, Lemma 2.10 tells us that E = Z(A)[a] is
a maximal étale subalgebra of A. It remains to show that E is G-invariant.
To do this it suffices to prove that g(a) ∈ E for every g ∈ G. Since E =
CA(E), we only need to establish that g(a) commutes with a, i.e., that the
commutator b = [a, g(a)] equals 0. Indeed, for any x ∈ X0,

b(x) = [a(x), a(g−1(x))] = [a(x), a(y)] ,

where y = g−1(x) ∈ X0. By our construction a maps every element of X0 to
a diagonal matrix. In particular, a(x) and a(y) commute, and thus b(x) = 0
for every x ∈ X0. Since b is a PGLn-equivariant rational map X 99K Mn

and since PGLn ·X0 = X, we conclude that b = [a, g(a)] is identically zero
on X, as claimed. This completes the proof of part (a).

(b) The action of G×PGLn on PGLn/N has stabilizer of the form G×N(S)
at every point, where S is a maximal torus of PGLn. Part (b) is now an
immediate consequence of part (a).

(c) Assume that A has a G-invariant maximal étale subalgebra. Let x ∈ X
be a point in general position. We claim that

(9.3) dim(Gx ∩ PGLnx) ≤ n− 1 .
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Indeed, Gx ∩ PGLnx is easily seen to be the image of the morphism from
StabG×PGLn(x) to X given by (g, p) 7→ px. Since StabG×PGLn(x) ⊆ G ×
N(Tx) by part (b), we conclude that

dim(Gx ∩ PGLnx) ≤ dim N(Tx) = n− 1

as claimed.
Consider the rational quotient map π : X 99K X/PGLn. We may assume

without loss of generality that π is defined at x. Now restrict π to the (well-
defined) rational map πG0x : G0x 99K X/PGLn, where G0 is the connected
component of G. For y ∈ G0x in general position, the fiber over πG0x(y) is
G0x ∩ PGLny = G0y ∩ PGLny. By (9.3),

dim(Gx) = dim(G0x) ≤ dim(X/PGLn) + n− 1

= dim(X)− dim(PGLn) + n− 1

= dim(X)− n2 + n .

So dim(X)− dim(Gx) ≥ n2 − n. This proves part (c). ¤

10. Proof of Theorem 1.7

We begin by spelling out what it means for an algebraic group action on
a central simple algebra to be split in terms of the associated variety.

10.1. Lemma. A geometric action of an algebraic group G on a central
simple algebra A of degree n is G-split in the sense of Definition 1.6 if
and only if its associated G × PGLn-variety is birationally isomorphic to
X0 × PGLn, for some G-variety X0.

Here G acts on the first factor and PGLn acts on the second factor by
translations.

Proof. Suppose X = X0×PGLn. Then we have the following G-equivariant
isomorphisms,

RMapsPGLn
(X, Mn) ' RMaps(X0, Mn) ' Mn(k)⊗k k(X0) ,

where the first isomorphism is given by f 7→ f |X0×1PGLn
for every PGLn-

equivariant rational map f : X 99K Mn. In other words, the induced G-
action on A = kn(X) is G-split in the sense of Definition 1.6.

Conversely, suppose a geometric G-action on A is G-split. Denote the
associated G × PGLn-variety by X. Let X0 = X/PGLn be the rational
quotient of X by the PGLn-action. Note that k(X0) = Z(A). Then, as we
saw above, RMapsPGLn

(X0 × PGLn, Mn) is G-equivariantly isomorphic to
Mn(k) ⊗k k(X0), which is G-equivariantly isomorphic to A (because A is
G-split). By Corollary 3.2, we conclude that X is birationally isomorphic to
X0 × PGLn. ¤
10.2. Corollary. Consider a geometric action of an algebraic group G on
a central simple algebra A, with associated G× PGLn-variety X. Then for
any G-variety X0 the following are equivalent:
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(a) L = k(X0) is a G-splitting field for A.
(b) There exists a dominant rational map f : X0 × PGLn 99K X which

is G× PGLn-equivariant.

Here G acts on the first factor of X0×PGLn and PGLn acts on the second
factor by translations, as in Lemma 10.1.

Proof. (a) =⇒ (b). The G-action on A′ = A ⊗Z(A) L ' Mn(k) ⊗k L is
geometric, with associated variety X ′ = X0 × PGLn; see Lemma 10.1. The
embedding j : A ↪→ A′ induces a G × PGLn-equivariant dominant rational
map j∗ : X ′ 99K X; see Lemma 3.1.

(b) =⇒ (a): Let X ′ = X0 × PGLn. By Lemma 3.1, f induces a G-
equivariant embedding f∗ : A ↪→ A′ of central simple algebras, where A′ =
kn(X ′) ' Mn(k) ⊗k k(X0); see Lemma 10.1. In other words, A′ is G-
equivariantly isomorphic to A⊗Z(A) k(X0). ¤

10.3. Proof of Theorem 1.7. Let X be the associated G×PGLn-variety for
the G-action on A. Consider the dominant morphism f : X × PGLn −→ X
given by (x, h) 7→ hx. If we let (g, h) ∈ G × PGLn act on X × PGLn by
(g, h) · (x, h′) = (gx, hh′), as in Lemma 10.1 and Corollary 10.2, then we can
easily check that f is G×PGLn-equivariant. By Corollary 10.2, we conclude
that L = k(X) is a G-splitting field for A. Moreover,

trdegZ(A) L = trdegk(L)− trdegk Z(A)

= dim(X)− dim(X/PGLn) = n2 − 1,

as claimed. Note that if G acts algebraically on A, we may assume that X
is affine by Theorem 5.3(b). ¤

11. More on G-splitting fields

In this section we discuss G-splitting fields in the case where G is a con-
nected group. Our main result is the following:

11.1. Proposition. Consider a geometric action of a connected algebraic
group G on a central simple algebra A of degree n. Then there exists an
affine G-variety X0 such that L = k(X0) is a G-splitting field of A and

(11.2) trdegZ(A) L = dim StabG×PGLn(x) = dim StabG(w) ,

where x and w are points in general position in the associated G × PGLn-
variety X and in the rational quotient W = X/PGLn, respectively. In
particular,

trdegZ(A) L ≤ dim(G) .

Note that for w ∈ W in general position we have

dim StabG(w) = dim(G)− dim(Gw)

= dim(G)− (
dim(W )− dim(W/G)

)
.

(11.3)
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so that the integer dim StabG(w) for w ∈ W in general position, which
appears in the statement of Proposition 11.1 is well defined. Similarly, the
integer dim StabG×PGLn(x) for x ∈ X in general position is also well-defined.
Since trdegZ(A)G Z(A) = dim(W ) − dim(W/G), (11.2) can be restated in
algebraic terms as

(11.2′) trdegZ(A) L = dim(G)− trdegZ(A)G Z(A) .

In general, the value for trdegZ(A) L given in (11.2) and (11.2′) is the
smallest possible, see Remark 11.8. Our proof of Proposition 11.1 will rely
on the following lemma.

11.4. Lemma. Let H be a connected algebraic group and let V be an ir-
reducible H-variety. Then there exists an irreducible variety Y and an
H-equivariant dominant morphism Y × H −→ V such that dim(Y ) =
dim(V/H).

The action of H on Y ×H is induced by the trivial action on Y and by
the translation action on H.

Proof. See [P, (1.2.2)] or [PV, Proposition 2.7], where the term quasi-section
is used to describe Y . ¤

11.5. Proof of Proposition 11.1. By Lemma 11.4 (with H = G × PGLn)
there is a G×PGLn-equivariant dominant morphism f : Y ×(G×PGLn) −→
X, where

(11.6) dim(Y ) = dim
(
X/(G× PGLn)

)
= dim(W/G) .

Note that since G×PGLn acts trivially on Y , we can take Y to be affine. Set-
ting X0 = Y ×G (as a G-variety) and applying Corollary 10.2, we conclude
that L = k(X0) is a G-splitting field for A. By our construction, X0 = Y ×G
is affine. Since the second equality in (11.2) is an immediate consequence
of Lemma 7.1, we only need to check that trdegZ(A) L = dim StabG(w) for
w ∈ W in general position. Indeed,

trdegZ(A) L = trdegk(L)− trdegk Z(A) = dim(X0)− dim(X/PGLn)

= dim(Y ) + dim(G)− dim(X/PGLn)

= dim(G)− (
dim(W )− dim(W/G)

)
= dim StabG(w) ,

where the two last equalities follow from (11.6) and (11.3), respectively. ¤
Specializing Proposition 11.1 to the case of torus actions, we recover a

result which was proved in [V3] for algebraic actions in arbitrary character-
istic.

11.7. Corollary. Suppose a torus T acts geometrically (or equivalently, al-
gebraically; cf. Corollary 8.4) on a central simple algebra A. Let H be the
kernel of the T -action on Z(A). Then there exists a T -variety X0 such that
L = k(X0) is a T -splitting field for A and trdegZ(A) L = dim(H).
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Proof. Let X be the associated G×PGLn-variety and W = X/PGLn, as be-
fore. By Lemma 2.4, applied to the T -action on W , we have H = StabT (w)
for w ∈ W in general position. The corollary now follows from Proposi-
tion 11.1. ¤

11.8. Remark. If the T -action on A is faithful then the value of trdegZ(A) L
given by Corollary 11.7 is the smallest possible. Indeed, since the T -action
on both A and L = k(X0) is algebraic (cf. Corollary 8.4), [V3, Theorem 2(b)]
tells us that trdegZ(A) L ≥ dim(H) for every T -splitting field of the form
L = k(X0), where X0 is a T -variety. ¤

11.9. Remark. Suppose a torus T acts geometrically (or equivalently, al-
gebraically; cf. Corollary 8.4) on a division algebra D. Then [V3, Theorem
2(c)] asserts that D has a T -splitting field L of the form k(X0) such that
[L : Z(D)] < ∞.

We now give an alternative proof of this result based on Corollary 11.7.
Let T0 ⊂ T be the kernel of the T -action on D. After replacing T by
T/T0, we may assume the action is faithful. Let H be the kernel of the
T -action on Z(A), i.e., the subgroup of T acting by inner automorphisms.
By Corollary A.2, H is a finite group. By Corollary 11.7, there exists a
T -splitting field L = k(X0) such that trdegZ(D) L = dim(H) = 0. Since
L is finitely generated over k (and hence, over Z(D)), we conclude that
[L : Z(D)] < ∞. ¤

12. An example: algebraic actions of unipotent groups

In this and the subsequent three sections we will present examples, il-
lustrating Theorems 1.4, 1.5, and 1.7. We begin by applying Theorems 1.4
and 1.5 in the context of unipotent group actions on division algebras.

12.1. Proposition. Let U be a unipotent group acting algebraically on a
finite-dimensional division algebra D. Then DU is a division algebra of the
same degree as D.

Proof. Say D has degree n, and let X be the associated U × PGLn-variety.
By Lemma 7.1, for x ∈ X in general position, StabU×PGLn(x) is a unipotent
group (it is isomorphic to a subgroup of U). Consequently, the projection
Hx of this group to PGLn is unipotent.

On the other hand, by [V3, Proposition 7], D has a U -invariant maximal
subfield. In view of Theorem 1.5(b), this implies that Hx is a subgroup
of the normalizer of a maximal torus in PGLn; in particular, Hx has no
non-trivial unipotent elements. This is only possible if Hx = {1}, i.e., if

StabU×PGLn(x) ⊆ U × {1} .

The desired conclusion now follows from Theorem 1.4(a). ¤

12.2. Remark. The condition that D is a division algebra is essential here.
Suppose G = U is a non-trivial unipotent subgroup of PGLn acting on A =
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Mn(k) by conjugation, as in Example 3.3. Since A is a finite-dimensional
k-vector space, this action is easily seen to be algebraic. On the other
hand, the fixed algebra AU is not a central simple algebra of degree n; cf.
Example 6.2(a) (see also Remark 6.4).

13. An example: the GLm-action on UD(m,n), m ≥ n2

We now return to the GLm-action on the universal division algebra A =
UD(m, n), described in Example 3.4. In this section we will assume that
m ≥ n2; in the next section we will set m = n = 2. The case where
m ≤ n2 − 1 will be considered in [RV5].

13.1. Proposition. Let A = UD(m,n), where m ≥ n2. Then
(a) AGLm = k
(b) trdegZ(A) L ≥ n2−1 for every GLm-splitting field L of A of the form

L = k(X0), where X0 is a GLm-variety.

Part (b) shows that the value of trdegZ(A) L given by Theorem 1.7 is
optimal for this action.

Proof. The variety (Mn)m is an associated GLm×PGLn-variety for the GLm-
action on A; see Example 3.4. The key fact underlying the proof of both
parts is that for m ≥ n2, (Mn)m has a dense GLm-orbit; denote this orbit
by X. Since the actions of GLm and PGLn commute, X is PGLn-stable,
and therefore is also an associated GLm×PGLn-variety for the GLm-action
on A.

(a) By Remark 6.1, AGLm = RMapsPGLn
(X/GLm,Mn). Since X is a sin-

gle GLm-orbit, the rational quotient X/GLm is a point (with trivial PGLn-
action). Clearly, every PGLn-equivariant rational map f : {pt} 99K Mn is
regular and has its image in the center of Mn. In other words,

AGLm = RMapsPGLn
(X/GLm, Mn) = RMaps({pt}, k) = k ,

as claimed.
(b) By Corollary 10.2 there exists a dominant rational map f : X0 ×

PGLn = X ′ 99K X. Choose x′ ∈ X ′, so that f is defined at x′ and set
x = f(x′). Denote by S and S′ the stabilizers in GLm × PGLn of x and
x′, respectively. Note that S′ ⊆ S ⊆ GLm × PGLn. Since GLm acts tran-
sitively on X, the projection of S to PGLn is all of PGLn. On the other
hand, we clearly have S′ ⊆ G × {1}. Consequently, dim(S) − dim(S′) ≥
dim(PGLn) = n2 − 1, and if O′ is a GLm × PGLn-orbit in general position
in X ′, then dim(O′)− dim(X) ≥ n2 − 1. We thus conclude that

trdegZ(A) L = trdegk L− trdegk Z(A)

= dim(X ′/PGLn)− dim(X/PGLn)

= dim(X ′)− dim(X) ≥ dim(O′)− dim(X) ≥ n2 − 1 ,

as claimed. ¤
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13.2. Remark. One can show directly that the GLm-splitting field L for
A = UD(m,n) given by Proposition 11.1 satisfies the inequality of Propo-
sition 13.1(b) (assuming, of course, that m ≥ n2). Indeed, since G has a
dense orbit in W = X/PGLn, for w ∈ W in general position,

dim StabGLm(w) = dim(GLm)− dim(W ) = m2 − dim(X/PGLn) .

Since the associated variety X = (Mn)m has dimension mn2, this yields

trdegZ(A) L = dim StabGLm(w) = m(m− n2) + (n2 − 1) ≥ n2 − 1 ,

as claimed.

14. An example: the GL2-action on UD(2, 2)

In this section we will use Theorem 1.4 to study the natural GLm-action
on the universal division algebra UD(m,n), described in Example 3.4, for
m = n = 2. Note that this case exhibits some special features that do not
recur for other values of m and n ≥ 2; see Proposition 13.1(a) (for m ≥ n2)
and [RV5] (for m ≤ n2 − 1).

14.1. Proposition. The fixed algebra UD(2, 2)GL2 is a non-central subfield
of UD(2, 2) of transcendence degree 1 over k.

Recall from Example 3.4 that the GL2-action on UD(2, 2) is defined as
follows. Denote by X and Y the two generic 2 × 2 matrices generating
UD(2, 2). Then for g ∈ GL2, we have g(X) = αX + βY , and g(Y ) =
γX + δY , where g−1 =

( α β
γ δ

)
. Recall also that the associated variety for

the GL2-action on UD(2, 2) is X = (M2)2. In order to use Theorem 1.4 to
prove Proposition 14.1, we first need to determine the stabilizer in general
position for the GL2 × PGL2-action on (M2)2.

14.2. Lemma. For x ∈ (M2)2 in general position, StabGL2×PGL2(x) is iso-
morphic to Z/2Z.

Proof. By Lemma 7.1, StabGL2×PGL2(x) is isomorphic to StabGL2(y) for the
GL2-action on W = X/PGL2, which is a birational model for the GL2-
action on the center Z of UD(2, 2). In this case there is a particularly
simple birational model, which we now describe.

It is well known that Z is freely generated (as a field extension of k) by the
five elements tr(X), tr(Y ), tr(X2), tr(Y 2) and tr(XY ); see [Pr1, Theorem
2.2]. In other words, the categorical (and, hence, the rational) quotient for
the PGL2-action is A5. The group GL2 acts on A5 linearly. In fact, the
representation of GL2 on A5 = X/PGL2 can be decomposed as V2 ⊕ V3,
where V2 is the natural 2-dimensional representation (we can think of it as
Spank(tr(X), tr(Y ))) and V3 is its symmetric square. (We can think of V3

as Spank(tr(X2), tr(Y 2), tr(XY )).)
The question we are asking now reduces to the following: What is the

stabilizer, in GL2, of a pair (v, q), in general position, where v is a vector in k2

and q is a quadratic form in 2 variables? Indeed, since GL2 acts transitively
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on non-degenerate quadratic forms in two variables, we may assume that
q is a fixed form of rank 2, e.g., q = x2 + y2. The stabilizer of q is thus
the orthogonal group O2, and our question further reduces to the following:
what is the stabilizer in general position for the natural linear action of O2

on k2? The answer is easily seen to be Z/2Z, where the non-trivial element
of StabO2(v) is the orthogonal reflection in v; see Example 2.5. ¤

Proof of Proposition 14.1. Note that the GL2-action on X = (M2)2 is gener-
ically free (it is isomorphic to the direct sum of 4 copies of the natural
2-dimensional representation of GL2). Thus the image of the stabilizer
StabGL2×PGL2(x) under the natural projection to the second factor is Z/2Z.
Since this image is non-trivial, Theorem 1.4(a) tells us that UD(2, 2)GL2

is not a division subalgebra of UD(2, 2) of degree 2. In other words, it
is a subfield of UD(2, 2). On the other hand, Theorem 1.4(b) tells us that
UD(2, 2)GL2 is not contained in the center Z of UD(2, 2). Indeed, every sub-
group of PGL2 of order 2 is contained in a torus. Hence, StabGL2×PGL2(x) is
contained in GL2×Tx, where Tx is a maximal torus of PGL2. It follows from
Theorem 1.4(b) that the subfield UD(2, 2)GL2 is not central in UD(2, 2).

Finally, note that UD(2, 2)GL2 is algebraic over ZGL2 , since the minimal
polynomial of any element of UD(2, 2)GL2 over Z is unique, so must have
coefficients in ZGL2 . It follows from Lemmas 7.1 and 14.2 that the GL2-
action on W = X/PGL2 has a finite stabilizer in general position. Hence the
transcendence degree of ZGL2 = k(X/PGL2)GL2 (over k) is dim(X/PGL2)−
dim(GL2) = 1. ¤

14.3. Remark. This argument also shows that UD(2, 2)SL2 is a division
algebra of degree 2.

14.4. Remark. One can exhibit an explicit non-central GL2-fixed element
of UD(2, 2) as follows. Let

S3(A1, A2, A3) =
∑

σ∈S3

(−1)σAσ(1)Aσ(2)Aσ(3)

be the standard polynomial in three variables; cf., [Ro1, p. 8]. Set a =
[X, Y ] = XY − Y X and b = S3(X,Y, a). Using the fact that [A1, A2] and
S3(A1, A2, A3) are multilinear and alternating, it is easy to see that for
g ∈ GL2, g(a) = a/det(g) and g(b) = b/det2(g). Specializing X to

(
1 0
0 0

)
and Y to

(
1 1
1 0

)
, an elementary computation shows that a and b specialize to(

0 1−1 0

)
and

(−4 0
0 −2

)
, respectively. This shows that det(a) 6= 0 and that b is

non-central. Now, b/det(a) is a non-central GL2-fixed element of UD(2, 2).
Note also that a and b are non-commuting SL2-invariant elements of

UD(2, 2). This gives an explicit proof of Remark 14.3.
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15. An example: a finite group action on a cyclic algebra

In this section we present an example of a finite group action on a cyclic
algebra. This example illustrates Lemma 7.1 and Theorem 1.5 and, in par-
ticular, shows that the converse to Theorem 1.5(b) is false.

Let p be a prime integer, and ζ a primitive p-th root of unity in k. Let
P = k{x, y} be the skew-polynomial ring with generators x and y, subject
to the relation

xy = ζyx .

Let A be the division algebra of fractions of P ; it is a central simple algebra
of degree n = p. Note that A is the symbol algebra (u, v)p whose center is
Z(A) = k(u, v), where u = xp and v = yp are algebraically independent over
k.

For (a, b) ∈ (Z/pZ)2, define an automorphism σ(a,b) of A by

(15.1) σ(a,b)(x) = ζax and σ(a,b)(y) = ζby .

These automorphisms of A form a group K which is isomorphic to (Z/pZ)2.
Next, we define an automorphism τ of A by

(15.2) τ(x) = y and τ(y) = x−1y−1 .

Note that τ is well-defined since

τ(x)τ(y)− ζτ(y)τ(x) = y(yx)−1 − ζx−1 = y(ζ−1xy)−1 − ζx−1 = 0 .

Elementary calculations show that τ has order three, and that τ−1σ(a,b)τ =
σ(b,−a−b). Consequently, the subgroup G of automorphisms of A generated
by K and τ is a semidirect product G = K oH, where K ' (Z/pZ)2 and
H = 〈τ〉 ' Z/3Z.

One easily checks that sending τ to the matrix
(

0 −1
1 −1

)
defines a represen-

tation
φp : H → SL2(Z/pZ) ,

and thus an action of H on (Z/pZ)2.
Let X be the G × PGLn-variety associated to the action of G on the

central simple algebra A of degree n = p. That is, X is an irreducible
G×PGLn-variety which is PGLn-generically free, and A is G-equivariantly
isomorphic to kn(X).

15.3. Proposition. (a) For x ∈ X in general position, there exists a
maximal torus Tx of PGLn such that StabG×PGLn(x) ⊆ G×N(Tx).

(b) A has a G-invariant maximal subfield if and only if the 2-dimensional
representation φp : H → SL2(Z/pZ) is reducible over Z/pZ.

(c) The converse to Theorem 1.5(b) is false.

Before we proceed with the proof, two remarks are in order. First of
all, every finite group action on a central simple algebra is automatically
geometric (and algebraic).
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Secondly, an explicit model for X is not immediately transparent (a de-
scription of X as a PGLn-variety can be found in [RY, Lemma 5.2]). On
the other hand, the G-variety W associated to the G-action on the center
of A (see the beginning of Section 7) is easy to describe: We can take W
to be the two-dimensional torus W = (k∗)2 = Spec(k[u, v, u−1, v−1]), where
as before, u = xp and v = yp. It follows from (15.1) and (15.2) that the
K-action on W is trivial, and that the action of τ is induced from τ(u) = v,
τ(v) = (x−1y−1)p = ε · u−1v−1, where ε = 1 if p > 2 and ε = −1 if p = 2.

We now proceed with the proof of Proposition 15.3.

Proof. (a) Since G is a finite group, StabG(w), for w ∈ W in general position,
is precisely the kernel of the G-action on W . We claim that the kernel
is equal to K. That it contains K is immediate from (15.1), since every
element of K preserves both u = xp and v = yp. On the other hand, the
H-action on W is faithful, because H is a simple group acting nontrivially
on Z(A) = k(W ). We have thus shown that StabG(w) = K for w ∈ W in
general position.

By Lemma 7.1, StabG×PGLn(x) ' K ' (Z/pZ)2 for x in general position
in X. In particular, the projection of this group to PGLn is a finite abelian
subgroup of PGLn. By [SS, II.5.17], every finite abelian subgroup of PGLn

lies in the normalizer of a maximal torus Tx. Thus

StabG×PGLn(x) ⊆ G×N(Tx) ,

as claimed.
(b) First we will describe the K-invariant maximal subfields of A, then

determine which ones of them are also invariant under H. Note that since
A is a division algebra of prime degree p, every nontrivial field extension L
of the center Z(A) is a maximal subfield of A.

The group K ' (Z/pZ)2 acts trivially on Z(A); its action on A decom-
poses as a direct sum of p2 one-dimensional character spaces SpanZ(A)(xiyj),
where 0 ≤ i, j ≤ p−1. These spaces are associated to the p2 distinct charac-
ters of (Z/pZ)2; hence, every K-invariant Z(A)-vector subspace L contains
xiyj for some 0 ≤ i, j ≤ p − 1. Moreover, if L is a K-invariant maximal
subfield of A then Z(A)(xiyj) ⊆ L, where 0 ≤ i, j ≤ p− 1 and (i, j) 6= (0, 0).
Since [L : Z(A)] = p and xiyj 6∈ Z(A), we conclude that L = Z(A)(xiyj).
We will denote Z(A)(xiyj) by L(i,j).

Now suppose (i, j) and (r, s) are non-zero elements of (Z/pZ)2. We claim
that L(i,j) = L(r,s) if and only if (i, j) and (r, s) are proportional, i.e., if
and only if they lie in the same 1-dimensional Z/pZ-subspace of (Z/pZ)2.
Indeed, if (i, j) and (r, s) are proportional then up to a multiple from Z(A),
xiyj and xrys are powers of one another. Since neither one is central, they
generate the same maximal subfield. Conversely, since a maximal subfield
has dimension p over Z(A), it can contain only p − 1 distinct xiyj with
(0, 0) 6= (i, j) ∈ (Z/pZ)2. Since there are p − 1 nonzero Z/pZ-multiples of
(i, j), this proves the claim.
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We have thus shown that the K-invariant maximal subfields of A are
in bijective correspondence with 1-dimensional Z/pZ-subspaces of (Z/pZ)2:
a 1-dimensional subspace V corresponds to the maximal subfield LV =
Z(A)(xiyj), where (i, j) is a non-zero element of V .

It is clear from (15.2) that τ(LV ) = Lτ(V ), where τ acts on (Z/pZ)2 via the
representation φp. To sum up: A has a maximal G-invariant subfield ⇐⇒ τ
preserves one of the K-invariant maximal subfields LV ⇐⇒ (Z/pZ)2 has a τ -
invariant 1-dimensional Z/pZ-subspace V ⊂ (Z/pZ)2 ⇐⇒ the representation
φp of H is reducible.

(c) In view of parts (a) and (b) it suffices to show that the representation
φp of H is irreducible if and only if p ≡ 2 (mod 3). If p = 3, φp is reducible,
since in this case

(
1−1

)
is an eigenvector for the matrix

(
0 −1
1 −1

)
. Now assume

that p 6= 3. Then Maschke’s theorem implies that φp(τ) is diagonalizable
over the algebraic closure of Z/pZ. The eigenvalues of φp(τ) are then nec-
essarily third roots of unity, including at least one primitive third root of
unity.

Thus the action of H on (Z/pZ)2 is reducible ⇐⇒ φp(τ) is diagonalizable
over Z/pZ ⇐⇒ the eigenvalues of φp(τ) belong to Z/pZ ⇐⇒ Z/pZ contains
a primitive third root of unity ⇐⇒ 3 | p− 1.

Consequently, the representation φp irreducible if and only if p ≡ 2
(mod 3). ¤

Appendix A. Inner actions on division algebras

In this appendix we continue to assume that k is an algebraically closed
base field of characteristic zero, and that every division algebra is finite-
dimensional over its center, which in turn is a finitely generated field ex-
tension of k. (Some of the lemmas below hold in greater generality; see
Remark A.5.) Our main result is the following theorem.

A.1. Theorem. Let G be an algebraic group acting on a division algebra
D of degree n by inner automorphisms. Then the kernel N of this action
contains the connected component G0 of G, and G/N is a finite abelian
n-torsion group.

Here the algebraic group G is treated as an abstract group; in particular,
the (inner) action of G on D is not assumed to be algebraic or geometric.
Consequently, our proof has a rather different flavor from the other argu-
ments in this paper. Instead of using algebraic geometry, we exploit, in the
spirit of [RV1], the fact that connected algebraic groups are generated, as
abstract groups, by their divisible subgroups. Note that the special case of
Theorem A.1, where G is a torus is proved in [RV1, Corollary 5.6].

Before we prove Theorem A.1, we deduce an easy consequence.

A.2. Corollary. Let G be an algebraic group acting faithfully and geomet-
rically on a division algebra D of degree n. Then the normal subgroup of G
acting by inner automorphisms is a finite abelian n-torsion group.
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Proof. Since G acts geometrically, the normal subgroup H of G consisting of
the elements acting by inner automorphisms (i.e., acting trivially on Z(D))
is closed, so itself an algebraic group. Now apply Theorem A.1 to the faithful
action of H on D. ¤

We now turn to the proof of Theorem A.1, beginning with two lemmas.

A.3. Lemma. The group of inner automorphisms of a division algebra con-
tains no divisible subgroups.

Proof. Assume to the contrary that there is a nontrivial divisible group H
acting faithfully on a division algebra D by inner automorphisms. By [RV1,
Corollary 3.2], the torsion subgroup of H acts trivially on D, so it must be
trivial. Hence H is a torsion-free divisible group, i.e., a direct sum of copies
of (Q,+); cf. [Sc, 5.2.7]. By [RV1, Lemma 3.3(a)], there is a subfield L of D
containing the center K of D such that H embeds into L∗/K∗. Thus (Q, +)
embeds into L∗/K∗. By [RV1, Lemma 5.5]3, this implies that K is not
finitely generated over the algebraically closed field k, a contradiction. ¤

A.4. Lemma. Let D be a division algebra of degree n whose center K con-
tains all roots of unity.

(a) Suppose x ∈ D has the following properties: det(x) = 1, and xm ∈ K
for some integer m ≥ 1. Then x ∈ K.

(b) If G is a finite group acting faithfully on D by conjugation, then G
is an abelian n-torsion group.

As the statement of the lemma implies, here K is not assumed to contain
an algebraically closed base field.

Proof. (a) Suppose xm = a for some integer a ∈ K. Taking the determinant
(i.e., reduced norm) on both sides, we obtain an = 1. Thus, after replacing
m by mn, we may assume xm = 1. Since the polynomial f(t) = tm−1 splits
over K, we conclude that x ∈ K.

(b) Suppose g ∈ G acts by conjugation by dg. Then for every g, h ∈ G, the
commutator x = dgdhd−1

g d−1
h satisfies the conditions of part (a), where m can

be taken to be the order of ghg−1h−1 in G. Thus x ∈ K and consequently,
g and h commute in G. This shows that G is abelian.

To prove that G is n-torsion, choose g ∈ G and consider the element
x = (dg)n/det(dg). Once again, x satisfies the conditions of part (a), with
m the order of gn in G. Thus x ∈ K, and consequently, gn = 1 in G, as
claimed. ¤

3We take the opportunity to correct an error in the proof of [RV1, Lemma 5.5]. The
third paragraph of that proof should read: “If πi ◦φ is not injective, its image is a torsion
group. Since π ◦ φ is injective, πi(φ(Q)) is not torsion for some i. Hence, for this i,
ψ = πi ◦ φ is injective, so that ψ(Q) is nontrivial. Thus by the argument in the previous
paragraph, ψ(Q) is not contained in K∗.”
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Proof of Theorem A.1. Let S be a torus of G, or a closed subgroup which is
isomorphic to (k,+). We claim that S ⊆ N . Since S is a divisible group, so
is S/N ∩ S; cf. [Sc, 5.2.19]. Since S/N ∩ S acts faithfully on D, Lemma A.3
tells us that S/N ∩ S = {1}, i.e., S ⊆ N , as claimed.

Now recall that every element g ∈ G0 has a Jordan decomposition product
g = gsgu, where gs is semisimple and gu is unipotent; cf., e.g., [H, Theorem
15.3]. Since gs lies in a torus of G, gs ∈ N . Similarly, gu ∈ N ; cf., e.g., [H,
Lemma 15.1C]. Thus G0 ⊆ N , as claimed. The desired conclusion now
follows from Lemma A.4. ¤

A.5. Remark. Lemmas A.3 and A.4 also hold in prime characteristic, and
so does Theorem A.1, provided G is reductive (since then G0 is generated
as abstract group by the tori it contains).

Appendix B. Regular actions on prime PI-algebras

It is a consequence of Posner’s theorem that every prime PI-algebra R
of PI-degree n can be realized as a subalgebra of n× n-matrices over some
commutative domain C. Given an action of a group G on R, it is natural
to ask whether one can always find such an embedding R ↪→ Mn(C) which
is G-equivariant for some action of G on Mn(C). We now deduce from
Theorem 1.7 a rather strong affirmative answer in the case of regular actions
of algebraic groups (see Definition 5.1) on prime PI-algebras. Such actions
were extensively studied in [V1] and [V2].

B.1. Proposition. Let R be a prime PI-algebra of PI-degree n, which is
finitely generated as k-algebra. Let G be an algebraic group acting regularly
on R. Then there is a finitely generated commutative k-algebra C which is a
domain, and a regular action of G on C such that R embeds G-equivariantly
into Mn ⊗k C. Here G acts trivially on Mn.

In the case where G is a torus, this assertion was proved in [V3, Corol-
lary 9].

Proof. Let A be the total ring of fractions of R; it is a central simple algebra
of degree n, and G acts algebraically on A. Note that since R is finitely
generated as k-algebra, the center of A is a finitely generated field extension
of k. By Theorem 1.7, there is a G-splitting field L = k(X0) for A, where X0

is an affine G-variety, i.e., the G-action on L is algebraic; cf. Definition 5.2.
This gives rise to a G-equivariant embedding ϕ : R → Mn⊗k L = A′. Hence
G also acts algebraically on A′, so that A′ contains a unique largest subalge-
bra SA′ on which G acts regularly, and which contains every subalgebra of
A′ on which G acts regularly. Denote by SL the corresponding subalgebra
of L. Since SA′ contains Mn ⊗k k, it follows that SA′ = Mn ⊗k SL. Since
G acts regularly on ϕ(R), ϕ(R) ⊆ Mn ⊗k SL. Since R is finitely generated,
and since G acts regularly on SL, there is a finitely generated G-invariant
subalgebra C of SL such that ϕ(R) ⊆ Mn ⊗k C. ¤
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