GROUP ACTIONS ON CENTRAL SIMPLE ALGEBRAS:
A GEOMETRIC APPROACH

Z. REICHSTEIN AND N. VONESSEN

ABSTRACT. We study actions of linear algebraic groups on central sim-
ple algebras using algebro-geometric techniques. Suppose an algebraic
group G acts on a central simple algebra A of degree n. We are inter-
ested in questions of the following type: (a) Do the G-fixed elements
form a central simple subalgebra of A of degree n? (b) Does A have a
G-invariant maximal subfield? (c) Does A have a splitting field with a
G-action, extending the G-action on the center of A?

Somewhat surprisingly, we find that under mild assumptions on A
and the actions, one can answer these questions by using techniques from
birational invariant theory (i.e., the study of group actions on algebraic
varieties, up to equivariant birational isomorphisms). In fact, group
actions on central simple algebras turn out to be related to some of the
central problems in birational invariant theory, such as the existence of
sections, stabilizers in general position, affine models, etc. In this paper
we explain these connections and explore them to give partial answers
to questions (a)—(c).
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1. INTRODUCTION

In this paper we study actions of linear algebraic groups G on central
simple algebras A in characteristic zero. As usual, we will denote the center
of A by Z(A) and the subalgebra of G-fixed elements of A by

AY ={ac Alg(a) =a Vg€ G}.

We will be interested in questions such as the following:

(1.1)  (a) Is A% a central simple algebra of the same degree as A?
(b) Does A have a G-invariant maximal subfield?
(c) Can the G-action on Z(A) be extended to a splitting
field L, and if so, what is the minimal possible value of
trdegy 4y L?

Actions of finite groups on central simple algebras have been extensively
studied in the 1970s and 80s in the context of group actions on noncom-
mutative rings; for an overview see [M|. More recently, torus actions were
considered in [RV;] and [RVy], and actions of solvable groups in [V3], all by
purely algebraic methods (cf. also [V}, V2]). Inner actions of compact groups
were studied in [Sa]. The purpose of this paper is to introduce a geometric
approach to the subject by relating it to “birational invariant theory”, i.e.,
to the study of group actions on algebraic varieties, up to birational isomor-
phism. In particular, we will see that the questions posed in (1.1)) are related
to some of the central problems in birational invariant theory, such as ex-
istence of affine models, quotients, stabilizers in general positions, sections,
etc. (For an overview of birational invariant theory, see [PV, Chapters 1, 2,
7] and [P}, Part 1].) To make the algebro-geometric techniques applicable, we
always assume that the centers of our simple algebras are finitely generated
field extensions of a fixed algebraically closed base field k of characteristic
zero. All algebraic groups are assumed to be linear and defined over k.

Let G be an algebraic group and A be a finite-dimensional central simple
algebra. Of course, we are primarily interested in studying G-actions on A
which respect the structure of G as an algebraic (and not just an abstract)
group. The following definition is natural in the geometric context.

It is well known that a finitely generated field extension of k can be inter-
preted as the field of rational functions k(X) on some irreducible variety X,
where X is unique up to birational isomorphism. Similarly, a central simple
algebra A of degree n is isomorphic (as a k-algebra) to the algebra k,,(X) of
PGL,-equivariant rational functions X --» M, (k), where X is an irreducible
variety with a generically free PGLy,-action. Here X is unique up to bira-
tional isomorphism of PGL,-varieties. For details, see [RV4, Theorem 7.8
and Section 8].

We will say that a G-action on a central simple algebra A = k,(X) is
geometric, if it is induced by a regular G-action on X, via

(1.2) (9f)(x) = flg~ )
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for x € X in general position. One can check that all rational functions
gf: X --» My (k) lie in k(X)) (i.e., are PGL,-equivariant) if and only if the
actions of G and PGL, on X commute. So a regular G-action on X induces
a G-action on A = k,(X) precisely if X is a G x PGL,,-variety. To sum up:

1.3. Definition. An action of an algebraic group G on a central simple
algebra A of degree n is said to be geometric if there is an irreducible G x
PGL,,-variety X such that A is G-equivariantly isomorphic to k,(X). We
will call X the associated variety for this action.

The second part of the definition makes sense since the associated variety
X is unique up to birational isomorphism (as a G x PGL,-variety); see
Corollary 3.2. Note that the PGLy-action on X is necessarily generically
free, since A ~ k,(X) is a central simple algebra of degree n; see Lemma 2.8
Conversely, any G x PGLj-variety X, which is PGL,-generically free, is the
associated variety for the geometric action of G on the central simple algebra
A = k,(X) given by (1.2).

From an algebraic point of view it is natural to consider another class
of actions, introduced in [V3, §2] (and in the special case of torus actions
in [RVy, §5]). We shall call such actions algebraic; for a precise definition,
see Section 5. The relationship between algebraic and geometric actions
is discussed in Sections 5l and 8. In particular, every algebraic action is
geometric; see Theorem 5.3l

We are now ready to address the questions posed in (1.1), in the context
of geometric actions.

1.4. Theorem. Consider a geometric action of an algebraic group G on a

central simple algebra A of degree n, with associated G x PGLy-variety X.

(a) The fived algebra AC is a central simple algebra of degree n if and
only if for x € X in general position,

Stabgxpar, () € G x {1}.

(b) The fized algebra A® contains an element with n distinct eigenvalues

if and only if for every x € X in general position there exists a torus
T, of PGL,, such that

StabgxpaL, () CG x T, .
We now turn to question (b) in (1.1).
1.5. Theorem. Consider a geometric action of an algebraic group G on a

central simple algebra A of degree n, with associated G x PGLy,-variety X .

(a) A has a G-invariant mazimal étale subalgebra if and only if there
exists a G x PGLy,-equivariant rational map X --» PGL,, /N, where
N is the normalizer of a mazimal torus in PGL,, and G acts trivially
on the homogeneous space PGL,, /N.



4 Z. REICHSTEIN AND N. VONESSEN

(b) If A has a G-invariant mazimal étale subalgebra, then for every x €
X in general position there exists a maximal torus T, of PGL,, such
that

StabgxpcL, (x) C G x N(Tm) .
Here N(T,,) denotes the normalizer of T, in PGLy,.

(c) If the orbit Gz has codimension < n? —n in X for x € X in general
position, then A has no G-invariant mazximal étale subalgebras.

Here by an étale subalgebra of A we mean a subalgebra of A which is an
étale algebra over Z(A); cf. 2.9. If A is a division algebra, the maximal étale
subalgebras are just the maximal subfields.

The converse to Theorem [1.5(b) is false in general; see Proposition [15.3.
Note that the points of the homogeneous space PGL, /N parameterize the
maximal tori in PGL,, (see the beginning of §9). The converse to part (b)
is thus true if and only if the tori T}, can be chosen so that x --» T, is a
rational map. We also remark that Theorem 1.4(b) gives a necessary and
sufficient condition for A to have a G-invariant maximal étale algebra of the
form Z(A)[a], where a € AY; see Corollary 6.3

Our final result addresses question (c) in (1.1). We begin with the follow-
ing definition.

1.6. Definition. Suppose a group G acts on a central simple algebra A of
degree n. We will say that A is G-split, if A is G-equivariantly isomorphic
to My, (Z(A)) = M,, (k) ® Z(A), where G acts via the second factor. We will
say that a G-equivariant field extension L/Z(A) is a G-splitting field for A
if A®ya) L is G-split.

Note that if G acts trivially on A, then a G-splitting field is just a splitting
field for A in the usual sense. Note also that a G-action on a split central
simple algebra (i.e., a matrix algebra over a field) need not be G-split (cf.
Example 6.2).

1.7. Theorem. FEvery geometric action of an algebraic group G on a central
simple algebra A of degree n has a G-splitting field of the form L = k(Xy),
where Xo is a G-variety and trdegy (L) = n? — 1. Moreover, if G acts
algebraically on A, then Xy can, in addition, be chosen to be affine.

In general, the value of trdegy 4y L given in Theorem [1.7 is the smallest
possible; see Proposition 13.1(b). If G is connected, we give a different
construction of G-splitting fields in Section [11.

At the end of the paper we will present four examples illustrating our main
results, Theorems [1.4, (1.5, and 1.7, and two appendices. Appendix A deals
with inner actions on division algebras which need not be geometric, while
Appendix B treats regular actions of algebraic groups (see Definition [5.1))
on prime affine PI-algebras. Using Theorem (1.7, we show that such actions
are “induced” by regular actions on commutative domains. Further results
on geometric actions will appear in the paper [RVj].
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2. PRELIMINARIES

2.1. Conventions. We work over a fixed algebraically closed base field k
of characteristic zero. All algebras are k-algebras, and division algebras
and central simple algebras are assumed to be finite-dimensional over their
centers, which in turn are assumed to be finitely generated field extensions
of k. All actions on algebras are by k-algebra automorphisms. Algebraic
groups are always assumed to be linear algebraic groups over k, and G will
always denote an algebraic group. Regular actions are meant to be regular
over k; similarly for algebraic actions (see Definition [5.2). If K is a field, we
shall denote the algebra of n x n matrices over K by M, (K). If K =k, we
will write M,, in place of M, (k). We will sometimes view M, as a k-algebra
and sometimes as an algebraic variety, isomorphic to the affine space A,

2.2. G-varieties. By a G-variety X we mean an algebraic variety with a
regular action of G. By a morphism X — Y of G-varieties, we mean a G-
equivariant morphism. The notions of isomorphism, rational map, birational
isomorphism, etc. of G-varieties are defined in a similar manner. As usual,
given a G-action on X, we denote the orbit of x € X by Gz and the stabilizer
subgroup of x by Stabg(z) C G. Throughout this paper we use [PV] as a
reference for standard notions from invariant theory, such as rational and
categorical quotients, stabilizers in general position, sections, etc.

2.3. Definition. We shall say that a G-action on X is
(a) faithful if every 1 # g € G acts nontrivially on X,
(b) generically free if Stabg(x) = {1} for x € X in general position, and
(c) stable if the orbit Gz is closed in X for x € X in general position.

2.4. Lemma. Suppose the group G is either (a) finite or (b) diagonalizable.
Then every faithful irreducible G-variety X is generically free.

Proof. (a) Since the G-action is faithful, X9 = {z € X |gx = 2} # X for
every 1 # g € G. Since each XY is a closed subvariety of X, every point of
the Zariski dense open subset X — Uj4cq X9 has a trivial stabilizer in G.

Part (b) is an immediate corollary of a theorem of Richardson [Ri, The-
orem 9.3.1]; see also [PV, Theorem 7.1]. O

The following example shows that, contrary to the assertion in [PV
Proposition 7.2], Lemma 2.4/ fails if we only assume that the connected
component of G is a torus. We shall return to this example in §14.

2.5. Example. Consider the natural linear action of the orthogonal group
G = Oy on A% This action is faithful but not generically free: Stabg(v)
has order 2 for v € k? in general position. Indeed, for every non-isotropic
vector v in k2, there is a unique non-trivial element of Oy, leaving v invariant;
this element is the orthogonal reflection in v. Note also Oy is a semidirect
product of a one-dimensional torus with Z/2Z.
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2.6. Lemma (Popov). Let G be a reductive group, X be an affine G-variety
and V' be a G-representation. Suppose the G-orbit of x € X 1is closed in X
and Stab(z) C Stab(v) for some v € V. Then there exists a G-invariant
morphism f: X — V such that f(x) =v.

Proof. In the case where Stab(z) = {1}, this lemma is stated and proved in
[P, Theorem 1.7.12]. The same argument goes through in our slightly more
general setting. O

2.7. Algebras of rational maps. If X is a PGL,-variety, we will denote
by RMapspqy,, (X, M) the k-algebra of PGLj,-equivariant rational maps
f: X --» M, with addition and multiplication induced from M,,.

2.8. Lemmma. Let Y be an irreducible PGLy-variety. Then the following are
equivalent:

(a) The PGLy-action on'Y is generically free.
(b) A= RMapspqy, (Y, M) is a central simple algebra of degree n.

If (a) and (b) hold then the center of A is RMapspqy,, (Y, k) = k(Y )P,
Here elements of k are identified with scalar matrices in M.

Proof. (b) = (a): Note that the center of A contains k(Y)PSLn. Choose
fi,..., fa2 € A which are linearly independent over k(Y)PGl= By [Re,
Lemma 7.4], f1(y), ..., fn2(y) are k-linearly independent in M,, for y € Y in
general position. Now consider the PGL,-equivariant rational map
F=(frse f2): Y=o (M)
For y € Y in general position, Stab(f(y)) = {1}, so that also Stab(y) = {1}.
Hence Y is PGL,-generically free.
The implication (a) = (b) and the last assertion of the lemma are proved
in [Re, Lemma 8.5] (see also |[Re, Definition 7.3 and Lemma 9.1}). O

If the PGL,-action on X is generically free, we will denote the central
simple algebra RMapspqy, (X, M,) by k,(X).

2.9. Maximal étale subalgebras. Let A be a central simple algebra of de-
gree n. By an étale subalgebra of A we mean a subalgebra of A which is an
étale algebra over Z(A), i.e., a finite direct sum of (separable) field exten-
sions of Z(A). Note that since we are working in characteristic zero, the term
“étale” could be replaced by “commutative semisimple”. We are interested
in maximal étale subalgebras, i.e., étale subalgebras E of A satisfying the
following equivalent conditions:

(a) dimg4) £ = deg(A),

(b) E is maximal among commutative subalgebras of A;

cf. [Rog, Exercise 7.1.1]. Using the double centralizer theorem, one easily
verifies that every étale subalgebra of A is contained in a maximal étale sub-
algebra, see, e.g., [J, Theorem 4.10 and Exercise 4.6.12] and [Rod, Exercise
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7.1.2]. Of course, if A is a division algebra, then maximal étale subalgebras
are just maximal subfields.

We will repeatedly use the following characterization of maximal étale
subalgebras, which follows easily from [Bl, §V.7.2, Proposition 3|.

2.10. Lemma. Let A be a central simple algebra of degree n with center K.
Let a € A. Then K|a] is a mazimal étale subalgebra of A if and only if the
etgenvalues of a are distinct. ([

3. THE UNIQUENESS OF THE ASSOCIATED VARIETY

Recall that given a generically free PGL,,-variety X, we write A = k,(X)
for the algebra of PGL,-equivariant functions a: X --+ M,. A PGL,-
equivariant dominant rational map f: X’ --» X induces an embedding
f*: A — A’ of central simple algebras, where A’ = k,(X’) and f(a) =
aof: X' -+ M,.

We now deduce a simple consequence of the functoriality of the maps
X — kp(X) and f +— f*; see [RV4, Theorem 1.2]. Recall that if X has a G-
action, which commutes with the PGL,-action, then (1.2) defines a G-action
on A = k,(X), which we call geometric.

3.1. Lemma. Let X and X' be G x PGL,-varieties, which are PGL,,-
generically free.

(a) If f: X' --» X is a dominant rational map of G x PGL,,-varieties
then the induced embedding f*: k,(X) — kn(X') of central simple
algebras is G-equivariant.

(b) Every G-equivariant embedding j: ky(X) < kn(X') induces a dom-
inant rational G x PGL,-equivariant map j,: X' --» X.

Proof. (a) By [RV4, Theorem 1.2], since the diagram

Xl_£>X
lg ig
x-L-x

commutes for every g € G, so does the induced diagram

k(X)L k(X7

o,k
f*

k(X)) —— kn(X).
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(b) Conversely, since the diagram

e (X)) —2 > ko (X7)

ol

b (X) —L> kp(X)

commutes, so does the induced diagram

xX-%sx
\Lg lg
x-"-x

O

3.2. Corollary. Given a geometric action of an algebraic group G on a
central simple algebra A, the G x PGL,,-variety associated to this action is
unique up to birational isomorphism.

Proof. Suppose two G x PGL,,-varieties X and X’ are both associated varie-
ties for this action, i.e., k,(X) and k,(X’) are both G-equivariantly isomor-
phic to A. In other words, there are mutually inverse G-equivariant alge-
bra isomorphism i: k,(X) — kn(X’) and j: kn(X') — kn(X). Applying
Lemmal3.1, ¢ and j induce mutually inverse dominant G' x PGL,-equivariant
rational map i, : X’ =5 X and Js: X -Zs X'. We conclude that X and X’
are birationally isomorphic G x PGL,,-varieties. O

3.3. Example. Let G be a subgroup of PGL,,, and consider the conjugation
action of G on A = M,,(k). We claim that the associated G x PGL,,-variety
for this action is X = PGL,, with G acting by translations on the right
and PGL,, acting by translations on the left. More precisely, for (g,h) €
G x PGL,, and z € X, (g,h) - = hag~!. Consequently for f € k,(X),

see (1.2). Note that since X is a single PGL,-orbit, every PGL,,-equivariant

rational map f: PGL, --+ M,, is necessarily regular. It is now easy to check
that the k-algebra isomorphism

¢: kn(X) = RMapspgy, (PGL,, M,) — A =M,
given by ¢(f) = f(1) is G-equivariant.

3.4. Example. Let m > 2, and consider the PGL,-variety X = (M,)™,
where PGL,, acts by simultaneous conjugation, i.e., via

g- (alu cee 7am) = (galg_lv o 7gamg_1) .

Since m > 2, this action is generically free. The associated division algebra
kn(X) is called the universal division algebra of m generic n X n-matrices
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and is denoted by UD(m,n). Identify the function field of X with k(xgl)),

where for each h = 1,...,m, :rgl) are the n? coordinate functions on copy

number h of M,,, and identify the algebra of all rational maps X --+ M,
with M, (k(azgl))) Now we can think of UD(m,n) as the division subalgebra

of M,, (k:(xl(]h))) generated by the m generic n x n matrices XM = (xz(]h)),
h=1,...,m. Here X" corresponds to projection (M,)™ — M, given
by (ai,...,am) +— ap. For details of this construction, see [Prg, Section 2]
or [IB, Theorem 5].

Now observe that the GL,,-action on X = (M,,)™ given by
m m
(35) g'(al)"'7am):(Zgljaj7"‘7zgmjaj)
j=1 j=1

commutes with the above PGL,-action. Here g = (g;;) € GL,,, with g;; € k.
Using formula (1.2)), we see that this gives rise to a GL,,-action on UD(m,n)
such that for g € GL,,,

(3.6) g- XM =3%"g;x0,
j=1

where g~! = (gi;). In other words, this GLp-action on UD(m,n) is geo-
metric, with associated G x PGL,-variety X = (M,,)". We will return to
this important example later in this paper (in Example 5.5 and Sections [13
and [14)), as well as in [RV3].

3.7. Remark. The k-subalgebra of UD(m,n) generated by X1 ... x (")
is called the generic matriz ring generated by m generic n X n matrices; we
denote it by Gy, . Note that the action (3.6) of GL,, on UD(m,n) restricts
to an action on Gy, . Consequently, the GL,,-action on G, ,, is induced by
the GL;,-action on (M,)™ in the sense of formula (1.2).

4. BRAUER-SEVERI VARIETIES

Let A/K be a central simple algebra of degree n. Throughout much of
this paper, we associate to A a PGL,-variety X/k such that A is the algebra
of PGL,,-equivariant rational maps X --» M,,(k). Another variety that can
be naturally associated to A is the Brauer-Severi variety BS(A), defined over
K. Any algebra automorphism g: A — A, defined over the base field k,
induces k-automorphisms of K and BS(A) such that the diagram

BS(A) —¥ ~ BS(4)
\L (9|K)*
Spec(K) — Spec(K),

commutes; conversely, g can be uniquely recovered from this diagram. If
a group G acts on A, it is natural to ask if BS(A) can be G-equivariantly
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represented by an algebraic variety over k. In this short section we will
address this question, following a suggestion of the referee. Our main result,
Proposition 4.1 below, will not be used in the sequel.

4.1. Proposition. Consider a geometric action ¢ of an algebraic group G
on a central simple algebra A/K of degree n. Then there exists a morphism
o: S — Y of irreducible G-varieties (of finite type over k) such that
(a) S is a Brauer-Severi variety over Y ;
(b) k(Y) = K and o~1(n) is the Brauer-Severi variety of A, where 1 is
the generic point of Y ;
(c) the G-actions on S and Y induce the action ¢ on A.

Proof. Let X be the G xPGL,-variety associated to ¢ and H be the maximal
parabolic subgroup of PGL,, consisting of matrices of the form

* 0 0
* ok *
* ok *

Consider the natural dominant rational map o: X/H --» X/PGL, given
by the inclusion k(X)PGln < k(X)H. Recall that the rational quotient
varieties X/H and X/PGL are a priori only defined up to birational iso-
morphism. However, we can choose models for these varieties such that the
induced G-actions are regular; cf. [PV, Proposition 2.6 and Corollary 1.1].
For notational convenience, we will continue to denote these G-varieties by
X/H and X/PGL,,. Note also that since the actions of G and PGL,, on X
commute, the resulting map o: X/H --» X/PGL, is G-equivariant.

By [RVy, Section 9], X/H is a Brauer-Severi variety over a dense open
subset U of X/PGL,, and is isomorphic to BS(A) over the generic point
of X/PGL,. Since o is G-equivariant, X/H is a Brauer-Severi variety over
g(U), for every g € G. Setting Y to be the union of the g(U) inside X/PGL,,,
as g ranges over (G, and setting S to be the preimage of this set in X/H, we
obtain a G-equivariant morphism o: .S — Y with desired properties. [

5. ALGEBRAIC ACTIONS

5.1. Definition. We shall say that the action of an algebraic group G
on a (not necessarily commutative) k-algebra R is regular’, if every finite-
dimensional k-subspace of R is contained in a G-invariant finite-dimensional
k-subspace V, such that the G-action on V induces a homomorphism G —
GL(V) of algebraic groups.

Every regular action of a connected algebraic group on a division algebra
(or even a field) must be trivial (see, e.g., [Va, A.1]), so this notion is too

1Such actions are usually called rational; we prefer the term regular, since the term
“rational action” has a different meaning in the context of birational invariant theory.
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restrictive for our purposes. However, it naturally leads to the following
definition, made in [V3, §2]. (The special case where G is a torus had been
considered earlier in [RVq, §5].)

5.2. Definition. Let G be an algebraic group acting on a k-algebra A by
k-algebra automorphisms. We call the action algebraic® (over k) if there is
a G-invariant subalgebra R of A and a G-invariant multiplicatively closed
subset S of R consisting of central nonzerodivisors of R such that (1) G acts
regularly on R, and (2) A= RS™L.

Note that a regular action on A is algebraic (use S = {1}). We shall be
primarily interested in the case where A is a central simple algebra; in this
case R is an order in A (and in particular, R is prime). For basic properties
of algebraic actions, see [V3, §2].

The purpose of this section is to investigate the relationship between
algebraic and geometric actions (cf. Definition [1.3).

5.3. Theorem. (a) Algebraic actions are geometric.

(b) Let G be an algebraic group acting geometrically on a central simple
algebra A of degree n. Then the action of G on A is algebraic if and only if
there is an associated G X PGLy,-variety X with the following two properties:
X is affine, and the PGLy,-action on X is stable (cf. Definition 2.3(c)).

We begin with a result which is a G-equivariant version of [RV4, Theo-
rem 6.4].

5.4. Proposition. Let G be an algebraic group acting reqularly on a finitely
generated prime k-algebra R of Pl-degree n. Then there is an n-variety Y
with a reqular G-action such that R is G-equivariantly isomorphic to k,[Y].

See [RV4}, 3.1] for the definition of k,[Y], the PI-coordinate ring of Y. The
action of G on k,[Y] is induced from the action of G on Y as in formula (1.2).

Proof. We may assume that G acts faithfully on R. There is a finite-
dimensional G-stable k-subspace W of R which generates R as a k-algebra.
Set m = dimy (W), and consider the generic matrix ring G, ,, with its GL,,-
action as in Remark 3.7. Denote by V' the k-subspace of G, ,, generated by
the m generic n X n matrices. Let ¢g: V — W be a k-vector space isomor-
phism. Define a regular action of G on V' by making g G-equivariant. The
action of G on V extends to a regular action on Gy, 5. By the universal map-
ping property of G, n, Yo extends to a G-equivariant surjective k-algebra
homomorphism v : G, , — R. Replacing G by an isomorphic subgroup of
GL;,, we may assume that G acts on V' as in (3.6). Then the action of G on
Gm,n is induced (as in (1.2)) from the action of G on (M,,)™ given by (3.5).
Note that the actions of G and PGL,, on (M,,)™ commute.

2In [V3], S is not required to be central; it is, however, proved there that S can always
be chosen to be central if A is a central simple algebra.
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Let I be the kernel of ¢, and let Y = Z(I) C (M,,)™ be the irreducible
n-variety associated to I, see [RV4, Corollary 4.3]. Note that Y is G-stable
for the action of G on (M,)™. By |[RV4, Proposition 5.3], Z(Y') = I, so that
R is G-equivariantly isomorphic to k,[Y] = Gpn/Z(Y) = Gmn/l. O

Proof of Theorem5.3. (a) Let G be an algebraic group acting algebraically
on a central simple algebra A of degree n. Let R be a G-stable finitely
generated prime Pl-algebra contained in A such that A is the total ring of
fractions of R. By Proposition 5.4, there is an n-variety Y with a regular
action of G such that R is G-equivariantly isomorphic to k,[Y]. Then A
is G-equivariantly isomorphic to the total ring of fractions of k,[Y], i.e., to
kn(Y), see [RV4, Proposition 7.3]. As the proof of Proposition 5.4 showed,
(M,,)™ is a G x PGL,-variety (where G acts via some subgroup of GL,,
as in (3.5)), and Y is a G-stable subset of (M,,)™. Hence the closure X
of Y in (M,,)™ is an affine G x PGL,-variety. It is clear that k,(Y) and
kn(X) are G-equivariantly isomorphic, and that the PGL,-action on X is
generically free and stable. So G acts geometrically on A, and the associated
G x PGL,-variety X has the two additional properties from part (b).

(b) If the action of G on A is algebraic then an associated G x PGL,-
variety X with desired properties was constructed in the proof of part (a).

Conversely, assume that there is an associated G x PGL,,-variety X which
is affine and on which the PGL,-action is stable. We may assume that
A = k,(X). So A is a central simple algebra with center K = k(X)PGln;
cf. Lemma 2.8 Since X is affine, and since PGL,-orbits in X in general
position are closed, k[X ]PGL" separates PGL,-orbits in general position, so
that Q(k[X]PCGln) = k(X)PCLr = K see [PV, Lemma 2.1]. (Here Q stands
for the quotient field.) Denote by R the subalgebra of A consisting of the
regular PGL,-equivariant maps X — M,,. It is clearly G-invariant. Note
that G acts regularly on k[X]. Consequently, G acts regularly on M, (k[X]),
the set of regular maps X — M,. Hence, G also acts regularly on its
subalgebra R. It remains to show that R is a prime subalgebra of A, and
that its total ring of fractions is equal to A.

Let v € (M,)? be a pair of matrices generating M,, as k-algebra, and let
x € X be such that its stabilizer in PGL,, is trivial and such that its PGL,,-
orbit is closed. Then by Lemma 2.6, there is a PGLy-equivariant regular
map X — (M,,)? such that f(x) = v. Write f = (f1, f2), where f; and f are
PGLy-equivariant regular maps X — M,,, i.e., elements of R. Since fi(z)
and fa(z) generate M, the central polynomial g, (|[Roj, p. 26]) does not
vanish on R. Since g, is t>-normal, it vanishes on every proper K-subspace
of A, see [Roj, 1.1.35]. Consequently RK = A, and R is prime and has PI-
degree n. Clearly, R contains k[X]PGLn. Since R Q(k[X]PGM) = RK = A,
Q(R) = A. Hence, G acts algebraically on A. O

5.5. Example. It follows easily from Definition 5.2 that the action (3.6) of
GL,, on UD(m,n) is algebraic. So by Theorem 5.3(b), there is an associated
GL,, x PGL,-variety X with the following two properties: X is affine, and
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the PGL,-action on X is stable. Indeed, the natural associated variety
X = (M,,)™ has these properties.

6. PROOF OF THEOREM 1.4
We begin with the following simple observation:

6.1. Remark. Consider a geometric action of an algebraic group G on a
central simple algebra A, with associated G x PGL,-variety X. Elements of
A are thus PGLy-equivariant rational maps a: X --» M,,. Such an element
is G-fixed if and only if it factors through the rational quotient map X --+
X/G. In other words, A is isomorphic to RMapspgr,, (X/G, My,).

We are now ready to proceed with the proof of Theorem [1.4.

(a) We may assume that A = k,(X). Combining Remark 6.1/ with
Lemma 2.8, we see that A% is a central simple algebra of degree n if and
only if Y = X/G is a generically free PGL,-variety. The latter condition is
equivalent to Stabgxpar, () € G x {1} for z € X in general position.

(b) First suppose that there is an a € AY with n distinct eigenvalues.
Adding to a some constant in k, we may assume that the eigenvalues of a are
distinct and nonzero. Hence for x € X in general position, the eigenvalues
of a(z) € M, are also distinct and nonzero. The stabilizer of a(x) in PGL,,
is thus a maximal torus T, of PGL,. Let (g,p) € StabgxpaL, (). Then
a(z) = g(a)(z) = a(g~'(z)) = a(p(z)) = pa(z)p~'. Thus p € T;, so that
StabgxparL, () CG X Tp.

We will now prove the converse. Assume Stabgxpar, () is contained
in G x T, for some torus T, of PGL, (depending on z). Denote by Y
the rational quotient PGL,-variety X/G. To produce an a € AY with
distinct eigenvalues, it suffices to construct a PGLy-equivariant rational map
a:Y --» M,, whose image contains a matrix with distinct eigenvalues. By
our assumption, Stabpar,, (y) is contained in a torus T, C PGL,, fory € Y in
general position. Hence, Stabpar, (v) is diagonalizable (and, in particular,
reductive). By [RV3, Theorem 1.1], after replacing Y by a birationally
equivalent PGL,-variety, we may assume that Y is affine and the PGL,-
action on Y is stable.

We are now ready to construct a map a: Y --+ M, with the desired
properties. Let y € Y be a point whose orbit is closed and whose stabilizer
S is diagonalizable, and let v € M,, be a matrix with distinct eigenvalues.
Then Stab(v) is a maximal torus in PGL,; after replacing v by a suitable
conjugate, we may assume S C Stab(v). Now Lemma 2.6 asserts that there
exists a PGLy-equivariant morphism a: Y — M,, such that a(y) = v. This
completes the proof of Theorem [1.4. ([

6.2. Example. Let G be a subgroup of PGL,, acting by conjugation on
A = M, (k). The associated variety for this action is X = PGL,, with
G x PGL,, acting on it by (g,h) - x = hzg~!; see Example [3.3. Since all of
X is a single PGL,-orbit, the stabilizer of any x € X is conjugate to the
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stabilizer of 1pgr,, which is easily seen to be {(g,9)|g € G}. So in this
setting, Theorem 1.4(b) reduces to the following familiar facts:
(a) M, (k)% = M, (k) if and only if G = {1}, and
(b) M, (k)¢ contains an element with n distinct eigenvalues if and only
if G centralizes a maximal torus in GL,, i.e., if and only if G is
contained in maximal torus of PGL,,.

Using Lemma 2.10, we can rephrase Theorem [1.4(b) in a way that makes
its relationship to Question [1.1(b) more transparent.

6.3. Corollary. Consider a geometric action of an algebraic group G on a
central simple algebra A of degree n, with associated G x PGLy,-variety X .
The following conditions are equivalent.

(a) A has a mazimal étale subalgebra E of the form E = Z(A)[a] for
some a € A%,

(b) AY contains a separable element of degree n over Z(A).

(¢) Forx € X in general position, StabgxpaL, () is contained in GxTy,
where T, is a torus in PGL,,. O

Here by a separable element of A we mean an element whose minimal
polynomial over Z(A) is separable, i.e., has no repeated roots.

6.4. Remark. It is necessary in Corollary [6.3(b) to require that a is sep-
arable over Z(A). Indeed, in Example 6.2 set n = 2, A = My(k) and
G ={(49)]g € k}. Then the fixed algebra A“ consists of all matrices of
the form (8 2) with a,b € k. In particular, A contains elements of degree
n = 2 over Z(A) = k, but the minimal polynomial of any such element has
repeated roots.

7. THE G-ACTION ON THE CENTER OF A

Throughout this section, we consider a geometric action of an algebraic
group G on a central simple algebra A of degree n with associated G x PGL,,-
variety X. It is sometimes possible to deduce information about the G-action
on A from properties of the G-action on the center Z(A). In this section, we
find conditions on the G-action on Z(A) which allow us to answer question
(a) in (1.1).

Recall that the field of rational functions on X/PGL,, is G-equivariantly
isomorphic to the center Z(A) of A (see Lemma 2.8). Of course, a priori
X/PGL,, is only defined up to birational isomorphism. From now on we
will fix a particular model W equipped with a regular G-action and a G-
equivariant rational quotient map for the PGL,-action on X

m: X -—» W.

It will not matter in the sequel which model W of X/PGL,, we use. Note
that the G-variety W is just a birational model for the G-action on Z(A).
In many (perhaps, most) cases, W is much easier to construct than X; for
an example of this phenomenon, see Section [15.
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We begin with a simple observation, relating stabilizers in X and W.

7.1. Lemma. Let X be a G x PGL,,-variety which is PGL,-generically free.
Denote by m: X --» X/PGL, the rational quotient map for the PGL,,-
action. Then for x € X in general position, the projection G x PGL,, — G
onto the first factor induces an isomorphism between StabgxpcL, () and
Stabg(m(x)).

Proof. For x € X in general position, m is defined at x, the fiber over 7(x)
is the orbit PGL,x, and Stabpgr,, (x) is trivial. For such z, the projection p
restricts to a surjective map

StabgxpaL, (£) — Stabg(7(x))
whose kernel is Stabpgr, () = {1}, and the lemma follows. O

7.2. Proposition. (a) Suppose that for w € W in general position, the
stabilizer Stabg(w) does not admit a non-trivial homomorphism to
PGL,,. Then AC is a central simple algebra of degree n = deg(A).

(b) Suppose that for w € W in general position, Stabg(w) is an abelian
group consisting of semisimple elements and the n-torsion subgroup
of Stabg(w)/ Stabg(w)? is cyclic. Then there exists an a € A9 with
n distinct eigenvalues.

Note that the condition of part (a) is satisfied if the G-action on W is
generically free.

Proof. (a) By Lemmal(7.1, Stabgxpar, () € Gx{1} for x in general position
in X. The desired conclusion follows from Theorem [1.4(a).

(b) Let H be the projection of Stabgxpar, (¢) to PGL,,. By Lemma 7.1,
H is an abelian group consisting of semisimple elements, and H/H" is a
homomorphic image of Stabg(w)/ Stabg(w)?. Using the fundamental the-
orem of finite abelian groups, one checks that surjective homomorphisms
of finite abelian groups preserve the property that the n-torsion subgroup
is cyclic. By [St, Corollary 2.25(a)], H is contained in a maximal torus of
PGL,. (Note that the torsion primes for PGL,, are the primes dividing n;
see [Stl, Corollaries 1.13 and 2.7].) The desired conclusion now follows from
Theorem [1.4(b). O

We will now use Proposition 7.2, to study inner actions. Recall that an
automorphism ¢ of a central simple algebra A is called inner if there exists
an invertible element a € A such that ¢(z) = axa™! for every x € A, and
outer otherwise. By the Skolem-Noether theorem ¢ is inner if and only
¢(x) = z for every x € Z(A).

7.3. Corollary. Let G be a finite group or a torus acting geometrically on
a central simple algebra A of degree n. The elements of G that act by inner
automorphisms form a normal subgroup of G; denote this subgroup by N.

(a) If N = {1} (i.e., if G acts on A by outer automorphisms), then A®
s a central simple algebra of degree n.
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(b) If N is a cyclic group, then there is an element a € A® with n
distinct eigenvalues.

In the case where the group G is finite, part (a) is proved by algebraic
means and under weaker hypotheses in [M, Theorem 2.7 and Corollary 2.10].
Note also that since every action of a finite group on a central simple algebra
is algebraic (see Definition 5.2), our assumption that the action is geometric
is only relevant if GG is a torus. Moreover, if GG is a torus then every geometric
action is algebraic; see Corollary (8.4l

Proof. We may assume that the action is faithful. Indeed, if K C G is the
kernel of this action, we can replace G by G/K and N by N/K.

Now let W be an irreducible G-variety whose function field k(W) is G-
equivariantly isomorphic to Z(A) (over k); see the beginning of Section [7.
Clearly an element of G acts trivially on W if and only if it acts on A by
an inner automorphism. Now recall that if G is a finite group or a torus
then the stabilizer in general position for the G-action on W is precisely the
kernel N of this action; cf. Lemma [2.4.

The desired conclusions in parts (a) and (b) now follow from parts (a)
and (b) of Proposition 7.2, respectively. O

8. WHICH GEOMETRIC ACTIONS ARE ALGEBRAIC?

Theorem 5.3(a) says that every algebraic action is geometric. It is easy
to see that the converse is not true. For example, let Y be a generically
free PGL,,-variety (e.g., we can take Y = PGL,, where PGL,, acts on Y by
translations), and consider the G x PGLj,-variety X = (G/P) x Y, where
G is a non-solvable connected algebraic group, and P is a proper parabolic
subgroup. Here G acts by translations on the first factor, and PGL, acts
on the second factor. Since the PGL,-action on X is generically free, A =
kn(X) is a central simple algebra of degree n. On the other hand, since
G/ P is complete, it is easy to see that X is not birationally isomorphic to
an affine G x PGL,-variety; hence by Theorem [5.3(b), this action is not
algebraic.

Nevertheless, we will now show that under fairly mild assumptions, the
converse of Theorem 5.3(a) holds, i.e., every geometric action is, indeed,
algebraic.

8.1. Lemma. Let G be an algebraic group, and let X be an irreducible G X
PGL,,-variety which is PGL,,-generically free. Assume that X has a stable
affine model as a G x PGLy,-variety. Then the induced action of G on k,(X)
s algebraic.

Proof. We may assume without loss of generality that X itself is affine and
stable as a G x PGL,,-variety. By Theorem 5.3(b) it suffices to show that X is
stable as a PGL,,-variety, i.e., that PGL,-orbits in general position in X are
closed. Let x € X be a point in general position. Then the G x PGL-orbit
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(G x PGLy)x is closed in X and can be naturally identified with the homo-
geneous space (G x PGL,)/H, where H = StabgxpaL, (). The PGL,-orbit
(PGL,) - z is then identified with the image Z of PGL,, in (G x PGL,)/H.
It thus remains to show that Z is closed in (G x PGL,,)/H. Indeed, Z is also
the image of the product PGL, H, which is a closed subgroup of G x PGL,
(because PGL,, is normal; see [H, §7.4]). Since PGL,, H is a closed subgroup
of G x PGL,, containing H, its image Z in (G x PGL,,)/H is closed; see [H,
§12.1]. O

8.2. Corollary. Let G be an algebraic group, and let X be an irreducible
G x PGLy,-variety which is G x PGLy-generically free. Then the induced
action of G on k,(X) is algebraic.

Proof. By |[RV3, Theorem 1.2(1)] X has a stable affine birational model
as a G x PGL,-variety. The desired conclusion is now immediate from
Lemma [8.1. (]

The criterion for a geometric action to be algebraic given by Lemma 8.1
can be further simplified by considering the G-action on the center of A, as
in Section [7.

8.3. Proposition. Consider a geometric action of an algebraic group G on
a central simple algebra A, and let W be a birational model for the G-action
on Z(A). Then the G-action on A is algebraic, provided one of the following
conditions holds:

(a) The G-action on W is generically free.

(b) The normalizer H = Ng(Gy,) is reductive for w € W in general
position.

(¢) G is reductive and the stabilizer G, is reductive for w € W in general
position.

(d) G is reductive and W has a stable affine model as G-variety.

Proof. Let X be an associated G x PGL,-variety for the G-action on A.
Recall that the PGL,-action on X is generically free and W is the rational
quotient X/PGL,. In view of Lemma 8.1} it suffices to show that X has a
stable affine model as a G x PGL,-variety.

(a) Immediate from Corollary 8.2/ and Lemma [7.1.

(b) Choose x € X in general position, and set w = 7w(z) € W. Let
Sy = StabgxpaL, (). We claim that Ngxpgr, (Sz) is reductive for x € X
in general position. The desired conclusion follows from this claim by [RVj,
Theorem 1.2(ii)].

The proof of the claim is based on two simple observations. First of all,
if H = Ng(Gy,) is reductive, then so is S; ~ G. Indeed, the unipotent
radical of R, (Gy) is characteristic in G,,, hence, normal in H. Since H is
reductive, this implies Ry (Gy,) = {1}, i.e., Gy, is reductive, as claimed.
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Secondly, by Lemma [7.1, the normalizer Ngxpgr, (Sz) is a priori con-
tained in H x PGL,, i.e.,

NexpaL, (Sz) = NuxpaL, (Sz) -

Since both H x PGL,, and S, are reductive, the normalizer Ny pgr, (Sz)
is reductive as well; see [LR, Lemma 1.1]. This concludes the proof of the
claim and thus of part (b).

(c) If G and G, are both reductive then using [LR), Lemma 1.1] once again
we see that Ng(Gy,) is also reductive. Part (c¢) now follows from part (b).

(d) After replacing W by a stable affine model, we see that for w € W in
general position, the orbit Gw ~ G/G,, is affine, so that G,, is reductive by
Matsushima’s theorem, see [PV, Theorem 4.17]. Now use part (c). O

8.4. Corollary. Let G be an algebraic group whose connected component is
a torus. Then every geometric action of G on a central simple algebra is
algebraic.

Proof. In this case, every subgroup of G is reductive, so that part (c) of
Proposition 8.3 applies. O

9. PROOF OF THEOREM 1.5

9.1. The generic torus. Let T be a maximal torus in GL,, and let N
be the normalizer of the image of T" in PGL,. Since PGL,, permutes the
maximal tori in GL,, transitively, one can think of PGL, /N as the variety
of maximal tori of GL,, (or equivalently, of PGL,). We briefly recall how
one can construct a PGL,-equivariant rational map

w: M, --» PGL, /N

which sends a non-singular matrix a € M,, with distinct eigenvalues to the
unique maximal torus in GL,, containing . The map 7 is sometimes called
the generic torus of GLy,; cf. [Vos, 4.1].

Denote by Gr(n, n?) the Grassmannian of n-dimensional subspaces of M,,.
The action of PGL,, on M,, induces a regular action of PGL, on Gr(n,n?).
Define a rational, PGL,-equivariant map 71 : M,, --» Gr(n,n?) by sending
a non-singular matrix o with distinct eigenvalues to Span(1,q,...,a" ).
The unique maximal torus T{,) of GL; containing « is characterized by
Span(T(,)) = m1(a). The image of m; consists thus of a single PGL-orbit O.
Since the stabilizer of both 7" and Span(T') is N, gN + g Span(T)g~! defines
an isomorphism my: PGL, /N — O. Here T is the maximal torus in GL,
which we chose (and fixed) at the beginning of this section and N is the
normalizer of the image of T in PGL,. Now w = 7r2_1 om is a PGL,-
equivariant rational map M, --+ PGL, /N such that for any « as above,
7(a) = gN if and only if gTg~! is the unique torus of GL,, containing c.

9.2. Proof of Theorem [1.5. (a) Suppose A = k,(X) has a G-invariant
maximal étale subalgebra F. It follows easily from the primitive element
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theorem that there is an a € F so that £ = Z(A)[a]. Choose one such
a. By Lemma [2.10, a has distinct eigenvalues. Adding some constant in
k to a, we may assume that the eigenvalues of a are distinct and nonzero.
Then for z € X in general position a(x) is a matrix whose eigenvalues are
distinct and nonzero. We now define a rational map ¢: X --» PGL, /N by
¢(x) = m(a(x)). This map is PGL,-equivariant by construction. Moreover,
for every g € G, g(a) € E commutes with a. Thus, for z € X in general
position, a(z) and g~!(a)(z) = a(g(x)) lie in the same maximal torus, and
consequently, p(z) = ¢(g(x)).

Conversely, suppose there exists a G x PGL,-equivariant rational map
X --» PGL,/N. After removing the indeterminacy locus from X, we may
assume this map is regular. We may also assume that PGL,, acts freely on
X. Let Xy be the preimage of the coset N € PGL,,/N in X. Note that X
is G x N-invariant, that X = PGL,, - Xy, and that the N-action on Xj is
generically free. Moreover, X is birationally isomorphic as PGL,,-variety to
PGL,, *n Xo, see [P, Theorem 1.7.5].

Let A ~ A™ be the variety of diagonal n x n-matrices. By [Rel, Proposition
7.1] there exists an N-equivariant rational map a: Xy --+ A whose image
contains a matrix with distinct eigenvalues. (Note that here we use the fact
that A is a vector space and N acts on it linearly.) This rational map then
naturally extends to a PGL,-equivariant rational map

X ~ PCL, #y X --» PCQL, ¥y A ~ M,,

induced by (g,z0) — (g,a(zg)). By abuse of notation, we denote this ex-
tended rational map by a as well.

We now view a as an element of A = k,(X). Since the image of a contains
a matrix with distinct eigenvalues, Lemma 2.10 tells us that E = Z(A)[a] is
a maximal étale subalgebra of A. It remains to show that E is G-invariant.
To do this it suffices to prove that g(a) € E for every g € G. Since E =
CA(F), we only need to establish that g(a) commutes with a, i.e., that the
commutator b = [a, g(a)] equals 0. Indeed, for any = € X,

b(z) = [a(x), alg™ " ()] = [a(z),a(y)],

where y = g~!(z) € Xo. By our construction a maps every element of Xg to
a diagonal matrix. In particular, a(x) and a(y) commute, and thus b(z) = 0
for every x € Xy. Since b is a PGLy-equivariant rational map X --+ M,
and since PGL,, - Xy = X, we conclude that b = [a, g(a)] is identically zero
on X, as claimed. This completes the proof of part (a).

(b) The action of GxPGL,, on PGL,,/N has stabilizer of the form GxN(.5)
at every point, where S is a maximal torus of PGL,. Part (b) is now an
immediate consequence of part (a).

(c) Assume that A has a G-invariant maximal étale subalgebra. Let x € X
be a point in general position. We claim that

(9.3) dim(Gz NPGL,x) <n—1.
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Indeed, Gx N PGL,z is easily seen to be the image of the morphism from
StabgxpaL, (z) to X given by (g,p) — pz. Since Stabgxpcr, () € G X
N(Ty) by part (b), we conclude that

dim(Gz NPGL,z) < dim N(7,) =n—1

as claimed.

Consider the rational quotient map 7: X --+ X/PGL,. We may assume
without loss of generality that 7 is defined at . Now restrict 7 to the (well-
defined) rational map mgo,: G --» X/PGL,, where G is the connected
component of G. For y € G in general position, the fiber over 7o, (y) is
G2z NPGL,y = G’ N PGL,y. By (9.3),

dim(Gz) = dim(G%z) < dim(X/PGL,) 4+ n — 1
= dim(X) — dim(PGL,) + n — 1
=dim(X) —n*+n.
So dim(X) — dim(Gx) > n? — n. This proves part (c). O
10. PROOF OF THEOREM (1.7

We begin by spelling out what it means for an algebraic group action on
a central simple algebra to be split in terms of the associated variety.

10.1. Lemma. A geometric action of an algebraic group G on a central
simple algebra A of degree n is G-split in the sense of Definition (1.6 if
and only if its associated G x PGL,-variety is birationally isomorphic to
Xo x PGL,,, for some G-variety Xg.

Here G acts on the first factor and PGL, acts on the second factor by
translations.

Proof. Suppose X = Xy x PGL,. Then we have the following G-equivariant
isomorphisms,

RMapspgr, (X, M,,) ~ RMaps(Xo, M,,) ~ M, (k) @, k(Xo) ,

where the first isomorphism is given by f + f|x,x1pgy, for every PGL,-
equivariant rational map f: X --+ M,. In other words, the induced G-
action on A = k(X)) is G-split in the sense of Definition 1.6l

Conversely, suppose a geometric G-action on A is G-split. Denote the
associated G x PGL,-variety by X. Let Xg = X/PGL, be the rational
quotient of X by the PGL,-action. Note that k(Xo) = Z(A). Then, as we
saw above, RMapspqy, (Xo X PGLy,M,,) is G-equivariantly isomorphic to
M, (k) ®k k(Xo), which is G-equivariantly isomorphic to A (because A is
G-split). By Corollary 3.2, we conclude that X is birationally isomorphic to
Xo x PGL,,. O

10.2. Corollary. Consider a geometric action of an algebraic group G on
a central simple algebra A, with associated G x PGL,,-variety X. Then for
any G-variety Xo the following are equivalent:
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(a) L =k(Xo) is a G-splitting field for A.
(b) There exists a dominant rational map f: Xo x PGL,, --+ X which
1s G x PGL,,-equivariant.

Here GG acts on the first factor of Xy x PGL,, and PGL,, acts on the second
factor by translations, as in Lemma [10.1.

Proof. (a) = (b). The G-action on A" = A ®y4) L ~ M, (k) ® L is
geometric, with associated variety X’ = Xy x PGL,,; see Lemma 10.1. The
embedding j: A — A’ induces a G x PGL,-equivariant dominant rational
map jx: X' --» X; see Lemma 3.1.

(b) = (a): Let X’ = Xy x PGL,. By Lemma 3.1, f induces a G-
equivariant embedding f*: A < A’ of central simple algebras, where A’ =
kn(X') ~ M,(k) ®k k(Xo); see Lemma 10.1. In other words, A’ is G-
equivariantly isomorphic to A ®z(4) k(Xo). O

10.3. Proof of Theorem |1.7. Let X be the associated G x PGL,,-variety for
the G-action on A. Consider the dominant morphism f: X x PGL,, — X
given by (z,h) — hz. If we let (g,h) € G x PGL,, act on X x PGL,, by
(g,h)- (z,h') = (gx, hh'), as in Lemma 10.1l and Corollary 10.2, then we can
easily check that f is G x PGLy-equivariant. By Corollary [10.2, we conclude
that L = k(X) is a G-splitting field for A. Moreover,

trdegy 4y L = trdegy (L) — trdegy, Z(A)
= dim(X) — dim(X/PGL,,) = n* — 1,
as claimed. Note that if G acts algebraically on A, we may assume that X
is affine by Theorem [5.3(b). O
11. MORE ON (G-SPLITTING FIELDS

In this section we discuss G-splitting fields in the case where G is a con-
nected group. Our main result is the following:

11.1. Proposition. Consider a geometric action of a connected algebraic
group G on a central simple algebra A of degree n. Then there exists an
affine G-variety Xo such that L = k(Xo) is a G-splitting field of A and

(11.2) trdegy(4) L = dim Stabgxpar, (x) = dim Stabg(w),

where x and w are points in general position in the associated G X PGL,,-
variety X and in the rational quotient W = X/PGL,, respectively. In
particular,

trdegZ(A) L S dlm(G) .

Note that for w € W in general position we have
dim Stabg(w) = dim(G) — dim(Gw)

(11.3) = dim(G) — (dim(W) — dim(W/G))..
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so that the integer dim Stabg(w) for w € W in general position, which
appears in the statement of Proposition [11.1]is well defined. Similarly, the
integer dim Stabgxpar, (z) for z € X in general position is also well-defined.
Since trdegyzaye Z(A) = dim(W) — dim(W/G), (11.2) can be restated in
algebraic terms as

(112" trdegy 4y L = dim(G) — trdegya)e Z(A) .

In general, the value for trdegy 4y L given in (11.2) and (I1.2() is the
smallest possible, see Remark [11.8. Our proof of Proposition [11.1! will rely
on the following lemma.

11.4. Lemma. Let H be a connected algebraic group and let V be an ir-
reducible H-variety. Then there exists an irreducible variety Y and an
H-equivariant dominant morphism Y x H — V such that dim(Y) =
dim(V/H).

The action of H on Y x H is induced by the trivial action on Y and by
the translation action on H.

Proof. See [P}, (1.2.2)] or [PV], Proposition 2.7], where the term quasi-section
is used to describe Y. g

11.5. Proof of Proposition 11.1. By Lemma 11.4 (with H = G x PGL,,)
there is a G x PGLy,-equivariant dominant morphism f: Y x (G xPGL,) —
X, where

(11.6) dim(Y) = dim(X/(G x PGL,)) = dim(W/G).

Note that since G x PGL,, acts trivially on Y, we can take Y to be affine. Set-
ting Xo =Y x G (as a G-variety) and applying Corollary [10.2, we conclude
that L = k(X() is a G-splitting field for A. By our construction, Xg =Y xG
is affine. Since the second equality in (11.2) is an immediate consequence
of Lemma [7.1, we only need to check that trdegy 4y L = dim Stabg(w) for
w € W in general position. Indeed,

trdegy 4y L = trdegy (L) — trdegy, Z(A) = dim(Xo) — dim(X/PGLy)
= dim(Y) 4+ dim(G) — dim(X/PGL,,)
= dim(G) — (dim(W) — dim(W/G)) = dim Stabg (w),
where the two last equalities follow from (11.6) and (11.3), respectively. O

Specializing Proposition [11.1] to the case of torus actions, we recover a

result which was proved in [V3] for algebraic actions in arbitrary character-
istic.
11.7. Corollary. Suppose a torus T acts geometrically (or equivalently, al-
gebraically; cf. Corollary|8.4) on a central simple algebra A. Let H be the
kernel of the T-action on Z(A). Then there exists a T-variety Xo such that
L = k(Xo) is a T-splitting field for A and trdegy 4y L = dim(H).
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Proof. Let X be the associated G x PGL,,-variety and W = X/PGL,, as be-
fore. By Lemma 2.4, applied to the T-action on W, we have H = Stabp(w)
for w € W in general position. The corollary now follows from Proposi-
tion [1T.1 O

11.8. Remark. If the T-action on A is faithful then the value of trdegy(4) L
given by Corollary [11.7 is the smallest possible. Indeed, since the T-action
on both A and L = k(X)) is algebraic (cf. Corollary 8.4), [V3, Theorem 2(b)]
tells us that trdegy 4y L > dim(H) for every T-splitting field of the form
L = k(Xp), where Xy is a T-variety. O

11.9. Remark. Suppose a torus T  acts geometrically (or equivalently, al-
gebraically; cf. Corollary 8.4) on a division algebra D. Then [V3, Theorem
2(c)] asserts that D has a T-splitting field L of the form k(Xy) such that
[L:Z(D)] < cc.

We now give an alternative proof of this result based on Corollary [11.7.
Let Ty C T be the kernel of the T-action on D. After replacing T by
T /Ty, we may assume the action is faithful. Let H be the kernel of the
T-action on Z(A), i.e., the subgroup of T acting by inner automorphisms.
By Corollary (A2, H is a finite group. By Corollary [11.7, there exists a
T-splitting field L = k(Xo) such that trdegypy L = dim(H) = 0. Since
L is finitely generated over k (and hence, over Z(D)), we conclude that
[L:Z(D)] < oc. O

12. AN EXAMPLE: ALGEBRAIC ACTIONS OF UNIPOTENT GROUPS

In this and the subsequent three sections we will present examples, il-
lustrating Theorems (1.4, 1.5, and [1.7. We begin by applying Theorems [1.4
and [I.5 in the context of unipotent group actions on division algebras.

12.1. Proposition. Let U be a unipotent group acting algebraically on a
finite-dimensional division algebra D. Then DY is a division algebra of the
same degree as D.

Proof. Say D has degree n, and let X be the associated U x PGL,-variety.
By Lemma (7.1}, for # € X in general position, Staby «xpgr, () is a unipotent
group (it is isomorphic to a subgroup of U). Consequently, the projection
H, of this group to PGL, is unipotent.

On the other hand, by [V3, Proposition 7], D has a U-invariant maximal
subfield. In view of Theorem [1.5(b), this implies that H, is a subgroup
of the normalizer of a maximal torus in PGL,; in particular, H, has no
non-trivial unipotent elements. This is only possible if H, = {1}, i.e., if

StabUXpGLn(x) CU x {1}
The desired conclusion now follows from Theorem [1.4(a). O

12.2. Remark. The condition that D is a division algebra is essential here.
Suppose G = U is a non-trivial unipotent subgroup of PGL,, acting on A =
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M, (k) by conjugation, as in Example 3.3. Since A is a finite-dimensional
k-vector space, this action is easily seen to be algebraic. On the other
hand, the fixed algebra AY is not a central simple algebra of degree n; cf.
Example 6.2(a) (see also Remark 6.4).

13. AN EXAMPLE: THE GL,,-ACTION ON UD(m,n), m > n?

We now return to the GL,,-action on the universal division algebra A =
UD(m,n), described in Example [3.4. In this section we will assume that
m > n?; in the next section we will set m = n = 2. The case where
m < n? — 1 will be considered in [RV5].

13.1. Proposition. Let A = UD(m,n), where m > n?. Then
(a) AGLm =k
(b) trdegzay L > n?—1 for every GL,,-splitting field L of A of the form
L = k(Xy), where Xq is a GLy,-variety.

Part (b) shows that the value of trdegy 4y L given by Theorem [1.7 is
optimal for this action.

Proof. The variety (M,,)"™ is an associated GL,, x PGL,,-variety for the GL,,-
action on A; see Example 3.4. The key fact underlying the proof of both
parts is that for m > n?, (M,)™ has a dense GLj,-orbit; denote this orbit
by X. Since the actions of GL,, and PGL,, commute, X is PGL,-stable,
and therefore is also an associated GL,,, x PGL,,-variety for the GL,,-action
on A.

(a) By Remark 6.1, AL = RMapspqr,, (X/GLy, My,). Since X is a sin-
gle GL,,-orbit, the rational quotient X/GL,, is a point (with trivial PGL,,-
action). Clearly, every PGL,-equivariant rational map f: {pt} --» M, is
regular and has its image in the center of M,,. In other words,

ACLm — RMapspgr, (X/GLnm, M,,) = RMaps({pt}, k) = k,
as claimed.

(b) By Corollary [10.2/ there exists a dominant rational map f: Xy X
PGL, = X’ --» X. Choose 2/ € X', so that f is defined at 2’ and set
x = f(2'). Denote by S and S’ the stabilizers in GL,, x PGL,, of x and
x’, respectively. Note that S’ C S C GL,, x PGL,,. Since GL,, acts tran-
sitively on X, the projection of S to PGL, is all of PGL,. On the other
hand, we clearly have S" C G x {1}. Consequently, dim(S) — dim(S’) >
dim(PGL,) = n? — 1, and if O’ is a GL,, x PGL,-orbit in general position
in X', then dim(0’) — dim(X) > n? — 1. We thus conclude that

trdegy 4y L = trdeg, L — trdegy, Z(A)
= dim(X'/PCL,) — dim(X/PGL,)
= dim(X’) — dim(X) > dim(0’) — dim(X) > n® — 1,

as claimed. O
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13.2. Remark. One can show directly that the GL,,-splitting field L for
A = UD(m,n) given by Proposition [11.1! satisfies the inequality of Propo-
sition [13.1(b) (assuming, of course, that m > n?). Indeed, since G has a
dense orbit in W = X/PGL,,, for w € W in general position,

dim Stabgy,, (w) = dim(GL,,) — dim(W) = m? — dim(X/PGLy,,).
Since the associated variety X = (M,,)™ has dimension mn?, this yields
trdegy(4) L = dim Stabgr,, (w) = m(m — n?) 4+ nm?—-1)>n?-1,

as claimed.

14. AN EXAMPLE: THE GL2-ACTION ON UD(2,2)

In this section we will use Theorem 1.4/ to study the natural GL,,-action
on the universal division algebra UD(m,n), described in Example 3.4, for
m =n = 2. Note that this case exhibits some special features that do not
recur for other values of m and n > 2; see Proposition 13.1(a) (for m > n?)
and [RVj] (for m < n? —1).

14.1. Proposition. The fized algebra UD(2,2)%"2 is a non-central subfield
of UD(2,2) of transcendence degree 1 over k.

Recall from Example 3.4 that the GLg-action on UD(2,2) is defined as
follows. Denote by X and Y the two generic 2 x 2 matrices generating
UD(2,2). Then for g € GLa, we have g(X) = aX + Y, and g(Y) =
vX +6Y, where g7! = (‘,)Y‘ g ) Recall also that the associated variety for

the GLg-action on UD(2,2) is X = (Ms)2. In order to use Theorem [1.4] to
prove Proposition 14.1, we first need to determine the stabilizer in general
position for the GLy x PGLg-action on (Mz)?.

14.2. Lemma. For x € (Msy)? in general position, StabgL,xpGL, () is iso-
morphic to Z/27.

Proof. By Lemma 7.1, Stabgr,, xpGL, (%) is isomorphic to Stabgr, (v) for the
GLg-action on W = X/PGLsg, which is a birational model for the GLo-
action on the center Z of UD(2,2). In this case there is a particularly
simple birational model, which we now describe.

It is well known that Z is freely generated (as a field extension of k) by the
five elements tr(X), tr(Y), tr(X?), tr(Y?) and tr(XY); see [Pr{, Theorem
2.2]. In other words, the categorical (and, hence, the rational) quotient for
the PGLs-action is A®. The group GLs acts on A® linearly. In fact, the
representation of GLy on A® = X /PGLy can be decomposed as Vo @ Vs,
where V3 is the natural 2-dimensional representation (we can think of it as
Span,, (tr(X), tr(Y))) and V3 is its symmetric square. (We can think of V3
as Spany (tr(X?),tr(Y?),tr(XY)).)

The question we are asking now reduces to the following: What is the
stabilizer, in GLo, of a pair (v, q), in general position, where v is a vector in k2
and ¢ is a quadratic form in 2 variables? Indeed, since GLs acts transitively
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on non-degenerate quadratic forms in two variables, we may assume that
q is a fixed form of rank 2, e.g., ¢ = z2 + 32. The stabilizer of ¢ is thus
the orthogonal group O, and our question further reduces to the following;:
what is the stabilizer in general position for the natural linear action of O,
on k2? The answer is easily seen to be Z/27Z, where the non-trivial element
of Stabp, (v) is the orthogonal reflection in v; see Example 2.5 O

Proof of Proposition|14.1. Note that the GLo-action on X = (M3)? is gener-
ically free (it is isomorphic to the direct sum of 4 copies of the natural
2-dimensional representation of GLgy). Thus the image of the stabilizer
Stabgr,xPGL, (z) under the natural projection to the second factor is Z/27Z.
Since this image is non-trivial, Theorem 1.4(a) tells us that UD(2,2)%"2
is not a division subalgebra of UD(2,2) of degree 2. In other words, it
is a subfield of UD(2,2). On the other hand, Theorem [1.4(b) tells us that
UD(2,2)%"2 is not contained in the center Z of UD(2,2). Indeed, every sub-
group of PGLy of order 2 is contained in a torus. Hence, Stabgr,, xpar, (%) is
contained in GLo x T7,, where T is a maximal torus of PGLs. It follows from
Theorem [1.4(b) that the subfield UD(2,2)%2 is not central in UD(2,2).
Finally, note that UD(2,2)%"2 is algebraic over Z%2, since the minimal
polynomial of any element of UD(2,2)%™2 over Z is unique, so must have
coefficients in ZCL2. Tt follows from Lemmas [7.1 and [14.2 that the GLo-
action on W = X/PGLy has a finite stabilizer in general position. Hence the
transcendence degree of ZG2 = k(X /PGLy)%2 (over k) is dim(X/PGLy) —

14.3. Remark. This argument also shows that UD(2,2)%2 is a division
algebra of degree 2.

14.4. Remark. One can exhibit an explicit non-central GLo-fixed element
of UD(2,2) as follows. Let

S3(A1, Az, A3) = Z (=17 Ag(1)As(2)Ao(3)

oES3

be the standard polynomial in three variables; cf., [Roj, p. 8]. Set a =
[X,Y] = XY —YX and b = S3(X,Y,a). Using the fact that [4;, A3] and
S3(A1, Ag, A3) are multilinear and alternating, it is easy to see that for
g € GLa, g(a) = a/det(g) and g(b) = b/det?(g). Specializing X to (39)
and Y to ( (1)) an elementary computation shows that a and b specialize to
(_98) and (5 _9), respectively. This shows that det(a) # 0 and that b is
non-central. Now, b/det(a) is a non-central GLo-fixed element of UD(2,2).

Note also that ¢ and b are non-commuting SLo-invariant elements of
UD(2,2). This gives an explicit proof of Remark 14.3.
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15. AN EXAMPLE: A FINITE GROUP ACTION ON A CYCLIC ALGEBRA

In this section we present an example of a finite group action on a cyclic
algebra. This example illustrates Lemma [7.1 and Theorem [1.5/ and, in par-
ticular, shows that the converse to Theorem [1.5(b) is false.

Let p be a prime integer, and ( a primitive p-th root of unity in k. Let
P = k{z,y} be the skew-polynomial ring with generators x and y, subject
to the relation

zy = Cyx .
Let A be the division algebra of fractions of P; it is a central simple algebra
of degree n = p. Note that A is the symbol algebra (u,v), whose center is
Z(A) = k(u,v), where u = 2P and v = yP are algebraically independent over
k.
For (a,b) € (Z/pZ)?, define an automorphism o(, ) of A by

(15.1) O (@) ="z and o (y) = Cty.

These automorphisms of A form a group K which is isomorphic to (Z/pZ)?.
Next, we define an automorphism 7 of A by

(15.2) () =y and 7(y)= iyt
Note that 7 is well-defined since

T(@)r(y) = ¢T(y)7 (@) = y(yz) ™' — a7 = y((Tlay) T = a7t =0.

Elementary calculations show that 7 has order three, and that T_IO'(a’b)T =
O(h,—a—b)- Consequently, the subgroup G' of automorphisms of A generated
by K and 7 is a semidirect product G = K x H, where K ~ (Z/pZ)? and
H=(r)~7/3Z.

One easily checks that sending 7 to the matrix ((1) j) defines a represen-
tation

¢p: H — SLo(Z/pZ),

and thus an action of H on (Z/pZ)?.

Let X be the G x PGL,-variety associated to the action of G on the
central simple algebra A of degree n = p. That is, X is an irreducible
G x PGL,,-variety which is PGL,-generically free, and A is G-equivariantly
isomorphic to &y, (X).

15.3. Proposition. (a) For x € X in general position, there exists a
mazimal torus T, of PGL,, such that StabgxpcL, () € G x N(T}).
(b) A has a G-invariant mazimal subfield if and only if the 2-dimensional
representation ¢,: H — SLo(Z/pZ) is reducible over Z/pZ.
(¢) The converse to Theorem [1.5(b) is false.

Before we proceed with the proof, two remarks are in order. First of
all, every finite group action on a central simple algebra is automatically
geometric (and algebraic).
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Secondly, an explicit model for X is not immediately transparent (a de-
scription of X as a PGL,-variety can be found in [RY, Lemma 5.2]). On
the other hand, the G-variety W associated to the G-action on the center
of A (see the beginning of Section [7) is easy to describe: We can take W
to be the two-dimensional torus W = (k*)? = Spec(k[u,v,u"t,v™1]), where
as before, u = 2P and v = yP. It follows from (15.1) and (15.2) that the
K-action on W is trivial, and that the action of 7 is induced from 7(u) = v,
T(v) = (@ ly P =e-ulv7! wheree=1ifp>2and e= —1if p=2.

We now proceed with the proof of Proposition [15.3.

Proof. (a) Since G is a finite group, Stabg (w), for w € W in general position,
is precisely the kernel of the G-action on W. We claim that the kernel
is equal to K. That it contains K is immediate from (15.1), since every
element of K preserves both v = 2P and v = yP. On the other hand, the
H-action on W is faithful, because H is a simple group acting nontrivially
on Z(A) = k(W). We have thus shown that Stabg(w) = K for w € W in
general position.

By Lemma [7.1, Stabgxpar, (r) ~ K ~ (Z/pZ)? for = in general position
in X. In particular, the projection of this group to PGL,, is a finite abelian
subgroup of PGL,,. By [SS, I1.5.17], every finite abelian subgroup of PGL,,
lies in the normalizer of a maximal torus T,,. Thus

StabePGLn (x) C G x N(Tx),

as claimed.

(b) First we will describe the K-invariant maximal subfields of A, then
determine which ones of them are also invariant under H. Note that since
A is a division algebra of prime degree p, every nontrivial field extension L
of the center Z(A) is a maximal subfield of A.

The group K ~ (Z/pZ)? acts trivially on Z(A); its action on A decom-
poses as a direct sum of p? one-dimensional character spaces SpanZ( A)(xiyj ),
where 0 < 4, < p— 1. These spaces are associated to the p? distinct charac-
ters of (Z/pZ)?%; hence, every K-invariant Z(A)-vector subspace L contains
x'y’ for some 0 < 4,5 < p — 1. Moreover, if L is a K-invariant maximal
subfield of A then Z(A)(z'y’) C L, where 0 <i,5 < p—1 and (i, 5) # (0,0).
Since [L : Z(A)] = p and 'y’ ¢ Z(A), we conclude that L = Z(A)(z'y’).
We will denote Z(A)(z'y’) by L j.

Now suppose (i, j) and (r, s) are non-zero elements of (Z/pZ)?. We claim
that L jy = L) if and only if (4,7) and (r,s) are proportional, i.e., if
and only if they lie in the same 1-dimensional Z/pZ-subspace of (Z/pZ)>.
Indeed, if (i,j) and (r, s) are proportional then up to a multiple from Z(A),
z'y/ and 2"y*® are powers of one another. Since neither one is central, they
generate the same maximal subfield. Conversely, since a maximal subfield
has dimension p over Z(A), it can contain only p — 1 distinct 2%y’ with
(0,0) # (i,5) € (Z/pZ)?. Since there are p — 1 nonzero Z/pZ-multiples of
(i,7), this proves the claim.
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We have thus shown that the K-invariant maximal subfields of A are
in bijective correspondence with 1-dimensional Z/pZ-subspaces of (Z/pZ)?:
a l-dimensional subspace V corresponds to the maximal subfield Ly =
Z(A)(x'y?), where (i, ) is a non-zero element of V.

It is clear from (15.2) that 7(Ly) = L), where 7 acts on (Z/pZ)* via the
representation ¢,. To sum up: A has a maximal G-invariant subfield <= 7
preserves one of the K-invariant maximal subfields Ly <= (Z/pZ)? has a 7-
invariant 1-dimensional Z/pZ-subspace V C (Z/pZ)? <= the representation
¢p of H is reducible.

(c) In view of parts (a) and (b) it suffices to show that the representation
¢p of H is irreducible if and only if p = 2 (mod 3). If p = 3, ¢, is reducible,
since in this case (,%) is an eigenvector for the matrix ((1) j ) Now assume
that p # 3. Then Maschke’s theorem implies that ¢,(7) is diagonalizable
over the algebraic closure of Z/pZ. The eigenvalues of ¢,(7) are then nec-
essarily third roots of unity, including at least one primitive third root of
unity.

Thus the action of H on (Z/pZ)? is reducible <= ¢, (1) is diagonalizable
over Z/pZ <= the eigenvalues of ¢,(7) belong to Z/pZ <= 7Z/pZ contains
a primitive third root of unity <= 3 |p — 1.

Consequently, the representation ¢, irreducible if and only if p = 2
(mod 3). O

APPENDIX A. INNER ACTIONS ON DIVISION ALGEBRAS

In this appendix we continue to assume that k is an algebraically closed
base field of characteristic zero, and that every division algebra is finite-
dimensional over its center, which in turn is a finitely generated field ex-
tension of k. (Some of the lemmas below hold in greater generality; see
Remark [A.5l) Our main result is the following theorem.

A.1. Theorem. Let G be an algebraic group acting on a division algebra
D of degree n by inner automorphisms. Then the kernel N of this action
contains the connected component G° of G, and G/N is a finite abelian
n-torsion group.

Here the algebraic group G is treated as an abstract group; in particular,
the (inner) action of G on D is not assumed to be algebraic or geometric.
Consequently, our proof has a rather different flavor from the other argu-
ments in this paper. Instead of using algebraic geometry, we exploit, in the
spirit of [RVy], the fact that connected algebraic groups are generated, as
abstract groups, by their divisible subgroups. Note that the special case of
Theorem A.1, where G is a torus is proved in [RV;], Corollary 5.6].

Before we prove Theorem |A.1, we deduce an easy consequence.

A.2. Corollary. Let G be an algebraic group acting faithfully and geomet-
rically on a division algebra D of degree n. Then the normal subgroup of G
acting by inner automorphisms is a finite abelian n-torsion group.
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Proof. Since G acts geometrically, the normal subgroup H of G consisting of
the elements acting by inner automorphisms (i.e., acting trivially on Z(D))
is closed, so itself an algebraic group. Now apply Theorem|A.1/to the faithful
action of H on D. (]

We now turn to the proof of Theorem |A.1, beginning with two lemmas.

A.3. Lemma. The group of inner automorphisms of a division algebra con-
tains no divisible subgroups.

Proof. Assume to the contrary that there is a nontrivial divisible group H
acting faithfully on a division algebra D by inner automorphisms. By [RV,
Corollary 3.2], the torsion subgroup of H acts trivially on D, so it must be
trivial. Hence H is a torsion-free divisible group, i.e., a direct sum of copies
of (Q,+); cf. [Sc, 5.2.7]. By [RV, Lemma 3.3(a)], there is a subfield L of D
containing the center K of D such that H embeds into L*/K*. Thus (Q, +)
embeds into L*/K*. By [RVy, Lemma 5.5]%, this implies that K is not
finitely generated over the algebraically closed field k, a contradiction. [J

A.4. Lemma. Let D be a division algebra of degree n whose center K con-
tains all roots of unity.

(a) Suppose x € D has the following properties: det(x) =1, and 2™ € K
for some integer m > 1. Then x € K.

(b) If G is a finite group acting faithfully on D by conjugation, then G
18 an abelian n-torston group.

As the statement of the lemma implies, here K is not assumed to contain
an algebraically closed base field.

Proof. (a) Suppose 2™ = a for some integer a € K. Taking the determinant
(i.e., reduced norm) on both sides, we obtain a™ = 1. Thus, after replacing
m by mn, we may assume z™ = 1. Since the polynomial f(t) = t™ —1 splits
over K, we conclude that xz € K.

(b) Suppose g € G acts by conjugation by dy. Then for every g, h € G, the
commutator x = dgdhdg_ldgl satisfies the conditions of part (a), where m can

be taken to be the order of ghg~'h~! in G. Thus = € K and consequently,
g and h commute in G. This shows that G is abelian.

To prove that G is n-torsion, choose g € G and consider the element
x = (dg)"/ det(dy). Once again, z satisfies the conditions of part (a), with
m the order of ¢" in G. Thus x € K, and consequently, ¢" = 1 in G, as
claimed. O

3We take the opportunity to correct an error in the proof of [RVil, Lemma 5.5]. The
third paragraph of that proof should read: “If 7; o ¢ is not injective, its image is a torsion
group. Since 7 o ¢ is injective, m;(¢#(Q)) is not torsion for some i. Hence, for this ¢,
1 = m; o ¢ is injective, so that 1(Q) is nontrivial. Thus by the argument in the previous
paragraph, ¥(Q) is not contained in K*.”
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Proof of Theorem|A.1. Let S be a torus of G, or a closed subgroup which is
isomorphic to (k,+). We claim that S C N. Since S is a divisible group, so
is S/N NS; cf. [Sc, 5.2.19]. Since S/N NS acts faithfully on D, Lemma [A.3
tells us that S/N NS = {1}, ie., S C N, as claimed.

Now recall that every element g € G° has a Jordan decomposition product
g = gsgu, where g is semisimple and g, is unipotent; cf., e.g., [H, Theorem
15.3]. Since g; lies in a torus of G, g € N. Similarly, g, € N; cf., e.g., [H,
Lemma 15.1C]. Thus G® C N, as claimed. The desired conclusion now
follows from Lemma [A.4. O

A.5. Remark. Lemmas|A.3/ and [A.4/ also hold in prime characteristic, and
so does Theorem [A.1, provided G is reductive (since then G is generated
as abstract group by the tori it contains).

APPENDIX B. REGULAR ACTIONS ON PRIME PI-ALGEBRAS

It is a consequence of Posner’s theorem that every prime Pl-algebra R
of PI-degree n can be realized as a subalgebra of n x n-matrices over some
commutative domain C. Given an action of a group G on R, it is natural
to ask whether one can always find such an embedding R — M,,(C) which
is G-equivariant for some action of G on M, (C). We now deduce from
Theorem [1.7/a rather strong affirmative answer in the case of regular actions
of algebraic groups (see Definition [5.1) on prime PI-algebras. Such actions
were extensively studied in [V;] and [Vq].

B.1. Proposition. Let R be a prime Pl-algebra of Pl-degree n, which is
finitely generated as k-algebra. Let G be an algebraic group acting reqularly
on R. Then there is a finitely generated commutative k-algebra C which is a
domain, and a regular action of G on C such that R embeds G-equivariantly
into M,, ® C. Here G acts trivially on M,,.

In the case where G is a torus, this assertion was proved in [V3, Corol-
lary 9].

Proof. Let A be the total ring of fractions of R; it is a central simple algebra
of degree n, and G acts algebraically on A. Note that since R is finitely
generated as k-algebra, the center of A is a finitely generated field extension
of k. By Theorem 1.7, there is a G-splitting field L = k(X) for A, where X
is an affine G-variety, i.e., the G-action on L is algebraic; cf. Definition 5.2.
This gives rise to a G-equivariant embedding ¢: R — M,, ®;, L = A’. Hence
G also acts algebraically on A’, so that A’ contains a unique largest subalge-
bra Sy on which G acts regularly, and which contains every subalgebra of
A’ on which G acts regularly. Denote by Sy, the corresponding subalgebra
of L. Since Sy contains M,, ®;. k, it follows that Sy = M,, ®; Sr. Since
G acts regularly on ¢(R), p(R) C M,, ® Sr. Since R is finitely generated,
and since G acts regularly on Sy, there is a finitely generated G-invariant
subalgebra C' of Sy, such that p(R) C M,, ® C. O
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