A NON-SPLIT TORSOR WITH TRIVIAL FIXED POINT
OBSTRUCTION

Z. REICHSTEIN AND B. YOUSSIN

ABSTRACT. Let G be a linear algebraic group and X be an irreducible
algebraic variety with a generically free G-action, all defined over an
algebraically closed base field of characteristic zero. It is well known that
X can be viewed as a G-torsor, representing a class [X] in H'(K,G),
where K is the field of G-invariant rational functions on X. We have
previously shown that if X has a smooth H-fixed point for some non-
toral diagonalizable subgroup of G then [X] # 1. It is natural to ask if
the converse is true, assuming G is connected and X is projective and
smooth. In this note we show that the answer is “no”.

1. INTRODUCTION

Let G be a linear algebraic group defined over an algebraically closed base
field k of characteristic zero. By a G-variety we shall mean an algebraic va-
riety X with a regular action of G (defined over k). We shall say that X
is generically free if G acts freely on a dense open subset of X. Birational
isomorphism classes of G-varieties X with k(X)® = K are in 1-1 correspon-
dence with H'(K, G); see [6, 1.3]. We will call X split if one (and thus all)
of the following equivalent conditions hold.

e X represents the trivial class in H!(K, G).

e X is birationally isomorphic to Y x G as a G-variety. Here Y is an
algebraic variety with trivial G-action, and G acts on Y x G by left
translations on the second factor.

e The (rational) quotient map X --» X/G has a rational section;

cf. [6, 1.4]. We shall say that a subgroup of G is toralif it lies in a subtorus of
G and non-toral otherwise. The starting point for this note is the following:

Proposition 1. ([10, Lemma 4.3]) Let X be a generically free G-variety. If
X has a smooth H-fixed point for some non-toral diagonalizable subgroup of
H of G, then X is not split.

In other words, the presence of a smooth H-fixed point on X is an ob-
struction to X being split; we shall refer to it as the fixed point obstruction.
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In the case where H is a non-toral finite abelian subgroup of GG, we have de-
scribed this obstruction in a more quantitative way by giving lower bounds
on the essential dimension [9, Theorem 1.2], splitting degree [10, Theorem
1.1], and the size of a splitting group of X [10, Theorem 1.2] in terms of H.
(Recall that a split variety has essential dimension 0, splitting degree 1 and
splitting group {1}.)

The question that remained unanswered in [9] and [10] is whether or not
the converse to Proposition 1 is also true. Of course, in stating the converse,
we need to assume that the G-variety X is smooth and complete; otherwise
the fixed point obstruction may not be “visible” because it may “hide” in
the ‘boundary” or in the singular locus of X. Fortunately, every class in
H'(K,G) can be represented by a smooth complete (and even projective)
G-variety; see [10, Proposition 2.2]. Moreover, the fixed point obstruction
is detectable on any such model in the following sense. Suppose X is a
generically free G-variety and Y is a smooth complete G-variety birationally
isomorphic to X. If X has a smooth H-fixed point for some non-toral
diagonalizable subgroup H C G then so does Y; see [9, Proposition A2].
We also remark that if H is toral then X # () by the Borel Fixed Point
Theorem [1, Theorem 10.4]; thus only non-toral subgroups H are of interest
here. To sum up, we will address the following:

Question 2. Is the fixed point obstruction the only obstruction to splitting?
In other words, if X is a smooth projective generically free G-variety such
that XH = () for every diagonalizable non-toral subgroup H C G, is X
necessarily split?

Example 3. If G is a finite group then the answer is “no”, because G can
be made to act freely on an irreducible smooth projective curve X. Over
C such a curve can be constructed as follows. Suppose G is generated by n
elements, ¢1,...,9,. Let Y be a curve of genus n. Then the fundamental
group 71(Y) is given by 2n generators aq, ..., an, b1, ..., b, and one relation

n
H aibiai_lbi_l =1.
i=1

The surjective homomorphism 71 (Y) — G, sending a; to g; and b; to 1,
gives rise to an unramified G-cover X — Y of Riemann surfaces. By the
Riemann Embedding Theorem, X is a smooth projective algebraic curve
with a free G-action. The same argument goes through over any alge-
braically closed base field k of characteristic zero, provided that m(Y) is
interpreted as Grothendieck’s algebraic fundamental group of Y see [4, Ex-
pose XIII, Corollaire 2.12]. O

Question 2 becomes more delicate if we G is assumed to be connected.
The purpose of this note is to show that under this assumption the answer
is still “no”. Our main result is the following;:

Theorem 4. Let p be an odd prime. Then there exists a smooth projective
generically free PGLy-variety X with the following properties:
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(a) X is not split,
(b) X" =0 for every diagonalizable non-toral subgroup H of PGL,,
(c) k(X)PCr s a purely transcendental extension of k.

The rest of this paper is devoted to proving Theorem 4. In Sections 2
and 3 we reduce the proof to the question of existence of a certain division
algebra of degree p; see Proposition 7. Our construction of this algebra in
Section 4 relies on a criterion of Fein, Saltman and Schacher [2].

2. NONTORAL SUBGROUPS OF PGL,

Consider the p x p-matrices

1 0 ... 0 000 1

0 ¢ 0 10 0 0

(1) o= 0 and 7=|[ 0 1 0 0
p—1 -

0.0 0 ¢ 00 ... 1 0

where ( is a primitive pth root of unity in k. Note that
oT =(T0 .

Thus the elements o,7 € PGL, represented, respectively, by o and 7, gen-
erate an abelian subgroup; we shall denote this subgroup by A. Clearly
A ~ (Z/pZ) x (Z/pZ). It is well known that, up to conjugacy, A is the
unique non-toral elementary abelian subgroup of PGL,; cf., e.g., [3, Theo-
rem 3.1]. In the sequel we will need to know that A is in fact the unique
diagonalizable subgroup with this property. For lack of a suitable reference,
we give a direct elementary proof of this fact below.

Lemma 5. Let H be a non-toral diagonalizable subgroup of PGL,, where p
is a prime. Then H is conjugate to A.

In the sequel we will only need this lemma for odd p; however, for the
sake of completeness, we will treat the case p = 2 as well.

Proof. Let H be the preimage of H in SL,. Then for every z,y € H ,
zyz~ly~! is a scalar matrix in SL,, i.e., a matrix of the form f(x,y)I,
where [ is the p X p identity matrix and f(z,y) is a pth root of unity.
If f(z,y) = 1 for every z,y € H then H is a commutative subgroup of
SL,, consisting of semisimple elements. This implies that H is toral in SL,
(see, e.g., [1, Proposition 8.4]) and thus H is toral in PGL,, contradicting
our assumption. Therefore, f(z,y) is a primitive pth root of unity for some
T,y € H. Replacing x by z* for an appropriate i, we may assume f(z,y) = C,
ie.,

(2) xy = (yx .
Suppose v is an eigenvector of z with associated eigenvalue A # 0. Then (2)
shows that v; = y'(v) is an eigenvector of x with eigenvalue A(*. These
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eigenvalues are distinct fori = 0, 1,...,p—1, and hence, the eigenvectors v =
V0, V1, - - . , Up—1 form a basis of kP. Moreover, since yP(v) is an eigenvector for
x with eigenvalue A and the A-eigenspace of x is 1-dimensional, y?(v) = cvg
for some ¢ € k. Writing = and y in the basis vy, ..., v,—1, we see that

x=MXo and y=diag(c,1,...,1)7,
where o and 7 are as in (1). Since det(y) = 1, we see that ¢ = (—1)P*1. We
now consider two cases:

(i) p is odd. Then ¢ =1 and z,y € SL), represent, respectively, & and 7
in PGL,.

(ii) p = 2. Here ¢ = —1, and in the basis vg, vy,

A0 0 -1
x:)\0:<0 _)\> and y:(l 0)

Let g = diag(1,), where 7 is a primitive 4th root of unity. Then gzg~
gyg~ "' represent, respectively, @ and 7 in PGL,.

Land

Thus, after conjugation, we may assume that A C H. Since A is self-
centralizing in PGL,, (cf. [9, Lemma 8.12(b)]), we conclude that H = A. O

3. DIVISION ALGEBRAS

Let F' be a finitely generated field extension of k. Recall that elements of
H'(F,PGL,) may be interpreted in two ways:

e as central simple algebras of degree n with center F; see [11, Section
10.5] or [5, p. 396], and

e as birational isomorphism classes of irreducible generically free PGL,,-
varieties X such that k(X)PGln = F; see [6, Section 1.3] (cf. also [12,
Section 1.5.2]).

Thus to every central simple algebra D of degree n over F' we can associate
a generically free PGL,-variety Xp with k(Xp)PSt» = F. Moreover, Xp
is uniquely defined up to birational isomorphism of PGL,-varieties, and
D can be recovered from Xp as the algebra of PGL,-equivariant rational
maps Xp --» My; see [7, Proposition 8.6 and Lemma 9.1]. We shall write
D = RMapspcL, (Xp, My). Note that D ~ M,,(F) if and only if the PGL,,-
variety Xp is split.

Proposition 6. Let D be a division algebra of degree p with center K and
Xp be an algebraic variety representing the class of D in H'(K,PGL,).
Let A be the subgroup of PGL, defined in Section 2. If D has an element
of (reduced) trace 0 and norm 1 then Xp does not have a smooth A-fized
point.

Proof. The proposition is proved in [8]; however, since it is not stated there
in the exact form we need, we supply a short explanation. Let z € D be an
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element of trace zero and norm 1. Then the system

(3) Nrd(zq) = --- = Nrd(zp)
Trd(zy...2p) =0
has a nontrivial solution in D, namely (z1,...,2,) = (z,1,...,1). (Here, as

usual, Nrd and Trd denote, respectively, the reduced norm and the reduced
trace in D.) On the other hand, by [8, Proposition 3.3 and Lemma 5.3],
if Xp has a smooth A-fixed point then the system (3) has only the trivial
solution (z1,...,2p) = (0,...,0). This shows that Xp does not have a
smooth A-fixed point. O

We now observe that in order to prove Theorem 4 it is enough to establish
the following:

Proposition 7. There exists a division algebra D of degree p with center F
such that

(i) F is a purely transcendental extension of k, and

(ii) there exists an element a € D such that Trd(a) = 0 and Nrd(a) = 1.
Indeed, suppose D is a division algebra satisfying the conditions of Proposi-
tion 7. Let X = Xp be a smooth projective PGL,-variety representing the
class of D in H'(K,PGL,); such a model exists by [10, Proposition 2.2]. We

now check that X = Xp has properties (a) - (c) claimed in the statement
of Theorem 4:

(a) X is not split; otherwise D ~ M,,(K) would not be a division algebra.

(b) By Lemma 5, we may assume H = A, and by Proposition 6, A acts
on X without fixed points.

(c) k(X)PCl» = F is purely transcendental over k by Proposition 7(i). O

4. CONCLUSION OF THE PROOF

Our strategy for proving Proposition 7 will be to find an element a of norm
1 and trace 0 in a suitable field extension L/K of degree p, then embed this
field extension into a division algebra.

Lemma 8. For any n > 3 there exists a field extension L/K of degree n
such that

(i) K is a purely transcendental extension of k of transcendence degree 1

and

(ii) Trp /i (a) = 0 and Ny i (a) = 1 for some a € L. Here Try i (a) and
Nz, k(a) are the trace and the norm of a in L/K.

Proof. Consider the polynomial
(4) P(s,t) =s"+ts+ (—1)" € k[t, s],
where t and s are independent commuting variables over k. Since we can

write P = Pyt + Py, where Py = s and P} = s" 4 (—1)" are relatively prime
in k[s], we conclude that P is irreducible in k[t, s], and hence, in k(t)[s].
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Now let K = k(t), L = K|s|/(P(t,s)) and let a be the image of s in L.
Then condition (i) is clearly satisfied. Moreover, since L/K is a field exten-
sion of degree n and P is the minimal polynomial of a over K, —Try /x(a)
and (—1)" Ny /i (a) are, respectively, the coefficient of s~ and the constant
term of P. Thus Try /x(a) =0 and N i (a) = 1, as claimed. O

We are now ready to prove Proposition 7. Let L/K be as in Lemma 8§,
with n = p. It is sufficient to show that there exists a division algebra D
with center F' = K(A1,..., ;) and maximal subfield L(Aq,...,\;), where
A, ..., A\ are algebraically independent variables over K. Then D is the
algebra we want: F is a purely transcendental extension of k and an element
a € D with desired properties can be found in L C D.

To show that such a D exists, we appeal to a result of Fein, Saltman and
Schacher [2, Corollary 5.4]. Let G be a finite group, H be a subgroup of G
and ¢ be a prime dividing |G|. Following [2], we define m,(G, H) to be the
maximal value of |T'|, taken over all g-subgroups T" of G which are contained
in UgeG gHg™ .

Returning to the setting of Lemma 8, let £ be the Galois closure of L
over K, G = Gal(E/K) and H = Gal(E/L). [2, Corollary 5.4] guarantees
the existence of D if my(G, H) = |Hg| for every ¢ dividing [L : K|; here H,
is a Sylow g-subgroup of H. In our case [L : K] = p, so we only need to
check that m,(G, H) = |Hp|.

Note that E is the splitting field and G is the Galois group of the irre-
ducible polynomial (4) over K = k(t), with n = p. Thus G is naturally a
subgroup of S, and consequently |G| is not divisible by p?. On the other
hand, [G : H|] = [L : K] = p. We conclude that |H| is not divisible by
p, i.e., |[Hp| = 1. Moreover, the order of every element of UgeG gHg™ ! is
prime to p; thus m,(G, H) = 1. To sum up, my(G, H) = 1 = |Hp|, and [2,
Corollary 5.4] applies.

This completes the proof of Proposition 7 and thus of Theorem 4. ([
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