GROUP ACTIONS AND INVARIANTS IN ALGEBRAS OF

GENERIC MATRICES

Z. REICHSTEIN AND N. VONESSEN

ABSTRACT. We show that the fixed elements for the natural GL,,-
action on the universal division algebra UD(m,n) of m generic n X n-
matrices form a division subalgebra of degree n, assuming n > 3 and
2 < m < n? —2. This allows us to describe the asymptotic behav-
ior of the dimension of the space of SL,,-invariant homogeneous central
polynomials p(X1,...,Xm) for n X n-matrices. Here the base field is
assumed to be of characteristic zero.
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1. INTRODUCTION
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is, G, is the k-subalgebra of Mn(kz[:vgjh)]) generated by

Xy = @W), . X = (2™,

ij ij
where the xl@) are mn? independent commuting variables. By a theorem of
Amitsur, Gy, is a domain of PI-degree n. There is a natural action of the
general linear group GL,, on Gy, given by

m
(1.1) 9 =(9ij): Xj — Zgini~
i=1
In this paper we will prove the following theorem.
1.2. Theorem. For2 < m < n%—2, the domain (G, )" has Pl-degree n.
The trace ring T}y, of Gy, p, is defined as the subring of Mn(k:[mz(jh)]) gen-
erated by elements of the form Y and tr(Y'), as Y ranges over Gy, . The

action (1.I) on Gy, naturally extends to T}, . Note that the algebras Gy, »,
and T, ,, and their centers Z(Gy, ) and Z(T, ) have a natural Z-grading

inherited from Mn(k[argl)]) (each variable xgl) has degree 1) and that this
grading is preserved by the action (1.1). As a consequence of Theorem [1.2
we obtain the following result.

1.3. Theorem. Let 2 < m < n? — 2, and let R be one of the rings Gp.n,
Trnms L(Gmn), or Z(Tm ). Denote the degree d homogeneous component of
R by R[d]. Then

dimy, RSt [d]

hglsogp d(m—1)n2—m2+1

is a finite nonzero number.

One can think of the center of G, ,, as consisting of the m-variable central
polynomials for n x n-matrices (over commutative k-algebras). Theorem [1.3
thus describes, for R = Z(Gyy, ), the asymptotic behavior of the dimension of
the space of SL,,-invariant homogeneous central polynomials p(X7, ..., X,,)
for n x m-matrices.

The GLj,-representations on G, n, Z(Gmn), Tm,n and Z(Ty, ) have been
extensively studied; see, e.g., [1, 2, [7, 9, 17]. Once again, let R be one of
these rings. Recall that the irreducible polynomial representations of GL,
are indexed by partitions A = (A1,...,\s) with s < m parts; cf., e.g., [9,
Section 2]. Denote the multiplicity of the irreducible GL,,-representation
corresponding to A in R by multy(R). If (') is the partition (r,...,r) (m
times) then it is easy to show that

mult(,m)(R) if d =rm,

dim RSYm[d] = o ,
0 if d is not a multiple of m;
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see Remark 9.2. The conclusion of Theorem (1.3 can thus be rephrased by
saying that
mult(rm)(R)

limsup ———~>—~—
p r(m=1)n2—m?2+1

T—00
is a finite nonzero number. We also note that by the Berele-Drensky-
Formanek correspondence, multm)(R) equals the multiplicity of the Sy,-
character x(¢™) in the cocharacter sequence of R; see [9, Section 4].

The division algebra of quotients of G, , (or equivalently, of Ty, ) is
called the universal division algebra of m generic n X n-matrices; we shall
denote it by UD(m,n). Note that the GL,,-action (1.1) on Gy, naturally
extends to UD(m,n). We shall deduce Theorem 1.2/ from the following
related result.

1.4. Theorem. If 2 < m < n? —2 and n > 3, then UD(m, n)GLm s a
division algebra of degree n.

For all other values of m,n > 2, UD(m,n)%t is a field; see Proposi-
tions 8.1 and 8.3. A brief summary of the properties of UD(m,n)%m and
UD(m, n)S" is given in the two tables below.

TABLE 1. Properties of UD(m,n)%%

Case PI-Degree ‘ Transcendence Degree/k ‘ Central in UD(m,n)?
m<n?-2,n>3 n (m—1n>—m?+1 No
m=n?—-1 1 n—1 No
m=n=2 1 1 No
m > n? 1 0 Yes
TABLE 2. Properties of UD(m,n)Stm
Case PI-Degree ‘ Transcendence Degree/k ‘ Central in UD(m,n)?
m<n®—2 n (m—1)n?—m?+2 No
m=n?—-1 1 n No
m = n? 1 1 Yes
m>n®+1 1 0 Yes

The assertions of the tables in the cases where m < n? —2 and n > 3 are
based on Theorems [1.4/ and 5.1, the case where m = n = 2 is considered
in [20, Section 14], and the cases where m > n? — 1 are treated in detail in
Section 8.

It appears likely that Theorems [1.2| — 1.4/ remain valid in prime charac-
teristic (perhaps, not dividing n); we have not attempted to extend them
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in this direction. Our arguments rely on the work of Richardson [21] and
on our own prior papers [19) 20], all of which make the characteristic zero
assumption.’

Conventions and Terminology. All central simple algebras in this pa-
per are assumed to be finite-dimensional over their centers. All algebraic
varieties, algebraic groups, group actions, morphisms, rational maps, etc.,
are assumed to be defined over the base field k& (which we always assume
to be of characteristic zero). By a point of an algebraic variety X we shall
always mean a k-point. Throughout, G will denote a linear algebraic group.
We shall refer to an algebraic variety X endowed with a regular G-action
as a G-variety. We will say that a G-variety X (or the G-action on X) is
generically free if Stabg(z) = {1} for z € X in general position. Finally,
unless otherwise specified, m and n are integers > 2.

2. PRELIMINARIES

Concomitants. Let I' be an algebraic group and V' and W be I'-varieties.
Then we shall denote the set of I'-equivariant morphisms V- — W (also
known as concomitants) by Morphy(V, W) and the set of I'-equivariant ratio-
nal maps V' --» W (also known as rational concomitants) by RMapsp(V, W).

In the case where W is a finite-dimensional linear representation of I', we
also define a relative concomitant as a morphism f: V — W satisfying the
following condition (which is slightly weaker than I'-equivariance): there is
a character x: I' — k* such that

flg-v)=x(9) (9-f(v))

for all v € V and g € I'. For a rational map f: V --» W the notion of a
relative rational concomitant is defined in a similar manner. If W = k, with
trivial I'-action, then the term “invariant” is used in place of “concomitant”.
For future reference we record the following;:

2.1. Lemma. Suppose V and W are finite-dimensional linear representa-
tions of I'. Every rational concomitant f: V --+ W can be written as 7,
where a is a relative concomitant and b is a relative invariant.

Proof. See the proof of [5, Chapter 1, Proposition 1]. Note that the charac-
ters associated to a and b are necessarily equal. O

If W is a k-algebra and I' acts on W by k-algebra automorphisms, then
the algebra structure of W induces algebra structures on Morphy(V, W)
and RMapsp(V,W) in a natural way. Namely, given a,b: V. — W (or

1We remark that Richardson [21] worked over k = C, and his proofs are based on
analytic techniques. The results we need (in particular, |21, Theorem 9.3.1]), remain
valid over any algebraically closed field of characteristic zero by the Lefschetz principle.
Extending [21, Theorem 9.3.1] to prime characteristic is an open problem of independent
interest.
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a,b: V. --» W), one defines a + b and ab by (a + b)(v) = a(v) + b(v) and
ab(v) = a(v)b(v) for v € V.

2.2. Theorem. (Procesi [16, Theorem 2.1]; cf. also [9, Theorem 10], or [24,
Theorem 14.16]) Let (M,,)™ be the space of m-tuples of n X n-matrices; the
group PGL,, acts on it by simultaneous conjugation. Then

(a) Morphpgy, (Mn)™, My,) >~ Tin

(b) RMapspqr,, ((My)™, My,) ~ UD(m,n)
Moreover, the two isomorphisms identify the i-th projection (M, )™ — M,
with the i-th generic matriz X;. O

Here T}, , and UD(m,n) are, respectively, the trace ring and the univer-
sal division algebra of m generic n X n-matrices, defined in the introduction.
Note that part (b) of Theorem 2.2 follows from part (a) by Lemma 2.1, since
the simple group PGL,, does not have nontrivial characters (so that rela-
tive concomitants and invariants are actually concomitants and invariants,
respectively).

We also remark that the construction of 75, ,, remains well-defined if m =
1. Theorem 2.2] also holds in this case, provided that one defines UD(1,n)
to be the field of quotients of T ,,, rather than Gy ,. (For m > 2, T, , and
Gm,n have the same division algebra of quotients, but this is not the case
for m = 1.).

Geometric actions. For the rest of this section we will assume that k is
algebraically closed. If X is a PGL,-variety, then, as we mentioned above,
RMapspgr, (X, M,) has an algebra structure naturally induced from M,,.
If the PGLy-action on X is generically free then RMapspgy, (X, M) is a

PGLu. ¢f. [18, Lemmas

central simple algebra of degree n, with center k(X)
8.5 and 9.1].

Suppose that X is a G x PGL,-variety, and that the PGL,-action on X
is generically free. Then the G-action on X naturally induces a G-action
on RMapspqy, (X, M,). Following [20] we define the action of an algebraic
group G on a central simple algebra A to be geometric if A is G-equivariantly
isomorphic to RMapspqr, (X, M,,) for some G x PGL,-variety X as above.
The G x PGLy-variety X is then called the associated variety for the G-
action on A; this associated variety is unique (as a G x PGLj,-variety), up
to birational isomorphism; cf. [20, Corollary 3.2].

Note that we defined geometric actions only if k is algebraically closed.
Also note that if an algebraic group acts geometrically on a central sim-
ple algebra A, then the center of A is necessarily a finitely generated field
extension of k.

Of particular interest to us will be the case where X = (M,,)" is the space
of m-tuples of n x n-matrices. Here PGL,, acts on (M;)™ by simultaneous
conjugation (since m > 2, this action is generically free) and G = GL,,, acts
on (Ai,...,Ap) € (M,)™ by sending (Ai,...,An,) to (Bi,...,By) where
Bj =" ¢jA; and g71 = (¢;;). The actions of GL,, and PGL,, commute,
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and the GL,,-action on (M,,)™ induces the GL,-action (1.1) on UD(m,n).
So (M,)™ is the associated variety for the GL,,-action on UD(m,n); see
Theorem 2.2/ (cf. also [20, Example 3.4]).

We conclude this section with a simple result which we will use repeatedly.

2.3. Lemma. Assume k is algebraically closed. Let X be a G x PGL,-
variety which is PGL,,-generically free. Denote by m: X --» X/G the ra-
tional quotient map for the G-action. Then for x € X in general position,
the projection pry: G x PGL,, — PGL,, onto the second factor induces an
isomorphism from Stabgxpar, (x)/ Stabg(x) onto Stabpar, (7(z)). O

Proof. Recall that by a theorem of Rosenlicht, 7~ 1(Z) is a single G-orbit
for T € X/G in general position; see [22, Theorem 2| or [14, Section 2.3].
Consequently, for x € X in general position the projection pr, restricts
to a surjective morphism Stabgxpar, () — Stabpgr, (7(x)) of algebraic
groups. The kernel of this morphism is clearly Stabg(x), and the lemma
follows. O

3. GEOMETRIC ACTIONS ON DIVISION ALGEBRAS

Throughout this section we will assume that k is algebraically closed. The
main result of this section is the following theorem; after its proof, we will
deduce several corollaries.

3.1. Theorem. Assume k is algebraically closed. Let G be a linear algebraic
group acting geometrically on a division algebra D of degree n. Let X be the
associated G x PGLy-variety. Then for x € X in general position,

Sy := StabgxpaL, (x)/ Stabg(x)
18 reductive.

Proof. Let X be the associated G x PGL,-variety for the G-action on D.
Recall that the PGL,-action on X is generically free. We want to show that
the group S, = Stabgxpar, (z)/ Stabg(z) is reductive for x € X in general
position. Assume the contrary. Denoting the unipotent radical by R, this
means that R, (Stabgxpar, (z)) is not contained in G. Since unipotent
groups are connected, this is equivalent to

(3.2) Lie(Ry(Stabgxpar, (z))) € Lie(G)

for x € X in general position. Here and in the sequel Lie stands for the
Lie algebra. To simplify notation, set H = G x PGL,, and for z € X, set
H, = R,(Stabg(x)). Now define Ux C X x Lie(H) by

Ux = {(z,a) |z € X and a € Lie(H,)} .

We first show that Ux is a vector bundle over a dense open subset Xy C X.
By [21}, 6.2.1, 9.2.1, and 6.5.3], there is an H-stable dense open subset X of
X such that {H, | x € Xy} is an algebraic family of algebraic subgroups of
H. Moreover, dim(H,) is constant for x € X, say equal to d. Replacing X
by Xy, we may assume that {H, | z € X} is an algebraic family of algebraic
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subgroups of H. By [21], 6.2.2], x +— Lie(H,) defines a morphism of algebraic
varieties from X to the Grassmannian of d-dimensional subspaces of Lie(H ).
Since the universal bundle over this Grassmannian is a vector bundle (see,
e.g., [28, 3.3.1]), its pull-back Ux is a vector bundle over X.

Note also that Ux is, by definition, an H-invariant subbundle of the
trivial bundle X x Lie(H) — X; here H acts on its Lie algebra by the
adjoint action. Since the PGL,-action on X is generically free, the no-name
lemma tells us that there is a PGLy-equivariant birational isomorphism
Ux --+ X x k% such that the following diagram commutes

Ux -~ > X x ki

.

X

(For a proof and a brief discussion of the history of the no-name lemma,
see [4, Section 4.3].) In other words, the vector bundle Ux — X has d
PGL,-equivariant rational sections (31,...,84: X --» Ux such that (),
.., Ba(z) are linearly independent for € X in general position. We identify
here §;(z) with a if §;(z) = (x,a) € {x} x Lie(H). In view of (3.2)), some k-
linear combination 3 = ¢1 51+ - -+c¢4f34 has the property that 5(z) & Lie(G)
for x € X in general position.
Now recall that the natural projection SL,, — PGL,, induces a Lie al-
gebra isomorphism s, — Lie(PGL,,), allowing us to identify the two Lie
algebras. Hence

Ux C X x Lie(GQ) x s, .

Let f = profB: X --+ sl,, where pr: Uy — sl, denotes the natural
projection. Note that s, — gl, = M, so that f may be viewed as a PGL,,-
equivariant rational map X --+» M, i.e., as an element of D. The condition
that B(x) € Lie(G) ensures that f # 0. On the other hand, we will show
below that for € X in general position, f(x) is a nilpotent n x n-matrix,
so that f™ = 0. This means that D contains a non-zero nilpotent element f,
contradicting our assumption that D is a division algebra.

It remains to be shown that for z € X in general position, f(z) is a
nilpotent matrix. The natural projection G x PGL,, — PGL,, maps the
unipotent group H, to a unipotent subgroup U of PGL,. Denote by K the
preimage of U in SL,. It is a solvable group, so its subset K, of unipotent
elements is a closed subgroup. The surjection K,, — U is finite-to-one, so
their Lie algebras are isomorphic. In particular, f(x) belongs to Lie(K,) C
s, C gl, = M,. Finally, since K, is a unipotent subgroup of GL,, its
Lie algebra in M,, consists of nilpotent matrices, see, e.g., [3, 1.4.8]. This
completes the proof of Theorem 3.1. ([l

We now proceed with the corollaries. Recall that a subgroup S C I' is
said to be a stabilizer in general position for a I'-variety X if there exists a
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dense I'-invariant subset U C X such that Stab(z) is conjugate to S for any
x € U. For a detailed discussion of this notion, see [14, Section 7].

3.3. Corollary. Assume k is algebraically closed. Let G be a linear algebraic
group acting geometrically on a division algebra D of degree n. Let X be the
associated G x PGL,,-variety.

(a) The induced PGLy,-action on the rational quotient X/G has a stabi-
lizer S in general position. Moreover, S is reductive, and S ~ S, =
StabgxpaL, (¢)/ Stabg(z) for x € X in general position.

(b) If the G-action on X is generically free, then

trdegy, (Z(D%)) = trdeg;,(Z(D))
= dim(X) — dim(G) + dim(S) —n? + 1.

Proof. (a) It follows from Theorem 3.1 and Lemma 2.3 that points in X/G
in general position have a reductive stabilizer. A theorem of Richardson
(see [21, Theorem 9.3.1] or [14, Theorem 7.1]) now implies that the PGL,,-
action on X/G has a stabilizer S in general position. By Lemma 2.3, S ~
S, = Stabgxpar, (¢)/ Stabg(x) for z € X in general position.

(b) The first equality follows from the fact that Z(D®) is an algebraic
extension of Z(D)%. Indeed, the minimal polynomial of any element of D¢
over Z(D) is unique and must therefore have coefficients in Z(D)®.

To prove the second equality, note that, Z(D) = k(X/PGL,,) = k(X)FGLn
and thus

Z(D)% ~ (k(X)POLm)C = p(X)E*PCLe — k(X /(G x PGL,)).

Since we are assuming that G acts generically freely on X, part (a) implies
that S ~ StabgxpaL, () for x € X in general position. Hence the dimension
of the general fiber of the rational quotient map X --+ X/(G x PGL,,) is
equal to the dimension of (G x PGL,,)/S. The fiber dimension theorem now
tells us that the transcendence degree of Z(D)% is

dim X/(G x PGL,) = dim(X) — dim(G) — dim(PGL,,) + dim(S). O

3.4. Corollary. Assume k is algebraically closed. Let G be a unipotent linear
algebraic group acting geometrically on a division algebra D of degree n.
Then D€ is a division algebra of degree n.

This was proved for algebraic actions in [20, Proposition 12.1].

Proof. By [20, Lemma 7.1], for z € X in general position, StabgxpaL, (%)
is isomorphic to a subgroup of G, so is unipotent. On the other hand, by
Theorem 3.1, the projection S, of this group to PGL,, is reductive. Thus
Sy is both unipotent and reductive, which is only possible if S, = {1}. In
other words,

Stabgxpar, () € G x {1}.

The desired conclusion now follows from [20, Theorem 1.4]. O
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4. DIMENSION COUNTING IN THE GRASSMANNIAN

In preparation for the proof of Theorem (1.4 in the next section, we will
now establish the following:

4.1. Proposition. Assume k is algebraically closed. Let V' be an N -dimen-
sional k-vector space and let V =V1®---®V,, where dim(V;) = N; > 1. Let
Z be the subset of the Grassmannian Gr(m, N) consisting of m-dimensional

subspaces W of V' of the form
W=w,g---&W,,

where W; C V;. (Here we allow W; = (0) for some i.) Then Z is a closed
subvariety of Gr(m, N). If 2 < m < N — 2, then each irreducible component
of Z has codimension > N —max;—1,. ,(N;) in Gr(m, N). Moreover, equality
holds (for some irreducible component of Z) only if (i) r =1 or (i) r = 2,
m=2 and N = 4.

Proof. Let mq,...m, be non-negative integers such that m;+---+m, =m
and such that m; < Nj; for all 7. Let Z,,, ., be the image of the map

Gma,..omr s Gr(mi, N1) x --- x Gr(m,, N;) — Gr(m, N)

given by (Wy,...,W,) — W1 @---®&W,. (Here Gr(m;, N;) is the Grassman-
nian of m;-dimensional vector subspaces of V;.) Since the domain of the map
®ma,...m, 1S pProjective, its image is closed in Gr(m, N). Thus each Z,,  m,
is a closed irreducible subvariety of Gr(m, V) birationally isomorphic to

Gr(my, N1) x -+ x Gr(m,, N,)

and Z is the union of the Z,,, .. It remains to show that

(4.2) dim Gr(m,N) — Zdim Gr(m;, N;) > N — max (N;),

. 2717"'77‘
=1

and that equality is only possible if r = 1 or r = 2, Ny = Ny = 2 and
my = mg = 1 (and thus N = Ny + Ny = 4 and m = m; + my = 2). Recall
that dim Gr(m, N) = (N —m)m. Letting l; = N; —m; andl = N —m =
li +--- 41, we can rewrite (4.2) as

lm—Zlimi >l+m— Inax (li +my)

i=1

or, equivalently,

—_ _ —1> 7 — . )
(1—1)(m—1) 1_25% igﬁfr(zmumz)

Proposition 4.1/is thus a consequence of the following elementary lemma. [
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4.3. Lemma. Let (I1,m1),...,(lr,m;) be v pairs of non-negative integers
and let 1 =37 1l and m = Y., m;. Assume that l; +m; > 1 for every
i=1,...,7r andl,m > 2. Then

. _ 1) =1> oy — . Y
(4.4) (I-1(m—-1)—1> Z;llml ig}??f,,(lz + my)
Moreover, equality holds if and only if either (i) r = 1 or (ii) r = 2 and
(ll,ml) = (lg,mg) = (1, 1).
Proof. We consider two cases.

Case 1: Suppose that for every ¢ = 1,...,r, either [; = 0 or m; = 0.
Since I,m > 2, we have (I —1)(m — 1) —1 > 0. On the other hand,
Sy limi —maxi—1__,(li + m;) = —max;—1__,(l; +m;) < 0. Hence, in this
case (4.4) holds and is a strict inequality.

Case 2: Now suppose that [;, m; > 1 for some i > 1,...,r. After renum-
bering the pairs (I1,m1),..., (l,, m;), we may assume ¢ = 1. Now set

h—1,if j=1 mp—1,if j=1
/ 9 9 / 9
lj:{ and m<:{

l;, otherwise; J m;, otherwise.

Note that {7, m} > 0 for every j =1,...,r. Thus
T T

(=Dm=1)—1=0_1) mh)—1=> limj+> lim}—1
i=1 j i=1

=1 i

> il;m; —1= ilimi — (l1 +ma1)
i=1 =1

,
=
This completes the proof of the inequality (4.4).

It is easy to see that equality holds in cases (i) and (ii). It remains to show
that the inequality (4.4) is strict for all other choices of (I1,m1),. .., (I,,m;).
Indeed, a closer look at the above argument shows that equality in (4.4) can
hold if and only if we are in Case 2 and

(a) lim; = 0 whenever i # j and

(b) li +my = max;—1,._»(l; +my).

Assume that conditions (a) and (b) are satisfied. Since Y ;_, I} =1-1>1,
we cannot have I} = 0 for all i = 1,...,7. In other words, [;, > 1 for some
iop € {1,...,7}. Then condition (a) says that m;- = 0 for every j # ig. On
the other hand, m} = S m; =m —1 > 1, and applying condition (a)

J
once again, we conclude that that I} = 0 for every i # ig. To sum up, there
exists an 49 € {1,...,7} such that [;, =1 —1, mj; =m — 1 and I[; = mj =0

for every i # ig.
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In particular, for every i # 1,1y, we have [; = I} = 0 and m; = m] = 0,
contradicting our assumption that I; +m; > 1. Thus i € {1,iy} for every
i = 1,...,7. In other words, either i9 = 1 and r = 1 (in which case (i)
holds, and we are done) or iy = 2 and r = 2. In the latter case I} = m) =0,
lh=1—1and mh=m—1,1ie., (I1,m) = (1,1) and (Iz,m2) = (I—1,m—1).
Condition (b) now tells us that [ = m = 2, so that (ii) holds.

This completes the proof of Lemma 4.3 and thus of Proposition [4.1. [

5. PROOF OF THEOREM [1.4] OVER AN ALGEBRAICALLY CLOSED FIELD

Recall from Section 2 that X = (M,,)™ is the associated GL,, x PGL,,-
variety for the GL,,-action on UD(m,n). Here PGL,, acts on (M,,)™ by
simultaneous conjugation (since m > 2, this action is generically free) and
GL,, acts on (M,)™ by sending (Ai,..., An) to (Bi,...,By), where B; =
ey cijAi and g7t = (c).

We shall assume throughout this section that k is an algebraically closed
field of characteristic zero. Our goal is to prove Theorem [1.4/ over such k.
In view of [20, Theorem 1.4(a)], we only need to establish the following.

5.1. Theorem. Assume k is algebraically closed. If n > 3 and 2 < m <
n? — 2, then the GL,, x PGLy-action on (M,)™ is generically free.

Proof. The linear action of GL,, on (M,,)™ is easily seen to be the direct sum
of n? copies of the natural m-dimensional representation of GL,,, i.e., to be
isomorphic to the GL,,-action on n2-tuples of vectors in k™. Since n? > m,
this action is generically free. Corollary 3.3(a) with G = GL,, and X =
(M,,)™ tells us that the PGL,-action on (M,,)™/GL,, has a reductive stabi-
lizer S in general position, and that S ~ Stabgr,, xpcrL, (¢)/ Stabar,, () =
Stabgr,, xpGL, () for z € X in general position.

Recall that (M,)™/GL,, is PGL,-equivariantly birationally isomorphic
to the Grassmannian Gr(m,n?) of m-dimensional subspaces of M,,. Thus
the PGL,-action on Gr(m,n?) has a stabilizer S in general position, where
S is a reductive subgroup of PGL,,. (Recall that S is only well-defined up
to conjugacy in PGL,). To prove Theorem 5.1} it suffices to show that S is
trivial.

Assume the contrary. Since S is reductive, it contains a non-trivial ele-
ment g of finite order. Then every L € Gr(m,n?) in general position is fixed
by some conjugate of g. In other words, the map

PGL, x Gr(m,n?)9 — Gr(m,n?)

(5-2) (h, L) — (L)

is dominant; here Gr(m,n?)? denotes the fixed points of g in Gr(m,n?).
Denote by C(g) the centralizer of g in PGL,. Note that Gr(m,n?)J is C(g)-
stable. Hence the fiber of (5.2) over h(L) contains (hc,c !(L)) for every
c € C(g). So by the fiber dimension theorem,

(5.3) dim Gr(m, n?) 4+ dim C(g) < dim PGL,, + dim Gr(m, n*)9.
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Since g has finite order, it is diagonalizable. So we may assume that

g=diag(A1,..., A1,..., As, ..., Ag) = diag(aa, ..., ap),
———— ——
[1 times ls times
where Aj,..., \s are the (distinct) eigenvalues of g. Note that s > 2, because

g # 1in PGL,, and that g acts on the matrix units F;; by g- E;; = ozioz;lEij.
The matrix algebra M, naturally decomposes as a direct sum of character
spaces
V,, = Span(E;; | aiaj_l =pu).

In particular, V4 is the commutator of g in M,,. Now (5.3) implies

dim Gr(m,n?) — dim Gr(m,n?)? < dim(PGL,) — dim C(g)

=n? —dim(Vy).

So if n > 3, part (b) of the following lemma gives the desired contradiction,
which completes the proof of Theorems [5.1, and thus of Theorem 1.4]in the
case that k is algebraically closed. ([
5.4. Lemma. Letn > 2, and 2 <m <n?— 2.

(a) dimV; > dim V), for any pn # 1.
(b) If n > 3 (or n = 2 and there are more than two distinct nonzero
V,.), then dim Gr(m,n?) — dim Gr(m,n?)9 > n? — dim(V}).

Proof. (a) Note that dim V; =12 4 --- 42 and
dim V, = > Ll

XAS=p
Since the eigenvalues Ay, ..., s of g are distinct, the last sum has at most
one term for each i = 1,...,s. Thus there is a permutation o of {1,...,s}

such that

dim V;L < llla(l) + o+ lsla(s) .
So for v = (I1,...,ls) and w = (l5(1),- -+, lo(s)), dimV,, < v-w. Hence by
the Cauchy-Schwarz inequality,

dim V, <v-w < |o| jw] = [v* =B+ + 12 = dim(V7) .

(b) Since g is semisimple, every L € Gr(m,n?)? is a direct sum of its
character subspaces spaces, i.e., a direct sum of vector subspaces of the
V. Part (b) now follows from Proposition 4.1 with V' = M,,, N = n?,
N, = dim(V,,), Z = Gr(m,n?)9, and r the number of distinct nonzero
Vi O

5.5. Remark. We assumed throughout this section that n > 3. If n = 2
then the above argument still goes through provided there are more than two
distinct non-zero character subspaces V,,; see Lemma [5.4(b). In particular,
this will always be the case if g # 1 in PGL,; indeed, in this case ¢ =
(A1, A2), where = A\1/A2 # %1 and the three spaces Vi, V, and V-1 are
distinct. Thus the above argument also shows that for n = m = 2, either
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|S| =1 or S has exponent 2. It turns out that, in fact, in this case |S| = 2;
see [20, Lemma 14.2].

5.6. Remark. An alternative approach to proving Theorem 5.1 would be to
appeal to the classification, due to A. G. Elashvili [8] and A. M. Popov [13],
of pairs (G, ¢), where G is a semisimple algebraic group and ¢: G — GL(V')
is an irreducible linear representation of GG such that the G-action on V has
a non-trivial stabilizer in general position. Since this classification is rather
involved, and since additional work would be required to apply it in our
situation (note that the group GL,, x PGL, is not semisimple, and that
its representation on (M,)™ is not irreducible), we opted instead for the
self-contained direct proof presented in this section.

6. SL,,-INVARIANT GENERIC MATRICES

The goal of this section is to relate the rings of SL,,-invariants in Gy,
and UD(m,n).

6.1. Lemma. (a) Every element of UD(m,n)%Ym can be written in the
form 3, where a is a homogeneous element of (Ty)3%™, and b is
a non-zero homogeneous element of Z(Tmm)SLm of the same degree
as a.
(b) Assume that a subgroup G of GL,, has no non-trivial characters.
Then every element of UD(m,n)G can be written as § where a €
(Trnn)€ and 0 # b € Z(Trnn)C.

Proof. Both parts follows from Lemma 2.1. In part (a), we take I' =
GL,, x PGL,, V = (M,)™ (with the I'-action defined in the beginning
of Section 5) and W = M,, (where GL,,, acts trivially on W and PGL,, acts
by conjugation). Here the relative concomitants (M,,)™ — M,, are the ho-
mogeneous elements of (T, ,) "™ and the relative invariants (M,)™ — k
are the homogeneous elements of Z (T, »)%""; cf. Theorem 2.2.

If G has no non-trivial characters then relative concomitants are (abso-
lute) concomitants, i.e., elements of (T}, ,)". Similarly, relative invariants
are elements of Z(Ty,,)%, and part (b) is thus simply a restatement of
Lemma 2.1 in this special case. U

6.2. Proposition. Let G be a subgroup of GL,, such that G has no non-
trivial characters. Then the following conditions are equivalent:

(a) UD(m,n)¢ has Pl-degree n.

(b) (Trnn)® has Pl-degree n.

(¢) (Gmn)€ has Pl-degree n.

Proof. The equivalence of (a) and (b) follows from Lemma [6.1(b). The
implication (c¢) = (b) is obvious, since Gy, ,, C Tip . It thus remains to
prove that (b) = (c).

Let g, be the multilinear central polynomial for n x n-matrices in [12,
13.5.11] (or [23, p. 26]). If R is a prime Pl-algebra of PI-degree n, denote
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by gn(R) the set of all evaluations of g, in R, and denote by R g,(R) the
nonzero ideal of R generated by g,(R). Denote by T the trace ring of R.
(Since we are working in characteristic zero, the (noncommutative) trace
ring in [12, 13.9.2] is the same as the one we are using, see [12, 13.9.4].)
Then R g, (R) is a common ideal of R and T, see [12, 13.9.6] (or [23] 4.3.1]).

Now let R = Gy,,,,. Then its trace ring is T' = T;,, ,. Recall that we are
assuming (b) holds, i.e., T G has PI-degree n. Let s be a non-zero evaluation
of g, on TY. Then s is a nonzero G-invariant, and a central element of
T (since it is also an evaluation of g, on T'). Since g, is multilinear, and
since T is generated as an R-module by central elements, s belongs to the
ideal of T' generated by g,(R), so that sT C Rg,(R) C R. Since s is a
G-invariant, it follows that s7¢ C R®. Consider the central localization
RC[s™Y C UD(m,n). Since it contains 7%, R%[s~!] must have PI-degree n,
implying that also R“ must have PI-degree n. This completes the proof of
the implication (b) = (¢) and thus of Proposition 6.2l O

6.3. Remark. The same argument also shows that if the three equivalent
conditions in Proposition 6.2 are true, then the division algebras of fractions
of (Gmn)® and (Tpnn)® are both equal to UD(m,n)C.

7. PROOF OF THEOREMS 1.2/ AND [1.4

Proof of Theorem [1.2. Proposition 6.2 tells us that (G, )% has PI-
degree n if and only if so does UD(m, n)SLm. Thus in order to prove The-
orem (1.2 it suffices to show that UD(m,n)5" has PI-degree n whenever
2<m<n?-2.

For n = m = 2 we showed this in [20, Remark 14.4] (in fact, the argument
we gave there remains valid over any base field k of characteristic # 2). For
n >3 and 2 < m < n? — 2, Theorem 1.4 tells us that UD(m, n)GLm has PI-
degree n (and consequently, so does UD(m,n)%"). In summary, we have
shown that Theorem 1.2 follows from Theorem 1.4, O

Proof of Theorem 1.4. We have already proved Theorem 1.4 in the case
where the base field k is algebraically closed; see Section 5. We will now
reduce the general case to this one by using Lemma 6.1(a).

We begin with a simple lemma.

7.1. Lemma. Let K be an extension field of k, let V be a finite-dimensional
k-vector space, and Vg =V @y K. Given a linear representation of SLy, (k)
on V, we have

(VK)SLm(K) — VSLm(k) ®k K.

Proof. Since SL,, (k) is dense in SL,, (K), the subspace (Vi )5 (5) is defined
inside Vi by a system of homogeneous linear equations with coefficients
in k. Clearly finitely many of these equations suffice. Since the dimension
of the solution space of such a system is the rank of the corresponding
matrix (which has coefficients in k), (Vi )5 (%) has a K-basis consisting of
elements of VSbm (k) (]
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For the remainder of this section, we will write Gy, »(K), T n(K) and
UD(m,n)(K) to denote the generic matrix algebra, trace ring and universal
division algebra defined over the field K. Denote the algebraic closure of
k by k. Since the SL,,-action on UD(m,n) preserves degree, Lemma [7.1
immediately implies the following fact, which we record for later use.

7.2. Corollary. van(E)SLm(E) = G (k)32 ®) @, &, and Tm,n(%)SLm@ —
Tm,n(k)SLm(k) R k. 0

We are now ready to complete the proof of Theorem [1.4/ over an arbitrary
field k of characteristic zero. In Section 5 we showed that Theorem (1.4 holds
over the algebraic closure k of k. That is, if 2 < m < n? — 2 then there
exist elements ¢i,...,c. € UD(m,n) (k)5 =*) which span UD(m,n)(k) as
a vector space over its center. By Lemma 6.1 we can write ¢; = a;/b;,
where a; € Tpn(k)[d;]3" and 0 # b; € Z(Ty, 0 (k))[di]3™ for some d; > 0,
i=1,...,r. By Lemma 7.1, with K =k and V = Z(T,,»(k))[d;], we have
Z(Tynn(k))[di]P" # 0. We may now replace b; by a non-zero element of
Z(Tynn(K))[di]3m. The new ¢; = a;/b; are still GL,,-invariant elements of
UD(m,n)(k), and they still generate UD(m,n)(k) as a vector space over its
center.

We now apply Lemma 7.1 once again (this time with V' = T, ,,(k)[d;])
to write each a; as a finite sum ) v;ja;;, where each v;; € k and each
a;j € Tm,n(k:)[di]SLm. Now replace our collection of GL,,-invariant elements
{e; = a;/b;} in UD(m,n)(k) by {cij = a;j/b;}. By construction, the elements
cij lie in UD(m,n) (k)% and span UD(m,n)(k) over its center. Hence,
these elements generate a k-subalgebra of UD(m,n)(k)%%m of PI-degree n.
Consequently, UD(m,n)(k)%m itself has PI-degree n. This completes the
proof of Theorem 1.4/ (and of Theorem [1.2)). O

8. THE CASE m >n? —1

Theorems 1.2 and [1.4 assume that m < n? — 2. We will now describe
UD(m,n)S% and UD(m,n)St for m > n? — 1.

Recall the definition of the discriminant of n? matrices of size n x n,
say Ai,...,A,2: it is the determinant of the n? x n?-matrix whose i-th
row consists of the entries of A;, cf. (8.5). When viewed as a function
(M,,))” — k, A is the unique multilinear alternating function such that
Alerr,€12,...,enn) = 1; cf., e.g., [10, Lemma 3]. Here the e;; are the matrix
units.

8.1. Proposition. (a) If m > n?, then UD(m,n)>" = UD(m,n)%tm = k.
Now let m = n?, and denote by A the discriminant of the generic matrices
X100, X

(b) UD(m,n)Stm = k.

(¢) (Timn)®m = K[A].

(d) UD(m,n)5m = k(A).
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Proof. (a) We may clearly assume that k is algebraically closed. In this
case SL;, has a dense orbit in the associated variety X = (M;)™. Thus the
rational quotient X/SL,, is a single point (with trivial PGLj,-action), and

UD(m,n)*" = RMapspqr, (pt, M) = k.

Now suppose m = n?. Then GL,, has a dense orbit in X = (M, )™. Arguing
as in part (a), we prove (b); cf. [20, Proposition 13.1(a)]. (c) is proved in [9,
p. 210}, and (d) follows from (c) by Lemma [6.1(b). O

8.2. Remark. Let m = n?. Formanek showed that A ¢ (Gy,..)%" (9,
p. 214]) but A’ € G, for every integer i > 2 (this follows from [10,

Theorem 16]). Consequently for m = n?,

(Gl = k[AZ, A3,

8.3. Proposition. Suppose m =n? —1, and let

n
Y = Z A(Xl, e ,Xm,eji) el-j s
ij=1
where the e;; are the matriz units.
(a) Y € (Thnn)5tm.
(b) The eigenvalues of Y are algebraically independent over k (and, in
particular, distinct).
(¢) (Trnn)tm = Kklet, ..., cn_1,Y] is a polynomial ring in n independent
variables over k. Here ¢c; = —tr(Y),..., ¢, = (—1)"det(Y).
(d) UD(m,n)%bm =k(ey,...,cno1,Y).

(e) UD(m,n)Cm = (62 L iY).

(61)27 9 (Cl)nfl ' 1

Proof. For the proof of (a)—(c), we may assume that k is algebraically closed
(cf. Corollary [7.2). (a) We view Y as a regular map (M,,)" — M,. We
want to show that this map is PGL,-equivariant, i.e., Y € T, . Since Y
is clearly SL,,-equivariant (recall that SL,, acts trivially on M,), this will
imply part (a).

We begin by observing that for any (Ay,..., A;) € (M,)™, and Z € M,,,

(8.4) tr(Y (Ar,..., An)Z) = A(Ar,. .., Am, Z).

Indeed, both sides are linear in Z, so we only need to check (8.4) for the ele-
mentary matrices Z = e;;, where it is easy to do directly from the definition
of Y.

Fix an m-tuple (A1,..., Ay) € (My,)™ of n x n-matrices. Since the trace
form on M, is non-singular, Y (4y,...,4,,) is the unique matrix satisfy-
ing (8.4) for every Z € M,,. The PGL,-equivariance of Y: (M,,)™ — M,
is an easy consequence of this and the fact that A is PGL,-invariant (see
[9, p. 209]). This concludes the proof of (a).

Our proof of parts (b) and (c) relies on the following claim: Y: (M,,)™ —
M,, is the categorical quotient map for the SL,,-action on (M,,)™. In other
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words, we claim that the n? elements A(Xy,..., Xm,ei5) (3,5 = 1,...,n)
generate k[(M,,)™]5" as a k-algebra. To prove this claim we will temporar-
ily write (A1, ..., Ay) € (My)™ as an m x n’-matrix

o o ol
(8.5) A= : : : :

a7 afy el L a

(h)

That is, we write each n x n matrix A, = (a;;") as a single row of A. In
this notation, g € SL,, acts on (M,)” by multiplication by the transpose
of g~! on the left; that is, g(A) = (g~1)TansPose . A for every g € SL,,. Let
0ij (A1, ..., Ay) be the m x m-minor of this matrix obtained by removing
the ij-column from A and taking the determinant of the resulting m x m-
matrix. The first theorem of classical invariant theory (see [27, Theorem
I1.6.A] or [6, Theorem 2.1]) says that the elements 0;;(X1,. .., X,,) generate
E[(M,)™]3¥" as a k-algebra. On the other hand, it is easy to see that
0ij(X1,..., Xm) = £A(X1, ..., Xin, €;55). This proves the claim.

Now observe that since m = n? — 1,

dim((M,,)™ // SLy,) = mn® — (m? — 1) = n? = dim(M,,) .
This means that the n? SL,,-invariant functions
A(Xl, e ,Xm, eji): (Mn)m — k

are algebraically independent over k. In other words, Y (viewed as a matrix
in Ty, pn C Mn(k[xg”)]) has algebraically independent entries. Part (b) easily
follows from this assertion; cf. [15, Lemma I1.1.4].

Furthermore,

(Tinn)>"™ = Morphgy, «par, (Mn)™, My,)

. MorphPGLn((Mn)m // SLim, My,)

~ MOI‘phPGL" (Mn, Mn) = T]_,n s
where T1,, is the trace ring of one generic n x n-matrix. Here the last
equality is a special case of Procesi’s Theorem 2.2(a) (with m = 1). Since
the chain of isomorphisms identifies Y with the identity map M,, — M,,,
we conclude that

(Tyn)3" = klet, ... en, Y.

Since Y" + ¢ Y"1+ 4 ¢, =0, k[c1,...,cn1,Y] = K[c1, ..., cn, Y]. This
proves the first assertion in (c).

To show that c¢1,...,c,—1,Y are algebraically independent over k, denote
the eigenvalues of Y by A1,..., A,. By part (b), A1,..., A, are algebraically
independent over k. Since Y is algebraic over k(cy,...,c,), we have

trdegy k(c1,...,cn—1,Y) = trdegy k(c1,...,cn,Y)
A

= trdegy, k(c1,...,cpn) = trdeg, k(A1 ..., A\n) =n.



18 Z. REICHSTEIN AND N. VONESSEN

This shows that ci,...,¢,-1,Y are algebraically independent over k, thus
completing the proof of (c).

(d) is an immediate consequence of (¢) and Lemma 6.1(b). To prove (e),
denote the central torus of GL,,, by G,,. Then

UD(m,n)Stm = (UD(m,n)>*)®m = k(ey, ..., cn1,Y)®m,

where Gy, acts on the purely transcendental extension k(ciy...,cn—1,Y) as
follows: t-¢; +— t"¢; for i =1,...,n—1, and and t- Y — t™Y. Part (e)
easily follows from this description. O

8.6. Remark. Note that ¢; = —A(Xy,...,X,2_1,I,), where I, is the
n x n identity matrix. By a theorem of Formanek, (c;)? is an element
of Z(Ghyp)3"m for m = n? — 1, see [10, Theorem 16].

9. PROOF OF THEOREM (1.3

By Corollary 7.2, we may assume that k is algebraically closed. Set
A = (Gmp)Stm and B = (Tnn)5P™. By Theorem 1.2, A and B both have
Pl-degree n. Thus Z(A) = (Z(Gm.n))" and Z(B) = (Z(Tmn))S“". Since
SL,, is a reductive group, and since T}, ,, is a finitely generated k-algebra and
a finite module over its center, B is a finite Z(B)-module, and both B and
Z(B) are finitely generated Noetherian k-algebras, cf. [26, Proposition 4.2].
Moreover, B is an FBN ring, cf. [12, 13.6.6].

By Corollary 3.3(b) and Remark 6.3, the transcendence degrees of both
B and Z(B) are t = (m — 1)n? — m? + 2. For notational simplicity, set

n(S) = hgfgip )

for any graded k-algebra S = @4>0S5[d]. By [25, Lemma 6.1] (cf. also [11,
§12.6]), f(d) = dimy B[d] is eventually periodically polynomial, i.e., there
are polynomials fi,..., fs with rational coefficients such that f(d) = f;(d)
whenever d is large enough and congruent to ¢ modulo s; moreover, the
maximum of the degrees of the f; is t — 1. Consequently u(B) exists and is
equal to the largest among the leading coeflicients of those f; of degree t — 1.
A similar argument shows that u(Z(B)) exists and is a nonzero number.

Consider the multilinear central polynomial g, for n X n matrices used in
the proof of Proposition [6.2. Since it is multilinear and nonzero on A, we
can find a nonzero evaluation ¢ of g, at homogeneous elements of A; this ¢
is homogeneous. Since c is also an evaluation of g, on Gy, Tmn C Gy,
so that ¢cB C A and c¢Z(B) C Z(A). Then for all integers d > j, ¢B[d — j] C
Ald] C BJ[d], where j = degc. Replacing ¢ by ¢* if necessary, we may assume
that s divides j. Consequently, whenever d is large enough and congruent
to ¢ modulo s,

fi(d—j) < dimy Ald] < fi(d).
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It follows easily that u(A) exists and is equal to the largest among the
leading coefficients of those f; of degree t — 1. A similar argument shows
that p(Z(A)) exists and is a nonzero number. O

9.1. Remark. The above proof shows that p((Gm.n)%"") = u((Tyn.n)%"m),
and that (Z((Gmn)> ")) = W(Z((Timn)> ™).

9.2. Remark. Consider the GL,,-representation on R, where R = G, n,
T, Z(Gmp) or Z(Ty,n). Recall that irreducible polynomial representa-
tions of GL,, are indexed by partitions A = (Aq,...,As) with s < m parts;
cf. [9, Section 2]. Denote the multiplicity of the irreducible representa-
tion corresponding to A in R by multy(R). Writing (") for the partition
A= (r,...,r) (m times), we have

(a) dimy RSMm[d] = 0 if d is not a multiple of m, and
(b) dimy, RSV [rm] = mult,m)(R) for any integer r > 1.

Proof. (a) Assume RSYm[d] is nonzero. Then it is a direct sum of one-
dimensional representations of GL,, of the form M = Span;(v). Moreover,
any such representation is given by g(v) = det(g)"v for some integer r; cf.,
e.g., [9, Theorem 3(a)]. On the other hand, substituting g = tI,,,, where
t € k and I, is the m x m identity matrix, we obtain, g(v) = t%v. Since
det(tl,,) = t™, we see that d = rm, as claimed.

(b) If d = rm and 0 # v € RS¥[rm] then the partition associated to the
1-dimensional irreducible GL,,-module M = Span(v) is (r'™); cf. , e.g., [9,
Theorem 2]. Now consider the direct sum decomposition R = @R, where
R) is the sum of all irreducible GL,,-submodules of R with associated parti-
tion A\. The argument of part (a) shows that Rm) = RSV [rm]. Moreover,
since dim(M) = 1, we have

dimy, RSYm [rm] = dimy, R(my = multm)(R) ,

as claimed. O

10. STANDARD POLYNOMIALS

Let Gy, be the ring of m generic n x n-matrices. By Theorem [1.2,
(Gmyn)SLm is a PI domain of degree n, whenever 2 < m < n? — 2. We will
now describe one particular element of this ring. Let

Fo(x1,...,xm) = Z (—1)U:EU(1) cZg(n) € k{z1,...,xm}
oES,

be the standard polynomial. Since F}, is multilinear and alternating, one
checks easily that for g € GL,,,

(10'1) g(Fm) = det(g) “Fm;
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see, e.g., [23] 1.4.12]. Substituting m generic n X n-matrices X1, ..., X,, into
F,,, we obtain

fm,n = Fm(Xl, - ,Xm) = Z (—1)UXU(1) .. .Xg(n) S Gm,n .

UESn

From (10.1), we see that fi,, € (Gmn)SP™. By the Amitsur-Levitzki The-
orem, fm, = 0 iff m > 2n.
Fix m,n > 2 and let K be the center of UD(m,n).

10.2. Proposition. For 2 < m < 2n, K(fmn) generates a GLy,-stable
maximal subfield of UD(m,n).

The proof is algebraic in nature and works in characteristic # 2.

Proof. The fact that K(fp, ) is a GLy,-stable subfield follows from (10.1).
In order to prove that this subfield is maximal, it suffices to verify that f,,
has an eigenvalue of multiplicity 1. (Indeed, if, say, n = d - [K(fmn) : K],
then the characteristic polynomial p(t) of fy, , in UD(m,n) has the form
p(t) = q(t)?, where q(t) is the minimal polynomial of fy, , over K. This
shows that the multiplicity of each eigenvalue of f, , is divisible by d.)

Since the multiplicity of eigenvalues cannot decrease when evaluating fp, »
in M,,, it suffices now to show that fp,, (or equivalently, F,,) has some
evaluation in M,, with an eigenvalue of multiplicity one. We now proceed to
construct such an evaluation. Since

Fon(lL,zo,...,xm) = Fp_1(z2,...,2n)

for m odd (cf. [23, Exercise 1.2.3]), we may assume that m is even, say
m = 2r—2, with 1 <r <n. In M, consider the sequence of m matrix units

€1,2,€22,€23,€33,...,€r-27r-1,6p—1r-1,Er—1,r,€r1 -

When permuting these matrix units cyclically, their product is nonzero; for
any other permutation, their product is zero. Since an m-cycle is odd, it
follows that F;,, evaluated at these matrix units is

e1,1 —€e22+texo2—+- - —€r—1r-1+€—1r-1—€pr ==E€11— Erp,

which has 1 as an eigenvalue of multiplicity one (since char(k) # 2). O

We do not know an explicit expression for any non-constant element of
(Gmn)Stm (as a polynomial in the generic n x n-matrices Xi,...,X,,) in
the case where 2n < m < n? — 2; we leave this as an open question. Note
that for m = n? and m = n? — 1, such elements are exhibited in Remarks 8.2
and 8.6.
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