

HIGHER TRACE FORMS AND ESSENTIAL DIMENSION IN CENTRAL SIMPLE ALGEBRAS

Z. REICHSTEIN

ABSTRACT. We show that the essential dimension of a finite-dimensional central simple algebra coincides with the essential dimension of its r -linear trace form, $(a_1, \dots, a_r) \mapsto \text{tr}(a_1 \dots a_r)$, for any $r \geq 3$.

1. INTRODUCTION

Throughout this paper A will be a central simple algebra of degree n , K will be the center of A and k will be a subfield of K . I will denote the (reduced) trace function $A \rightarrow K$ by tr . Let F_r be the r -linear trace form of A , given by

$$F_r(a_1, \dots, a_r) = \text{tr}(a_1 \dots a_r).$$

The main question motivating this paper is to determine how much information about A is carried by the trace form F_r .

The bilinear form F_2 has been studied by many authors. Suppose $\text{char}(K) \neq 2$. If the degree n of A is odd then after an odd degree splitting extension L/K , F_2 becomes isomorphic to the trace form of the matrix algebra $M_n(L)$. Using Springer's theorem (cf. e.g., [3, Theorem 7.2.3]), one readily deduces that the quadratic form associated to F_2 is isomorphic to

$$(1) \quad n <1> \oplus \frac{(n^2 - n)}{2} <1, -1>$$

over K . In particular, in this case F_2 carries no information about A .

The situation is different if n is even. It is well known that for $n = 2$ the algebra A is completely determined by its bilinear trace form F_2 ; cf. e.g., [3, Proposition III.2.5]. Recently Rost, Serre and Tignol [8] gave a description of F_2 for algebras A of degree 4, assuming K contains a 4th root of unity. They showed that in this case F_2 also encodes many of the algebra properties of A . In particular, one can tell whether or not A is cyclic or biquaternion by looking only at F_2 . (For related results in characteristic two, see [9].)

On the other hand, the bilinear trace form F_2 does not, in general, capture the *essential dimension* of A for any $n \geq 3$; cf. Remark 6. The purpose of this paper is to show that the essential dimension of A is captured by the r -linear trace form F_r for any $r \geq 3$. Before stating this formally I will briefly recall the definition of essential dimension.

2000 *Mathematics Subject Classification.* 11E76, 16K20.

Partially supported by an NSERC research grant.

Let \mathcal{F} be a functor from the category of field extensions of k to the category of sets. I will say that $\alpha \in \mathcal{F}(K)$ descends to a subfield $K_0 \subset K$ if α lies in the image of the natural map $\mathcal{F}(K_0) \rightarrow \mathcal{F}(K)$. The essential dimension $\text{ed}(\alpha)$ is defined as the minimal value of $\text{trdeg}_k(K_0)$, where α descends to K_0 ; cf. [1, 5]. In this paper we will be particularly interested in the functors CSA_n and $\text{Forms}_{r,m}$, where

$\text{CSA}_n(K) = \text{set of central simple algebras } A/K \text{ of degree } n, \text{ up to } K\text{-isomorphism}$

and

$\text{Forms}_{r,m}(K) = \text{set of pairs } (V, F), \text{ where } V \text{ is an } m\text{-dimensional } K\text{-vector space and } F \text{ is an } r\text{-linear form on } V, \text{ up to equivalence. Here } (V, F) \text{ and } (V', F') \text{ are considered equivalent if there is an isomorphism } V \rightarrow V' \text{ of } K\text{-vector spaces, which takes } F \text{ to } F'.$

I will view A as an element of $\text{CSA}_n(K)$ and F_r as an element of $\text{Forms}_{r,n^2}(K)$. With these notations, the main result of this paper is the following theorem.

Theorem 1. *Let A/K be a central simple algebra of degree n and F_r be the r -linear trace form in A . Suppose $\text{char}(K)$ does not divide n . Then $\text{ed}(F_r) = \text{ed}(A)$ for any $r \geq 3$.*

Note that the inequality $\text{ed}(F_r) \leq \text{ed}(A)$ is obvious. Indeed, if A descends to a subfield K_0 of K then clearly F_r also descends to K_0 . The proof of the opposite inequality given below does not show that if F_r descends to K_0 then so does A . I don't know whether or not this is true. Instead, I will show that if F_r descends to a subfield $K_0 \subset K$ then A descends to a subfield K_1 such that $K_0 \subset K_1 \subset K$ and $[K_1 : K_0] < \infty$ (in fact, $K_1 = K_0(c)$, where $c^r \in K_0$).

2. PRELIMINARIES

The remainder of this paper will be devoted to proving Theorem 1. In particular, I will always assume that $\text{char}(K)$ does not divide n and set $m = n^2 = \dim_K(A)$. As usual, $[,]$ will denote the natural Lie bracket in A , defined by $[a, b] = ab - ba$.

The following simple lemma will be used in the proof of Theorem 1.

Lemma 2. *Let A/K be a central simple algebra of degree n and let b_1, \dots, b_m be a K -basis of A . Then*

(a) *for every $d \geq 1$, monomials of degree d in b_1, \dots, b_m span A as a K -vector space.*

(b) *Let $A_0 = \{a \in A \mid \text{tr}(a) = 0\}$. Then for any $d \geq 2$, elements of the form $[b_{i_1}, [b_{i_2}, \dots, [b_{i_{d-1}}, b_{i_d}] \dots]]$ span A_0 as a K -vector space.*

Note that part (a) and its proof below remain valid for any K -algebra A .

Proof. (a) Use induction on d . The base case, $d = 1$, is obvious. For the induction step suppose that $d \geq 2$ and that the lemma holds for monomials

of degree $d - 1$. In particular, the identity element of A can be written as

$$1_A = c_1 X_1 + \cdots + c_m X_m$$

where X_1, \dots, X_m are monomials of degree $d - 1$ and $c_1, \dots, c_m \in K$. Then for each $i = 1, \dots, m$,

$$b_i = b_i \cdot 1_A = c_1(b_i X_1) + \cdots + c_m(b_i X_m)$$

is a linear combination of monomials of degree d in b_1, \dots, b_m . Since b_1, \dots, b_m form a K -basis of A , this shows that monomials of degree d span A over K .

(b) The assertion of part (b) is equivalent to $[A, [A, \dots [A, A]] \dots] = A_0$ (where the Lie bracket is applied $d \geq 2$ times). Thus it suffices to show that

$$[A, A] = [A, A_0] = [A_0, A_0] = A_0.$$

The first two of these identities are obvious and the third one is a consequence of the fact that A_0 is a simple Lie algebra (it is a form of sl_n). In concrete terms, in order to prove the identity $[A_0, A_0] = A_0$, one may pass to the separable closure K^{sep} of K , i.e., replace K by K^{sep} and A by $M_n(K^{\text{sep}})$. In the case where A is the matrix algebra, it is easy to see that elements of the form $[e_{ab}, e_{cd}]$ span A_0 , as a, b, c and d range from 1 to m . (Here e_{ij} are the matrix units.) \square

Before we proceed with the proof of Theorem 1, we record the following special cases of the definitions in the previous section.

A central simple algebra A/K descends to $K_0 \subset K$ if there is a K -basis b_1, \dots, b_m of A such that the structure constants of A relative to this basis lie in K_0 .

The r -linear trace form F_r descends to $K_0 \subset K$ if there is a K -basis b_1, \dots, b_m of A such that $\text{tr}(b_{i_1} \dots b_{i_r})$ lies in K_0 for every $i_1, \dots, i_r = 1, \dots, m$.

3. PROOF OF THEOREM 1

Since the inequality $\text{ed}(F_r) \leq \text{ed}(A)$ is obvious (see the paragraph after the statement of Theorem 1), I will focus on proving the opposite inequality, $\text{ed}(A) \leq \text{ed}(F_r)$. The following lemma was motivated by [2].

Lemma 3. *Suppose for some $r \geq 3$ there exists a K -basis b_1, \dots, b_m of A and a subfield $K_0 \subset K$ such that $\text{tr}(M) \in K_0$ for every monomial M in b_1, \dots, b_m of degree r or $r - 1$. Then A descends to K_0 .*

Note that Lemma 3 (and its proof below) remain valid for any semisimple K -algebra A .

Proof. Let c_{ij}^h be the structure constants of A with respect to the basis b_1, \dots, b_m . That is,

$$(2) \quad b_i b_j = \sum_{h=1}^m c_{ij}^h b_h,$$

for $i, j = 1, \dots, m$. Our goal is to show that each c_{ij}^h lies in K_0 . In order to do this, I will fix i and j and try to solve (2) for the m coefficients $c_{ij}^1, c_{ij}^2, \dots, c_{ij}^m$.

By Lemma 2(a), with $d = r - 2$, there exists a K -basis Z_1, \dots, Z_m of A where each Z_i is a monomial in b_1, \dots, b_m of degree $r - 2$. Since the (bilinear) trace form on A is nonsingular, (2) is equivalent to the system

$$(3) \quad \begin{cases} \text{tr}(b_i b_j Z_1) = \sum_{h=1}^m \text{tr}(b_h Z_1) c_{ij}^h \\ \text{tr}(b_i b_j Z_2) = \sum_{h=1}^m \text{tr}(b_h Z_2) c_{ij}^h \\ \vdots \quad \vdots \\ \text{tr}(b_i b_j Z_m) = \sum_{h=1}^m \text{tr}(b_h Z_m) c_{ij}^h \end{cases}$$

of m linear equations in m unknowns, $c_{ij}^1, c_{ij}^2, \dots, c_{ij}^m$. Since b_1, \dots, b_m and Z_1, \dots, Z_m are both K -bases of A , and the (bilinear) trace form on A is nonsingular, an easy exercise in linear algebra shows that the matrix of this system,

$$\begin{pmatrix} \text{tr}(b_1 Z_1) & \text{tr}(b_2 Z_1) & \dots & \text{tr}(b_m Z_1) \\ \text{tr}(b_1 Z_2) & \text{tr}(b_2 Z_2) & \dots & \text{tr}(b_m Z_2) \\ \vdots & \vdots & & \vdots \\ \text{tr}(b_1 Z_m) & \text{tr}(b_2 Z_m) & \dots & \text{tr}(b_m Z_m) \end{pmatrix},$$

is nonsingular. Note the $b_h Z_l$ and $b_i b_j Z_l$ are monomials in b_1, \dots, b_m of degree $r - 1$ and r respectively. Thus, by our assumption, every coefficient of the system (3) lies in K_0 . Solving this system by Cramer's rule, we conclude that every c_{ij}^h lies in K_0 . \square

The inequality $\text{ed}(A) \leq \text{ed}(F_r)$ (and thus Theorem 1) is now an immediate consequence of Proposition 4(b) below.

Proposition 4. *Suppose b_1, \dots, b_m is a K -basis of A and K_0 is a subfield of K such that $\text{tr}(M) \in K_0$ for every monomial M in b_1, \dots, b_m of degree $r \geq 3$.*

(a) *There exist $\alpha_1, \dots, \alpha_r \in K_0$ such that $\sum_{i=1}^m \alpha_i b_i = c \cdot 1_A$ for some $0 \neq c \in K$.*

(b) *There exists a finite extension K_1 of K_0 such $K_0 \subset K_1 \subset K$ and $\text{tr}(N) \in K_1$ for any monomial N in b_1, \dots, b_m of degree $\leq r$.*

Proof. By Lemma 2(b), with $d = r - 1$, there exists a K -basis Y_1, \dots, Y_{m-1} of A_0 such that each Y_i has the form

$$Y_i = [b_{i_1}, [b_{i_2}, \dots, [b_{i_{r-2}}, [b_{i_{r-1}}, b_{i_{r-1}}] \dots]]$$

for some $i_1, \dots, i_{r-1} \in \{1, \dots, m\}$.

Now observe that the orthogonal complement to A_0 in A , with respect to the trace form, is precisely $K \cdot 1_A$. Thus, $J \in A$ lies in $K \cdot 1_A$ if and only if

$$(4) \quad \begin{cases} \text{tr}(Y_1 J) = 0, \\ \text{tr}(Y_2 J) = 0, \\ \dots \\ \text{tr}(Y_{m-1} J) = 0. \end{cases}$$

Writing $J = \alpha_1 b_1 + \dots + \alpha_m b_m$, with indeterminate coefficients $\alpha_1, \dots, \alpha_m$ and expanding (4), we obtain the homogeneous linear system

$$\begin{cases} \text{tr}(Y_1 b_1) \alpha_1 + \dots + \text{tr}(Y_1 b_m) \alpha_m = 0, \\ \text{tr}(Y_2 b_1) \alpha_1 + \dots + \text{tr}(Y_2 b_m) \alpha_m = 0, \\ \dots \\ \text{tr}(Y_{m-1} b_1) \alpha_1 + \dots + \text{tr}(Y_{m-1} b_m) \alpha_m = 0. \end{cases}$$

of $m - 1$ equations in m variables. By our choice of Y_1, \dots, Y_{m-1} every coefficient $\text{tr}(Y_i b_j)$ lies in K_0 . Thus this system has a nontrivial solution $(\alpha_1, \dots, \alpha_m) \in K_0^m$. For these $\alpha_1, \dots, \alpha_m$,

$$J = \alpha_1 b_1 + \dots + \alpha_m b_m \neq 0$$

satisfies (4) and hence is of the form $c \cdot 1_A$ for some $0 \neq c \in K$.

(b) Let $J = \alpha_1 b_1 + \dots + \alpha_m b_m = c \cdot 1_A$ be as in part (a). We do not know that $c \in K_0$; however, I claim that $K_1 = K_0(c)$ is a finite extension of K_0 . Indeed, since $\alpha_1, \dots, \alpha_m$ lie in K_0 , $nc^r = \text{tr}(J^r)$ is a K_0 -linear combination of elements of the form $\text{tr}(b_{i_1} \dots b_{i_r})$, which, by our assumption, lie in K_0 . Thus $nc^r \in K_0$, and since $\text{char}(K)$ does not divide n , we conclude that $c^r \in K_0$. This shows that c is algebraic over K_0 and thus proves the claim.

It remains to show that $\text{tr}(b_{i_1} \dots b_{i_s})$ lies in K_1 for any $1 \leq s \leq r$ and any $i_1, \dots, i_s = 1, \dots, m$. Since $c \neq 0$, we have

$$(5) \quad \text{tr}(b_{i_1} \dots b_{i_s}) = \frac{1}{c^{r-s}} \text{tr}(b_{i_1} \dots b_{i_s} J^{r-s}).$$

Expanding $\text{tr}(b_{i_1} \dots b_{i_s} J^{r-s})$ and remembering that $\alpha_1, \dots, \alpha_m$ lie in K_0 , we see that $\text{tr}(b_{i_1} \dots b_{i_s} J^{r-s})$ lies in K_0 . Equation (5) now tells us that $\text{tr}(b_{i_1} \dots b_{i_s})$ lies in K_1 , as claimed. \square

4. CONCLUDING REMARKS

Remark 5. The conclusion of Proposition 4(b) can be strengthened as follows: $\text{tr}(N) \in K_1$ for every monomial N in b_1, \dots, b_m . To prove this, we argue by induction on $\deg(N)$. The base case, where $\deg(N) \leq r$, is given by Proposition 4(b), and the induction step is carried out by using the relations (2) to lower the degree of N . (Recall from the proof of Lemma 3 that the structure constants c_{ij}^h lie in K_1 .)

Remark 6. If $r = 2$, Theorem 1 fails for every $n \geq 3$. That is, for every $n \geq 3$ there exists a central simple algebra of degree n such that $\text{ed}(F_2) < \text{ed}(A)$.

Proof. For the purpose of constructing A , I will take the base field k to be the field \mathbb{C} of complex numbers. As usual, K will denote a field extension of $k = \mathbb{C}$. If A/K is non-split then clearly A cannot descend to \mathbb{C} , i.e., $\text{ed}(A) \geq 1$ (in fact, we even have $\text{ed}(A) \geq 2$ by Tsen's theorem; cf. e.g., [6, Corollary 19.4a]). Thus it suffices to construct an algebra A/K of degree $n \geq 3$ whose bilinear trace form F_2 descends to \mathbb{C} . In this case we will have $0 = \text{ed}(F_2) < \text{ed}(A)$, as desired.

Note that if the quadratic trace form $q_A: a \mapsto \text{tr}(a^2)$ descends to \mathbb{C} then so does the bilinear trace form $F_2: (a, b) \mapsto \text{tr}(ab)$, since F_2 can be recovered from q_A by polarization. Thus we only need to construct examples of non-split algebras A/K of degree $n \geq 3$ such that the quadratic trace form q_A descends to \mathbb{C} .

If n is odd, the argument in the introduction shows that q_A descends to \mathbb{C} for every A ; cf. (1). If $n = 2s \geq 4$ is even, consider algebras A of degree n and index s , i.e., algebras of the form $A = M_2(D) = M_2(K) \otimes_K D$, where D/K is a division algebra of degree $s \geq 2$. The quadratic form q_A is easily seen to be the tensor product of $q_{M_2(K)}$ and q_D . Since $\mathbb{C} \subset K$, the form

$$q_{M_2(K)} \equiv \langle 1, 1, 1, -1 \rangle$$

is split over K and hence, so is $q_A = q_{M_2(K)} \otimes q_D$. In particular, q_A descends to \mathbb{C} . \square

Remark 7. A more interesting example, where the equality $\text{ed}(F_2) = \text{ed}(A)$ fails, is given by a generic division algebra A/K of degree 4. In this case $\text{ed}(F_2) = 4$ (see [4, Theorem 1.5]), while an unpublished theorem of Rost [7] asserts that $\text{ed}(A) = 5$.

Remark 8. To see where the proof of Theorem 1 breaks down for $r = 2$, note that it relies on Lemma 2(a) with $d = r - 2$ (used in the proof of Lemma 3) and Lemma 2(b) with $d = r - 1$ (used in the proof of Proposition 4). Clearly Lemma 2(a) fails for $d = 0$ and Lemma 2(b) fails for $d = 1$.

I will conclude this paper with an open question.

Question 9. Does Theorem 1 remain valid if the central simple algebra A/K is replaced by a finite field extension L/K (and F_r is the r -linear trace form in L/K)? The proof of Theorem 1 presented in this paper does not carry over to this context, because it relies on Lemma 2(b), which clearly fails in the commutative setting.

ACKNOWLEDGEMENTS

I am grateful to V. Chernousov and R. Parimala for stimulating discussions and to J.-P. Serre and the referee for helpful comments on earlier versions of this paper.

REFERENCES

- [1] G. Berhuy, G. Favi, *Essential dimension: a functorial point of view (after A. Merkurjev)*, Doc. Math. 8 (2003), 279–330.
- [2] A. Freedman, R. N. Gupta, R. M. Guralnick, *Shirshov's theorem and representations of semigroups*, Olga Taussky-Todd: in memoriam, Pacific J. Math. 1997, Special Issue, 159–176.
- [3] T. Y. Lam, The algebraic theory of quadratic forms. Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1973.
- [4] M. Lorenz, Z. Reichstein, L.H. Rowen, D. J. Saltman, *Fields of definition for division algebras*, Journal of the London Mathematical Society, **68**, 03 (2003), 651–670.
- [5] A. Merkurjev, *Essential dimension*, preprint (2000).
- [6] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, 88, Springer-Verlag, 1982.
- [7] M. Rost, *Computation of some essential dimensions*, preprint, 2000.
Available at <http://www.mathematik.uni-bielefeld.de/~rost/ed.html>
- [8] M. Rost, J.-P. Serre, J.-P. Tignol, *La forme trace d'une algèbre simple centrale de degré 4*, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 83–87.
- [9] J.-P. Tignol, *La forme seconde trace d'une algèbre simple centrale de degré 4 de caractéristique 2*, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 89–92.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER,
BC V6T 1Z2, CANADA

E-mail address: `reichst@math.ubc.ca`