HIGHER TRACE FORMS AND ESSENTIAL DIMENSION
IN CENTRAL SIMPLE ALGEBRAS

Z. REICHSTEIN

ABSTRACT. We show that the essential dimension of a finite-dimensional
central simple algebra coincides with the essential dimension of its r-
linear trace form, (a1,...,ar) — tr(ai...ar), for any r > 3.

1. INTRODUCTION

Throughout this paper A will be a central simple algebra of degree n,
K will be the center of A and k will be a subfield of K. I will denote the
(reduced) trace function A — K by tr. Let F, be the r-linear trace form
of A, given by

F.(ai,...,a;) =tr(ai...a).
The main question motivating this paper is to determine how much infor-
mation about A is carried by the trace form Fi.

The bilinear form F5 has been studied by many authors. Suppose char(K) #
2. If the degree n of A is odd then after an odd degree splitting extension
L/K, F; becomes isomorphic to the trace form of the matrix algebra M,,(L).
Using Springer’s theorem (cf. e.g., [3, Theorem 7.2.3]), one readily deduces
that the quadratic form associated to Fb is isomorphic to

(n* —n)
2

(1) n<l>® <1l,-1>

over K. In particular, in this case Fy carries no information about A.

The situation is different if n is even. It is well known that for n = 2 the
algebra A is completely determined by its bilinear trace form Fy; cf. e.g., [3,
Proposition I11.2.5]. Recently Rost, Serre and Tignol [8] gave a description
of Fy for algebras A of degree 4, assuming K contains a 4th root of unity.
They showed that in this case F5 also encodes many of the algebra properties
of A. In particular, one can tell whether or not A is cyclic or biquaternion
by looking only at Fb. (For related results in characteristic two, see [9].)

On the other hand, the bilinear trace form F5 does not, in general, capture
the essential dimension of A for any n > 3; cf. Remark 6. The purpose of
this paper is to show that the essential dimension of A is captured by the
r-linear trace form F, for any r > 3. Before stating this formally T will
briefly recall the definition of essential dimension.
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Let F be a functor from the category of field extensions of k£ to the
category of sets. I will say that o € F(K) descends to a subfield Ky C K
if « lies in the image of the natural map F(Ky) — F(K). The essential
dimension ed(«) is defined as the minimal value of trdeg;(Kp), where «
descends to Ky; cf. [1, 5]. In this paper we will be particularly interested in
the functors CSA,, and Forms,.,,, where

CSA,(K) = set of central simple algebras A/K of degree n, up to K-
isomorphism

and

Forms,. ,,(K') = set of pairs (V, F'), where V' is an m-dimensional K-vector
space and F' is an r-linear form on V', up to equivalence. Here (V, F) and
(V') F') are considered equivalent if there is an isomorphism V — V' of
K-vector spaces, which takes F' to F’.

I will view A as an element of CSA,,(K) and F;. as an element of Forms,. ,,» (K).
With these notations, the main result of this paper is the following theorem.

Theorem 1. Let A/K be a central simple algebra of degree n and F, be
the r-linear trace form in A. Suppose char(K) does not divide n. Then
ed(F,) =ed(A) for any r > 3.

Note that the inequality ed(F;) < ed(A) is obvious. Indeed, if A descends
to a subfield Ky of K then clearly F). also descends to K. The proof of the
opposite inequality given below does not show that if Fj. descends to Kj
then so does A. I don’t know whether or not this is true. Instead, I will
show that if F}. descends to a subfield Ky C K then A descends to a subfield
K such that Ko C K; C K and [K; : Ko| < oo (in fact, K1 = Ky(c), where
c" € Ko)

2. PRELIMINARIES

The remainder of this paper will be devoted to proving Theorem 1. In
particular, I will always assume that char(K) does not divide n and set
m = n? = dimg (A). As usual, [ , ] will denote the natural Lie bracket in
A, defined by [a,b] = ab — ba.

The following simple lemma will be used in the proof of Theorem 1.

Lemma 2. Let A/K be a central simple algebra of degree n and let by, ..., by,
be a K-basis of A. Then

(a) for every d > 1, monomials of degree d in by,..., by span A as a
K -vector space.

(b) Let Ag = {a € A| tr(a) = 0}. Then for any d > 2, elements of the
form by, [biy, ... [biy_, iy - .1] span Ag as a K -vector space.

Note that part (a) and its proof below remain valid for any K-algebra A.

Proof. (a) Use induction on d. The base case, d = 1, is obvious. For the
induction step suppose that d > 2 and that the lemma holds for monomials
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of degree d — 1. In particular, the identity element of A can be written as
la=aXi+ - +cemXnm

where X1,...,X,, are monomials of degree d — 1 and c¢1,...,¢, € K. Then
foreachi=1,...,m,

bi = bl . 1A = Cl(bin) + -+ Cm(bZXm)
is a linear combination of monomials of degree d in by, ..., b,,. Since by, ..., by,
form a K-basis of A, this shows that monomials of degree d span A over K.
(b) The assertion of part (b) is equivalent to [A,[A,...[A,A]]...] = Ay
(where the Lie bracket is applied d > 2 times). Thus it suffices to show that

[A, A] = [A, Ao] = [Ao, Ao] = Ao .

The first two of these identities are obvious and the third one is a conse-
quence of the fact that Ay is a simple Lie algebra (it is a form of si,). In
concrete terms, in order to prove the identity [Ag, Ag] = Ao, one may pass to
the separable closure K*°P of K, i.e., replace K by K*P and A by M,,(K*?).
In the case where A is the matrix algebra, it is easy to see that elements of
the form [eqp, ecq] span Ag, as a, b, c and d range from 1 to m. (Here e;; are
the matrix units.) O

Before we proceed with the proof of Theorem 1, we record the following
special cases of the definitions in the previous section.

A central simple algebra A/K descends to Ky C K if there is a K-basis
bi,...,bmy of A such that the structure constants of A relative to this basis
lie in K.

The r-linear trace form F, descends to Ky C K if there is a K-basis
bi,..., by of A such that tr(b;, ...b;.) lies in Ky for every iy,...,i, =
1,...,m.

3. PROOF OF THEOREM 1

Since the inequality ed(F,) < ed(A) is obvious (see the paragraph after
the statement of Theorem 1), I will focus on proving the opposite inequality,
ed(A) < ed(F,). The following lemma was motivated by [2].

Lemma 3. Suppose for some r > 3 there exists a K-basis by,...,by of A
and a subfield Ko C K such that tr(M) € Ky for every monomial M in
bi,...,by, of degree r or r — 1. Then A descends to K.

Note that Lemma 3 (and its proof below) remain valid for any semisimple
K-algebra A.

Proof. Let c?j be the structure constants of A with respect to the basis
bi,...,bmy. That is,

(2) bibj = > clibn,
h=1
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for i,5 = 1,...,m. Our goal is to show that each C?j lies in Ky. In order
to do this, I will fix ¢ and j and try to solve (2) for the m coefficients
1 .2 m
Cijs Cijr 2 Cl-
By Lemma 2(a), with d = r — 2, there exists a K-basis Z1,...,Z,, of A
where each Z; is a monomial in by, . . ., by, of degree r—2. Since the (bilinear)

trace form on A is nonsingular, (2) is equivalent to the system

tr(biijl) = 27}?:1 tr(thl)c?j

(3) tr(biijQ) = Z;anl tl“(thQ)C?j

tr(bibj Zm) = > 5y tr(thm)c?j
of m linear equations in m unknowns, c}j, c?j, ey Gy Since by, ..., b, and
Z1y..., Zm are both K-bases of A, and the (bilinear) trace form on A is

nonsingular, an easy exercise in linear algebra shows that the matrix of this
System,

tr(blZl) tr(ngl) e tI‘(mel)
tr(b1Z2) tr(bQZQ) e tI‘(meQ)
tr(b1Zy,) tr(b2Zy) ... tr(bynZm)
is nonsingular. Note the b,Z; and b;b;Z; are monomials in by,...,b,, of

degree r — 1 and r respectively. Thus, by our assumption, every coefficient
of the system (3) lies in Kj. Solving this system by Cramer’s rule, we
conclude that every c?j lies in K. O

The inequality ed(A) < ed(F;) (and thus Theorem 1) is now an immediate
consequence of Proposition 4(b) below.

Proposition 4. Suppose b1, ..., by, is a K-basis of A and Ky is a subfield
of K such that tr(M) € Ky for every monomial M in by, ..., by, of degree
r> 3.

(a) There exist a1, ...,a, € Ko such that ;" o;b; = c¢- 14 for some
0#£ce K.

(b) There exists a finite extension K1 of Ky such Koy C K1 C K and
tr(N) € Ki for any monomial N in by, ..., by, of degree <r.

Proof. By Lemma 2(b), with d = r — 1, there exists a K-basis Y7,...,Y,_1
of Ag such that each Y; has the form

Yi= [biu [biw s [bir727 bi'rfl] .- H

for some 41,...,4,—1 € {1,...,m}.



HIGHER TRACE FORMS 5

Now observe that the orthogonal complement to Ay in A, with respect to
the trace form, is precisely K - 14. Thus, J € A lies in K - 14 if and only if

tI‘(Yl J) =0,
tr(YgJ) =0,
(4)
tI‘(Ym_lj) =0.
Writing J = a1b1 + - - - + aunby, with indeterminate coefficients aq, ..., a;,

and expanding (4), we obtain the homogeneous linear system

tr(Yib1)ag + - + tr(Yiby ), =0,
tr(Yle)Oq + -+ tr(ngm)am =0,

tr(Yi—1b1)ar + - - + tr(Yin—1bm)am = 0.

of m — 1 equations in m variables. By our choice of Yi,...,Y,,_1 every
coefficient tr(Y;b;) lies in Ky. Thus this system has a nontrivial solution
(o,...,am) € K" For these o, ..., am,

J=a1by + -+ ambn #0
satisfies (4) and hence is of the form ¢ - 14 for some 0 # ¢ € K.

(b) Let J = a1by1 + - - -+ by = ¢- 14 be as in part (a). We do not know
that ¢ € Ko; however, I claim that K; = Ky(c) is a finite extension of Kj.
Indeed, since ai, ...y, lie in Ky, nc” = tr(J") is a Ky-linear combination
of elements of the form tr(b;, ...b;,), which, by our assumption, lie in K.
Thus ne” € Ky, and since char(K) does not divide n, we conclude that
c" € Ky. This shows that c is algebraic over Ky and thus proves the claim.

It remains to show that tr(b;, ...b;,) lies in K for any 1 < s < r and any

i1,...,05s = 1,...,m. Since ¢ # 0, we have

1 _
(5) tr(bzlbzs):Ftr(bzlbzsz S)
Expanding tr(b;, ...b;,J" %) and remembering that ai,...,a, lie in Ky,
we see that tr(b;, ...b;,J" %) lies in Ky. Equation (5) now tells us that
tr(b;, ...b;,) lies in K1, as claimed. O

4. CONCLUDING REMARKS

Remark 5. The conclusion of Proposition 4(b) can be strengthened as
follows: tr(N) € K; for every monomial N in by,...,b,. To prove this,
we argue by induction on deg(N). The base case, where deg(N) < r, is
given by Proposition 4(b), and the induction step is carried out by using the
relations (2) to lower the degree of N. (Recall from the proof of Lemma 3
that the structure constants c?j lie in K7.)

Remark 6. If r = 2, Theorem 1 fails for every n > 3. That is, for every
n > 3 there exists a central simple algebra of degree n such that ed(F») <
ed(A).
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Proof. For the purpose of constructing A, I will take the base field & to be
the field C of complex numbers. As usual, K will denote a field extension
of k = C. If A/K is non-split then clearly A cannot descend to C, i.e.,
ed(A) > 1 (in fact, we even have ed(A4) > 2 by Tsen’s theorem; cf. e.g., [6,
Corollary 19.4a]). Thus it suffices to construct an algebra A/K of degree
n > 3 whose bilinear trace form F5 descends to C. In this case we will have
0 = ed(F2) < ed(A), as desired.

Note that if the quadratic trace form ga: a — tr(a?) descends to C then
so does the bilinear trace form Fy: (a,b) — tr(ab), since F5 can be recovered
from g by polarization. Thus we only need to construct examples of non-
split algebras A/K of degree n > 3 such that the quadratic trace form g4
descends to C.

If n is odd, the argument in the introduction shows that g4 descends to
C for every A; cf. (1). If n = 2s > 4 is even, consider algebras A of degree
n and index s, i.e., algebras of the form A = My(D) = Ma(K) @ D, where
D/K is a division algebra of degree s > 2. The quadratic form g4 is easily
seen to be the tensor product of gy, (k) and gp. Since C C K, the form

dM, (K) = <17 17 1a —1>

is split over K and hence, 80 is g4 = qui,(x) ® ¢p- In particular, g4 descends
to C. O

Remark 7. A more interesting example, where the equality ed(F3) = ed(A)
fails, is given by a generic division algebra A/K of degree 4. In this case
ed(Fy) = 4 (see [4, Theorem 1.5]), while an unpublished theorem of Rost [7]
asserts that ed(A4) = 5.

Remark 8. To see where the proof of Theorem 1 breaks down for r = 2, note
that it relies on Lemma 2(a) with d = r — 2 (used in the proof of Lemma 3)
and Lemma 2(b) with d = r —1 (used in the proof of Proposition 4). Clearly
Lemma 2(a) fails for d = 0 and Lemma 2(b) fails for d = 1.

I will conclude this paper with an open question.

Question 9. Does Theorem 1 remain valid if the central simple algebra
A/K is replaced by a finite field extension L/K (and F, is the r-linear trace
form in L/K)? The proof of Theorem 1 presented in this paper does not
carry over to this context, because it relies on Lemma 2(b), which clearly
fails in the commutative setting.
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