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Abstract. We show that the essential dimension of a finite-dimensional
central simple algebra coincides with the essential dimension of its r-
linear trace form, (a1, . . . , ar) 7→ tr(a1 . . . ar), for any r ≥ 3.

1. Introduction

Throughout this paper A will be a central simple algebra of degree n,
K will be the center of A and k will be a subfield of K. I will denote the
(reduced) trace function A −→ K by tr. Let Fr be the r-linear trace form
of A, given by

Fr(a1, . . . , ar) = tr(a1 . . . ar) .

The main question motivating this paper is to determine how much infor-
mation about A is carried by the trace form Fr.

The bilinear form F2 has been studied by many authors. Suppose char(K) 6=
2. If the degree n of A is odd then after an odd degree splitting extension
L/K, F2 becomes isomorphic to the trace form of the matrix algebra Mn(L).
Using Springer’s theorem (cf. e.g., [3, Theorem 7.2.3]), one readily deduces
that the quadratic form associated to F2 is isomorphic to

(1) n < 1 > ⊕(n2 − n)
2

< 1,−1 >

over K. In particular, in this case F2 carries no information about A.
The situation is different if n is even. It is well known that for n = 2 the

algebra A is completely determined by its bilinear trace form F2; cf. e.g., [3,
Proposition III.2.5]. Recently Rost, Serre and Tignol [8] gave a description
of F2 for algebras A of degree 4, assuming K contains a 4th root of unity.
They showed that in this case F2 also encodes many of the algebra properties
of A. In particular, one can tell whether or not A is cyclic or biquaternion
by looking only at F2. (For related results in characteristic two, see [9].)

On the other hand, the bilinear trace form F2 does not, in general, capture
the essential dimension of A for any n ≥ 3; cf. Remark 6. The purpose of
this paper is to show that the essential dimension of A is captured by the
r-linear trace form Fr for any r ≥ 3. Before stating this formally I will
briefly recall the definition of essential dimension.
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Let F be a functor from the category of field extensions of k to the
category of sets. I will say that α ∈ F(K) descends to a subfield K0 ⊂ K
if α lies in the image of the natural map F(K0) → F(K). The essential
dimension ed(α) is defined as the minimal value of trdegk(K0), where α
descends to K0; cf. [1, 5]. In this paper we will be particularly interested in
the functors CSAn and Formsr,m, where

CSAn(K) = set of central simple algebras A/K of degree n, up to K-
isomorphism
and

Formsr,m(K) = set of pairs (V, F ), where V is an m-dimensional K-vector
space and F is an r-linear form on V , up to equivalence. Here (V, F ) and
(V ′, F ′) are considered equivalent if there is an isomorphism V → V ′ of
K-vector spaces, which takes F to F ′.

I will view A as an element of CSAn(K) and Fr as an element of Formsr,n2(K).
With these notations, the main result of this paper is the following theorem.

Theorem 1. Let A/K be a central simple algebra of degree n and Fr be
the r-linear trace form in A. Suppose char(K) does not divide n. Then
ed(Fr) = ed(A) for any r ≥ 3.

Note that the inequality ed(Fr) ≤ ed(A) is obvious. Indeed, if A descends
to a subfield K0 of K then clearly Fr also descends to K0. The proof of the
opposite inequality given below does not show that if Fr descends to K0

then so does A. I don’t know whether or not this is true. Instead, I will
show that if Fr descends to a subfield K0 ⊂ K then A descends to a subfield
K1 such that K0 ⊂ K1 ⊂ K and [K1 : K0] < ∞ (in fact, K1 = K0(c), where
cr ∈ K0).

2. Preliminaries

The remainder of this paper will be devoted to proving Theorem 1. In
particular, I will always assume that char(K) does not divide n and set
m = n2 = dimK(A). As usual, [ , ] will denote the natural Lie bracket in
A, defined by [a, b] = ab− ba.

The following simple lemma will be used in the proof of Theorem 1.

Lemma 2. Let A/K be a central simple algebra of degree n and let b1, . . . , bm

be a K-basis of A. Then
(a) for every d ≥ 1, monomials of degree d in b1, . . . , bm span A as a

K-vector space.
(b) Let A0 = {a ∈ A | tr(a) = 0}. Then for any d ≥ 2, elements of the

form [bi1 , [bi2 , . . . [bid−1
, bid ] . . . ]] span A0 as a K-vector space.

Note that part (a) and its proof below remain valid for any K-algebra A.

Proof. (a) Use induction on d. The base case, d = 1, is obvious. For the
induction step suppose that d ≥ 2 and that the lemma holds for monomials
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of degree d− 1. In particular, the identity element of A can be written as

1A = c1X1 + · · ·+ cmXm

where X1, . . . , Xm are monomials of degree d− 1 and c1, . . . , cm ∈ K. Then
for each i = 1, . . . ,m,

bi = bi · 1A = c1(biX1) + · · ·+ cm(biXm)

is a linear combination of monomials of degree d in b1, . . . , bm. Since b1, . . . , bm

form a K-basis of A, this shows that monomials of degree d span A over K.
(b) The assertion of part (b) is equivalent to [A, [A, . . . [A,A]] . . .] = A0

(where the Lie bracket is applied d ≥ 2 times). Thus it suffices to show that

[A,A] = [A,A0] = [A0, A0] = A0 .

The first two of these identities are obvious and the third one is a conse-
quence of the fact that A0 is a simple Lie algebra (it is a form of sln). In
concrete terms, in order to prove the identity [A0, A0] = A0, one may pass to
the separable closure Ksep of K, i.e., replace K by Ksep and A by Mn(Ksep).
In the case where A is the matrix algebra, it is easy to see that elements of
the form [eab, ecd] span A0, as a, b, c and d range from 1 to m. (Here eij are
the matrix units.) �

Before we proceed with the proof of Theorem 1, we record the following
special cases of the definitions in the previous section.

A central simple algebra A/K descends to K0 ⊂ K if there is a K-basis
b1, . . . , bm of A such that the structure constants of A relative to this basis
lie in K0.

The r-linear trace form Fr descends to K0 ⊂ K if there is a K-basis
b1, . . . , bm of A such that tr(bi1 . . . bir) lies in K0 for every i1, . . . , ir =
1, . . . ,m.

3. Proof of Theorem 1

Since the inequality ed(Fr) ≤ ed(A) is obvious (see the paragraph after
the statement of Theorem 1), I will focus on proving the opposite inequality,
ed(A) ≤ ed(Fr). The following lemma was motivated by [2].

Lemma 3. Suppose for some r ≥ 3 there exists a K-basis b1, . . . , bm of A
and a subfield K0 ⊂ K such that tr(M) ∈ K0 for every monomial M in
b1, . . . , bm of degree r or r − 1. Then A descends to K0.

Note that Lemma 3 (and its proof below) remain valid for any semisimple
K-algebra A.

Proof. Let ch
ij be the structure constants of A with respect to the basis

b1, . . . , bm. That is,

(2) bibj =
m∑

h=1

ch
ijbh ,
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for i, j = 1, . . . ,m. Our goal is to show that each ch
ij lies in K0. In order

to do this, I will fix i and j and try to solve (2) for the m coefficients
c1
ij , c

2
ij , . . . , c

m
ij .

By Lemma 2(a), with d = r − 2, there exists a K-basis Z1, . . . , Zm of A
where each Zi is a monomial in b1, . . . , bm of degree r−2. Since the (bilinear)
trace form on A is nonsingular, (2) is equivalent to the system

(3)


tr(bibjZ1) =

∑m
h=1 tr(bhZ1)ch

ij

tr(bibjZ2) =
∑m

h=1 tr(bhZ2)ch
ij

...
...

tr(bibjZm) =
∑m

h=1 tr(bhZm)ch
ij

of m linear equations in m unknowns, c1
ij , c

2
ij , . . . , c

m
ij . Since b1, . . . , bm and

Z1, . . . , Zm are both K-bases of A, and the (bilinear) trace form on A is
nonsingular, an easy exercise in linear algebra shows that the matrix of this
system, 

tr(b1Z1) tr(b2Z1) . . . tr(bmZ1)
tr(b1Z2) tr(b2Z2) . . . tr(bmZ2)

...
...

tr(b1Zm) tr(b2Zm) . . . tr(bmZm)

 ,

is nonsingular. Note the bhZl and bibjZl are monomials in b1, . . . , bm of
degree r − 1 and r respectively. Thus, by our assumption, every coefficient
of the system (3) lies in K0. Solving this system by Cramer’s rule, we
conclude that every ch

ij lies in K0. �

The inequality ed(A) ≤ ed(Fr) (and thus Theorem 1) is now an immediate
consequence of Proposition 4(b) below.

Proposition 4. Suppose b1, . . . , bm is a K-basis of A and K0 is a subfield
of K such that tr(M) ∈ K0 for every monomial M in b1, . . . , bm of degree
r ≥ 3.

(a) There exist α1, . . . , αr ∈ K0 such that
∑m

i=1 αibi = c · 1A for some
0 6= c ∈ K.

(b) There exists a finite extension K1 of K0 such K0 ⊂ K1 ⊂ K and
tr(N) ∈ K1 for any monomial N in b1, . . . , bm of degree ≤ r.

Proof. By Lemma 2(b), with d = r− 1, there exists a K-basis Y1, . . . , Ym−1

of A0 such that each Yi has the form

Yi = [bi1 , [bi2 , . . . [bir−2 , bir−1 ] . . . ]]

for some i1, . . . , ir−1 ∈ {1, . . . ,m}.
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Now observe that the orthogonal complement to A0 in A, with respect to
the trace form, is precisely K · 1A. Thus, J ∈ A lies in K · 1A if and only if

(4)


tr(Y1J) = 0 ,

tr(Y2J) = 0 ,

. . .

tr(Ym−1J) = 0 .

Writing J = α1b1 + · · ·+ αmbm, with indeterminate coefficients α1, . . . , αm

and expanding (4), we obtain the homogeneous linear system
tr(Y1b1)α1 + · · ·+ tr(Y1bm)αm = 0 ,
tr(Y2b1)α1 + · · ·+ tr(Y2bm)αm = 0 ,
. . .
tr(Ym−1b1)α1 + · · ·+ tr(Ym−1bm)αm = 0 .

of m − 1 equations in m variables. By our choice of Y1, . . . , Ym−1 every
coefficient tr(Yibj) lies in K0. Thus this system has a nontrivial solution
(α1, . . . , αm) ∈ Km

0 . For these α1, . . . , αm,

J = α1b1 + · · ·+ αmbm 6= 0

satisfies (4) and hence is of the form c · 1A for some 0 6= c ∈ K.
(b) Let J = α1b1 + · · ·+αmbm = c · 1A be as in part (a). We do not know

that c ∈ K0; however, I claim that K1 = K0(c) is a finite extension of K0.
Indeed, since α1, . . . αm lie in K0, ncr = tr(Jr) is a K0-linear combination
of elements of the form tr(bi1 . . . bir), which, by our assumption, lie in K0.
Thus ncr ∈ K0, and since char(K) does not divide n, we conclude that
cr ∈ K0. This shows that c is algebraic over K0 and thus proves the claim.

It remains to show that tr(bi1 . . . bis) lies in K1 for any 1 ≤ s ≤ r and any
i1, . . . , is = 1, . . . ,m. Since c 6= 0, we have

(5) tr(bi1 . . . bis) =
1

cr−s
tr(bi1 . . . bisJ

r−s) .

Expanding tr(bi1 . . . bisJ
r−s) and remembering that α1, . . . , αm lie in K0,

we see that tr(bi1 . . . bisJ
r−s) lies in K0. Equation (5) now tells us that

tr(bi1 . . . bis) lies in K1, as claimed. �

4. Concluding remarks

Remark 5. The conclusion of Proposition 4(b) can be strengthened as
follows: tr(N) ∈ K1 for every monomial N in b1, . . . , bm. To prove this,
we argue by induction on deg(N). The base case, where deg(N) ≤ r, is
given by Proposition 4(b), and the induction step is carried out by using the
relations (2) to lower the degree of N . (Recall from the proof of Lemma 3
that the structure constants ch

ij lie in K1.)

Remark 6. If r = 2, Theorem 1 fails for every n ≥ 3. That is, for every
n ≥ 3 there exists a central simple algebra of degree n such that ed(F2) <
ed(A).
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Proof. For the purpose of constructing A, I will take the base field k to be
the field C of complex numbers. As usual, K will denote a field extension
of k = C. If A/K is non-split then clearly A cannot descend to C, i.e.,
ed(A) ≥ 1 (in fact, we even have ed(A) ≥ 2 by Tsen’s theorem; cf. e.g., [6,
Corollary 19.4a]). Thus it suffices to construct an algebra A/K of degree
n ≥ 3 whose bilinear trace form F2 descends to C. In this case we will have
0 = ed(F2) < ed(A), as desired.

Note that if the quadratic trace form qA : a 7→ tr(a2) descends to C then
so does the bilinear trace form F2 : (a, b) 7→ tr(ab), since F2 can be recovered
from qA by polarization. Thus we only need to construct examples of non-
split algebras A/K of degree n ≥ 3 such that the quadratic trace form qA

descends to C.
If n is odd, the argument in the introduction shows that qA descends to

C for every A; cf. (1). If n = 2s ≥ 4 is even, consider algebras A of degree
n and index s, i.e., algebras of the form A = M2(D) = M2(K)⊗K D, where
D/K is a division algebra of degree s ≥ 2. The quadratic form qA is easily
seen to be the tensor product of qM2(K) and qD. Since C ⊂ K, the form

qM2(K) ≡ <1, 1, 1,−1>

is split over K and hence, so is qA = qM2(K)⊗qD. In particular, qA descends
to C. �

Remark 7. A more interesting example, where the equality ed(F2) = ed(A)
fails, is given by a generic division algebra A/K of degree 4. In this case
ed(F2) = 4 (see [4, Theorem 1.5]), while an unpublished theorem of Rost [7]
asserts that ed(A) = 5.

Remark 8. To see where the proof of Theorem 1 breaks down for r = 2, note
that it relies on Lemma 2(a) with d = r− 2 (used in the proof of Lemma 3)
and Lemma 2(b) with d = r−1 (used in the proof of Proposition 4). Clearly
Lemma 2(a) fails for d = 0 and Lemma 2(b) fails for d = 1.

I will conclude this paper with an open question.

Question 9. Does Theorem 1 remain valid if the central simple algebra
A/K is replaced by a finite field extension L/K (and Fr is the r-linear trace
form in L/K)? The proof of Theorem 1 presented in this paper does not
carry over to this context, because it relies on Lemma 2(b), which clearly
fails in the commutative setting.
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