
A NOTE ON RETRACTS AND LATTICES (AFTER D. J.
SALTMAN)

Z. REICHSTEIN

Abstract. This is an expository note based on the work of D. J. Salt-
man. We discuss the notions of retract rationality and retract equiva-
lence and reprove some of the results from [Sa, Section 1] using geometric
language.

1. Retracts

Throughout this note G will be a finite group and k will be a base field.
We shall say that a dominant rational map f : X 99K Y is a model for a field
extension i : F ↪→ E if k(X) ' E, k(Y ) ' F , and i is induced by f (i.e.,
i = f∗).

Definition 1.1. Let f : X 99K Y be a dominant rational map of irreducible
algebraic varieties. We say that Y is a retract of X via f if for every (not
necessarily irreducible) subvariety X0 6= X there exists a rational section
s : Y 99K X of f such that f(Y ) 6⊂ X0. If f is not specified, then the
expression Y is a retract of X means “via some dominant rational map
X 99K Y ”.

Remark 1.2. If we view X as a variety over k(Y ) then the above definition
can be restated as follows: Y is a retract of X if and only if k(Y )-points are
dense in X.

Lemma 1.3. (a) X is a retract of itself (via the identity map).
(b) If Y is a retract of X via f : X 99K Y and Z is a retract of Y via

g : Y 99K Z then Z is a retract of X via gf : X 99K Z.

Proof. (a) Take s to be the identity map (for any X0).
(b) Suppose X0 6= X is a subvariety of X. Choose a section s1 : Y 99K X

whose image is not contained in X0. Now choose a section s2 : Z 99K Y
whose image is not contained in the union of the indeterminacy locus of s1

and s−1
1 (X0). Now s = s2s1 : Z 99K X is the section of gf we are looking

for. �

The following lemma shows that the property of being a retract de-
pends only on the field extension k(X)/k(Y ) and not on the specific model
f : X 99K Y for this extension. Equivalently, this property does not change
if we replace X and Y by birationally isomorphic varieties.
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Lemma 1.4. Consider the following commutative diagram of rational maps,

X
f //___

α

���
�
� Y

β
���
�
�

X ′ f ′
//___ Y ′

where f and f ′ are dominant and α and β are birational isomorphisms. If
Y is a retract of X via f then Y ′ is a retract of X ′ via f ′.

Proof. Given a subvariety X ′
0 6= X ′ of X ′, we want to construct a section

s′ : Y ′ 99K X ′ of f ′ whose image is not contained in X ′
0. Let X0 be the

union of α−1(X ′
0) and the indeterminacy locus of α and let s : Y 99K X be

a section of f whose image is not contained in X0. Then s′ = αsβ−1 has
the desired properties: it is well defined and its image is not contained in
X ′

0. �

Example 1.5. (a) Suppose X is birationally isomorphic to Y × Z, and
k-points are dense in Z. (Note that latter condition is always satisfied if
k is algebraically closed.) Then Y is a retract of X, via the projection
f : X 99K Y to the first factor. Indeed, for every k-point z ∈ Z, consider the
section sz : Y −→ Y ×Z of f given by sz(y) = (y, z). Since the union of the
images of such sections is dense in X, we conclude that Y is a retract of X.

(b) If X is rational over Y (i.e. k(X) is isomorphic to a purely tran-
scendental extension of k(Y )) then Y is a retract of X. Indeed, in view of
Lemma 1.4, we may assume that X = Y × An

k . Since k-points are dense in
An

k , the desired conclusion follows from part (a).

Definition 1.6. Let i : F ↪→ E be a field extension, where E and F are
finitely generated over k. We shall say that F is a retract of E (via i) if Y
is a retract of X (via f) for some (and thus for every) model f : X 99K Y of
E/F .

Equivalently, F is a retract of E if for some (and thus any) algebraic
F -variety X such that F (X) = E, the F -points are dense in X.

If the field extension i is not specified then the expression “F is a retract
of E” means ”via some field extension E/F .

2. Generators of tori

In this section we make some simple observations about algebraic tori.
This material will be used in the proof of Theorem 3.1 in the next section
(but not anywhere else in this paper).

Let T = (k∗)r be an algebric torus. We will say that t ∈ T generates T ,
if the cyclic subgroup <t> = {tn |n ∈ Z} is Zariski dense in T . We will
say that t1, . . . , tr ∈ k∗ are multiplicatively independent, if ta1

1 . . . , tar
r = 1

implies a1 = · · · = ar = 0. (Here a1, . . . , ar are integers.)
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Lemma 2.1. Let t = (t1, . . . , tr) ∈ T for some t1, . . . , tr ∈ k∗. Then the
following conditions are equivalent:

(a) {tn |n ∈ Z− {0}} is dense in T ,

(b) t is a generator of T ,

(c) t does not lie in any proper closed subgroup of T ,

(d) χ(t) 6= 1 for any non-trivial character of T ,

(e) t1, . . . , tr are multiplicatively independent. �

Proof. (a) ⇒ (b): Obvious.

(b) ⇔ (a): The set C = {tn |n ∈ Z − {0}} differs from <t> in at most
one point, i.e.,

<t> \ {id} ⊂ C ⊂ <t> .

Hence, C is dense in T if and only if so is <t>.

(b) ⇒ (c): If t lies in a closed subgroup S then the closure of <t> is
contained in S.

(c) ⇒ (b): The Zariski closure of <t> is a closed subgroup of T .

(c) ⇔ (d): Immediate from [Sp, Corollary 2.5.3].

(d) ⇔ (e): Every character χ of T = (k∗)n has the form χ(t1, . . . , tr) =
ta1
1 . . . tar

r for some integers a1, . . . , ar; see, e.g. [Sp, Exercise 2.5.12]. �

Lemma 2.2. If t ∈ T is a generator of T then tn is also a generator for
any integer n 6= 0.

Proof. Assume the contrary: tn is not a generator. Then by Lemma 2.1,
there is a non-trivial character χ : T −→ k∗ such that χ(tn) = 1. Since χn is
also a non-trivial character of T , and χn(t) = χ(tn) = 1, we conclude that t
is not a generator of T , contradicting our assumption. �

Lemma 2.3. Let Tgen be the set of generators of T . Assume either char(k) =
0 or char(k) = p but k is not algebraic over its prime field Fp. Then Tgen is
Zariski dense in T .

Proof. First we claim that Tgen 6= ∅. If char(k) = 0 then k contains the field
of rational numbers. By Lemma 2.1 any point of the form t = (p1, . . . , pr),
where p1, . . . , pr are distinct prime integers, is a generator of T (distinct
primes are clearly multiplicatively independent). If char(k) = p, then, by
our assumption, k contains a copy of the polynomial ring Fp[x], and we use
the same argument as above, with Z and Q replaced by Fp[x] and Fp(x),
respectively. That is, if f1(x), . . . , fr(x) are distince irreducible polynomials
then t = (f1, . . . , fr) is a generator of T . This proves the claim.

Now suppose t ∈ Tgen. Lemma 2.2 tells us {tn |n ∈ Z− {0}} lies in Tgen.
By Lemma 2.1, this set is dense in T . Hence, Tgen is also dense in T , as
claimed. �
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3. Lattices and retracts

As usual, by a G-lattice L we shall mean Zn, with a linear G-action, i.e.,
an integral representation G −→ GLn(Z). We will say that L is faithful
if this representation is faithful, i.e., if every non-trivial element of G acts
non-trivially on L. We will say that L is permutation, if it has a Z-basis
permuted by G.

Given a G-lattice L, we will write k[L] for its group ring, k(L) for the
fraction field of k[L], and XL for the spectrum of k[L]. The G-action on
L induces G-actions on k[L], k(L) and XL. Ignoring these G-actions for a
moment, we see that since L ' Zn, k[L] is isomorphic to the Laurent poly-
nomial ring k[x±1

1 , . . . , x±1
n ], k(L) is isomorphic to the purely transcendental

field extension k(x1, . . . , xn) of k, and XL is isomorphic to the n-dimensional
torus (k∗)n.

For the rest of this paper we will assume that char(k) = 0 or char(k) = p
and k is not algebraic over the prime field Fp, so that we can use Lemma 2.3.

Theorem 3.1. Let G be a finite group and L ⊂ M be G-lattices. Then
k(M)G is a retract of k(L⊕M)G.

Proof. The inclusion i : L ↪→ M gives rise to a dominant morphism i∗ : XM 99K
XL. Consider the maps

XM
α−→ XL ×XM

β−→ XM

of G-varieties, where α = (i∗, id) and β is the projection to the second
component. Passing to rational G-quotients, we obtain

XM/G
α/G
99K (XL ×XM )/G

β/G
99K XM/G .

The function fields of XM/G and (XL ×XM )/G are, by definition, k(M)G

and k(L⊕M)G. Hence, it suffices to show that (XL ×XM )/G is a retract
of XM/G via β/G.

First observe that since β ◦α = idXM
(and hence, β/G ◦α/G = idXM/G),

α/G is a section of β/G. Note also that β (and thus β/G) does not depend
on i∗, but α (and thus α/G) does. Thus if we modify i∗ : XM −→ XL by
composing it with a G-equivariant dominant map σ : XM −→ XM , we will
create another section of β/G. In the sequel I will take σ = σn to be the
dominant map XM −→ XM induced by multn : M −→ M , where multn is
multiplication by a fixed integer n 6= 0. (Note that XM is, by definition, a
torus, and σn(t) = tn for any t ∈ XM .) It remains to show that the union of
the images of the sections obtained in this way is dense in (XL ×XM )/G.
In fact, it suffices to show that the union Z of the images of

αn = (i∗σn, id) : XM −→ XL ×XM

is dense in XL ×XM , as n ranges over non-zero integers. More concretely,
the k-points of Z are of the form (i∗(xn), x), where n ranges over the non-
zero integers and x ranges over XM (and xn denotes the nth power of x in
the torus XM ).
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Let (XM )gen be the set of generators of XM (viewed as a torus (k∗)rank(M)).
By Lemma 2.3 (XM )gen is Zariski dense in XM , and by Lemma 2.1

Dx = {xn |n ∈ Z− {0}}
is Zariski dense in XM for any x ∈ (XM )gen. Since i∗ : XM −→ XL is
dominant, i∗(Dx) is Zariski dense in XL. To sum up, Z contains i∗(Dx)×{x}
for every x ∈ (XM )gen. We thus conclude that the closure Z of Z in XL×XM

contains XL × (XM )gen. Since (XM )gen is dense in XM , this implies Z =
XL ×XM , as claimed. �

4. Stable retracts

Definition 4.1. Let X and Y be irreducible varieties defined over k.
(a) We will say that Y is a stable retract of X (and write Y � X) if Y is a

retract of X ×Am
k . Similarly, we will say that a field F is a stable retract of

E (and write F � E) if F is a retract of a purely transcendental extension
E(t1, . . . , tm) of F .

(b) We will say X and Y are stably retract equivalent (and write X ∼ Y )
if X is a stable retract of Y and Y is a stable retract of X. Similarly, we will
say that finitely generated field extensions F and E of k are stably retract
equivalent (and write F ∼ E) if F is a stable retract of E and E is a stable
retract of F .

(c) X is called retract rational if it is stably retract equivalent to a point
(here by a point I mean Spec(k)). A finitely generated field extension F of
k is retract rational if it is stably retract equivalent to k.

Example 4.2. Clearly if F/k is stably rational then it is stably retract
rational.

Lemma 4.3. (a) ∼ is an equivalence relation on the set of varieties/k (or
of finitely generated field extensions of k).

(b) � induces a partial order on the set of stable retract equivalence classes
of varieties (or finitely generated field extensions F/k),

(c) If X and Y (or F and E) are stably isomorphic over k, then they are
stably retract equivalent.

Proof. (a) ∼ is symmetric by definition. It is reflexive and transitive by
Lemma 1.3.

(b) Suppose � is a reflexive and transitive relation on a set S. Then the
relation s ∼ t, defined by (s ∼ t if s � t and t � s), is easily seen to be
an equivalence relation, and � induces a partial order on the set S/ ∼ of
equivalence classes in S. This is precisely the construction we carried out,
with S = set of irreducible varieties (or finitely generated field extension of
k).

(c) Suppose Z is rational over both X and Y . Then X ∼ Z and Y ∼ Z
(see Example 4.2), and since ∼ is an equivalence relation, we conclude that
X ∼ Y . �
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Theorem 4.4. Let M be faithful G-lattice. Then k(M)G is a stable retract
of k(L⊕M)G for any G-lattice L.

This theorem is a variant of Theorem 3.1. The conclusion of Theorem 4.4
is a little weaker (“retract” has been replaced by “stable retract”), and M
is assumed to be faithful. On the other hand, L is no longer required to be
a sublattice of M .

Proof. Recall that L is contained in some permutation lattice P ; see [Sa,
Lemma 1.2]. Let M ′ = M ⊕P . Then L is contained in M ′ and thus k(M ′)G

is a retract of k(L⊕M ′)G by Theorem 3.1. By the no-name lemma, k(M ′)G

is stably equivalent to k(M)G, and k(L⊕M ′)G = k(L⊕M ⊕ P )G is stably
equivalent to k(L ⊕ M)G. This shows that k(M)G is a stable retract of
k(L⊕M)G, as claimed. �

Corollary 4.5. (cf. [Sa, Lemma 1.5]) Let G be a finite group, L be a faithful
G-lattice and G ↪→ GL(V ) be a faithful linear representation of G. Then
k(V )G is a stable retract of k(L)G.

Proof. Use Theorem 4.4, with M = faithful permutation G-lattice. By the
no-name lemma, k(M)G is stably equivalent to k(V )G, k(L ⊕ M)G is sta-
bly equivalent to k(L)G (here we use the fact that L is faithful!), and the
corollary follows. �

Corollary 4.6. Let G ↪→ GL(V ) be a faithful linear representation of G and
let N be a G-lattice such that k(N)G is stably retract equivalent to k(V )G.

Then k(M)G is stably retract equivalent to k(V )G for any faithful direct
summand M of N .

Proof. By Corollary 4.5, we have k(V )G � k(M)G, where � stands for
“is a stable retract of”, as before. On the other hand, by Theorem 4.4
k(M)G � k(N)G ∼ k(V )G. This shows that k(M)G and k(V )G are retract
equivalent. �

Example 4.7. If N is a quasi-permutation lattice then k(N)G and k(V )G

are stably isomorphic; see [LL, Proposition 1.4]. Consequently, Corollary 4.6
tells us that k(M)G and k(V )G are stably retract equivalent for any faithful
direct summand M of a quasi-permutation lattice.

Remark 4.8. Saltman has shown that there exist faithful G-lattices M such
that k(M)G and k(V )G are not stably retract equivalent; see [Sa, Theorem
2.8].

Corollary 4.9. (cf. [Sa, Corollary 1.6]) If k(L)G is stably retract rational
for some faithful G-lattice L then k(V )G is stably retract rational for every
faithful linear representation G ↪→ GL(V ).

Proof. Our goal is to show that k ∼ k(V )G, where ∼ denotes stable retract
equivalence, as before.
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Since k(V )G � k(L)G (by Corollary 4.5) and k(L)G ∼ k (given), we
conclude that k(V )G � k. The opposite inequality, k � k(V )G follows from
Remark 1.2, since k(V )G is unirational over k (and hence, k-points are dense
on any model of k(V )G/k). �

5. Appendix: Smooth retracts

Saltman’s terminology is a bit different from ours; see [Sa, p. 223]. Given
a field extension E/F , he says that F is a retraction of E if there is a F -
variety X, such that F (X) = E and X has a F -point. If F -points are dense
in X (i.e., F is a retract of E in the sense of our Definition 1.6), Saltman calls
F is a dense retraction of E. He remarks that the relationship between these
notions, beyond the obvious implication (dense retraction) ⇒ (retraction),
is obscure.

The problem, as I see it, is that the notion of retraction defined above
is difficult to work with, because the existence of a F -point is, in general,
not a birational invariant of X. The following ”intermediate” notion seems
more natural to me (even though I have no applications for it at this point).

Definition 5.1. Suppose char(F ) = 0. Given a field extension E/F , we will
say that F is a smooth retract of E, if the following equivalent conditions
hold.

(a) There exists a F -variety X such that F (X) = E and X has a smooth
F -point.

(b) For every smooth proper F -variety X ′ such that F (X ′) = E, X ′ has
a F -point.

The implication (a) ⇒ (b), is a consequence of Nishimura’s Lemma [RY,
Proposition A6] (see also [N]) to the birational isomorphism X 99K X ′. To
prove the implication (b) ⇒ (a), we only need to show that there exists
a smooth proper F -variety X ′ such that F (X ′) = E (then we can take
X = X ′). To construct such X ′, embed some model of E/F in a projective
space Pn

F , take the closure and resolve its singularities (this requires the
assumption char(F ) = 0!).

Using Nishimura’s lemma one can reprove the results of this note (and in
particular, Lemmas 1.3 and 4.3) for smooth retracts. I opted to use “dense
retracts” instead, because this leads to stronger versions of Theorems 3.1, 4.4
and their corollaries.
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