SAGBI BASES IN RINGS OF MULTIPLICATIVE
INVARIANTS

ZINOVY REICHSTEIN

ABSTRACT. Let k be a field and G be a finite subgroup of GL,(Z). We
show that the ring of multiplicative invariants k[mi‘zl, o, zE% has a
finite SAGBI basis if and only if G is generated by reflections.

1. INTRODUCTION

Let k[x] = k[x1,...,x,] be the polynomial ring in n variables over a field k
and let N denotes the set of non-negative integers. If a = (ay,...,a,) € N,
we shall write 22 in place of z{* ... z%". We begin by recalling the following:

Definition 1.1. A term order in k[z] is a total order > on N" such that
(i) a > (0,...,0) for every nonzero a € N", and

(ii) > is compatible with addition, i.e., if a > b then a+ ¢ > b + ¢ for
any a,b,c € N". (Equivalently, if a > b and and ¢ > d then a+c¢ > b+d.)

A prototypical example is the usual lexicographic order on N”; other exam-
ples can be found in, e.g, [3, Section 1.2] and [15, p. 4]. Given a non-zero
element f = > caz® € klx|, we define the initial exponent in(f) of f to
be the largest exponent a (with respect to ) such that ¢, # 0. If R is a
subring of k[z] then we define

1) In(R) = {in(f) : 0# f € R}.

It is easy to see that In(R) is a subsemigroup of N". If {in(f)) |\ € A} is a
generating set for this semigroup, where each fy € R, then R = k[f\ |\ € A].
In fact, a simple algorithm, due to Kapur-Madlener [10] and Robbiano-
Sweedler [13], expresses a given nonzero element o € R as a polynomial in f)
as follows. Write in(«) = dyin(fy,)+- - -+d,in(f),) for some dy,...,d, € N.
Dividing the leading coefficient of a by the leading coefficient of ff\lll e fd:,
we obtain a ¢ € k such that the leading term of « is the same as the leading
term of cf;lll syl Set g = a— cff\ll1 .. [yl It a1 = 0 then we are done;
otherwise we replace a by a1 and proceed inductively. Since a; has a smaller
leading exponent than «, and N” is well ordered with respect to > (see [3,
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Corollary 2.4.6]), this process will terminate, resulting in an expression for
« as a polynomial in f). We shall refer to this procedure as the subduction
algorithm.

The subduction algorithm is analogous to expressing an element of an
ideal of k[z] in terms of a Grobner basis; for this reason a generating set for
the semigroup In(R) is called a SAGBI basis of R, where SAGBI stands for
“Subalgebra Analog to Grobner Bases for Ideals”. (The terms “SAGBI ba-
sis” and “subduction algorithm” was introduced to Robbiano and Sweedler
in [13].) The analogy with Grobner bases is not perfect though because not
every subring R C k[x] has a finite SAGBI basis; see e.g., [13, 1.20 or 4.11],
or [15, pp. 99-100]. It is an important open problem to determine which
subrings R of k[x] have a finite SAGBI basis; see [15, p. 100].

We will now consider a parallel situation, where R is a subring of the ring
k[z*] = K[z, ..., 2] of Laurent polynomials in n variables over k. Our
first task is to define a term order in k[z®!].

Definition 1.2. By a term order in k[z*!] we shall mean a total order >
on Z™ compatible with addition. That is, if a = b then a+ ¢ > b 4 ¢ for
any a,b,c € Z".

Our requirements on > are considerably weaker here than in Defini-
tion 1.1. In fact, conditions (i) and (ii) of Definition 1.1 cannot both hold
in an ordered group; thus we have little choice but to drop (i).

Given a term order in k[z*!], we can define the initial exponent in(f) for
every nonzero f € R and the semigroup of initial exponents In(R) in the
same way as before; cf. (1). We shall say that {f\|A € A} C Ris a SAGBI
basis of R if

(a) in(f)) generate In(R) as a semigroup, as A ranges over A, and
(b) the subduction algorithm described above terminates for every o € R.

Note that the steps in the subduction algorithm are not always uniquely
determined. Each step involves writing an element of In(R) as a nonnegative
integral linear combination of in(f)), and there may be more than one way
to do this. Condition (b) requires that the algorithm should terminate no
matter what choices are made.

The question we would like to address is:

Question 1.3. Which subrings R of the Laurent polynomial ring k[z%1]
have a finite SAGBI basis?

At first glance, this is a rather odd question to ask. First of all, we have
to decide whether or not In(R) is finitely generated, and as we pointed out
above, this is an open problem even in the special case where R is contained
in the polynomial ring k[z]. Secondly, a priori the existence of a finite SAGBI
basis depends on the term order >. Thirdly, for the purpose of performing
computations, we would like the answer to be positive. On the other hand,
since Z" is not well ordered with respect to >, there is no reason to expect
the subduction algorithm to terminate. Thus even in those cases where we



SAGBI BASES 3

can establish that In(R) is finitely generated, the answer appears likely to
be negative.

The purpose of this paper is to show that, notwithstanding these consid-
erations, Question 1.3 can be completely answered in the case where R is
the invariant ring for a multiplicative group action and that for many rings
of this type, the answer is, indeed, positive, without any assumptions on the
base field k or on the term order .

Before stating our main results, we need to introduce some terminology.
Let G be a finite subgroup of GL,(Z). Recall that the natural (multiplica-
tive) action of G on k[z*'] = k[zT", ..., '] is defined by linearly extending
the formula g(22) = 29® to all of k[z*!]; here, as usual, 22 = 2% ... 2%
is a Laurent monomial. Recall also that g € GL,,(R) is called a reflection if
g% = id, and the eigenvalues of g are —1 (with multiplicity 1) and 1 (with
multiplicity n — 1). We shall say that G C GL,,(R) is a reflection group if G
is generated by reflections.

Theorem 1.4. Let R = k[zT% be the ring of multiplicative invariants
for a finite subgroup G of GL,(Z). Then the semigroup In(R) is finitely
generated if and only if G is a reflection group.

To place Theorem 1.4 in the context of invariant theory, consider the lin-
ear action a finite subgroup H of GL, (k) on the polynomial ring kx| =
klx1,...,zy], where k is a field whose characteristic is prime to |H|. Recall
that a nontrivial element g of GL, (k) is called a pseudo-reflection if g has
finite order and 1 is an eigenvalue of g of multiplicity n — 1. (Note that
for & C R the notions of reflection and pseudo-reflection coincide.) The
celebrated theorem of Chevalley, Shephard and Todd asserts that H is gen-
erated by pseudo-reflections if and only if the ring of invariants k[z]? is
itself a polynomial ring; cf. e.g., [1, V.5] or [14, 2.4] . A variant of this
result in the multiplicative context is due to Farkas, who showed that the
multiplicative invariant ring k[z*1]% for a finite subgroup G' C GL,(Z) is

a generalized polynomial ring (i.e., has the form k[ulﬂ, . ,uil, W, ..., Wy,
where wuy, ..., Up,w1,...,w; are independent variables) if and only if G is

generated by reflections and the G-lattice Z"/(Z™)% is a weight lattice in a
suitable sense; see [5] and [6]. (Farkas assumed k = C.) Theorem 1.4 may
be viewed as an alternative and perhaps complementary, analogue of the
Chevalley-Shephard-Todd theorem in the multiplicative setting. (Farkas’
results have been recently refined and extended by Lorenz [11], [12], who
showed, in particular, that if G C GL,(Z) is a reflection subgroup then
E[z*1])€ is a semigroup algebra; see [12, Theorem 2.4].)
Our second main result is the following:

Theorem 1.5. Let G be a finite reflection subgroup of GLy(Z). Then the
invariant ring R = k[z£!, ... 2% has a finite SAGBI basis.

Moreover, we will show that if (Z")¢ = (0) then R = k[z*']% has a
canonical “minimal” SAGBI basis, independent of the term order >=; see
Remark 7.1.
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Of course, if G is not generated by reflections then, by Theorem 1.4 the
invariant ring k[z*']¢ cannot have a finite SAGBI basis. Thus Theorems 1.4
and 1.5 can be combined to give a complete answer to Question 1.3 in the
case where R is a ring of multiplicative invariants:

Theorem 1.6. Let R = k[z™1|% be the ring of invariants for the multiplica-
tive action of a finite group G C GLy(Z). Then the following are equivalent:

(a) In(R) is finitely generated as a semigroup,
(b) R has a finite SAGBI basis, and
(¢) G is a reflection group.

We remark that the properties of having a finitely generated semigroup of
leading exponents or a finite SAGBI basis are not intrinsic to R = k[z1]%;
they depends on the embedding of R in k[x™!]. On the other hand, Theo-
rems 1.4-1.6 require no assumptions on the term order >~ or the base field
k. In fact, k can even be replaced by a rather general ring; see Remark 7.2.

Our proofs of Theorems 1.4 and 1.5, (presented, respectively, in Sec-
tions 3-4 and 5) are quite elementary; they rely only on a few simple prop-
erties of polyhedral cones and reflection groups in R™. Our background
references for these subjects are, respectively, Ewald [4, Part 1] and Bour-
baki [1, Chapter V]; some preliminary definitions and results can also be
found in Section 2.

To state our last main result, consider the natural (permutation) action of
a finite group H C S,, on the polynomial ring k[x| = k[z1, ..., z,]. Gdbel [7,
5.6] showed that the invariant ring R = k[z]” has a finite SAGBI basis,
with respect to the usual lexicographic term order in k[x], if and only if
H =S, x---x8S,, for some partition n; + --- +n, = n. Go&bel further
conjectured [8, p. 65] that the same should be true for an arbitrary term
order in the sense of Definition 1.1 and proved this conjecture in the case
where H = A, is the alternating group [9]. In Section 6 we will prove
Gobel’s conjecture, as an application of our Theorem 1.4:

Theorem 1.7. Let > be a term order in k[x] = k[z1,...,z,] and let H C S,
be a permutation group. Then the ring of invariants k[xy, ..., 2,]% has a
finite SAGBI basis with respect to > if and only if H=S,, X --- xSy, for
some partition ny + -+ - +n, = n.

An independent proof Theorem 1.7 was recently obtained by Thiéry and
Thomassé [16].

2. PRELIMINARIES

2.1. Polyhedral cones. We define the positive span Pos(X) of a subset
X of R™ to be the set of points of the form r1vy + -+ + 7, Vi, Where m
ranges over the positive integers, vi,..., vy range over X and ri,...,7y
range over the non-negative reals.
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If X ={v1,...,vn}isafinite subset of R” (respectively, Z"), then Pos(X)
is called a polyhedral cone (respectively an integral polyhedral cone). We shall
write Pos(vi,...,vn) in place of Pos({v1,...,vn}).

Lemma 2.1. (a) C C R" is a polyhedral cone (respectively an integral poly-
hedral cone) if and only if there exist finitely many linear forms (respectively,
linear forms with integer coefficients) l, ...l on R™ such that

C={veR"|l1(v)>0,...,ln(v)>0}.
(b) A polyhedral cone is closed in R™.

Proof. (a) is proved in [4, Theorem V.2.10]. (b) is an immediate consequence
of (a). O

Lemma 2.2. Let C' = Pos(vi,...,vm) be an integral polyhedral cone for
some vi = (xi1,...,Tin) € Z". Denote the (positive) least common multiple
of the non-zero minors of the m x n-matriz (z;;) by 6. Then for any lattice
point w € CNZ" there exist nonnegative integers ny, . ..,n, such that dw =
nivi + -+ Ny Vm.

Proof. By Carathéodory’s theorem (see, e.g., [4, Theorem 1.2.3(b)]), we can
write w as a positive linear combination of a linearly independent sub-

set of {v1,...,vm}. Thus we may assume without loss of generality that
Vi,...,Vm are linearly independent and w = r1vy + -+ + 1, Vin, Where
T1y...,"m > 0. Now Cramer’s rule tells us that |det(M)|(r1,...,rm) €

Z™ for some nonsingular m x m-submatrix M of (x;;). Moreover, since
T1,...,"m > 0 we have

| det(M)|(r1,...,7rm) € N,
Consequently, §(r1,...,mn) € N, as claimed. O
2.2. Saturated semigroups. We shall call a subsemigroup S of Z" satu-
rated if na € S implies a € S for any a € S and any integer n > 1.
Lemma 2.3. Let S be a saturated subsemigroup of Z™. Then S = Pos(S)N
7",

Proof. Clearly S C Pos(S)NZ". To prove the opposite inclusion, note that
by Lemma 2.2, for every w € Pos(S) N Z™ there exists a positive integer §
such that dw € S. Since S is saturated, w € S, as claimed. O

Proposition 2.4. Let S be a saturated subsemigroup of Z. Then the fol-
lowing are equivalent:

(a) S is finitely generated (as a semigroup),
(b) Pos(S) is an integral polyhedral cone.
Proof. (a) = (b): If S is generated by x1,...,Xm then clearly
Pos(S) = Pos(x1,...,Xm)

is an integral polyhedral cone.
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(b) = (a): By Lemma 2.3, S = Pos(S) N Z". The desired result now
follows from Gordan’s Lemma [4, V.3.4] which says that Pos(S) N Z" is
finitely generated. O

2.3. The sets A~ and X~.
Definition 2.5. Given a finite subgroup G of GL,(Z), we define
A7 (G)={a€Z"|a*= g(a) for any g € G}
and
X7 (G) = Pos(A™(Q)) .

If the reference to G is clear from the context, we shall write A~ and X~ in
place of A7 (G) and X~ (G) respectively.
Lemma 2.6. Let G be a finite subgroup of GL,(Z) and let R = k[zT'].
Then

(a) In(R) = A7 (G).

(b) In(R) is a saturated subsemigroup of Z™.

(¢) In(R) is a finitely generated semigroup if and only if X7 (G) is an
integral polyhedral cone.

Proof. (a) Suppose a € In(R), i.e., a = in(f) for some f € R. Then z?*
enters into f € R with a non-zero coefficient, and hence, so does 9 for
every g € (G. Since z? is the initial term of f, a < g(a) for any g € G.
Hence, a € A7 (Q).

Conversely, suppose a € A™(G). Then f =3 29®) is a non-zero element
of R and a = in(f) € In(R).

(b) follows from (a), since A”(G) is clearly a saturated subsemigroup of
Z"; cf. Definition 2.5.

(c) is immediate from (b) and Proposition 2.4. O

We remark that Lemma 2.6(b) fails if we consider a linear (rather than a
multiplicative) action of a finite group G, either on the polynomial ring k[z]
or on the Laurent polynomial ring k[z*!]. For example, suppose n = 1, and
G = {l1,7} ~ Z/2Z acts by 7(x1) = —x1. Then neither In(k[z]%) = 2N nor
In(k[z*1]%) = 2Z is a saturated subsemigroup of Z.

2.4. Fundamental sets.

Definition 2.7. Suppose a group G is acting on a set E. We shall call
F C FE a fundamental set for this action if each G-orbit in F' intersects E in
exactly one point. Equivalently, F' is a fundamental set for the G-action on
E if the following conditions are satisfied.

(i) Ugeq g(F) = E and
(ii) If g(a) € F for some a € F and g € G, then g(a) = a.

Note the we are not assuming anything about the topology of F' (or E); for
this reason we are prefer the term “fundamental set” to the more commonly
used “fundaments region” or “fundamental domain”.
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Lemma 2.8. Let G be a finite subgroup of GLy,(Z).
(a) A™ is a fundamental set for the G-action on Z™.

(b) If X~ is an integer polyhedral cone then X~ is a fundamental set for
the G-action on R™.

Proof. (a) Immediate from the definition of A™, since every G-orbit in Z"
has a unique maximal element with respect to .

(b) To prove (i), set V' = Ugeq g(X™). Then V contains Ugeq g(A7),
which is equal to Z™ by part (a). Since V' is a positive cone, i.e., rV =V
for every real number r > 0, V' contains Q™. Since V is closed in R" (cf.
Lemma 2.1(b)), this implies V' = R", as claimed.

To prove (ii), suppose g(v) € X~ for some v € X7 ; in other words, v €
X~ Ng~1(X). We want to show g(v) = v. By Lemma 2.1(a), X~ Ng~1(X")
is an integer polyhedral cone, i.e., X~ Ng~1(X”™) = Pos(vy, ..., vm) for some
Vi,...,Vm € Z". Thus it is enough to show that vq, ..., vy, are fixed by G.
In other words, we may assume without loss of generality that v = v; for
some ¢ = 1,...,m. But then v € X” NZ" = A™; cf. Lemma 2.3, and the
desired identity, g(v) = v, follows from part (a). O

Corollary 2.9. A~ (and thus X~ ) cannot be covered by a finite union of
hyperplanes in R™.

Proof. Assume the contrary: A~ C Hy U---U H,, where each H; is a hy-
perplane. By Lemma 2.8(b), Z" = Uge g(A™). Thus Z" is covered by the
(finitely many) hyperplanes g(H;), where g € G and 1 < i < r, a contradic-
tion. [l

3. PROOF OF THEOREM 1.4: THE “IF’ DIRECTION

In view of Lemma 2.6(c), it suffices to prove the following:

Proposition 3.1. Suppose G is a finite reflection subgroup of GL,(Z).
Then X~ is an integral polyhedral cone.

Proof. We will denote the reflections in G by s1,...,s,, € G. Let e; be an
eigenvector of s; associated to the eigenvalue —1. Since s; € GL,,(Z), we can
choose e; € Z"; moreover, after possibly replacing e; by —e;, we may assume
e; = (0,...,0). Define linear forms ly,...,l,: R — R by [;(v) = <v, e;>,
where

(2) <x,y>=> g(x) - g(y)-

geG

is a G-invariant positive-definite bilinear form on R™. (Here x -y is the
standard inner product on R™.) Note that s; is an orthogonal (with respect
to <., ->) reflection in the hyperplane H; = {v € R"|l; = 0} and that the
linear forms [/; have integer coefficients.

Let C ={veR"|l;(v) >0fori=1,...,m}. By Lemma 2.1(a), C is an
integral polyhedral cone. Our goal is to prove that X~ = C.
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First we will show that X~ C C. Recall that X~ is defined as Pos(A™);
thus it is enough to show that A~ C C. Assume the contrary: there exists
av € A” such that v € C, i.e., l;(v) < 0 for some i = 1,...,m. Then by
our choice of e;

si(v) =v — 2<lz/(,—‘;)>ei -V,
contradicting v € A~. This proves that X~ C C.

To prove the opposite inclusion, recall that by Corollary 2.9 X~ is not
contained in a finite union of hyperplanes. Since X~ C C, neither is C.
Thus

Co={veR"|lj(v)>0fori=1,...,m}
is non-empty and is a chamber for the collection of hyperplanes Hy, ..., Hp;
cf. [1, V.3.1]. Consequently, C = Cj (see [1, V.1.3, formula (6)]) and C C R"
is a fundamental set for the G-action on R" (see [1, V.3.3, Theorem 2]).

We are now ready to show that C' C X~. Suppose C = Pos(vy,...,V¢)
for some v1,...,v¢ € Z". Then it is enough to show that each vi lies in A™.
Set v = v; and choose a g € G such that g(v) € A™; cf. Lemma 2.8(a).
Since A~ C X~ C C, both v and g(v) lie in C. Since C' is a fundamental
set for the G-action on R", this implies v = g(v). In particular, v € A~ as
claimed. This completes the proof of Proposition 3.1. U

4. PROOF OF THEOREM 1.4: THE “ONLY IF’ DIRECTION

Assume that In(k[z*!]%) is a finitely generated semigroup for some G' C
GL,,(Z). We want to show that G is generated by reflections. By Lemma 2.6(c),
X7 is an integral polyhedral cone. Thus in order to complete the proof of
Theorem 1.4 it suffices to establish the following;:

Proposition 4.1. Suppose X is a fundamental set for the natural action of
a finite subgroup G C GL,(R) on R™. If X is a polyhedral cone then G is
generated by reflections.

For the purpose of proving Theorem 1.4, we only need a special case
of Proposition 4.1: we may assume that G C GL,(Z) and X = X" (G)
is an integral polyhedral cone. Note however, that if G C GL,(Z) and
X(G) is a polyhedral cone then Propositions 3.1 and 4.1 imply that X (G)
is automatically integral.

The rest of this section will be devoted to proving Proposition 4.1. Let
< -, - > be the G-invariant positive-definite bilinear from on R" given by (2).

Since X is a fundamental set for the G-action on R", X is not contained in
a hyperplane; thus dim(X) = n. Let hq,..., hy, be the (closed) facets (i.e.,
(n — 1)-dimensional faces) of X, H; = Spang(h;) be the hyperplane in R"
containing h;, and s; be the orthogonal (with respect to < -, - >) reflection
in Hz
Lemma 4.2. (a) The boundary of X is contained in Y = Uy x)2x9g(X).

(b) si € G for anyi=1,...,m.



SAGBI BASES 9

Proof. (a) Assume the contrary: a boundary point v of X does not lie in
Y. Since Y is a closed subset of R™ (cf. Lemma 2.1(b)), BNY = { for
some open ball B centered at v. Since v is a boundary point of X (cf.
Lemma 2.1(b)), there exists a w € B — X. Thus w ¢ Y U X. On the other
hand, since X is a fundamental set for the G-action on R", we know that
Y U X =R", a contradiction.

(b) Suppose v lies in a facet h; of X. By part (a), g~ '(v) € X, for some
1 # g € G. Since X is a fundamental set for G, this is only possible if
g '(v) = v. In other words, every facet h; lies in the union of the linear
spaces L4, where

3) Ly = (R") = {x e R"[g(x) = x}

and g ranges over those g € G for which g(X) # X. But then each sup-
porting hyperplane H; also lies in UyegLy. Since H; cannot be covered by
a finite number of proper linear subspaces, we conclude that H; C L, for
some 1 # g; € G. Since dim(H;) =n — 1 and dim(Lgy,) < n — 1, this is only
possible if H; = Lg,. Since g; preserves <-, - > and fixes each point of H;,
we conclude that g; is the orthogonal reflection in H;, i.e., g; = s;. Thus
s; € G, as claimed. O

We are now ready to complete the proof of Proposition 4.1. Let Gy be
the subgroup of G generated by s1,..., Sy, and let F' be the collection of
hyperplanes of the form go(H;), where go € Gp and i = 1,...,m. Note that
F'is a Gg-invariant collection of hyperplanes in R" and that Gy contains the
orthogonal reflection gos;g, Lin the hyperplane go(H;).

Since X is a fundamental set for the G-action on R"”, it cannot be covered
by finitely many hyperplanes. Thus we can choose a point v in X such that
g(v) # v for any 1 # g € G. In particular v ¢ H for any hyperplane H € F;
otherwise s(v) = v, where s € Gy C G is the orthogonal reflection in H.
Now let C be the (unique) chamber, relative to the collection of hyperplanes
F, such that v € C'. Since Hy,...,H,, € F, we have C' C X. Moreover,
since X is closed in R” (cf. Lemma 2.1(b)), C C X. By [1, Lemma V.3.1.1],
C is a fundamental set for the action of Gy on R™. In particular, every point
in R™ can be written in the form go(c) for some ¢ € C' and go € Gp.

We claim that G = Gp. Indeed, suppose g € G. Write g(v) as go(c)
for some ¢ € C. Since X is a fundamental set for the action of G on
R" and both v and ¢ = g;'g(v) lie in X, we conclude that v = ¢, or
equivalently go'g € Stabg(v). But Stabg(v) = {1} by our choice of v.
Thus g = go € Go. This shows that G = G, i.e., G is generated by
reflections. O

5. PROOF OF THEOREM 1.5

We now return to the situation of Section 3; we begin by recalling the
notations introduced there. Let G be a finite subgroup of GL,(Z). Denote
the reflections contained in G by si,...,s,; we shall assume that these
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elements generate G. For each ¢ = 1,...,m choose an eigenvector e; € Z"
of s; associated to eigenvalue —1. After possibly replacing e; by —e;, we
may assume e; = (0,...,0) for every i. We fix a G-invariant positive-

definite bilinear form < -, - > defined over Z; cf. (2). For i = 1,...,m, set
li(v) = <v,e;> and H; = {v € R"|[;(v) = 0}; note that each [; is a linear
form on R™ with integer coefficients. In Section 3 we showed that

Co={veR"|lj(v)>0fori=1,...,m}
is a chamber for the collection of hyperplanes Hy, ..., Hy, and
(4) X" =Co={veR"|lj(v)>0fori=1,...,m}.

After possibly renumbering the reflections s1, ..., Sy, we may assume that
the hyperplanes Hi, ..., H; are the walls of Cy for some ¢t < m. That is,

(5) X" ={veR"|li(v)>0fori=1,...,t}.
Lemma 5.1. <ej,ej> <0 for any distinct i,j = 1,...,t.

Proof. Since A™ is not contained in a finite union of hyperplanes (see Corol-
lary 2.9), there exists a point v € A~ N Cy. Now by the definition of A~

9 l;(v)

€
<v,v>

n; =si(v) —v=—

is an inward normal vector to H;. Note that [;(v) > 0, because v lies

in Cy. Thus n; is a negative multiple of e; for every ¢ = 1,...,t. The
lemma now follows from by [1, Proposition V.3.4.3(iii)], which says that
<nj, nj> <0. O

Lemma 5.2. Suppose v € Z™. Then the following are equivalent:

(a) g(v) = v for every g € G.

(b) both v and —v lie in A™,

(¢) both v and —v lie in X~ ,

(d) l;(v) =0 for every i =1,...,m,

(e) li(v) =0 for everyi=1,...,t.

Proof. (a) < (b): By Definition 2.5, v € A™ iff v = g(v) for every g € G.
Thus —v € A™ iff v < g(v) for every g € G, and v, —v both lie in A~ iff
v = g(v) for every g € G, i.e., v € (Z")C.

(b) < (c) follows from the fact that A~ = X~ NZ"; cf. Lemma 2.3.

(c) < (d) follows from (4).

(c) & (e) follows from (5). O
Lemma 5.3. (a) (R™)® = Spang(ey,...,em)" = Spang(eq, ..., e;)", where
W denotes the orthogonal complement of a subspace W in R™.

(b) (Z™) = (0) if and only if eq,..., et span R™.

Proof. (a) is an immediate consequence of Lemma 5.2. (b) Follows from (a)
and the fact that the vector space (R™)% is defined over Q. O
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Remark 5.4. In the language of [4], Lemma 5.3(b) can be restated as
follows: (Z™)¢ = (0) if and only if X~ has an apex at (0); cf. [4, Lemma
V.2.2(c)].

Proposition 5.5. A~ NSpang(eq,...,et) is well ordered with respect to ».

Proof. (a) Assume the contrary: there exists an infinite strictly decreasing
sequence

(6) a; »ag >ag > ...

in A~ N Spang(e1,...,e¢). Note that [;(a;) is a non-negative integer for
every ¢ > 1. Thus we can choose i1 > 1 so that {1(a;,) < li(a;) for every
i > 1. Now choose i so that l1(a;,) < li(a) for all j > i1 + 1, i3 so that
li(ajy) < li(ap) for all A > i+ 1, etc. Thus after replacing the sequence (6)
by a subsequence we may assume that [1(az) > li(ag) > .... Proceeding
inductively (with [ replaced by lo, then I3, etc.), we conclude that, after
replacing (6) by a subsequence, we may assume [;(aj+1) > [;(a;) for every
j=1,...,t and every ¢ > 1.

Now consider the element b = az—aj < (0,...,0). Since we are assuming
that a; and ag lie in Spang(eq,...,e¢), we can write b = rjeq + -+ + rieq,
where ry,...,r; are rational numbers. Since [;(b) <0 for every j =1,...,¢,

and <ej, e;> < 0 whenever i # j, [1, Lemma V.3.5.6] says that each r; > 0,

ie., r, = %, where p1,...,p:,q € N and ¢ # 0. Now

gb =pie1 + -+ preg.

The left hand side < (0,...,0), and the right hand side is = (0,...,0)
by our choice of the vectors e;. This contradiction shows that A~ is well
ordered. 0

Corollary 5.6. Suppose G C GLy,(Z) is a finite reflection group and (Z™)¢ =

(0). If the initial exponents of the elements fy € k[zT']% generate In(k[zT1]%)
then {f\} is a SAGBI basis of k[z*1]¢.

Proof. By Lemma 5.3(b), Spang(eq,...,e;) = R™ and by Proposition 5.5
A™ = A” N Spang(eq, ..., et)

is well ordered. The subduction algorithm will create a strictly decreasing
sequence of leading terms in A™; this sequence has to terminate. Thus the
algorithm will terminate as well. (]

Note that by Theorem 1.4 there exists a finite collection of elements fy €
k[z*1)¢ such that in(fy) generate In(k[z*']%) as a semigroup. Thus in
the case where (Z")¢ = (0), Theorem 1.5 is an immediate consequence of
Corollary 5.6. We now turn to the general case, i.e., to the case where (Z")%
may not be trivial.

Example 5.7. Let n = 1 and G = {1}, so that k[z*']¢ = E[z*!] (here
x = x1). Of course, Z& = Z # (0). The initial exponents, 1 and —1, of the
elements fi = z and fo = 27! — 272 generate In(k[z*']%) = Z. We also
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have k[zT1% = k[z*] = k[f1, f2]. Assume for simplicity that k is a field of
characteristic 0.

We will now attempt to apply the subduction algorithm to express a =
7! as a polynomial in f; and fo. The first step yields oy = o — fo = 272,
the second ag = a1 — f2 = 2273 — 274, etc. If we carry our the subduction
algorithm by subtracting off scalar multiple of a power of fo at each stage,
the “remainder” «; after i steps will have leading exponent —¢ — 1, and the
algorithm will not terminate. We conclude that f; and fo do not form a
SAGBI basis of k[z*!] = k[zT1]C. O

Example 5.7 shows that Corollary 5.6 fails if (Z")% # (0). Fortunately,
it can be salvaged in this more general situation, if we choose our elements
f a little more carefully.

Recall that X~ = Pos(A™) is an integral polyhedral cone. Write X~ =

Pos(vi,...,vy), where vi,..., vy € X” NZ" = A™, and let
fi = ng(vi)_
geG

The following Proposition completes the proof of Theorem 1.5.
Proposition 5.8. fi,..., f. form a SAGBI basis of k[z*1]%.

Proof. By our construction the initial forms in(f1), ..., in(f,) generate A~ =
In(k[z*']%) as a semigroup. To show that they form a SAGBI basis, suppose
we apply the subduction algorithm to express a given element a € k[z+1]¢
in terms of f1,..., fr. This algorithm will produce a sequence of elements
Qo = @, a1, a9, a3 ... with leading terms

(7) il’l(Oé()) - in(ozl) - in(ag) ..

Our goal is to show that this sequence will terminate. The idea of the proof is
to consider the orthogonal decomposition in(c;) = b;+z;, where b; € (R™)¢
and z; € Spang(ei,...,et); cf. Lemma 5.3(a). We would then like to
show that the sequence {z;} terminates because of Proposition 5.5 and the
sequence {b;} terminates because it can only assume finitely many values.
Since we are working over Z, rather than R, this needs to be done with some
care (in particular, the b; € (R™)“ and z; € Spang(ey, ..., e;) defined below
are the orthogonal components of |G|in(q;), rather than in(c;)), but this
is the idea behind the argument to follow.

Assume, to the contrary, that the sequence (7) of initial terms does not
terminate. Let p: R” — (R™)% be given by

p(v) =3 g(v).
geG

We claim that for every monomial v that appears in « there exists a
monomial % that appears in «aj, such that p(v) = p(w). Indeed, suppose
o :Oz—cfld1 oo fd where 0 # c € k, dy,...,d. €N, and

divi+ -+ dyve = in(a).
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Every monomial that occurs in «; either (i) occurs in « or (ii) occurs in
fi . fd (or both). In case (i) the claim is trivial: we can take w = v. In
case (ii), v has the form

V= dlgl(vl) +o drgr(vr)
for some g¢1,...,9, € G. Thus
p(v) = dip(v1) + -+ + drp(ve) = p(divi + -+ + drvy) = p(in(a))

so that in case (ii), we can take w = in(«). This proves the claim.

Let E = {p(v)}, where =V ranges over the monomials of o and let b; =
p(in(a;)). Applying the claim inductively, we see that b; € E for every i > 1.
Since F is a finite set, there is an infinite subsequence wy = wo = ... of the
sequence of initial terms (7) such that p(w1) = p(wa) = ..., say, p(w;) = b
for every ¢ > 1.

We claim that this is impossible. Consider the sequence z; = |G|w; — b
for 4 > 1. Then

(i) Zy >~ Z2 > Z3 > ...,

(ii) z; € A~ for each i > 1, and

(iii) z; € Spang(eq,...,et) for each i > 1.
(i) is obvious because w; form a strictly decreasing sequence. To prove (ii),
note that w; € A7, i.e., wi = g(w;) for any g € G. Multiplying both sides
by the positive integer |G| and subtracting b = g(b), we obtain z; > g(z;),
as desired. To prove (iii), we only need to show that z; is orthogonal to
every ¢ € (R")%; cf. Lemma 5.3(a). Indeed,

<zi,c> = |G| <wi, c>—<p(wj),c> = |G| <Wi,C>—Z <g(wi),g(c)>=0.
geG
This proves (iii).
Thus {z;} is a strictly decreasing sequence in A~ N Spang(es,...,et),
contradicting Proposition 5.5. This shows that the subduction algorithm
will terminate, i.e., f1,..., f, form a SAGBI basis of k[x™1]", as claimed. O

6. PROOF OF THEOREM 1.7

In this section we will deduce Gé&bel’s conjecture (Theorem 1.7) from
Theorem 1.4.

Elements of H may be viewed as n X n-permutation matrices; this gives a
natural inclusion H C GL,(Z). However, since we are interested in polyno-
mial invariants of H, we will apply Theorem 1.4 not to H itself but to the
larger group G = <H, D> C GL,,(Z), where D is the subgroup of diagonal
matrices in GL,,(Z). (In other words, D = {diag(ey,...,€,)}, where each
€; = £1.) It is easy to see that G ~ D > H is a finite group.

The idea of the proof is to relate In(k[z]7) to In(k[z*1]%), where k[z*!] =
klzf', ...,z is the Laurent polynomial ring. To define In(k[z*']), we
need to extend our term order > from k[z] to k[z*!]. There is a unique such
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extension (which, by abuse of notation, we shall continue to denote by >):
for any a and b € Z™ we define

(8) a>biffa+m(l,...,1) > b+m(l,...,1) for some m > 0.

One easily checks that this definition is independent of the choice of m, as
long as a+ m(1,...,1) and b +m(1,...,1) € N, and that the resulting
order is a term order in k[zT!] in the sense of Definition 1.2. Moreover,
relative to this term order, In(k[z]”) = In(k[z*']%); indeed, both are equal
to

{a=(a1,...,an) €Z"|ay,...,an, > 0 and h(a) > a for every h € H}.

Theorem 1.4 now tells us that In(k[z]) = In(k[z™1]%) has a finite SAGBI
basis if and only if G is a reflection group. Theorem 1.7 is thus a consequence
of the following group-theoretic lemma.

Lemma 6.1. Let H C S,, and G = D > H C GL,(Z) be as above. Then
the following conditions are equivalent:

(a) G is a reflection group,

(b) H is generated by transpositions,

(¢c) H=S,, x--+xS,, for some partition ny + -+ n, = n.

The equivalence (b) <= (c) is a simple exercise in finite group theory;
we leave it to the reader.

(b) = (a): D is clearly generated by reflections. Since a transposition
in H (viewed as an element of GL,(Z)) is a reflection, (b) says that H is
also generated by reflections. Hence, so is G = <D, H>.

Our proof of the implication (a) = (b) relies on the following claim:
Write g = dh, where d € D and h € H. If g is a reflection then h = id
or h is a transposition. Indeed, since G = D > H, id = ¢g* = d(hdh~')h?
implies (i) h? = id, i.e., h is a product of, say, r disjoint transpositions, and
(ii) dhdh=! =id, i.e., d and h commute. It is now easy to see that the only
eigenvalues of g are —1 and 1, and that —1 occurs with multiplicity > r. If
g is a reflection, this implies r < 1, i.e., h = id or h is a transposition. This
proves the claim.

Now suppose G is generated by reflections g1 = dih1, ..., 9m = dmhm,
where each d; € D and each h; € H. Then H = G/D is generated by
hi,..., hp. The claim tells us that each h; = id or a transposition. Thus H
is generated by transpositions. This completes the proof of Lemma 6.1 and
thus of Theorem 1.7.

7. FINAL REMARKS

Remark 7.1. Suppose G C GL,(Z) is a finite reflection group and (Z")¢ =
(0). Then there is a canonical choice of a SAGBI basis {fi,..., fr} in R =
k[z*1% independent of the term order .

Indeed, in this case the integral polyhedral cone X~ has an apex at 0
(cf. Remark 5.4); thus by [4, Lemma V.3.5], In(R) = A~ = X” NZ" has a
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unique minimal system of (semigroup) generators vq,...,vy. Now define
fi = Z 29Vi) ¢
geG

for i = 1,...,r. These elements form a SAGBI basis by Corollary 5.6 (or
alternatively, by Proposition 5.8). To see that this SAGBI basis is indepen-
dent of the term order, let =’ be another term order in k[z*!], vi/,..., v,/
be a minimal set of generators for A~ = X~ N Z" and

fi, _ Z 290V

geG

If s1,..., 8y are the reflections in G, set H; = (R™)% | as before. Since X~
and X~ are both chambers for the G-invariant collection of hyperplanes
Hi,...,H,, there exists a go € G such that X~ = go(X"); see [1, Lemma

V.3.1.2]. Then go(v1),...,go(vr) is another minimal system of generators
of A~ thus, up to renumbering, v’ = go(v;) for i = 1,...,r. Consequently,
fi =[] for every i =1,...,r, as claimed.

Remark 7.2. The arguments we used in proving Theorems 1.4 and 1.5
are quite insensitive to the base field k. Informally speaking, the action
takes place in the exponents of monomials (both literally and metaphori-
cally), and the coefficients of these monomials play only a minor role in our
considerations. In fact,

(a) Theorems 1.4 and 1.7 remain true if the base field & is replaced by a
(not necessarily comutative) ring. Our only requirements are that & should
be nontrivial (i.e., & # (0)) and should have no zero divisors (otherwise,
In(R) may not be a semigroup). The proof remains the same, with one
exception: if k& does not have a unit element, then f = > 29® in the proof
of Lemma 2.6(a) should be redefined as f = " cx9®), where c is a nonzero
element of k.

(b) Theorem 1.5, Theorem 1.6 and Proposition 5.8 remain true if £ is as-
sumed to be a ring with a unit element 1 and without zero divisors, provided
that we modify the definition of the subduction algorithm (as described in
the Introduction) as follows: each f) is required to be monic i.e., its initial
terms should have coefficient 1. (Otherwise we will have trouble defining
the subduction algorithm, before we can even ask whether it terminates or
not.) Corollary 5.6 remain true, if we impose this additional requirement on
{f»}. The proofs remain unchanged.

We conclude this paper with the example that originally motivated The-
orem 1.4.

Example 7.3. Let Cy = {1,7} be a group of order 2. Consider the action
of G, =S,, x Cy on

L,={a=(a1,...,an) €Z" a1 +---+a, =0} ~Z"" 1,



16 Z. REICHSTEIN

where S,, acts by permuting the coordinates and C5 acts via 7(a) = —a. For
n > 3, the resulting integral representation G — GL(L,,) is easily seen to be
faithful; thus we can think of G,, as a finite subgroup of GL(L,,) = GL,,_1(Z).
This representation and the ring of multiplicative invariants R, = k[L,]%"
(here k[L,] = k[zF',...,2F}]) arise in crystallography; in particular, one
would like to know whether or not this ring has a SAGBI basis; cf. [2].

It is easy to see that G, is generated by reflections if and only if n < 4.
Indeed, the reflections in G are (ij) and (ij)7, where 1 <1 < j < 3; these
elements clearly generate GG3. The reflections in G4 are elements of the form
(ij) where 1 <1i < j <4 and (ij)(hl)T, where {i, 7, h,l} = {1,2,3,4}; these
elements generate G4. For n > 5 the only reflections in G,, are transpositions
in Sp; the subgroup they generate is S,, not all of G,,. Thus Theorem 1.4
tells us that the semigroup A~ = In(R,) is not finitely generated for any
n > 5. The following direct proof of this fact, in the case where >~ is the
restriction of the usual lexicographic order of Z™ to L, was shown to us by
J. Friedman:

Denote the j-th component of a € Z" by a[j], so that a = (a[l],...,a[n]).
The semigroup of initial terms A7 = In(k[L,]%") with respect to this order
consists of elements a € Z™ satisfying the following conditions:

(i) a€ Ly, ie., a[l]+---+a[n] =0,
(ii) a[l] > --- > a[n], and

(iii) (a[1],...,a[n]) = (=aln],...,—a[l])
Assume the contrary: there exists a finite set F' of generators for A;". Write
F = FyUFUFyU..., where F; consists of those f € F with f[1]+ f[n] = i.
Consider the element a = (2 + 1,¢,¢,0,...,0, -2t — 1, —t?) of A~, where
t > 2 is an integer parameter, to be specified later. Write a =f; + ... + fn
as a sum of (not necessarily distinct) elements of F'. Since a[l] + a[n] = 1,

exactly one of the elements f; (say, fiy) lies in Fj, and all others lie in Fj.
On the other hand, for any f € Fy, f[2] + f[n — 1] > 0. Thus

—t—1=al2] +aln—1] = (fil2] + filn = 1]) + -+ (fN[2] + fn[n = 1]) >
IN2]+ fnln—1] > g%(f[?] + fln—1]).

The last inequality cannot hold for sufficiently large ¢, a contradiction. Thus
A" is not finitely generated for any n > 5. O

Theorem 1.5 also tells us that L& has a finite SAGBI basis for n = 3 and
4. Explicit SAGBI bases in these cases and some computations with them
can be found in [2]. O
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