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Abstract. Let k be a field and G be a finite subgroup of GLn(Z). We
show that the ring of multiplicative invariants k[x±1

1 , . . . , x±1
n ]G has a

finite SAGBI basis if and only if G is generated by reflections.

1. Introduction

Let k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over a field k
and let N denotes the set of non-negative integers. If a = (a1, . . . , an) ∈ Nn,
we shall write xa in place of xa1

1 . . . xann . We begin by recalling the following:
Definition 1.1. A term order in k[x] is a total order � on Nn such that

(i) a � (0, . . . , 0) for every nonzero a ∈ Nn, and
(ii) � is compatible with addition, i.e., if a � b then a + c � b + c for

any a,b, c ∈ Nn. (Equivalently, if a � b and and c � d then a+c � b+d.)

A prototypical example is the usual lexicographic order on Nn; other exam-
ples can be found in, e.g, [3, Section 1.2] and [15, p. 4]. Given a non-zero
element f =

∑
cax

a ∈ k[x], we define the initial exponent in(f) of f to
be the largest exponent a (with respect to �) such that ca 6= 0. If R is a
subring of k[x] then we define

(1) In(R) = {in(f) : 0 6= f ∈ R} .
It is easy to see that In(R) is a subsemigroup of Nn. If {in(fλ) |λ ∈ Λ} is a
generating set for this semigroup, where each fλ ∈ R, then R = k[fλ |λ ∈ Λ].
In fact, a simple algorithm, due to Kapur-Madlener [10] and Robbiano-
Sweedler [13], expresses a given nonzero element α ∈ R as a polynomial in fλ
as follows. Write in(α) = d1in(fλ1)+· · ·+drin(fλr) for some d1, . . . , dr ∈ N.
Dividing the leading coefficient of α by the leading coefficient of fd1

λ1
. . . fdrλr ,

we obtain a c ∈ k such that the leading term of α is the same as the leading
term of cfd1

λ1
. . . fdrλr . Set α1 = α − cfd1

λ1
. . . fdrλr . If α1 = 0 then we are done;

otherwise we replace α by α1 and proceed inductively. Since α1 has a smaller
leading exponent than α, and Nn is well ordered with respect to � (see [3,
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Corollary 2.4.6]), this process will terminate, resulting in an expression for
α as a polynomial in fλ. We shall refer to this procedure as the subduction
algorithm.

The subduction algorithm is analogous to expressing an element of an
ideal of k[x] in terms of a Gröbner basis; for this reason a generating set for
the semigroup In(R) is called a SAGBI basis of R, where SAGBI stands for
“Subalgebra Analog to Gröbner Bases for Ideals”. (The terms “SAGBI ba-
sis” and “subduction algorithm” was introduced to Robbiano and Sweedler
in [13].) The analogy with Gröbner bases is not perfect though because not
every subring R ⊂ k[x] has a finite SAGBI basis; see e.g., [13, 1.20 or 4.11],
or [15, pp. 99-100]. It is an important open problem to determine which
subrings R of k[x] have a finite SAGBI basis; see [15, p. 100].

We will now consider a parallel situation, where R is a subring of the ring
k[x±1] = k[x±1

1 , . . . , x±1
n ] of Laurent polynomials in n variables over k. Our

first task is to define a term order in k[x±1].

Definition 1.2. By a term order in k[x±1] we shall mean a total order �
on Zn compatible with addition. That is, if a � b then a + c � b + c for
any a,b, c ∈ Zn.

Our requirements on � are considerably weaker here than in Defini-
tion 1.1. In fact, conditions (i) and (ii) of Definition 1.1 cannot both hold
in an ordered group; thus we have little choice but to drop (i).

Given a term order in k[x±1], we can define the initial exponent in(f) for
every nonzero f ∈ R and the semigroup of initial exponents In(R) in the
same way as before; cf. (1). We shall say that {fλ |λ ∈ Λ} ⊂ R is a SAGBI
basis of R if

(a) in(fλ) generate In(R) as a semigroup, as λ ranges over Λ, and

(b) the subduction algorithm described above terminates for every α ∈ R.

Note that the steps in the subduction algorithm are not always uniquely
determined. Each step involves writing an element of In(R) as a nonnegative
integral linear combination of in(fλ), and there may be more than one way
to do this. Condition (b) requires that the algorithm should terminate no
matter what choices are made.

The question we would like to address is:

Question 1.3. Which subrings R of the Laurent polynomial ring k[x±1]
have a finite SAGBI basis?

At first glance, this is a rather odd question to ask. First of all, we have
to decide whether or not In(R) is finitely generated, and as we pointed out
above, this is an open problem even in the special case where R is contained
in the polynomial ring k[x]. Secondly, a priori the existence of a finite SAGBI
basis depends on the term order �. Thirdly, for the purpose of performing
computations, we would like the answer to be positive. On the other hand,
since Zn is not well ordered with respect to �, there is no reason to expect
the subduction algorithm to terminate. Thus even in those cases where we
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can establish that In(R) is finitely generated, the answer appears likely to
be negative.

The purpose of this paper is to show that, notwithstanding these consid-
erations, Question 1.3 can be completely answered in the case where R is
the invariant ring for a multiplicative group action and that for many rings
of this type, the answer is, indeed, positive, without any assumptions on the
base field k or on the term order �.

Before stating our main results, we need to introduce some terminology.
Let G be a finite subgroup of GLn(Z). Recall that the natural (multiplica-
tive) action of G on k[x±1] = k[x±1

1 , . . . , x±1
n ] is defined by linearly extending

the formula g(xa) = xg(a) to all of k[x±1]; here, as usual, xa = xa1
1 . . . xann

is a Laurent monomial. Recall also that g ∈ GLn(R) is called a reflection if
g2 = id, and the eigenvalues of g are −1 (with multiplicity 1) and 1 (with
multiplicity n− 1). We shall say that G ⊂ GLn(R) is a reflection group if G
is generated by reflections.
Theorem 1.4. Let R = k[x±1]G be the ring of multiplicative invariants
for a finite subgroup G of GLn(Z). Then the semigroup In(R) is finitely
generated if and only if G is a reflection group.

To place Theorem 1.4 in the context of invariant theory, consider the lin-
ear action a finite subgroup H of GLn(k) on the polynomial ring k[x] =
k[x1, . . . , xn], where k is a field whose characteristic is prime to |H|. Recall
that a nontrivial element g of GLn(k) is called a pseudo-reflection if g has
finite order and 1 is an eigenvalue of g of multiplicity n − 1. (Note that
for k ⊂ R the notions of reflection and pseudo-reflection coincide.) The
celebrated theorem of Chevalley, Shephard and Todd asserts that H is gen-
erated by pseudo-reflections if and only if the ring of invariants k[x]H is
itself a polynomial ring; cf. e.g., [1, V.5] or [14, 2.4] . A variant of this
result in the multiplicative context is due to Farkas, who showed that the
multiplicative invariant ring k[x±1]G for a finite subgroup G ⊂ GLn(Z) is
a generalized polynomial ring (i.e., has the form k[u±1

1 , . . . , u±1
m , w1, . . . , wl],

where u1, . . . , um, w1, . . . , wl are independent variables) if and only if G is
generated by reflections and the G-lattice Zn/(Zn)G is a weight lattice in a
suitable sense; see [5] and [6]. (Farkas assumed k = C.) Theorem 1.4 may
be viewed as an alternative and perhaps complementary, analogue of the
Chevalley-Shephard-Todd theorem in the multiplicative setting. (Farkas’
results have been recently refined and extended by Lorenz [11], [12], who
showed, in particular, that if G ⊂ GLn(Z) is a reflection subgroup then
k[x±1]G is a semigroup algebra; see [12, Theorem 2.4].)

Our second main result is the following:
Theorem 1.5. Let G be a finite reflection subgroup of GLn(Z). Then the
invariant ring R = k[x±1

1 , . . . , x±1
n ]G has a finite SAGBI basis.

Moreover, we will show that if (Zn)G = (0) then R = k[x±1]G has a
canonical “minimal” SAGBI basis, independent of the term order �; see
Remark 7.1.
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Of course, if G is not generated by reflections then, by Theorem 1.4 the
invariant ring k[x±1]G cannot have a finite SAGBI basis. Thus Theorems 1.4
and 1.5 can be combined to give a complete answer to Question 1.3 in the
case where R is a ring of multiplicative invariants:

Theorem 1.6. Let R = k[x±1]G be the ring of invariants for the multiplica-
tive action of a finite group G ⊂ GLn(Z). Then the following are equivalent:

(a) In(R) is finitely generated as a semigroup,

(b) R has a finite SAGBI basis, and

(c) G is a reflection group.

We remark that the properties of having a finitely generated semigroup of
leading exponents or a finite SAGBI basis are not intrinsic to R = k[x±1]G;
they depends on the embedding of R in k[x±1]. On the other hand, Theo-
rems 1.4-1.6 require no assumptions on the term order � or the base field
k. In fact, k can even be replaced by a rather general ring; see Remark 7.2.

Our proofs of Theorems 1.4 and 1.5, (presented, respectively, in Sec-
tions 3-4 and 5) are quite elementary; they rely only on a few simple prop-
erties of polyhedral cones and reflection groups in Rn. Our background
references for these subjects are, respectively, Ewald [4, Part 1] and Bour-
baki [1, Chapter V]; some preliminary definitions and results can also be
found in Section 2.

To state our last main result, consider the natural (permutation) action of
a finite group H ⊂ Sn on the polynomial ring k[x] = k[x1, . . . , xn]. Göbel [7,
5.6] showed that the invariant ring R = k[x]H has a finite SAGBI basis,
with respect to the usual lexicographic term order in k[x], if and only if
H = Sn1 × · · · × Snr for some partition n1 + · · · + nr = n. Göbel further
conjectured [8, p. 65] that the same should be true for an arbitrary term
order in the sense of Definition 1.1 and proved this conjecture in the case
where H = An is the alternating group [9]. In Section 6 we will prove
Göbel’s conjecture, as an application of our Theorem 1.4:

Theorem 1.7. Let � be a term order in k[x] = k[x1, . . . , xn] and let H ⊂ Sn
be a permutation group. Then the ring of invariants k[x1, . . . , xn]G has a
finite SAGBI basis with respect to � if and only if H = Sn1 × · · · × Snr for
some partition n1 + · · ·+ nr = n.

An independent proof Theorem 1.7 was recently obtained by Thiéry and
Thomassé [16].

2. Preliminaries

2.1. Polyhedral cones. We define the positive span Pos(X) of a subset
X of Rn to be the set of points of the form r1v1 + · · · + rmvm, where m
ranges over the positive integers, v1, . . . ,vm range over X and r1, . . . , rm
range over the non-negative reals.
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IfX = {v1, . . . ,vn} is a finite subset of Rn (respectively, Zn), then Pos(X)
is called a polyhedral cone (respectively an integral polyhedral cone). We shall
write Pos(v1, . . . ,vn) in place of Pos({v1, . . . ,vn}).
Lemma 2.1. (a) C ⊂ Rn is a polyhedral cone (respectively an integral poly-
hedral cone) if and only if there exist finitely many linear forms (respectively,
linear forms with integer coefficients) l1, . . . , lm on Rn such that

C = {v ∈ Rn | l1(v) ≥ 0, . . . , lm(v) ≥ 0} .
(b) A polyhedral cone is closed in Rn.

Proof. (a) is proved in [4, Theorem V.2.10]. (b) is an immediate consequence
of (a). �

Lemma 2.2. Let C = Pos(v1, . . . ,vm) be an integral polyhedral cone for
some vi = (xi1, . . . , xin) ∈ Zn. Denote the (positive) least common multiple
of the non-zero minors of the m× n-matrix (xij) by δ. Then for any lattice
point w ∈ C ∩Zn there exist nonnegative integers n1, . . . , nr such that δw =
n1v1 + · · ·+ nmvm.

Proof. By Carathéodory’s theorem (see, e.g., [4, Theorem I.2.3(b)]), we can
write w as a positive linear combination of a linearly independent sub-
set of {v1, . . . ,vm}. Thus we may assume without loss of generality that
v1, . . . ,vm are linearly independent and w = r1v1 + · · · + rmvm, where
r1, . . . , rm > 0. Now Cramer’s rule tells us that |det(M)|(r1, . . . , rm) ∈
Z
m for some nonsingular m × m-submatrix M of (xij). Moreover, since

r1, . . . , rm > 0 we have

|det(M)|(r1, . . . , rm) ∈ Nm .
Consequently, δ(r1, . . . , rm) ∈ Nm, as claimed. �

2.2. Saturated semigroups. We shall call a subsemigroup S of Zn satu-
rated if na ∈ S implies a ∈ S for any a ∈ S and any integer n ≥ 1.
Lemma 2.3. Let S be a saturated subsemigroup of Zn. Then S = Pos(S)∩
Z
n.

Proof. Clearly S ⊂ Pos(S) ∩ Zn. To prove the opposite inclusion, note that
by Lemma 2.2, for every w ∈ Pos(S) ∩ Zn there exists a positive integer δ
such that δw ∈ S. Since S is saturated, w ∈ S, as claimed. �

Proposition 2.4. Let S be a saturated subsemigroup of Zn. Then the fol-
lowing are equivalent:

(a) S is finitely generated (as a semigroup),
(b) Pos(S) is an integral polyhedral cone.

Proof. (a) =⇒ (b): If S is generated by x1, . . . ,xm then clearly

Pos(S) = Pos(x1, . . . ,xm)

is an integral polyhedral cone.



6 Z. REICHSTEIN

(b) =⇒ (a): By Lemma 2.3, S = Pos(S) ∩ Zn. The desired result now
follows from Gordan’s Lemma [4, V.3.4] which says that Pos(S) ∩ Zn is
finitely generated. �

2.3. The sets A� and X�.
Definition 2.5. Given a finite subgroup G of GLn(Z), we define

A�(G) = {a ∈ Zn |a � g(a) for any g ∈ G}
and

X�(G) = Pos(A�(G)) .
If the reference to G is clear from the context, we shall write A� and X� in
place of A�(G) and X�(G) respectively.
Lemma 2.6. Let G be a finite subgroup of GLn(Z) and let R = k[x±1]G.
Then

(a) In(R) = A�(G).
(b) In(R) is a saturated subsemigroup of Zn.
(c) In(R) is a finitely generated semigroup if and only if X�(G) is an

integral polyhedral cone.

Proof. (a) Suppose a ∈ In(R), i.e., a = in(f) for some f ∈ R. Then xa

enters into f ∈ R with a non-zero coefficient, and hence, so does xg(a) for
every g ∈ G. Since xa is the initial term of f , a � g(a) for any g ∈ G.
Hence, a ∈ A�(G).

Conversely, suppose a ∈ A�(G). Then f =
∑
xg(a) is a non-zero element

of R and a = in(f) ∈ In(R).
(b) follows from (a), since A�(G) is clearly a saturated subsemigroup of

Z
n; cf. Definition 2.5.
(c) is immediate from (b) and Proposition 2.4. �

We remark that Lemma 2.6(b) fails if we consider a linear (rather than a
multiplicative) action of a finite group G, either on the polynomial ring k[x]
or on the Laurent polynomial ring k[x±1]. For example, suppose n = 1, and
G = {1, τ} ' Z/2Z acts by τ(x1) = −x1. Then neither In(k[x]G) = 2N nor
In(k[x±1]G) = 2Z is a saturated subsemigroup of Z.

2.4. Fundamental sets.
Definition 2.7. Suppose a group G is acting on a set E. We shall call
F ⊂ E a fundamental set for this action if each G-orbit in F intersects E in
exactly one point. Equivalently, F is a fundamental set for the G-action on
E if the following conditions are satisfied.

(i) ∪g∈G g(F ) = E and
(ii) If g(a) ∈ F for some a ∈ F and g ∈ G, then g(a) = a.
Note the we are not assuming anything about the topology of F (or E); for

this reason we are prefer the term “fundamental set” to the more commonly
used “fundaments region” or “fundamental domain”.
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Lemma 2.8. Let G be a finite subgroup of GLn(Z).
(a) A� is a fundamental set for the G-action on Zn.
(b) If X� is an integer polyhedral cone then X� is a fundamental set for

the G-action on Rn.

Proof. (a) Immediate from the definition of A�, since every G-orbit in Zn

has a unique maximal element with respect to �.
(b) To prove (i), set V = ∪g∈G g(X�). Then V contains ∪g∈G g(A�),

which is equal to Zn by part (a). Since V is a positive cone, i.e., rV = V
for every real number r > 0, V contains Qn. Since V is closed in Rn (cf.
Lemma 2.1(b)), this implies V = R

n, as claimed.
To prove (ii), suppose g(v) ∈ X� for some v ∈ X�; in other words, v ∈

X�∩g−1(X). We want to show g(v) = v. By Lemma 2.1(a), X�∩g−1(X�)
is an integer polyhedral cone, i.e., X�∩g−1(X�) = Pos(v1, . . . ,vm) for some
v1, . . . ,vm ∈ Zn. Thus it is enough to show that v1, . . . ,vm are fixed by G.
In other words, we may assume without loss of generality that v = vi for
some i = 1, . . . ,m. But then v ∈ X� ∩ Zn = A�; cf. Lemma 2.3, and the
desired identity, g(v) = v, follows from part (a). �

Corollary 2.9. A� (and thus X�) cannot be covered by a finite union of
hyperplanes in Rn.

Proof. Assume the contrary: A� ⊂ H1 ∪ · · · ∪ Hr, where each Hi is a hy-
perplane. By Lemma 2.8(b), Zn = ∪g∈G g(A�). Thus Zn is covered by the
(finitely many) hyperplanes g(Hi), where g ∈ G and 1 ≤ i ≤ r, a contradic-
tion. �

3. Proof of Theorem 1.4: the “if” direction

In view of Lemma 2.6(c), it suffices to prove the following:
Proposition 3.1. Suppose G is a finite reflection subgroup of GLn(Z).
Then X� is an integral polyhedral cone.

Proof. We will denote the reflections in G by s1, . . . , sm ∈ G. Let ei be an
eigenvector of si associated to the eigenvalue −1. Since si ∈ GLn(Z), we can
choose ei ∈ Zn; moreover, after possibly replacing ei by −ei, we may assume
ei � (0, . . . , 0). Define linear forms l1, . . . , lm : Rn −→ R by li(v) = <v, ei>,
where

(2) <x,y> =
∑
g∈G

g(x) · g(y) .

is a G-invariant positive-definite bilinear form on Rn. (Here x · y is the
standard inner product on Rn.) Note that si is an orthogonal (with respect
to < · , ·>) reflection in the hyperplane Hi = {v ∈ Rn | li = 0} and that the
linear forms li have integer coefficients.

Let C = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . ,m}. By Lemma 2.1(a), C is an
integral polyhedral cone. Our goal is to prove that X� = C.
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First we will show that X� ⊂ C. Recall that X� is defined as Pos(A�);
thus it is enough to show that A� ⊂ C. Assume the contrary: there exists
a v ∈ A� such that v 6∈ C, i.e., li(v) < 0 for some i = 1, . . . ,m. Then by
our choice of ei

si(v) = v − 2
li(v)
<v,v>

ei � v ,

contradicting v ∈ A�. This proves that X� ⊂ C.
To prove the opposite inclusion, recall that by Corollary 2.9 X� is not

contained in a finite union of hyperplanes. Since X� ⊂ C, neither is C.
Thus

C0 = {v ∈ Rn | li(v) > 0 for i = 1, . . . ,m}
is non-empty and is a chamber for the collection of hyperplanes H1, . . . ,Hm;
cf. [1, V.3.1]. Consequently, C = C0 (see [1, V.1.3, formula (6)]) and C ⊂ Rn
is a fundamental set for the G-action on Rn (see [1, V.3.3, Theorem 2]).

We are now ready to show that C ⊂ X�. Suppose C = Pos(v1, . . . ,vt)
for some v1, . . . ,vt ∈ Zn. Then it is enough to show that each vi lies in A�.
Set v = vi and choose a g ∈ G such that g(v) ∈ A�; cf. Lemma 2.8(a).
Since A� ⊂ X� ⊂ C, both v and g(v) lie in C. Since C is a fundamental
set for the G-action on Rn, this implies v = g(v). In particular, v ∈ A�, as
claimed. This completes the proof of Proposition 3.1. �

4. Proof of Theorem 1.4: the “only if” direction

Assume that In(k[x±1]G) is a finitely generated semigroup for some G ⊂
GLn(Z). We want to show thatG is generated by reflections. By Lemma 2.6(c),
X� is an integral polyhedral cone. Thus in order to complete the proof of
Theorem 1.4 it suffices to establish the following:
Proposition 4.1. Suppose X is a fundamental set for the natural action of
a finite subgroup G ⊂ GLn(R) on Rn. If X is a polyhedral cone then G is
generated by reflections.

For the purpose of proving Theorem 1.4, we only need a special case
of Proposition 4.1: we may assume that G ⊂ GLn(Z) and X = X�(G)
is an integral polyhedral cone. Note however, that if G ⊂ GLn(Z) and
X(G) is a polyhedral cone then Propositions 3.1 and 4.1 imply that X(G)
is automatically integral.

The rest of this section will be devoted to proving Proposition 4.1. Let
< · , ·> be the G-invariant positive-definite bilinear from on Rn given by (2).

Since X is a fundamental set for the G-action on Rn, X is not contained in
a hyperplane; thus dim(X) = n. Let h1, . . . , hm be the (closed) facets (i.e.,
(n − 1)-dimensional faces) of X, Hi = Span

R
(hi) be the hyperplane in Rn

containing hi, and si be the orthogonal (with respect to < · , ·>) reflection
in Hi.
Lemma 4.2. (a) The boundary of X is contained in Y = ∪g(X) 6=Xg(X).

(b) si ∈ G for any i = 1, . . . ,m.
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Proof. (a) Assume the contrary: a boundary point v of X does not lie in
Y . Since Y is a closed subset of Rn (cf. Lemma 2.1(b)), B ∩ Y = ∅ for
some open ball B centered at v. Since v is a boundary point of X (cf.
Lemma 2.1(b)), there exists a w ∈ B −X. Thus w 6∈ Y ∪X. On the other
hand, since X is a fundamental set for the G-action on Rn, we know that
Y ∪X = R

n, a contradiction.
(b) Suppose v lies in a facet hi of X. By part (a), g−1(v) ∈ X, for some

1 6= g ∈ G. Since X is a fundamental set for G, this is only possible if
g−1(v) = v. In other words, every facet hi lies in the union of the linear
spaces Lg, where

(3) Lg = (Rn)g = {x ∈ Rn | g(x) = x}

and g ranges over those g ∈ G for which g(X) 6= X. But then each sup-
porting hyperplane Hi also lies in ∪g∈GLg. Since Hi cannot be covered by
a finite number of proper linear subspaces, we conclude that Hi ⊂ Lgi for
some 1 6= gi ∈ G. Since dim(Hi) = n− 1 and dim(Lgi) ≤ n− 1, this is only
possible if Hi = Lgi . Since gi preserves < · , ·> and fixes each point of Hi,
we conclude that gi is the orthogonal reflection in Hi, i.e., gi = si. Thus
si ∈ G, as claimed. �

We are now ready to complete the proof of Proposition 4.1. Let G0 be
the subgroup of G generated by s1, . . . , sm, and let F be the collection of
hyperplanes of the form g0(Hi), where g0 ∈ G0 and i = 1, . . . ,m. Note that
F is a G0-invariant collection of hyperplanes in Rn and that G0 contains the
orthogonal reflection g0sig

−1
0 in the hyperplane g0(Hi).

Since X is a fundamental set for the G-action on Rn, it cannot be covered
by finitely many hyperplanes. Thus we can choose a point v in X such that
g(v) 6= v for any 1 6= g ∈ G. In particular v 6∈ H for any hyperplane H ∈ F ;
otherwise s(v) = v, where s ∈ G0 ⊂ G is the orthogonal reflection in H.
Now let C be the (unique) chamber, relative to the collection of hyperplanes
F , such that v ∈ C. Since H1, . . . ,Hm ∈ F , we have C ⊂ X. Moreover,
since X is closed in Rn (cf. Lemma 2.1(b)), C ⊂ X. By [1, Lemma V.3.1.1],
C is a fundamental set for the action of G0 on Rn. In particular, every point
in Rn can be written in the form g0(c) for some c ∈ C and g0 ∈ G0.

We claim that G = G0. Indeed, suppose g ∈ G. Write g(v) as g0(c)
for some c ∈ C. Since X is a fundamental set for the action of G on
R
n and both v and c = g−1

0 g(v) lie in X, we conclude that v = c, or
equivalently g−1

0 g ∈ StabG(v). But StabG(v) = {1} by our choice of v.
Thus g = g0 ∈ G0. This shows that G = G0, i.e., G is generated by
reflections. �

5. Proof of Theorem 1.5

We now return to the situation of Section 3; we begin by recalling the
notations introduced there. Let G be a finite subgroup of GLn(Z). Denote
the reflections contained in G by s1, . . . , sm; we shall assume that these
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elements generate G. For each i = 1, . . . ,m choose an eigenvector ei ∈ Zn
of si associated to eigenvalue −1. After possibly replacing ei by −ei, we
may assume ei � (0, . . . , 0) for every i. We fix a G-invariant positive-
definite bilinear form < · , ·> defined over Z; cf. (2). For i = 1, . . . ,m, set
li(v) = <v, ei> and Hi = {v ∈ Rn | li(v) = 0}; note that each li is a linear
form on Rn with integer coefficients. In Section 3 we showed that

C0 = {v ∈ Rn | li(v) > 0 for i = 1, . . . ,m}
is a chamber for the collection of hyperplanes H1, . . . ,Hm and

(4) X� = C0 = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . ,m}.
After possibly renumbering the reflections s1, . . . , sm, we may assume that
the hyperplanes H1, . . . ,Ht are the walls of C0 for some t ≤ m. That is,

(5) X� = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . , t}.
Lemma 5.1. <ei, ej> ≤ 0 for any distinct i, j = 1, . . . , t.

Proof. Since A� is not contained in a finite union of hyperplanes (see Corol-
lary 2.9), there exists a point v ∈ A� ∩ C0. Now by the definition of A�,

ni = si(v)− v = −2
li(v)
<v,v>

ei

is an inward normal vector to Hi. Note that li(v) > 0, because v lies
in C0. Thus ni is a negative multiple of ei for every i = 1, . . . , t. The
lemma now follows from by [1, Proposition V.3.4.3(iii)], which says that
<ni,nj> ≤ 0. �

Lemma 5.2. Suppose v ∈ Zn. Then the following are equivalent:
(a) g(v) = v for every g ∈ G.
(b) both v and −v lie in A�,
(c) both v and −v lie in X�,
(d) li(v) = 0 for every i = 1, . . . ,m,
(e) li(v) = 0 for every i = 1, . . . , t.

Proof. (a) ⇔ (b): By Definition 2.5, v ∈ A� iff v � g(v) for every g ∈ G.
Thus −v ∈ A� iff v � g(v) for every g ∈ G, and v,−v both lie in A� iff
v = g(v) for every g ∈ G, i.e., v ∈ (Zn)G.

(b) ⇔ (c) follows from the fact that A� = X� ∩ Zn; cf. Lemma 2.3.
(c) ⇔ (d) follows from (4).
(c) ⇔ (e) follows from (5). �

Lemma 5.3. (a) (Rn)G = Span
R

(e1, . . . , em)⊥ = Span
R

(e1, . . . , et)⊥, where
W⊥ denotes the orthogonal complement of a subspace W in Rn.

(b) (Zn)G = (0) if and only if e1, . . . , et span Rn.

Proof. (a) is an immediate consequence of Lemma 5.2. (b) Follows from (a)
and the fact that the vector space (Rn)G is defined over Q. �
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Remark 5.4. In the language of [4], Lemma 5.3(b) can be restated as
follows: (Zn)G = (0) if and only if X� has an apex at (0); cf. [4, Lemma
V.2.2(c)].
Proposition 5.5. A�∩Span

R
(e1, . . . , et) is well ordered with respect to �.

Proof. (a) Assume the contrary: there exists an infinite strictly decreasing
sequence

(6) a1 � a2 � a3 � . . .
in A� ∩ Span

R
(e1, . . . , et). Note that l1(ai) is a non-negative integer for

every i ≥ 1. Thus we can choose i1 ≥ 1 so that l1(ai1) ≤ l1(ai) for every
i ≥ 1. Now choose i2 so that l1(ai2) ≤ l1(aj) for all j ≥ i1 + 1, i3 so that
l1(ai2) ≤ l1(ah) for all h ≥ i2 + 1, etc. Thus after replacing the sequence (6)
by a subsequence we may assume that l1(a1) ≥ l1(a2) ≥ . . . . Proceeding
inductively (with l1 replaced by l2, then l3, etc.), we conclude that, after
replacing (6) by a subsequence, we may assume lj(ai+1) ≥ lj(ai) for every
j = 1, . . . , t and every i ≥ 1.

Now consider the element b = a2−a1 ≺ (0, . . . , 0). Since we are assuming
that a1 and a2 lie in Span

R
(e1, . . . , et), we can write b = r1e1 + · · ·+ rtet,

where r1, . . . , rt are rational numbers. Since lj(b) ≤ 0 for every j = 1, . . . , t,
and <ei, ej> ≤ 0 whenever i 6= j, [1, Lemma V.3.5.6] says that each ri ≥ 0,
i.e., ri = pi

q , where p1, . . . , pt, q ∈ N and q 6= 0. Now

qb = p1e1 + · · ·+ ptet .

The left hand side ≺ (0, . . . , 0), and the right hand side is � (0, . . . , 0)
by our choice of the vectors ei. This contradiction shows that A� is well
ordered. �

Corollary 5.6. Suppose G ⊂ GLn(Z) is a finite reflection group and (Zn)G =
(0). If the initial exponents of the elements fλ ∈ k[x±1]G generate In(k[x±1]G)
then {fλ} is a SAGBI basis of k[x±1]G.

Proof. By Lemma 5.3(b), Span
R

(e1, . . . , et) = R
n and by Proposition 5.5

A� = A� ∩ Span
R

(e1, . . . , et)

is well ordered. The subduction algorithm will create a strictly decreasing
sequence of leading terms in A�; this sequence has to terminate. Thus the
algorithm will terminate as well. �

Note that by Theorem 1.4 there exists a finite collection of elements fλ ∈
k[x±1]G such that in(fλ) generate In(k[x±1]G) as a semigroup. Thus in
the case where (Zn)G = (0), Theorem 1.5 is an immediate consequence of
Corollary 5.6. We now turn to the general case, i.e., to the case where (Zn)G

may not be trivial.
Example 5.7. Let n = 1 and G = {1}, so that k[x±1]G = k[x±1] (here
x = x1). Of course, ZG = Z 6= (0). The initial exponents, 1 and −1, of the
elements f1 = x and f2 = x−1 − x−2 generate In(k[x±1]G) = Z. We also
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have k[x±1]G = k[x±1] = k[f1, f2]. Assume for simplicity that k is a field of
characteristic 0.

We will now attempt to apply the subduction algorithm to express α =
x−1 as a polynomial in f1 and f2. The first step yields α1 = α− f2 = x−2,
the second α2 = α1 − f2

2 = 2x−3 − x−4, etc. If we carry our the subduction
algorithm by subtracting off scalar multiple of a power of f2 at each stage,
the “remainder” αi after i steps will have leading exponent −i− 1, and the
algorithm will not terminate. We conclude that f1 and f2 do not form a
SAGBI basis of k[x±1] = k[x±1]G. �

Example 5.7 shows that Corollary 5.6 fails if (Zn)G 6= (0). Fortunately,
it can be salvaged in this more general situation, if we choose our elements
fλ a little more carefully.

Recall that X� = Pos(A�) is an integral polyhedral cone. Write X� =
Pos(v1, . . . ,vr), where v1, . . . ,vr ∈ X� ∩ Zn = A�, and let

fi =
∑
g∈G

xg(vi) .

The following Proposition completes the proof of Theorem 1.5.
Proposition 5.8. f1, . . . , fr form a SAGBI basis of k[x±1]G.

Proof. By our construction the initial forms in(f1), . . . , in(fr) generateA� =
In(k[x±1]G) as a semigroup. To show that they form a SAGBI basis, suppose
we apply the subduction algorithm to express a given element α ∈ k[x±1]G

in terms of f1, . . . , fr. This algorithm will produce a sequence of elements
α0 = α, α1, α2, α3 . . . with leading terms

(7) in(α0) � in(α1) � in(α2) � . . . .
Our goal is to show that this sequence will terminate. The idea of the proof is
to consider the orthogonal decomposition in(αi) = bi+zi, where bi ∈ (Rn)G

and zi ∈ Span
R

(e1, . . . , et); cf. Lemma 5.3(a). We would then like to
show that the sequence {zi} terminates because of Proposition 5.5 and the
sequence {bi} terminates because it can only assume finitely many values.
Since we are working over Z, rather than R, this needs to be done with some
care (in particular, the bi ∈ (Rn)G and zi ∈ Span

R
(e1, . . . , et) defined below

are the orthogonal components of |G| in(αi), rather than in(αi)), but this
is the idea behind the argument to follow.

Assume, to the contrary, that the sequence (7) of initial terms does not
terminate. Let p : Rn −→ (Rn)G be given by

p(v) =
∑
g∈G

g(v) .

We claim that for every monomial xv that appears in α there exists a
monomial xw that appears in α1, such that p(v) = p(w). Indeed, suppose
α1 = α− cfd1

1 . . . fdrr , where 0 6= c ∈ k, d1, . . . , dr ∈ N, and

d1v1 + · · ·+ drvr = in(α) .
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Every monomial that occurs in α1 either (i) occurs in α or (ii) occurs in
fd1

1 . . . fdrr (or both). In case (i) the claim is trivial: we can take w = v. In
case (ii), v has the form

v = d1g1(v1) + · · ·+ drgr(vr)

for some g1, . . . , gr ∈ G. Thus

p(v) = d1p(v1) + · · ·+ drp(vr) = p(d1v1 + · · ·+ drvr) = p(in(α)) ,

so that in case (ii), we can take w = in(α). This proves the claim.
Let E = {p(v)}, where xv ranges over the monomials of α and let bi =

p(in(αi)). Applying the claim inductively, we see that bi ∈ E for every i ≥ 1.
Since E is a finite set, there is an infinite subsequence w1 � w2 � . . . of the
sequence of initial terms (7) such that p(w1) = p(w2) = . . . , say, p(wi) = b
for every i ≥ 1.

We claim that this is impossible. Consider the sequence zi = |G|wi − b
for i ≥ 1. Then

(i) z1 � z2 � z3 � . . . ,
(ii) zi ∈ A� for each i ≥ 1, and
(iii) zi ∈ Span

R
(e1, . . . , et) for each i ≥ 1.

(i) is obvious because wi form a strictly decreasing sequence. To prove (ii),
note that wi ∈ A�, i.e., wi � g(wi) for any g ∈ G. Multiplying both sides
by the positive integer |G| and subtracting b = g(b), we obtain zi � g(zi),
as desired. To prove (iii), we only need to show that zi is orthogonal to
every c ∈ (Rn)G; cf. Lemma 5.3(a). Indeed,

<zi, c> = |G|<wi, c>−<p(wi), c> = |G|<wi, c>−
∑
g∈G

<g(wi), g(c)> = 0 .

This proves (iii).
Thus {zi} is a strictly decreasing sequence in A� ∩ Span

R
(e1, . . . , et),

contradicting Proposition 5.5. This shows that the subduction algorithm
will terminate, i.e., f1, . . . , fr form a SAGBI basis of k[x±1]�, as claimed. �

6. Proof of Theorem 1.7

In this section we will deduce Göbel’s conjecture (Theorem 1.7) from
Theorem 1.4.

Elements of H may be viewed as n×n-permutation matrices; this gives a
natural inclusion H ⊂ GLn(Z). However, since we are interested in polyno-
mial invariants of H, we will apply Theorem 1.4 not to H itself but to the
larger group G = <H,D> ⊂ GLn(Z), where D is the subgroup of diagonal
matrices in GLn(Z). (In other words, D = {diag(ε1, . . . , εn)}, where each
εi = ±1.) It is easy to see that G ' D >/H is a finite group.

The idea of the proof is to relate In(k[x]H) to In(k[x±1]G), where k[x±1] =
k[x±1

1 , . . . , x±1
n ] is the Laurent polynomial ring. To define In(k[x±1]G), we

need to extend our term order � from k[x] to k[x±1]. There is a unique such
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extension (which, by abuse of notation, we shall continue to denote by �):
for any a and b ∈ Zn we define

(8) a � b iff a +m(1, . . . , 1) � b +m(1, . . . , 1) for some m� 0.

One easily checks that this definition is independent of the choice of m, as
long as a + m(1, . . . , 1) and b + m(1, . . . , 1) ∈ Nn, and that the resulting
order is a term order in k[x±1] in the sense of Definition 1.2. Moreover,
relative to this term order, In(k[x]H) = In(k[x±1]G); indeed, both are equal
to

{a = (a1, . . . , an) ∈ Zn | a1, . . . , an ≥ 0 and h(a) � a for every h ∈ H}.
Theorem 1.4 now tells us that In(k[x]H) = In(k[x±1]G) has a finite SAGBI
basis if and only if G is a reflection group. Theorem 1.7 is thus a consequence
of the following group-theoretic lemma.
Lemma 6.1. Let H ⊂ Sn and G = D >/ H ⊂ GLn(Z) be as above. Then
the following conditions are equivalent:

(a) G is a reflection group,
(b) H is generated by transpositions,
(c) H = Sn1 × · · · × Snr for some partition n1 + · · ·+ nr = n.
The equivalence (b) ⇐⇒ (c) is a simple exercise in finite group theory;

we leave it to the reader.
(b) =⇒ (a): D is clearly generated by reflections. Since a transposition

in H (viewed as an element of GLn(Z)) is a reflection, (b) says that H is
also generated by reflections. Hence, so is G = <D,H>.

Our proof of the implication (a) =⇒ (b) relies on the following claim:
Write g = dh, where d ∈ D and h ∈ H. If g is a reflection then h = id
or h is a transposition. Indeed, since G = D >/ H, id = g2 = d(hdh−1)h2

implies (i) h2 = id, i.e., h is a product of, say, r disjoint transpositions, and
(ii) dhdh−1 = id, i.e., d and h commute. It is now easy to see that the only
eigenvalues of g are −1 and 1, and that −1 occurs with multiplicity ≥ r. If
g is a reflection, this implies r ≤ 1, i.e., h = id or h is a transposition. This
proves the claim.

Now suppose G is generated by reflections g1 = d1h1, . . . , gm = dmhm,
where each di ∈ D and each hi ∈ H. Then H = G/D is generated by
h1, . . . , hm. The claim tells us that each hi = id or a transposition. Thus H
is generated by transpositions. This completes the proof of Lemma 6.1 and
thus of Theorem 1.7.

7. Final remarks

Remark 7.1. Suppose G ⊂ GLn(Z) is a finite reflection group and (Zn)G =
(0). Then there is a canonical choice of a SAGBI basis {f1, . . . , fr} in R =
k[x±1]G independent of the term order �.

Indeed, in this case the integral polyhedral cone X� has an apex at 0
(cf. Remark 5.4); thus by [4, Lemma V.3.5], In(R) = A� = X� ∩ Zn has a
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unique minimal system of (semigroup) generators v1, . . . ,vr. Now define

fi =
∑
g∈G

xg(vi) ;

for i = 1, . . . , r. These elements form a SAGBI basis by Corollary 5.6 (or
alternatively, by Proposition 5.8). To see that this SAGBI basis is indepen-
dent of the term order, let �′ be another term order in k[x±1], v1

′, . . . ,vr
′

be a minimal set of generators for A�
′

= X�
′ ∩ Zn and

f ′i =
∑
g∈G

xg(v
′
i) .

If s1, . . . , sm are the reflections in G, set Hi = (Rn)si , as before. Since X�

and X�
′

are both chambers for the G-invariant collection of hyperplanes
H1, . . . ,Hm, there exists a g0 ∈ G such that X�

′
= g0(X�); see [1, Lemma

V.3.1.2]. Then g0(v1), . . . , g0(vr) is another minimal system of generators
of A�

′
; thus, up to renumbering, vi

′ = g0(vi) for i = 1, . . . , r. Consequently,
fi = f ′i for every i = 1, . . . , r, as claimed.

Remark 7.2. The arguments we used in proving Theorems 1.4 and 1.5
are quite insensitive to the base field k. Informally speaking, the action
takes place in the exponents of monomials (both literally and metaphori-
cally), and the coefficients of these monomials play only a minor role in our
considerations. In fact,

(a) Theorems 1.4 and 1.7 remain true if the base field k is replaced by a
(not necessarily comutative) ring. Our only requirements are that k should
be nontrivial (i.e., k 6= (0)) and should have no zero divisors (otherwise,
In(R) may not be a semigroup). The proof remains the same, with one
exception: if k does not have a unit element, then f =

∑
xg(a) in the proof

of Lemma 2.6(a) should be redefined as f =
∑
cxg(a), where c is a nonzero

element of k.

(b) Theorem 1.5, Theorem 1.6 and Proposition 5.8 remain true if k is as-
sumed to be a ring with a unit element 1 and without zero divisors, provided
that we modify the definition of the subduction algorithm (as described in
the Introduction) as follows: each fλ is required to be monic i.e., its initial
terms should have coefficient 1. (Otherwise we will have trouble defining
the subduction algorithm, before we can even ask whether it terminates or
not.) Corollary 5.6 remain true, if we impose this additional requirement on
{fλ}. The proofs remain unchanged.

We conclude this paper with the example that originally motivated The-
orem 1.4.

Example 7.3. Let C2 = {1, τ} be a group of order 2. Consider the action
of Gn = Sn × C2 on

Ln = {a = (a1, . . . , an) ∈ Zn | a1 + · · ·+ an = 0} ' Zn−1 ,
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where Sn acts by permuting the coordinates and C2 acts via τ(a) = −a. For
n ≥ 3, the resulting integral representationG −→ GL(Ln) is easily seen to be
faithful; thus we can think ofGn as a finite subgroup of GL(Ln) = GLn−1(Z).
This representation and the ring of multiplicative invariants Rn = k[Ln]Gn
(here k[Ln] = k[x±1

1 , . . . , x±1
n−1]) arise in crystallography; in particular, one

would like to know whether or not this ring has a SAGBI basis; cf. [2].
It is easy to see that Gn is generated by reflections if and only if n ≤ 4.

Indeed, the reflections in G3 are (ij) and (ij)τ , where 1 ≤ i < j ≤ 3; these
elements clearly generate G3. The reflections in G4 are elements of the form
(ij) where 1 ≤ i < j ≤ 4 and (ij)(hl)τ , where {i, j, h, l} = {1, 2, 3, 4}; these
elements generate G4. For n ≥ 5 the only reflections in Gn are transpositions
in Sn; the subgroup they generate is Sn, not all of Gn. Thus Theorem 1.4
tells us that the semigroup A� = In(Rn) is not finitely generated for any
n ≥ 5. The following direct proof of this fact, in the case where � is the
restriction of the usual lexicographic order of Zn to Ln, was shown to us by
J. Friedman:

Denote the j-th component of a ∈ Zn by a[j], so that a = (a[1], . . . , a[n]).
The semigroup of initial terms A�n = In(k[Ln]Gn) with respect to this order
consists of elements a ∈ Zn satisfying the following conditions:

(i) a ∈ Ln, i.e., a[1] + · · ·+ a[n] = 0,
(ii) a[1] ≥ · · · ≥ a[n], and
(iii) (a[1], . . . , a[n]) � (−a[n], . . . ,−a[1])

Assume the contrary: there exists a finite set F of generators for A�n . Write
F = F0∪F1∪F2∪ . . . , where Fi consists of those f ∈ F with f [1]+f [n] = i.

Consider the element a = (t2 + 1, t, t, 0, . . . , 0,−2t− 1,−t2) of A�, where
t ≥ 2 is an integer parameter, to be specified later. Write a = f1 + ... + fN
as a sum of (not necessarily distinct) elements of F . Since a[1] + a[n] = 1,
exactly one of the elements fi (say, fN) lies in F1, and all others lie in F0.
On the other hand, for any f ∈ F0, f [2] + f [n− 1] ≥ 0. Thus

−t− 1 = a[2] + a[n− 1] = (f1[2] + f1[n− 1]) + · · ·+ (fN [2] + fN [n− 1]) ≥
fN [2] + fN [n− 1] ≥ min

f∈F1

(f [2] + f [n− 1]) .

The last inequality cannot hold for sufficiently large t, a contradiction. Thus
A� is not finitely generated for any n ≥ 5. �

Theorem 1.5 also tells us that LGnn has a finite SAGBI basis for n = 3 and
4. Explicit SAGBI bases in these cases and some computations with them
can be found in [2]. �
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