University of British Columbia Math 301, Section 201

Midterm 1

Date: February 13, 2013 **Time:** 11:00 - 11:50pm

Name (print): Student ID Number: Signature:

Instructor: Richard Froese

Instructions:

- 1. No notes, books or calculators are allowed.
- 2. Read the questions carefully and make sure you provide all the information that is asked for in the question.
- 3. Show all your work. Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.
- 4. Answer the questions in the space provided. Continue on the back of the page if necessary.

Question	Mark	Maximum
1		13
2		12
3		8
4		7
Total		40

1. (a) Find and classify the singularities of $f(z) = \frac{\cot(\pi z)}{z^2}$

[2]

(b) Calculate the residue of $f(z) = \frac{\cot(\pi z)}{z^2}$ at each of its singularities. (Hint: Sometimes the easiest way to find the residue is to compute the Laurent series directly by manipulating series.)

[4]

(c) The sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$ can be evaluated by integrating $f(z) = \frac{\cot(\pi z)}{z^2}$ over a suitable contour Γ_N and taking $N \to \infty$. Draw Γ_N and mark the singularities on your diagram. What does the Cauchy residue theorem say when applied to Γ_N ?

(d) State what estimates are required to perform the evaluation of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. (You need not prove them.) What is the value of the infinite sum?

- 2. When we use the range of angles method to construct a branch of $f(z) = (4 z^2)^{-1/2}$, we write $(z 2) = |z 2| e^{i\theta_1}$, $(z + 2) = |z + 2| e^{i\theta_2}$, and use an expression for f(z) in terms of these quantites. Branches can then be specified by choosing ranges for the angles θ_1 and θ_2 .
 - (a) Write down the expression for f(z)

(b) What range of angles results in a branch cut on the interval [-2, 2] and positive values of f(z) on the top lip of the cut? Does this branch have a residue at infinity? If so, compute it.

[4]

(c) Evaluate the integral $I = \int_{-2}^{2} \frac{1}{\sqrt{4-x^2}} dx$ by integrating one of the branches from the previous parts around a suitable contour and taking a limit. Draw the contour and indicate which parts of the integral vanish in the limit. You need not prove the needed estimates.

[3]

3. (a) Draw the contour and the branch cut you would use to evaluate $I = \int_0^\infty \frac{x^\alpha}{1+x^4} dx$. Where are the singularities enclosed by the contour located?

[5]

(b) The procedure for evaluating I relies on the integral over some portions of the contour tending to zero in the limit. Provide the needed estimates and give range of α for which each estimate will work.

4. Let D be the half strip

$$D = \{x + iy : x \le 0, 0 \le y \le 1\}$$

(a) What is the image of D under $f(z) = z^2$?

7

[7]