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Instructions:

1. No notes, books or calculators are allowed.

2. Read the questions carefully and make sure you provide all the information that is
asked for in the question.

3. Show all your work. Answers without any explanation or without the correct accom-
panying work could receive no credit, even if they are correct.

4. Answer the questions in the space provided. Continue on the back of the page if
necessary.
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1. Let R′ be the region 0 < u < π
2
, 0 < v < ln(2) in the w = u+ iv plane. The map

cos(w) = cos(u+ iv) = cos(u) cosh(v)− i sin(u) sinh(v)

maps R′ to the region R in the z = x+ iy plane shown on the right.
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Figure 1: The regions R′ and R

(a) (4 points) The corners of R′ map to the points A = 0, B, C and D on the boundary
of R. Find the values of the points B, C and D in the z = x + iy plane. Indicate
which corner maps to which of these points by labeling the corners of R′ with A′,
B′, C ′ or D′.

Solution: First compute the images of points on the left. We have cos(0) = 1,
cos(π/2) = 0, cos(i ln(2)) = cosh(ln(2)) = (eln(2) + e− ln(2))/2 = (2 + 1/2)/2 =
5/4, cos(π/2 + i ln(2) = −i sinh(ln(2)) = −3i/4. Examining these points we
see that A = 0, B = 1, C = 5/4 and D = −3i/4 so that A′ = π/2, B′ = 0,
C ′ = i ln(2) and D′ = π/2 + i ln(2)

(b) (5 points) Solve the equation cos(w) = (eiw+e−iw)/2 = z for w to obtain a formula
for the (multivalued) inverse map w = cos−1(z). Let f(z) be the the branch obtained
by choosing the principal branches for the roots and logarithms in your formula.
Verify that this choice of branch maps R to R′ by showing that f(A) (= f(0)) is
one of the corners of R′.

Solution: The equation can be written (eiw)2−2zeiw +1 = 0 so that eiw = z±
(z2−1)1/2 (where we choose the principal branch of the square root, and then ±
gives both branches). So w = cos−1(z) = −i log(z±(z2−1)1/2) as a multivalued
function. Choosing principal branches gives f(z) = −iLog(z + (z2 − 1)1/2).
We know that (−1)1/2 = i = eiπ/2 (principal branch). So f(A) = f(0) =
−iLog(eiπ/2) = −i2π/2 = π/2 = A′.
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(c) (3 points) Suppose that R represents a plate that is insulated along the segment
[A,B] and the curve joining C to D, while the temperature is held at 0◦ on [A,D]
and at 100◦ on [B,C]. What boundary conditions are satisfied by the harmonic
function φ(x, y) on R that represents the steady state temperature distribution?

Solution: The boundary conditions are φ = 0 on [A,D], φ = 100 on [B,C]
and ∂φ/∂n = 0 on [A,B] and on the boundary curve joining C to D.

(d) (5 points) We know that φ(x, y) corresponds to a harmonic function Φ(u, v) under
the map f(z). Indicate the boundary conditions satisfied by Φ(u, v) on the boundary
of R′. Find Φ(u, v) and write the solution φ(x, y) in terms of Φ and u(x, y), v(x, y),
where f(x+ iy) = u(x, y) + iv(x, y). You need not calculate u(x, y) and v(x, y).

Solution: We have Φ = 0 on [A′, D′], Φ = 100 on [B′, C ′] and ∂φ/∂n =
∂φ/∂u = 0 on [A′, B′] and [C ′, D′]. The solution is Φ(u, v) = 100(1− 2u/π) so
that

φ(x, y) = 100(1− 2u(x, y)/π).
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2. (a) (5 points) Find a fractional linear transformation that maps the shaded region be-
tween the circles to the strip 0 < Im z < π

Solution: A FLT that maps 2 7→ ∞, 0 7→ 0 and 1 + i 7→ α where α > 0 is
given by z 7→ iαz/(z − 2). Under this transformation, the inner circle maps to
the real line, while the outer circle maps to a parallel line. We can vary which
line by adjusting α. Since −2 7→ iα/2 we must choose α = 2π. Thus an FLT
with the required properties is

z 7→ 2πiz

z − 2
.

If we follow this by a translation in a real direction we will get other FLT’s that
also work, namely

z 7→ 2πiz

z − 2
+ a =

(2πi+ a)z − 2a

z − 2

for any a ∈ R.

(b) (5 points) Find a conformal map f(z) that maps the shaded region between the
circles to the upper half plane.

Solution: The exponential function maps the strip 0 < Im z < π to the upper
half plane. Therefore the function obtained by following one of the transforma-
tions in (a) with the exponential map, e.g.,

f(z) = e2πiz/(z−2),

does the job.
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3. (a) (5 points) Show that the complex velocity potential Ω(z) = v0(z + a2/z), where
v0 > 0 and a > 0, represents ideal fluid flow around the obstacle |z| ≤ a. What
is the velocity of the flow in the limit |z| → ∞? Where are the stagnation points
(where the velocity is zero)?

Solution: The complex velocity is given by Ω′(z) = v0(1 − a2/z2). So the
limiting velocity is

lim
|z|→∞

v0(1− a2/z2) = v0.

The stagnation points occur when Ω′(z) = 0. This happens when z = ±a.

(b) (3 points) Let Ω(z) be as above and consider Ω(iz). Does this complex velocity
potential also represent ideal fluid flow around the obstacle |z| ≤ a? Give a reason.

Solution: We can write points on the boundary of the obstacle as z = aeiθ for
θ ∈ [0, 2π]. For these points z we have

Ω(iz) = v0(iae
iθ + a2/(iaeiθ)) = v0ia(eiθ − e−iθ) = −2v0a sin(θ)

so that for these points z, Im(Ω(iz)) = 0. This shows that this complex velocity
does represent ideal fluid flow around the obstacle.
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4. (5 points) How many zeros does p(z) = z6 − 4z4 + z3 − i have inside the unit circle?

Solution: Let f(z) = z6 − 4z4 = z4(z2 − 4). If we count with multiplicity, f(z) has
four zeros inside the unit circle. On the boundary where |z| = 1 we have |f(z)| ≥
4|z|4−|z|6 = 4−1 = 3. On the other hand g(z) = +z3−i satisfies |g(z)| ≤ |z|3+1 = 2
on the boundary. Thus |g(z)| < |f(z)| on the boundary. Then Rouché’s theorem
implies tha t f(z) + g(z) = p(z) also has 4 zeros inside the unit circle, counted with
multiplicity.
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