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panying work could receive no credit, even if they are correct.

4. Answer the questions in the space provided. Continue on the back of the page if
necessary.
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1.

In this question, all functions are analytic except for the indicated singulari-
ties and branch cuts. Note: there are many correct answers to each question.

(a) (2 points) Write down an example of a function f(z) with

• simple pole at z=0 and residue Res[f ; z = 0] = π, and

• a pole of order 2 at z=1 and residue Res[f ; z = 1] = 0

Solution: A possibility is

f(z) =
π

z
+

1

(z − 1)2

The point is that
1

(z − 1)2
is analytic near z = 0 so it’s Laurent series at z = 0

is a Taylor series which does not interfere with the pole. Similarly for
π

z
near

z = 1.

(b) (2 points) Write down an example of a function f(z) with

• a simple pole at every integer k and residue Res[f, z = k] = 1 for every k ∈ Z.

Solution: Starting with sin(πz) which has a zero when z = k ∈ Z we could

try
1

sin(πz)
. But this has residue

1

π cos(πk)
= (−1)k/π at z = k ∈ Z. So let’s

multiply by an entire function whose value at integer points k is π(−1)k. Such
a function is π cos(πk). So

f(z) =
π cos(πz)

sin(πz)

works.
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(c) (2 points) Write down an example of a function f(z) with

• an essential singularity at z = 0 and residue Res[f, z = 0] = 5.

Solution: An example is 5e1/z, since this has Laurent series 5(1 +
1

z
+

1

2z2
+

· · · ) = 5 +
5

z
+

5

2z2
+ · · · .

(d) (2 points) Write down an example of a function f(z) whose residue at infinity is
defined and equal to zero, i.e., Res[f, z =∞] = 0

Solution: A function of the form f(z) =
1

p(z)
where p is a polynomial of degree

2 or higher will work because for such function lim|z|→∞ f(z) = 0 so the residue
at infinity is lim|z|→∞ zf(z) which is also 0.

(Some of you pointed out that f(z) = 0 also works! Well, a better question
should ask for non-zero f .)

(e) (2 points) Write down an example of a multivalued function f(z) with branch
points at z = 1, z = i and z = −i.

Solution: An example is f(z) = log(z − 1) + log(z − i) + log(z + i)
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2. (a) (6 points) Compute the integral ∫ ∞
−∞

e2ix

x2 + 9
dx

Solution: We close the contour in the upper half plane. There is only one
singularity at z = 3i. So the integral is

2πiRes

[
e2iz

z2 + 9
, z = 3i

]
= 2πi

e2i(3i)

2 · 3i
=
πe−6

3

and use your answer to compute

∫ ∞
−∞

cos(2x)

x2 + 9
dx =

Solution:
e−6

3π
(take the real part)

∫ ∞
−∞

sin(2x)

x2 + 9
dx =

Solution: 0 (take the imaginary part)

∫ ∞
−∞

e−2ix

x2 + 9
dx =

Solution:
e−6

3π
(take the complex conjugate)
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(b) (4 points) Compute the integral ∫ ∞
−∞

1

x2 + i
dx

Solution: We can close the contour in either half plane. The singularities of
1

z2 + i
are solutions of z2 = −i = e−iπ/2 There are two, namely, z = ±e−iπ/4.

The singularity in the upper half plane is z = −e−iπ/4 = e3iπ/4 This leads to∫ ∞
−∞

1

x2 + i
dx = 2πi

1

2e3iπ/4
= πe−iπ/4 =

π(1− i)√
2
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3. (10 points) Using the range of angles method, construct a branch of (1− z2)1/2 that

• has a branch cut on [−1, 1], and

• takes on negative values on the cut when approached from above.

Your answer should contain explicit instructions on how to compute the value of your
branch at z for every z ∈ C and a sketch showing the angles.

Solution: To implement the range of angles method start with the factorization
(1− z2) = (−1)(z − 1)(z + 1) and write each factor in polar form. This gives

(1− z2) = e±iπ|z − 1|eiθ1|z + 1|)eiθ2 = |1− z2|ei(±π+θ1+θ2)

Then, for every choice of sign for ±π, and every choice of θj ∈ arg(z − zj), j = 1, 2
the quantity

|1− z2|1/2ei
1
2
(±π+θ1+θ2)

is one of the multiple values of (1− z2)1/2.
The range of angles method is a consistent way of choosing the angles θj above.
Fix an interval Ij of length 2π for each angle θi. There is always exactly one θj ∈
arg(z − zj) ∩ Ij. This is the angle we choose

So, for this question let’s choose ±π = π and the intervals I1 = I2 = [0, 2π).

The angle θ1 will jump by 2π when z crosses [1,∞) on the real axis.

The angle θ2 will jump by 2π when z crosses [−1,∞) on the real axis.

On the portion [1,∞) the total jump in θ1 + θ2 is 4π. Since we are dividing by 2
this means that the branch cuts cancel on [1,∞) and we are left with a branch cut
on [−1, 1]. When z ↓ x ∈ [−1, 1], θ1 → π and θ2 → 0.

So

|1− z2|1/2ei
1
2
(±pi+θ1+θ2) → |1− z2|1/2ei

1
2
(π+π+0) = eiπ|1− z2|1/2 = (−1)|1− z2|1/2 ≤ 0

Explicit instructions: Given z, let θk = θk(z) be the unique element in arg(z − zk)∩
[0, 2π). Then our branch evaluated at z is |1− z2|1/2ei 12 (π+θ1+θ2).

θ

θ
2

1

z

−1 1
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4. (10 points) Compute ∫ ∞
0

sin(x)

x
dx.

Explain each of your steps (e.g., why you must introduce a principal value integral and
an indented contour) and sketch the contours that you use.

Solution: We integrate f(z) =
eiz

z
around the closed contour [−R,−ε]−Cε+[ε, R]+

CR. Here Cε and CR are semi-circle contours in the the upper half plane, traversed
counter-clockwise. Since the singularity at z = 0 is outside the contour, Cauchy’s
theorem says ∫ −ε

−R
f(z)dz +

∫ R

ε

f(z)dz =

∫
Cε

f(z)dz −
∫
CR

f(z)dz.

Since f(z) has a simple pole at z = 0, we know

lim
ε→0

∫
Cε

f(z)dz = iπRes[f, z = 0] = iπ.

Thus

lim
ε→0

[∫ −ε
−R

f(z)dz +

∫ R

ε

f(z)dz

]
= iπ −

∫
CR

f(z)dz.

By Jordan’s lemma, we have

lim
R→∞

∫
CR

f(z)dz = 0.

Thus

lim
R→∞

lim
ε→0

[∫ −ε
−R

f(z)dz +

∫ R

ε

f(z)dz

]
= iπ

and therefore

Im

(
lim
R→∞

lim
ε→0

[∫ −ε
−R

f(z)dz +

∫ R

ε

f(z)dz

])
= Im(z)(iπ) = π.

Now we take the imaginary part. Since z 7→ Im(z) is continuous we can exchange

taking Im(z)(iπ) with the limit. For z = x ∈ R , Im f(x) =
sinx

x
, so this yields

lim
R→∞

lim
ε→0

[∫ −ε
−R

sinx

x
dx+

∫ R

ε

sinx

x
dz

]
= π

The function
sinx

x
has a removable singularity at x = 0. Therefore it is continuous

on [−R,R], its integral over [−R,R] exists and

lim
ε→0

[∫ −ε
−R

sinx

x
dx+

∫ R

ε

sinx

x
dx

]
=

∫ R

−R

sinx

x
dx
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So ∫ ∞
−∞

sinx

x
dx = lim

R→∞

∫ R

−R

sinx

x
dx = π

Finally we note that sin(x)/(x) is even. This implies∫ ∞
0

sinx

x
dx =

1

2

∫ ∞
−∞

sinx

x
dx =

π

2
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