University of British Columbia Math 301 Midterm 1 February 7, 2020 11:00 - 11:50am

Last Name (print):										
First Name (print):										
Student ID Number:]						
Signature:										

Instructor: Richard Froese

Instructions:

- 1. No notes, books or calculators are allowed.
- 2. Read the questions carefully and make sure you provide all the information that is asked for in the question.
- 3. Show all your work. Answers without any explanation or without the correct accompanying work could receive no credit, even if they are correct.
- 4. Answer the questions in the space provided. Continue on the back of the page if necessary.

Question	Points	Score				
1	10					
2	10					
3	10					
4	10					
Total:	40					

In this question, all functions are analytic except for the indicated singularities and branch cuts. Note: there are many correct answers to each question.

- (a) (2 points) Write down an example of a function f(z) with
 - simple pole at z=0 and residue $\operatorname{Res}[f; z=0] = \pi$, and
 - a pole of order 2 at z=1 and residue $\operatorname{Res}[f; z=1] = 0$

Solution: A possibility is

$$f(z) = \frac{\pi}{z} + \frac{1}{(z-1)^2}$$
The point is that $\frac{1}{(z-1)^2}$ is analytic near $z = 0$ so it's Laurent series at $z = 0$
is a Taylor series which does not interfere with the pole. Similarly for $\frac{\pi}{z}$ near $z = 1$.

- (b) (2 points) Write down an example of a function f(z) with
 - a simple pole at every integer k and residue $\operatorname{Res}[f, z = k] = 1$ for every $k \in \mathbb{Z}$.

Solution: Starting with $\sin(\pi z)$ which has a zero when $z = k \in \mathbb{Z}$ we could try $\frac{1}{\sin(\pi z)}$. But this has residue $\frac{1}{\pi \cos(\pi k)} = (-1)^k / \pi$ at $z = k \in \mathbb{Z}$. So let's multiply by an entire function whose value at integer points k is $\pi(-1)^k$. Such a function is $\pi \cos(\pi k)$. So

$$f(z) = \frac{\pi \cos(\pi z)}{\sin(\pi z)}$$

works.

- (c) (2 points) Write down an example of a function f(z) with
 - an essential singularity at z = 0 and residue $\operatorname{Res}[f, z = 0] = 5$.

Solution: An example is $5e^{1/z}$, since this has Laurent series $5(1 + \frac{1}{z} + \frac{1}{2z^2} + \cdots) = 5 + \frac{5}{z} + \frac{5}{2z^2} + \cdots$.

(d) (2 points) Write down an example of a function f(z) whose residue at infinity is defined and equal to zero, i.e., $\operatorname{Res}[f, z = \infty] = 0$

Solution: A function of the form $f(z) = \frac{1}{p(z)}$ where p is a polynomial of degree 2 or higher will work because for such function $\lim_{|z|\to\infty} f(z) = 0$ so the residue at infinity is $\lim_{|z|\to\infty} zf(z)$ which is also 0. (Some of you pointed out that f(z) = 0 also works! Well, a better question should ask for non-zero f.)

(e) (2 points) Write down an example of a multivalued function f(z) with branch points at z = 1, z = i and z = -i.

Solution: An example is $f(z) = \log(z - 1) + \log(z - i) + \log(z + i)$

2. (a) (6 points) Compute the integral

$$\int_{-\infty}^{\infty} \frac{e^{2ix}}{x^2 + 9} dx$$

Solution: We close the contour in the upper half plane. There is only one singularity at z = 3i. So the integral is

$$2\pi i \operatorname{Res}\left[\frac{e^{2iz}}{z^2+9}, z=3i\right] = 2\pi i \frac{e^{2i(3i)}}{2\cdot 3i} = \frac{\pi e^{-6}}{3}$$

and use your answer to compute

$$\int_{-\infty}^{\infty} \frac{\cos(2x)}{x^2 + 9} dx =$$
Solution: $\frac{e^{-6}}{3\pi}$ (take the real part)

$$\int_{-\infty}^{\infty} \frac{\sin(2x)}{x^2 + 9} dx =$$

Solution: 0 (take the imaginary part)

$$\int_{-\infty}^{\infty} \frac{e^{-2ix}}{x^2 + 9} dx =$$
Solution: $\frac{e^{-6}}{3\pi}$ (take the complex conjugate)

(b) (4 points) Compute the integral

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + i} dx$$

Solution: We can close the contour in either half plane. The singularities of $\frac{1}{z^2 + i}$ are solutions of $z^2 = -i = e^{-i\pi/2}$ There are two, namely, $z = \pm e^{-i\pi/4}$. The singularity in the upper half plane is $z = -e^{-i\pi/4} = e^{3i\pi/4}$ This leads to

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + i} dx = 2\pi i \frac{1}{2e^{3i\pi/4}} = \pi e^{-i\pi/4} = \frac{\pi(1 - i)}{\sqrt{2}}$$

- 3. (10 points) Using the range of angles method, construct a branch of $(1 z^2)^{1/2}$ that
 - has a branch cut on [-1, 1], and
 - takes on *negative* values on the cut when approached from above.

Your answer should contain explicit instructions on how to compute the value of your branch at z for every $z \in \mathbb{C}$ and a sketch showing the angles.

Solution: To implement the range of angles method start with the factorization $(1-z^2) = (-1)(z-1)(z+1)$ and write each factor in polar form. This gives

$$(1-z^2) = e^{\pm i\pi} |z-1| e^{i\theta_1} |z+1| e^{i\theta_2} = |1-z^2| e^{i(\pm\pi+\theta_1+\theta_2)}$$

Then, for every choice of sign for $\pm \pi$, and every choice of $\theta_j \in \arg(z - z_j), j = 1, 2$ the quantity

$$|1-z^2|^{1/2}e^{i\frac{1}{2}(\pm\pi+\theta_1+\theta_2)}$$

is one of the multiple values of $(1 - z^2)^{1/2}$.

The range of angles method is a consistent way of choosing the angles θ_j above. Fix an interval I_j of length 2π for each angle θ_i . There is always exactly one $\theta_j \in \arg(z-z_j) \cap I_j$. This is the angle we choose

So, for this question let's choose $\pm \pi = \pi$ and the intervals $I_1 = I_2 = [0, 2\pi)$.

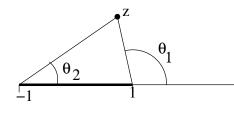
The angle θ_1 will jump by 2π when z crosses $[1, \infty)$ on the real axis.

The angle θ_2 will jump by 2π when z crosses $[-1,\infty)$ on the real axis.

On the portion $[1, \infty)$ the total jump in $\theta_1 + \theta_2$ is 4π . Since we are dividing by 2 this means that the branch cuts cancel on $[1, \infty)$ and we are left with a branch cut on [-1, 1]. When $z \downarrow x \in [-1, 1]$, $\theta_1 \to \pi$ and $\theta_2 \to 0$.

$$1 - z^2 |^{1/2} e^{i\frac{1}{2}(\pm pi + \theta_1 + \theta_2)} \to |1 - z^2|^{1/2} e^{i\frac{1}{2}(\pi + \pi + 0)} = e^{i\pi} |1 - z^2|^{1/2} = (-1)|1 - z^2|^{1/2} \le 0$$

Explicit instructions: Given z, let $\theta_k = \theta_k(z)$ be the unique element in $\arg(z - z_k) \cap [0, 2\pi)$. Then our branch evaluated at z is $|1 - z^2|^{1/2} e^{i\frac{1}{2}(\pi + \theta_1 + \theta_2)}$.



4. (10 points) Compute

$$\int_0^\infty \frac{\sin(x)}{x} dx.$$

Explain each of your steps (e.g., why you must introduce a principal value integral and an indented contour) and sketch the contours that you use.

Solution: We integrate $f(z) = \frac{e^{iz}}{z}$ around the closed contour $[-R, -\epsilon] - C_{\epsilon} + [\epsilon, R] + C_R$. Here C_{ϵ} and C_R are semi-circle contours in the the upper half plane, traversed counter-clockwise. Since the singularity at z = 0 is outside the contour, Cauchy's theorem says

$$\int_{-R}^{-\epsilon} f(z)dz + \int_{\epsilon}^{R} f(z)dz = \int_{C_{\epsilon}} f(z)dz - \int_{C_{R}} f(z)dz.$$

Since f(z) has a simple pole at z = 0, we know

$$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) dz = i\pi \operatorname{Res}[f, z = 0] = i\pi.$$

Thus

$$\lim_{\epsilon \to 0} \left[\int_{-R}^{-\epsilon} f(z) dz + \int_{\epsilon}^{R} f(z) dz \right] = i\pi - \int_{C_R} f(z) dz.$$

By Jordan's lemma, we have

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = 0.$$

Thus

$$\lim_{R \to \infty} \lim_{\epsilon \to 0} \left[\int_{-R}^{-\epsilon} f(z) dz + \int_{\epsilon}^{R} f(z) dz \right] = i\pi$$

and therefore

$$\operatorname{Im}\left(\lim_{R \to \infty} \lim_{\epsilon \to 0} \left[\int_{-R}^{-\epsilon} f(z) dz + \int_{\epsilon}^{R} f(z) dz \right] \right) = \operatorname{Im}(z)(i\pi) = \pi.$$

Now we take the imaginary part. Since $z \mapsto \operatorname{Im}(z)$ is continuous we can exchange taking $\operatorname{Im}(z)(i\pi)$ with the limit. For $z = x \in \mathbb{R}$, $\operatorname{Im} f(x) = \frac{\sin x}{x}$, so this yields

$$\lim_{R \to \infty} \lim_{\epsilon \to 0} \left[\int_{-R}^{-\epsilon} \frac{\sin x}{x} dx + \int_{\epsilon}^{R} \frac{\sin x}{x} dz \right] = \pi$$

The function $\frac{\sin x}{x}$ has a removable singularity at x = 0. Therefore it is continuous on [-R, R], its integral over [-R, R] exists and

$$\lim_{\epsilon \to 0} \left[\int_{-R}^{-\epsilon} \frac{\sin x}{x} dx + \int_{\epsilon}^{R} \frac{\sin x}{x} dx \right] = \int_{-R}^{R} \frac{\sin x}{x} dx$$

 So

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{\sin x}{x} dx = \pi$$

Finally we note that $\sin(x)/(x)$ is even. This implies

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$