Evaluation of some infinite sums

Proposition 0.1 Let p and q be polynomials with deg(q) > deg(p) + 2 and let Q) denote the
(finite) set of roots of q. Define
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f(2) = p(z)cot(mz)  p(z)cos(mz)

Then

Proof The function f(z) has poles when z € Z U Q. The poles at n € Z\(@Q are simple and
for these values of n
p(n)
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Let I',, be a square with corners (n + 1/2)(+1 £14). For n large enough, I',, will enclose all
the zeros of q.

The residue formula gives
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The idea is to show that the integral on the left tends to zero as n — oco. Standard bounds
on polynomials give |p(z)/q(z)| < C|z|~2 for |z| large. This implies that for large n
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Next we need to show that
sup [cot(mz)| < Cs.
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Let z = x 4+ 1y with y > 0. Then
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So if y is large enough to ensure e~ < 1/2 then the right side is bounded by (1+1/2)/(1 —
1/2) = 3. Similarly, when y < 0 we get and
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which is also bounded for y negative and large. This implies that |cot(7z)| is bounded by a
constant independent of n on the top and bottom of I',,. We could also compute a bound for
the left and right sides of I',, explicitly. Alternatively we can argue that | cot(m(n+1/2)+1iy)|
is a continuous function that tends to 1 for y tending to +0c0. Thus there must be a maximum
value. But | cot(72)| is a periodic function so the value of | cot(m(n+1/2)+iy)| is independent
of n. This implies that we have a uniform bound for | cot(7z)| on the left and right sides of
I',. Altogether, we have sup, . |cot(mz)| < C as required. Finally

length(I',) < Csn.
Thus
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as n — 0o. This implies that
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which gives the formula we wish to prove.
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Remark This method doesn’t work for > n™3 but we can get a formula for %

using f(z) = —q(z)ps(ii)(m).



