## Residue Examples

filename: residueexamples.tex

January 10, 2020

All contours are traversed in the counterclockwise (positive) direction.

1.

$$I = \oint_{|z|=1} z e^{1/z} dz$$

Essential singularity at z = 0. To compute residue, expand

$$ze^{1/z} = z\left(1 + \frac{1}{z} + \frac{1}{2!}\frac{1}{z^2} + \cdots\right) = z + 1 + \frac{1}{2!}\frac{1}{z} + \cdots$$

This gives Res  $[ze^{1/z}; 0] = 1/2$  so  $I = 2\pi i/2 = \pi i$ .

2.

$$I = \oint_{|z|=2} \frac{3z-1}{z(z-1)^3} dz$$

Singularities at z=0 and z=1. Could evaluate by finding the residues at each singularity. But since both singularities are inside the contour, we also have

$$I = 2\pi i \operatorname{Res} \left[ \frac{3z-1}{z(z-1)^3}; \infty \right].$$

To compute the residue at infinity check that

$$\lim_{|z| \to \infty} \frac{3z - 1}{z(z - 1)^3} = 0.$$

This implies

$$\lim_{|z| \to \infty} \text{Res}\left[\frac{3z - 1}{z(z - 1)^3}; \infty\right] = \lim_{z \to \infty} z \frac{3z - 1}{z(z - 1)^3} = 0.$$

So I=0.

3.

$$I = \oint_{|z|=2} \frac{5z - 2}{z(z - 1)} dz$$

Simple poles at z = 0 and z = 1. Residues are

Res 
$$\left[\frac{5z-2}{z(z-1)};0\right] = \frac{-2}{-1} = 2$$

and

Res 
$$\left[ \frac{5z-2}{z(z-1)}; 1 \right] = \frac{3}{1} = 3.$$

So

$$I = 2\pi i(2+3) = 10\pi i.$$

Alternatively, since both singularities are inside the contour, and

$$\lim_{|z| \to \infty} \frac{5z - 2}{z(z - 1)} = 0,$$

we have

$$I = 2\pi i \operatorname{Res}\left[\frac{5z-2}{z(z-1)}; \infty\right] = 2\pi i \lim_{z \to \infty} z \frac{5z-2}{z(z-1)} = 10\pi i$$

4.

$$I = \oint_{|z|=1} \frac{1}{z^2 \sin(z)} dz$$

Pole of order 3 at z = 0. Compute the series at z = 0 directly:

$$\frac{1}{z^2 \sin(z)} = \frac{1}{z^2 (z - z^3/3! + z^5/5! \dots)} = \frac{1}{z^3 (1 - z^2/3! + z^4/5! \dots)}$$
$$= \frac{1}{z^3} (1 + (z^2/3! - z^4/5! \dots) + (z^2/3! - z^4/5! \dots)^2 + \dots)$$
$$= 1/z^3 + 1/(6z) + \text{analytic.}$$

So Res 
$$\left[\frac{1}{z^2 \sin(z)}; 0\right] = 1/6$$
 and  $I = i\pi/3$ .

5.

$$I = \oint_{|z|=3} \frac{1}{z^2 + z + 1} dz$$

Simple poles at  $z = 1/2 \pm \sqrt{3}/2$ . Both poles are on the unit circle, inside the contour. Check that

$$\lim_{z \to \infty} \frac{1}{z^2 + z + 1} = 0.$$

Thus

$$I = 2\pi i \operatorname{Res}\left[\frac{1}{z^2 + z + 1}; \infty\right] = 2\pi i \lim_{z \to \infty} z \frac{1}{z^2 + z + 1} = 0.$$

6.

$$I = \oint_{|z|=1} e^{1/z} \sin(1/z) dz$$

Essential singularity at z = 0. To find the residue we can compute the series using a Cauchy product

$$e^{1/z}\sin(1/z) = (1 + 1/z + 1/(2z^2) + \cdots)(1/z - 1/(3!z^3) + \cdots)$$
  
= 1/z + lower order terms

Thus  $\text{Res}[e^{1/z}\sin(1/z), 0] = 1$  and  $I = 2\pi i$ .

7.

$$I = \oint_{|z|=1} \frac{z-1}{\sin(z)} dz$$

Simple poles at  $z = k\pi, k \in \mathbb{Z}$ . Only z = 0 is inside the contour.

Res 
$$\left[\frac{z-1}{\sin(z)};0\right] = \frac{0-1}{\sin'(0)} = \frac{-1}{\cos(0)} = -1$$

so  $I = -2\pi i$ .

8.

$$\oint_{|z|=1} \cot(z) dz$$

Simple poles at  $z = k\pi, k \in \mathbb{Z}$ . The only singularity inside the contour is z = 0.

Res[cot(z); 0] = Res 
$$\left[\frac{\cos(z)}{\sin(z)}; 0\right] = \frac{\cos(0)}{\sin'(0)} = \frac{\cos(0)}{\cos(0)} = 1.$$

So  $I = 2\pi i$ .

9.

$$I = \oint_{|z|=2} \frac{1}{z^3(z+4)} dz$$

Singularities at z = 0 and z = -4. Only z = 0 is inside the contour so

$$I = 2\pi i \operatorname{Res} \left[ \frac{1}{z^3(z+4)}; 0 \right].$$

But we can also write

$$I = \operatorname{Res}\left[\frac{1}{z^3(z+4)}; \infty\right] - \operatorname{Res}\left[\frac{1}{z^3(z+4)}; -4\right]$$

This is easier to evaluate because the residue at infinity is zero and z = -4 is a simple pole (compared to a pole of order 3 at z = 0). Thus

$$I = 2\pi i \left[ 0 - \frac{1}{(-4)^3} \right] = \frac{2\pi i}{64} = \frac{\pi i}{32}.$$