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6.7:6

Let q(z) = z6 + 4z2 and p(z) = z6 + 4z2 − 1 = q(z)− 1. On the contour |z| = 1 we have

|q(z)| = |z|2 |z4 + 4| = |z4 + 4| ≥ 4− |z|4 = 4− 1 = 3 > 1.

Thus Rouché’s theorem says that q and p have the same number of zeros in the unit disk. The

polynomial q(z) has a zero of order 2 at z = 0. The other zeros of q lie on the circle |z| =
√

2. So

q and therfore also p have 2 zeros (counted with multiplicity) in the unit disk.

6.7:7

When |z| = 2 we have

|z3 + 27| ≥ 27− 8 = 19 > 18 = |9z|

So Rouché’s theorem says z3 + 27 and z3 + 9z + 27 have the same number of zeros in the disk of

radius 2. But all the zeros of z3 + 27 lie on the circle |z| = 3. Thus both z3 + 27 and z3 + 9z + 27

have no zeros in the disk of radius 2.

6.7:8

We wish to show that all the roots of p(z) = z6 − 5z2 + 10 lie in the annulus 1 < |z| < 2.

When |z| = 2 we have

|z6 + 10| ≥ |z|6 − 10 = 64− 10 = 54 > 20 = |5z2|.

This shows that z6 + 10 and z6 − 5z2 + 10 have the same number of zeros in {z : |z| < 2}.

{z : |z| < 2}. The zeros of z6 + 10 satisfy |z| = (10)1/6 which is < 2. So z6 − 5z2 + 10 has 6 (i.e.,

all) zeros in {z : |z| < 2}.

On the other hand, when |z| = 1, then |z6 − 5z2| < |z|6 + 5|z|2 = 6 < 10. So z6 − 5z2 + 10

has the same number of zeros in {z : |z| = 1} as the constant polynomial 10, i.e., none.

Thus the zeros must all lie in the annulus 1 < |z| < 2.
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6.7:9

When |z| = 1 we have

|z3 − 2z2 + z − 1| ≤ |z|3 + 2|z|2 + |z|+ 1 = 5 < 6 = |6z4|.

This implies that 6z4 and 6z4 + z3 − 2z2 + z − 1

6.7:10

We want to find the winding number of f(z) = 2 − e−z − z around a D shaped contour

consisting of a semi-circle in the right half plane of radius R and centre 0 together with the

segment [iR,−iR] on the imaginary axis.

When z = iy with y ∈ R we have Re f(iy) = 2 − cos(y) ≥ 1 so the direction vector f̂(iy) =

f(iy)/|f(iy)| lies in the right half plane. This means that the winding can be at most π. Since the

direction of f̂ approaches −i when y →∞ and i when y → −∞ we see that the change in argument

when y travels down the imaginary axis is π. On the semicircle part we have f̂(Re−θ)→ −eiθ as

R → ∞. So the semi circle also contributes π. So the total winding is 2π and we conclude that

the number of zeros is 1.

If z is a zero, i.e., 2− ez − z = 0 then if taking the conjugate yields 2− ez − z = 0 so that z

is a solution whenever z is. If z were not real then we would have two distince solutions z and z

contradicting our counting result.

6.7:11

To use the Nyquist crieterion we must determine the change in argument in p(iy) as y goes

from ∞ to −∞. Following the hint we write

p(iy) = (y2 − 2)(y2 − 1) + i(y(1− 2y2).

and find where p hits the axes. This will only occur if Re p(iy) = 0 (at y ∈ {±1,±
√

2}) or

Im p(iy) = 0 (at y ∈ {0,±1/
√

2}). We collect the information about the crossings:
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y Re(p(iy)) Im(p(iy))
A +∞ y4 +O(y3) O(y3)
B

√
2 0

√
2(1− 2 · 2) < 0

C 1 0 1(1− 2) < 0
D 1/

√
2 ((1/2)− 2)(1/2− 2) > 0 0

E 0 2 > 0 0
F −1/

√
2 ((1/2)− 2)(1/2− 2) > 0 0

G −1 0 1(1− 2) < 0
H −

√
2 0

√
2(1− 2 · 2) < 0

I −∞ y4 +O(y3) O(y3)

This can be viewed schematically as:

A

B

C

D E F I

H

G

I haven’t checked to make sure the line is on the right side of the axis e.g., between D and

E because it doesn’t affect the winding. From the picture we see there is no winding along the

imaginary axis. So the total winding is 4π( from the semicircle ) +0. So the number of zeros in

the right half plane is 4π/(2π) = 2.
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