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The proof of Lemma 3.4 relies on the incorrect equality µj(AB) = µj(BA) for singular

values (for a counterexample, see [S], p. 4.) Thus, Theorem 3.1 as stated has not been proven.

However, with minor changes, we can obtain a bound for the counting function in terms of the

growth of the Fourier transform of |V |. The author thanks Barry Simon for pointing out this

error.

Here is the corrected version of Theorem 3.1.

Theorem Suppose that V is a super-exponentially decaying potential with

|̂V | (z) ≤ CeΦ(|z|)

for a positive, increasing function Φ. Then

n(r) ≤ CΦn(cr) +O(Φn−1(cr))

for some constants c and C.

These are the changes needed to prove the bound for |φ(k)| in Lemma 3.4. Using det(1+AB) =

det(1 +BA) and Fan’s inequality µn+m+1(AB) ≤ µn+1(A)µm+1(B) (see [S]) we arrive at

µj(T (k)) ≤ C|k|n−2µ[(j+1)/2](FTV (−k))µ[(j+1)/2](F|V |(−k)) ()

where [·] denotes the integer part. Now

µ[(j+1)/2](F|V |(−k)) =
(
µ[(j+1)/2]Vk)

)1/2
where this time Vk is the integral operator with integral kernel |̂V | (kω − kω′). We then obtain

the bound

µ[(j+1)/2](F|V |(−k)) ≤ Ce(Φ−δ[(j+1)/2](1/(n−1))/2

and the same bound for µ[(j+1)/2](FTV (−k)). This leads to

µj(T (k)) ≤ CeΦ−δ′j1/(n−1)

where Φ = Φ((2 + ε)|k|) for some ε > 0 and δ′ = δ2−1/(n−1). The rest of the proof is identical.

1


