
Local indicability in ordered groups:
braids and elementary amenable groups

Akbar Rhemtulla Dale Rolfsen

September 18, 2002

Abstract

Groups which are locally indicable are also right-orderable, but not conversely.
This paper considers a characterization of local indicability in right-ordered groups,
the key concept being a property of right-ordered groups due to Conrad. Our
methods answer a question regarding the Artin braid groups Bn which are known
to be right-orderable. The subgroups Pn of pure braids enjoy an ordering which is
invariant under multiplication on both sides, and it has been asked whether such
an ordering of Pn could extend to a right-invariant ordering of Bn. We answer
this in the negative. We also give another proof of a recent result of Linnell
that for elementary amenable groups, the concepts of right-orderability and local
indicability coincide.

1 Definitions and statement of results.

A right-ordered group is a pair (G,<), where G is a group, < is a strict total
ordering of the elements of G, and right-invariance holds:

g < h⇒ gk < hk, ∀g, h, k ∈ G.

If the ordering is also left-invariant,

g < h⇒ kg < kh, ∀g, h, k ∈ G,

then we call (G,<) a bi-ordered group (also known in the literature as “totally
ordered” or, simply, “ordered.”)

A group G is said to be locally indicable if for every nontrivial finitely-generated
subgroup H of G there is a nontrivial homomorphism H → Z onto the additive
group of integers.
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Proposition 1.1 Locally indicable groups are right-orderable.

Proof: Burns and Hale in [4] show that a group G is right-orderable if and only if
every finitely generated non-trivial subgroup of G has a non-trivial quotient that
is also right-orderable. See [16] Theorem 7.3.1, or [13] Theorem 3.2.1. Since Z is
right-orderable, the proposition follows.

The converse is not true. Bergman [2] gave an example of a finitely-generated
right-orderable group which is perfect – its abelianization is trivial. Any homo-
morphism of such a group to Z must be trivial, so it is not locally indicable.

The class of elementary amenable groups is the smallest class of groups which
contains all finite groups, all abelian groups and is closed under taking subgroups,
extensions, factor groups and unions of directed systems of such groups. This class
is strictly larger than the class of solvable groups, but properly contained in the
class of all amenable groups. We shall show how the following result, first proved
by Linnell [14] in 1999, follows from previously known results.

Theorem 1.2 If G is an elementary amenable group, then G is locally indicable
if and only if G is right-orderable.

This will be shown in Section 5. A different criterion will be proven first, in
Section 2. It has applications to the theory of Artin’s braid groups. In fact, this
application was the original motivation for the present work.

Theorem 1.3 Suppose (G,<) is a right-ordered group and there is a finite-index
subgroup H of G such that (H,<) is a bi-ordered group. Then G is locally indicable.

Corollary 1.4 If (G,<) is a bi-ordered group, then G is locally indicable.

The braid groups Bn and their finite-index subgroups Pn of pure braids will
be discussed in Section 3, where we will prove the following consequence of 1.3. It
should be noted that Pn is bi-orderable, whereas Bn is only right-orderable (for
n ≥ 3).

Corollary 1.5 If n ≥ 5 and < is a right-invariant ordering on Bn, then (Pn, <)
cannot be a bi-ordered group. The same is true for any finite-index subgroup in
place of Pn.
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2 Conrad-type orderings

Right-orderable groups are also left-orderable, but by a different ordering (compare
inverses). There are many groups which are right-orderable, but not bi-orderable,
a simple example being the Klein bottle group with two generators x and y and the
relation yxy−1 = x−1. The reader is referred to [16] or [13] for further information
on ordered groups.

The theory of ordered groups is well over a century old. Indeed, we will make
use of a 1902 result of Hölder, as generalized by Conrad [7], regarding the structure
of ordered groups. An ordering < of a group G is said to be Archimedian if for
every x and y in G with e < x < y, there exists a positive integer N such that
y < xN .

Theorem 2.1 [Hölder] If (G,<) is an Archimedian ordered group, then there is
an order-preserving algebraic isomorphism of G with a subgroup of the additive real
numbers. In particular, G is abelian.

We remark that Hölder’s theorem also holds for right-orderable groups, as
shown by Conrad. More generally, Conrad investigated the structure of arbi-
trary right-ordered groups, and defined a useful concept which lies between right-
invariance and bi-invariance.

A right-ordered group (G,<) is said to be of Conrad type if for all a, b ∈ G,
with e < a, e < b there exists a positive integer N such that a < aNb. The following
criterion is perhaps more natural. We use the notation x << y to mean xN < y
for all integers N .

Lemma 2.2 In a right-ordered group (G,<) the ordering is of Conrad type if and
only if for all x, y ∈ G,

e < x << y ⇒ y−1 < x−1.

Proof: The proof is completely routine, using the substitutions a = x and b =
y−1x, and left to the reader.

Lemma 2.3 A bi-ordered group is of Conrad type.

Proof: In a bi-ordered group we use left- and then right-invariance to see

g < h⇔ h−1 < g−1.

In fact, this is a necessary and sufficient condition for a right-ordered group to be
bi-ordered.
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Theorem 2.4 Let (G,<) be a right-ordered group and suppose H is a subgroup of
G of finite index. If (H,<) is of Conrad type, then so is (G,<).

Proof: Assume the hypothesis, but that (G,<) is not of Conrad type. Then there
exist a, b ∈ G with e < a and e < b and aNb < a for all positive N . First note that
a > b, for a > e implies ab > b and therefore a > ab > b. Next note that a > aNb
implies a > ab > aNb2, and a simple induction shows a > aNbM for all integers
N ≥ 0,M ≥ 1. Since H is of finite index, there is a positive integer K such that
aK and bK belong to H. But then we have (aK)NbK < a < aK , which contradicts
the assumption that the ordering has Conrad type on H.

In Section 6 we will see that the hypothesis of finite index can be weakened
considerably in the theorem above.

Proposition 2.5 Assume (G,<) is a right-ordered group which is NOT of Conrad
type and that a, b ∈ G violate the Conrad condition, i. e. they satisfy e < a, e < b
and a > aNb for all positive integers N . Then we have va > wb for any words v, w
in the semigroup S generated by a and b.

Proof: Since v > e implies va > a, it suffices to show that a > wb. If w =
aNbM , N,M ≥ 0 this follows as in the proof of the previous theorem. Otherwise,
write w = aNbMw′ where w′ ∈ S,N ≥ 0,M ≥ 1. Then a > aNbM implies aw′b >
wb and we may assume inductively (on the total exponent of b) that a > aw′b.
Thus a > wb.

Corollary 2.6 A right-orderable group which is not of Conrad type must contain
a free sub-semigroup with two generators.

Proof: Consider the semigroup S of the proposition, generated by a and b. It
must be free: consider two nonempty words in a, b with only positive exponents.
Since we are in a group, we may assume one word ends in a while the other ends
in b. The proposition shows they cannot be equal.

Suppose (G,<) is a right-ordered group. A subgroup H of G is said to be
convex if h < g < h′, h, h′ ∈ H implies g ∈ H. The set of all convex subgroups
of G is ordered by inclusion, and closed under arbitrary unions and intersections.
Suppose C ′ and C are distinct convex subgroups of G such that C ′ ⊂ C, and the
only convex subgroups H of G satisfying C ′ ⊂ H ⊂ C are H = C and H = C ′.
Then the pair (C ′, C) is called a convex jump.
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Theorem 2.7 [Conrad] Suppose (G,<) is a right-ordered group of Conrad type,
and that (C ′, C) is a convex jump in G. Then C ′ is normal in C and C/C ′ is
isomorphic (in both the algebraic and order sense) with a subgroup of the additive
real numbers.

Corollary 2.8 If G is finitely generated and Conrad right-ordered, then there is
a homomorphism of G onto a nontrivial direct product of infinite cyclic groups.

Proof: Let Γ be a generating set for G, which we may assume to be minimal (i.
e. not redundant) and to consist of positive elements. Let g ∈ Γ be the greatest
element, relative to the given ordering of G. Let C ′ be the union of all the convex
subgroups of G which do not contain g. It is easily verified that (C ′, G) is a convex
jump in G. By Theorem 2.7, G/C ′ is isomorphic with a subgroup of the real
numbers, so in particular it is a nontrivial finitely-generated torsion-free abelian
group. By the fundamental theorem of abelian groups, the projection G → G/C ′

satisfies the conclusion.

Theorem 2.9 If (G,<) is a right-ordered group of Conrad type, then G is locally
indicable.

Proof: Let H be a finitely generated subgroup of G. Considering H itself as a
Conrad right-ordered group, there is, by the above corollary, a nontrivial homo-
morphism H → Zn and therefore, after an appropriate composition, a surjection
H → Z.

The converse of this result will be discussed in Section 4.

3 Application to Artin’s braid groups

We recall that the full Artin braid group B∞ has generators σ1, σ2, . . . and relations

σiσj = σjσi, |i− j| > 1, σiσi+1σi = σi+1σiσi+1.

The n-string braid group Bn, n > 1 can be considered the subgroup generated by
σ1, . . . , σn−1. If one adjoins the relations σi2 = 1, this defines a mapping of Bn

onto the symmetric group Σn. Its kernel is the pure braid group Pn. Clearly Pn is
a normal subgroup of Bn of index n! The following is well-known.
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Theorem 3.1 For all n ≥ 5, the braid groups Bn are not locally indicable.

Proof: According to Gorin and Lin [11], for n ≥ 5, the commutator subgroup
[Bn, Bn] is finitely-generated and perfect. Any homomorphism of [Bn, Bn] to an
abelian group must be trivial, so Bn is not locally indicable.

We now turn to the proof of Corollary 1.5. It will follow immediately, noting
Lemma 2.3, from the following stronger result.

Theorem 3.2 Let n ≥ 5, and suppose < is an ordering such that (Bn, <) is a
right-ordered group. Then the ordering restricted to any finite index subgroup of
Bn is not of Conrad type.

Proof: According to 3.1 and 2.9, the ordering of Bn cannot be of Conrad type.
Then apply 2.4.

We close this section with a discussion of which braid groups can have a Conrad
type right-ordering. If n ≥ 5, we have seen already that there is no possibility of
givinging Bn a Conrad ordering.

Proposition 3.3 The Dehornoy ordering on Bn, n ≥ 3 is not of Conrad type.

Proof: First, we must describe Dehornoy’s ordering: it suffices to declare when
a braid β is positive, i. e. e < β. The criterion is that β is positive iff there is
an expression in the generators σi such that the generator with lowest subscript
appears with only positive exponent. Now we let α = σ1 and β = σ1σ

−1
2 , clearly

both Dehornoy-positive. Then repeated use of the identity σ1σ
−1
2 σ−1

1 = σ−1
2 σ−1

1 σ2

shows that
αNβα−1 = σN+1

1 σ−1
2 σ−1

1 = σ−1
2 σ−1

1 σN+1
2 .

Since its inverse is positive, we have αNβα−1 < e and therefore αNβ < α for all
N , in Dehornoy’s ordering, showing that it is not of Conrad type.

Theorem 3.4 B3 and B4 can be given right-orderings of Conrad type, and are
therefore locally indicable.

The following simple lemma says that the category of Conrad-right-orderable
groups is closed under extensions. The Conrad property is clearly also inherited
by subgroups, and preserved under directed unions.
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Lemma 3.5 Suppose 1 → A → B → C → 1 is an exact sequence of groups,
with A and C having right-orderings of Conrad type. Define an ordering on B, by
b1 < b2 if their respective images c1, c2 satisfy c1 < c2 in C, or else c = c′ and
e < b2b

−1
1 ∈ A. Then this is a right ordering of B of Conrad type.

The proof is routine, and left to the reader.
Proof of 3.4: The map B3 → Z which takes a braid to its exponent sum when

expressed as a word in the σi, can be identified with the abelianization map. The
commutator subgroup is a free group F2 of rank two. One way to see this is to
recall that B3 is isomorphic with the fundamental group of the complement of the
trefoil knot, which is known to fibre over a circle, with fibre a punctured torus; see
for example [18], page 327. It follows that we have an exact sequence

1→ F2 → B3 → Z → 1.

Since F2 and Z are bi-orderable, they certainly have Conrad right-orderings, which
by the lemma induces one on B3.

Now to consider B4 we employ a bootstrap trick. There is a homomorphism
B4 → B3 defined by

σ1 → σ1, σ2 → σ2, σ3 → σ1.

Its kernel K, the normal closure of σ1σ
−1
3 , is contained in the commutator subgroup

of B4. According to Gorin and Lin, this commutator subgroup is a semidirect
product of two copies of F2. By the lemma, this is Conrad right-orderable, and
therefore so is K. Noting the following exact sequence:

1→ K → B4 → B3 → 1.

another application of the lemma shows that B4 is Conrad right-orderable, com-
pleting the proof.

4 Characterizing local indicability

We have already seen that if a group has a right-ordering of Conrad type, then it
is locally indicable. The converse is also true. A different arguement appears in
[10]. We offer a version which follows as a corollary of Theorem 3 of Brodskii in
[3]

Theorem 4.1 A group is locally indicable if and only if it admits a right ordering
of Conrad type.
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Proof: By Theorem 3 of [3], for any quasivariety V, the class of locally V indicable
groups coincides with the class of groups having a normal system with factors in
the class V. Now, taking V to be the quasivariety of all torsion-free Abelian groups,
we see that the class of locally indicable groups coincides with the class of groups
having a normal system with torsion-free Abelian factors.

We recall the definition of a normal system. A chain of subgroups Σ of a group
G is a normal system with factors in V if (i){e} ∈ Σ, (ii)G ∈ Σ, (iii)Σ contains all
unions and intersections of its members (Σ is complete) and (iv) if H ∈ Σ has an
immediate successor K ∈ Σ in the natural ordering of Σ then H/K and K/H ∈ V.

For any element x 6= 1 in G, let ∨x be the union of all members of Σ not
containing x and let ∧x be the intersection of all members of Σ containing x. Then
∨x,∧x are members of Σ by (iii), ∨x / ∧x ∈ Σ and ∧x/∨x ∈ V by (iv). The pair
(∨x,∧x) is called a jump in Σ

A group G having a normal system Σ with torsion-free Abelian factors may be
given a right ordering of Conrad type as follows. For each jump (∨,∧) in Σ totally
order the torsion free abelian group ∧/∨. For an element 1 6= x ∈ G, put x in the
positive cone P of G if x∨x is positive in ∧x/∨x. The set P has the properties:
P ∩ P−1 = Φ, PP ⊆ P , and P ∪ P−1 = G \ {e}. That P is the positive cone of a
Conrad order follows from the fact every two sided order is a Conrad right order.
Observe that under this order on G every member of Σ is a convex subgroup, but
Σ need not coincide with the set of all convex subgroups.

5 Elementary amenable groups

In this section we prove Theorem 1.2, that any elementary amenable right orderable
group is locally indicable. We note that Linnell [14] has proved this result by
different means. Let NFS denote the class of groups G that do NOT contain a
free sub-semigroup with two generators. According to Corollary 2.6, every right-
ordering of a group in NFS must be of Conrad type. The following result of
Longobardi, Maj and Rhemtulla [15] is the key to our argument.

Theorem 5.1 Suppose the right-ordered group G is the union of an ascending
well-ordered family of subgroups {Hα} with the property that for each α, the quo-
tient Hα+1/Hα belongs to NFS. Then G is locally indicable.

Recall that Σ = {Hα; α ∈ A} is an ascending series of G with factors in V if
{e}, G ∈ Σ, A is a well ordered set, for all α, β ∈ A, α < β ⇒ Hα < Hβ , Hα/Hα+1,
and Hα+1/Hα ∈ V.
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Lemma 5.2 A group G is elementary amenable if and only if G is the union of
an ascending well-ordered family of subgroups {Hα} with the property that for each
α, the quotient Hα+1/Hα is abelian-by-finite.

Proof: Recall that the class elementary amenable groups is the smallest class of
groups which contains all abelian-by-finite groups, is closed under group exten-
sions and is closed under directed unions. Proof of this lemma is due to Chou
(Proposition 2.2, [6]), and it is also given in [20].

Lemma 5.3 Every group which is abelian-by-finite belongs to NFS.

Proof: Let H be a group with abelian normal subgroup N , and H/N finite.
If g, h ∈ H, then for some positive integer k we have gk, hk ∈ N , and hence
gkhk = hkgk, so that the subsemigroup generated by g and h is not free. Therefore
H ∈ NFS.

Corollary 5.4 For elementary amenable groups, right-orderability is equivalent to
local indicability.

6 Subgroups

We finish with a generalization of Theorem 2.4.
Let X be a class of groups that is subgroup and quotient closed and with the

property that if G ∈ Abelian-by-X and G is right-orderable, then G is locally
indicable.

Examples of such classes are X = the class of all finite groups and X = the
class of solvable groups [5]. Another example is the class X of groups G which
have an ascending series of normal subgroups {Gα} such that Gα+1/Gα ∈ NFS
(see [15]).

Theorem 6.1 Suppose G is right-orderable, N is a normal subgroup of G and
G/N ∈ X . Then either G is locally indicable, or for every right order < on G, the
restriction of < to N is NOT of Conrad type.

Proof: Suppose that G is not locally indicable and ≤ is a right order on G such
that its restriction (N,≤) to the subgroup N is of Conrad type. Let G1 be a
finitely generated subgroup of G such that G1/G1

′ is finite. Such a subgroup G1

exists since G is not locally indicable.
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Now G1/(N ∩ G1) ∼= NG1/N is a subgroup of G/N so it is an X group.
Moreover the order ≤ on G1 is not of Conrad type since G1/G1

′ is finite, but its
restriction to N ∩ G1 is a Conrad right order. Thus pass to G1 if necessary and
assume that G is finitely generated and G/G′ is finite.

If N is bounded above or below under ≤ (we say N is bounded above if there
exists some element x in G such that n ≤ x, ∀n ∈ N), then by Lemma 4 of [15],
there is a proper normal relatively convex subgroup C of G where C ≥ N . Then
G/C is a right orderable X group and hence locally indicable by hypothesis. Thus
G/C has a torsion-free Abelian quotient and G/G′C is not finite, a contradiction.

Thus assume N is not bounded. By this we mean that for any elements x ≤ y
in G, there exist n,m ∈ N such that n ≤ x ≤ y ≤ m.

Now let {Cλ, λ ∈ Λ} be the set of all proper convex subgroups of N under
≤. For each Cλ, let Hλ be the intersection of all convex subgroups of (G,≤) that
contain Cλ. Note that Hλ is convex since intersection of an arbitrary set of convex
subgroups is convex. Indeed Hλ is the smallest convex subgroup of (G,≤) such
that Hλ ∩N = Cλ.

Next consider the set {Hλ, λ ∈ Λ}. Let H = ∪λ∈ΛHλ. Then H 6= G since G is
finitely generated, each Hλ is a proper subgroup of G and the set {Hλ, λ ∈ Λ} is
linearly ordered.

Let C = H ∩N . Then C is a proper convex subgroup of N , C ≥ Cλ, λ ∈ Λ.
So (C,N) is a jump.

We now show that C is normal in G. Since (N,≤) is of Conrad type by as-
sumption, it follows from Theorem 2.7 that C/N and N/C is torsion-free Abelian.
Thus for every a ∈ N\C, e ≤ a, the set {an;n ∈ Z} is unbounded in N and we have
shown that N is unbounded in G. Hence g−1ag > e for every g ∈ G ([15], Lemma
3). If g−1ag ∈ C, then (g−1ag)n ≤ a ∀n ≥ 1. Hence bn = ag−1a−ng ≥ e and
bn ∈ N\C and so the subgroup generated by bn is unbounded. Hence gbng−1 ≥ e.

From e ≤ gbng
−1 = g(ag−1a−ng)g−1 = gag−1a−n we get an ≤ gag−1,∀n ≥ 1.

But this contradicts the statement that the set {an;n ∈ Z} is unbounded. Thus
the set N\C is normal in G and hence C / G.

C is bounded above in G since it is bounded above in N . So, by ([15], Lemma
4), there is a proper normal relatively convex subgroup K of G containing C.
So G/K is a right orderable group and it is an Abelian-by-X group so that, by
hypothesis, it is locally indicable. Since it is finitely generated, it has a torsion-free
Abelian quotient.

For an application of Theorem 6.1 we return to braid groups Bn, n ≥ 5. The
subgroups Pn of pure braids are known to be orderable. Even more, they are
known to be residually torsion-free nilpotent [19]; and as such, their descending
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central series Γi(Pn), i = 1, 2, . . . intersect in the unit group {1}. The subgroups
Γi(Pn) are defined inductively by Γ1(Pn) = Pn, and Γi+1(Pn) = [Γi(Pn), Pn]. As a
consequence of the above theorem, we can say that for any right order on Bn, its
restriction to Γi(Pn) is not of Conrad type for all values of i. A similar statement
holds with the terms of the descending central series replaced by the terms of the
derived series of Pn.
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[1] Emil Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925),
47–72.

[2] George Bergman, Right-orderable groups that are not locally indicable, Pacific
J. Math. 147 (1991), 243–248.

[3] S. D. Brodskii, Equations over groups, and groups with one defining relation,
Sibirski Matematicheskii Zhurnal 25(1984), 84–103.

[4] R. G. Burns and V. W. Hale, A note on group rings of certain torsion-free
groups, Canad. Math. Bull., 15 (1972), 441–445.

[5] I. M. Chiswell and P. H. Kropholler, Soluble right orderable groups are locally
indicable,Canad. Math. Bull., 36 (1993), 22–29.

[6] Ching Chou, Elementary amenable groups, Illinois J. Math., 24 (1980), 396–
407.

[7] P. F. Conrad, Right-Ordered Groups, Michigan Math. J., 6 (1959), 267–275.

[8] Patrick Dehornoy, From large cardinals to braids via distributive algebra, J.
Knot Theory Ramifications 4 (1995), no. 1, 33–79.

[9] Roger Fenn, Michael Greene, Dale Rolfsen, Colin Rourke, and Bert Wiest,
Ordering the braid groups, To appear, Pacific J. Math., 1998.

[10] A. M. W. Glass, Partially Ordered groups, Series in Algebra, vol. 7, World
Scientific,London, 1999.

[11] E. A. Gorin and V. Ya. Lin, Algebraic equations with continuous coefficients
and some problems of the algebraic theory of braids, Math. USSR Sbornik 7
(1969), 569–596.

[12] Djun M. Kim and Dale Rolfsen, Ordering groups of pure braids and hyperplane
arrangements, prepint.

[13] Valerǐi M. Kopitov and Nikolǎi Ya. Medvedev, Right-Ordered Groups, Plenum
Publishing Corporation, New York, 1996.

11



[14] Peter A. Linnell, Left ordered amenable and locally indicable groups, J. London
Math. Soc. 60(1999), 133–142.

[15] Patrizia Longobardi, Mercede Maj and Akbar Rhemtulla, When is a right-
orderable group locally indicable, preprint.

[16] Roberta Mura and Akbar Rhemtulla, Orderable groups, Lecture Notes in Pure
and Applied Mathematics, vol. 27, Marcel Dekker, New York, 1977.

[17] L. P. Neuwirth, The status of some problems related to knot groups, Topology
Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973),
Springer, Berlin, 1974, pp. 209–230. Lecture Notes in Math., Vol. 375.

[18] Dale Rolfsen, Knots and Links, Publish or Perish, Inc., Houston, 1990.

[19] Dale Rolfsen and Jun Zhu, Braids, orderings and zero divisors, J. Knot Theory
and Ramifications, 7 (1998), 837–841.

[20] S. Wagon, The Banach–Tarski paradox, Cambridge University Press, 1993.

12


