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Abstract

We establish a necessary condition that an automorphism of a nontrivial finitely gener-
ated bi-orderable group can preserve a bi-ordering: at least one of its eigenvalues, suitably
defined, must be real and positive. Applications are given to knot theory, spaces which fibre
over the circle and to the Heegaard–Floer homology of surgery manifolds. In particular, we
show that if a nontrivial fibred knot has bi-orderable knot group, then its Alexander polyno-
mial has a positive real root. This implies that many specific knot groups are not bi-orderable.
We also show that if the group of a nontrivial knot is bi-orderable, surgery on the knot cannot
produce an L-space, as defined by Ozsváth and Szabó.

1. Introduction

Orderable groups have recently found interesting applications in topology, for example
in the study of foliations and similar structures on 3-dimensional manifolds [3, 4, 25], the
existence of mappings of nonzero degree [2, 27], in the theory of braids [5, 6], knot theory
[13, 16] and dynamics [8, 18]. There is also evidence that Heegaard–Floer homology is
connected with orderability of the fundamental group of a closed 3-manifold [20, 24, 28]. In
this paper we provide further evidence.

It is known that all knot groups are left-orderable [2, 12] and that some knot groups enjoy
orderings which are invariant under multiplication on both sides. In [22] it was shown that
if a fibred knot’s Alexander polynomial has all roots real and positive, then the knot group
will be bi-orderable. One of the main results of the present article is a partial converse:

THEOREM 1·1. Suppose that K is a nontrivial fibred knot in S3 and π1(S3 \ K ) is bi-
orderable. Then the Alexander polynomial �K (t) must have at least one root (actually two)
which is real and positive.

That criterion establishes that many fibred knots’ groups cannot be bi-ordered. See the
last section of this paper for examples. A consequence of this pertains to Heegaard–Floer
homology. Ozsváth and Szabó [21] define an L-space to be a closed 3-manifold M such that
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H1(M; Q) = 0 and its Heegaard–Floer homology Ĥ F(M) is a free abelian group of rank
equal to |H1(M; Z)|. Lens spaces, and more generally 3-manifolds with finite fundamental
group are examples of L-spaces. We are able to use their results and a theorem of Ni [19] to
show the following.

THEOREM 1·2. Suppose K is a nontrivial knot in S3 and the knot group π1(S3 \ K ) is
bi-orderable. Then surgery on K cannot produce an L-space.

We also derive restrictions on fibred knots for which surgery produces a manifold with
bi-orderable fundamental group.

THEOREM 1·3. Suppose K is a nontrivial fibred knot in S3 and nontrivial surgery on K
produces a 3-manifold M whose fundamental group is bi-orderable. Then the surgery must
be longitudinal (that is, zero-framed) and �K (t) must have a positive real root. Moreover,
M fibres over S1.

These are applications of the following, which is our main theorem.

THEOREM 1·4. Suppose an automorphism of a nontrivial finitely generated bi-orderable
group G preserves a bi-ordering. Then its induced automorphism on the rational vector
space H1(G; Q) must have at least one positive real eigenvalue.

The paper is organized as follows. Section 2 gives the definitions of orderable groups and
their properties that we will need in the sequel. In section 3 we discuss eigenvalues and prove
the main theorem. Applications to knot theory and fibred spaces are discussed in section 4,
and in section 5 we give an application to Dehn surgery. Section 6 proves Theorem 1·2,
stated in equivalent form as Theorem 6·1. In the final section we list prime knots of 12 or
fewer crossings whose groups are known to be bi-orderable (there are just twelve) as well as
the 487 fibred knots whose groups are known not to be bi-orderable according to our criteria.

2. Orderable groups

A group G is left-orderable if there is a strict total ordering < of its elements which is
invariant under multiplication on the left: g < h implies f g < f h for f, g, h ∈ G. It is easy
to see that a group is left-orderable if and only if it is right-orderable, by a possibly different
ordering. An ordering of G which is invariant under multiplication on both sides will be
called a bi-ordering; if such an ordering exists we say that G is bi-orderable. Traditionally in
the literature, such groups are called, simply, “orderable,” but we will use “bi-ordering” and
“bi-orderable” to emphasize the two-sided invariance. A mapping φ : G → G ′ of ordered
groups (G, <) and (G ′, <′) is order-preserving if g < h implies φ( f ) <′ φ(g). A subset S
of a left- or bi-ordered group (G, <) is convex if s1 < g < s2 and s1, s2 ∈ S, g ∈ G imply
that g ∈ S. If C is a convex normal subgroup of G, an ordering of G induces an ordering of
G/C by comparing representatives of cosets. This is well-defined and left- or bi-invariant
if the ordering of G is left- or bi-invariant. Moreover, if φ : G → G is an automorphism
which preserves an order < of G and φ(C) = C for the convex normal subgroup C , then
the induced map φC : G/C → G/C preserves the induced order of G/C .

Given a left-ordering < on G, the positive cone of the left-ordering < is defined to be the
set P = {g ∈ G|g > 1}. It satisfies (1) P is closed under multiplication and (2) for every
element g � 1 of G, exactly one of g or g−1 belongs to P . Conversely, given a subset P
satisfying (1) and (2), a left-ordering of G can be defined by declaring g < h if and only if
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g−1h ∈ P . A bi-ordering is characterized by having a positive cone satisfying (1), (2) and
(3) g−1 Pg ⊂ P for every g ∈ G.

An ordering < of a group G is Archimedian if the powers of each of its nonidentity
elements are cofinal in the ordering: if g � 1 and h ∈ G, there exists n ∈ Z so that
g−n < h < gn . Following is one of the early and basic theorems in orderable group theory
[11] (see e.g. [17] for a proof in English).

THEOREM 2·1 (Hölder [11]). If G is a group with an Archimedian bi-ordering <, then
there is an injective homomorphism of G into the additive real numbers R which also pre-
serves orderings (with the natural order on R). In particular, G is abelian.

Left-orderable groups are torsion-free, but not conversely, and have good algebraic prop-
erties. For example, if G is left-orderable, then its group ring ZG has no zero divisors – a
property conjectured to be true for all torsion-free groups. For abelian groups, being left-
orderable is of course equivalent to being bi-orderable, which is also equivalent to being
torsion-free.

Example 2·2. Consider the group G = Qn , for which we will use additive notation.
Choose real numbers α1, . . . , αn ∈ R which are linearly independent when considering
the real numbers R as a vector space over the rationals Q. Then there is an embedding φ of
G into R by the formula:

φ(x1, . . . , xn) = x1α1 + · · · + xnαn.

Define an ordering < of G by declaring g < h if and only if φ(g) < φ(h) in R. Since the
natural ordering of R is Archimedian, this defines an Archimedian bi-ordering of Qn . In fact,
by Hölder’s theorem, all Archimedian bi-orderings of Qn are of this form. The positive cone
of this ordering may be regarded geometrically as all points of Qn which are on one side of
the hyperplane in Rn defined by the normal vector (α1, . . . , αn). The only convex subgroups
relative to this ordering are {0} and Qn . Also note that φ is continuous, relative to the usual
topologies of Qn and R.

By contrast, we can define a non-Archimedian bi-ordering ≺ of Qn using the usual order-
ing of Q and ordering vectors lexicographically:

(x1, . . . , xn) ≺ (y1, . . . , yn)

if for some j we have xi = yi for i < j and x j < y j . Relative to this ordering there are n +1
distinct convex subgroups C j , j = 0, . . . , n. Here C0 is the trivial subgroup, Cn = Qn and
for 0 < j < n, C j is defined by the equation x1 = · · · = xn− j = 0 and has dimension j .

An easy argument shows that under any bi-ordering of Qn , a convex subgroup must actu-
ally be a vector subspace.

Orderability of groups is obviously inherited by subgroups, but not necessarily by quo-
tients (unless the kernel is convex in some ordering). The following are standard facts in
ordered group theory, but we include proofs for the reader’s convenience.

LEMMA 2·3. Suppose H is a normal subgroup of G and both H and G/H are left-
orderable. Then G is left-orderable. If both H and G/H are bi-orderable, then G is bi-
orderable if and only if some bi-ordering of H is preserved under conjugation by all ele-
ments of G.
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Proof. Define a positive cone P for G to be the union of the positive cone of H and
the preimage of the positive cone of G/H under the projection. It is routine to check that P
satisfies the conditions (1) and (2) above (and (3) in the bi-ordered case). If G is bi-orderable,
then the ordering restricted to H is clearly preserved by conjugation.

Note that in this proof, H is convex in the ordering constructed for G.

LEMMA 2·4. If G is a finitely-generated nontrivial bi-orderable group, then for any given
bi-ordering < there exists a unique maximal convex subgroup C of G satisfying C � G.
Moreover, C is normal in G and G/C is abelian. If an automorphism φ : G → G preserves
< then φ(C) = C.

Proof. Let g1, . . . , gk be a generating set for G, with k minimal. We assume without loss
of generality that for a given bi-ordering < we have 1 < g1 < · · · < gk . Let C be the union
of all convex subgroups of G which do not contain gk . Any union of convex subgroups is a
convex subgroup, so C is a convex subgroup and not equal to G, since it does not contain
gk . Clearly any strictly larger convex subgroup will equal G. Since, for any two convex
subgroups, one must contain the other, uniqueness of C is clear. If φ preserves <, then φ(C)

is also a maximal proper subgroup, so φ(C) = C. In particular this applies to conjugation,
so C is normal. The induced bi-ordering of G/C is Archimedian (otherwise one would have
a larger proper convex subgroup) so by Hölder’s theorem G/C is abelian.

We will need to consider the tensor product of an abelian group A with the rational num-
bers Q (considered as modules over Z) and extend a bi-ordering of A to a bi-ordering of
A ⊗ Q. Using additive notation, if we are given a bi-ordering < of A, and an element
a1 ⊗ (p1/q1)+· · ·+an ⊗ (pn/qn) of A⊗Q, we declare it to be in the positive cone of A⊗Q

if and only if

p1(q/q1)a1 + · · · + pn(q/qn)an > 0

in A, where q = |q1 · · · qn|, so that the coefficients are integers. The following is easily
checked.

LEMMA 2·5. Considering the abelian group A as a subgroup of A ⊗ Q via a → a ⊗ 1,
any bi-ordering < of A extends to a bi-ordering of A ⊗ Q by the recipe described above.
If φ : A → A is an automorphism which preserves <, then φ ⊗ id : A ⊗ Q → A ⊗ Q

preserves the extended ordering.

3. Eigenvalues

Let G be a finitely-generated group and φ : G → G an automorphism, or more generally,
an endomorphism. Consider the commutator subgroup G ′ of G, and the induced automorph-
ism φ∗ of the abelianized group G/G ′. Tensoring with the rationals we obtain a linear map
of finite-dimensional vector spaces over Q:

φ∗ ⊗ id : G/G ′ ⊗ Q −→ G/G ′ ⊗ Q.

The eigenvalues of φ are defined to be the the eigenvalues of this linear map, that is the roots
of its characteristic polynomial χφ∗⊗id(λ) = det(M −λI ), where M is a matrix representing
φ∗ ⊗ id. Note that, by the universal coefficient theorem, G/G ′ ⊗ Q � H1(G, Q) and the
automorphism φ∗ ⊗ id is just the map induced by φ on rational homology.



Ordered groups, eigenvalues, knots, surgery and L-spaces 5

Eigenvalues of automorphisms were considered in [15], where the following was proved.
Our main theorem will be a similar result for nonabelian groups.

PROPOSITION 3·1. Let A be a torsion-free abelian group of finite rank and let θ be an
automorphism of A. Then θ preserves a bi-ordering if and only if for each eigenvalue of θ ,
at least one of its Galois conjugates is a positive real number.

That paper also contains examples of free group automorphisms which show that one
cannot determine whether an automorphism of a finitely generated free group preserves a
bi-ordering by looking at its action on the abelianization of the free group. In particular, we
can construct two automorphisms of a free group, both of which have eigenvalues exactly
the n-th roots of unity, for a given n � 2. However, one of the automorphisms preserves a
bi-ordering, while the other, which is periodic of period n, cannot preserve a bi-ordering.

The first automorphism is constructed by considering the free group F on two generators
x, y, and the kernel R of the map x 	→ g, y 	→ 1 onto the cyclic group G = 〈g|gn = 1〉. The
free group F acts by conjugation on R, which gives the abelianization R/R′ the structure of
a ZG-module that is isomorphic to Z ⊕ ZG by [9, proposition 5·10]. We can then take the
automorphism θ to be the automorphism of R defined by r 	→ xr x−1, which descends to
an automorphism of order n on the abelianization R/R′ and so has eigenvalues exactly the
n-th roots of unity. The automorphism θ will preserve every bi-ordering of R that arises as
the restriction of a bi-ordering of the group F , since conjugation by x preserves every such
bi-ordering.

On the other hand, any non-identity automorphism θ of order n of a free group has as
eigenvalues the nth roots of unity. However, it does not preserve any bi-ordering of the free
group. For if θ were to preserve some bi-ordering, then we could choose x � 1 and suppose
that x < θ(x), which yields x < θ(x) < θ2(x), and in general x < θn(x), a contradiction.

In contrast, we will see that if an automorphism has no positive real eigenvalues it cannot
preserve a bi-ordering. For the reader’s convenience, we offer a special case of Proposition
3·1 sufficient for our purposes, and a different, topological, proof.

PROPOSITION 3·2. Consider the rational vector space Qn, where n is a positive integer,
and let M : Qn → Qn be an automorphism represented by the nonsingular matrix M. If M
preserves a bi-order of Qn, considered as an additive abelian group, then M has a positive
real eigenvalue.

Proof. The case n = 1 is rather trivial, so we assume n � 2. With the natural inclusion
Qn ⊂ Rn , M also represents an automorphism of Rn . Let H ⊂ Rn be the set of all x ∈ Rn

such that every neighbourhood of x contains points which are positive and points which
are negative in the given bi-order of Qn . By Lemma 3·3 below, H is a subspace of Rn of
dimension n−1, and its complement is the union of two disjoint open sets U+ and U−, which
intersect Qn in points which are, respectively, positive and negative in the given ordering.
Also, H is invariant under the action of M .

H intersects the unit sphere Sn−1 of Rn in an (n−2)-sphere, which separates Sn−1 into two
open disks of dimension n − 1, one of which lies in U− and the other in U+. Let D+ denote
the closure of the latter disk. Now M induces a continuous function M̂ : Sn−1 → Sn−1 by
the formula

M̂(x) = M(x)/|M(x)|.



6 ADAM CLAY AND DALE ROLFSEN

As M preserves the given ordering of Qn it also sends the closure of U+ to itself, and there-
fore M̂ maps D+ to itself. By a well-known theorem of Brouwer, M̂ has a fixed point in D+,
which corresponds to an eigenvector of M with positive eigenvalue.

LEMMA 3·3. As defined above, H is a subspace of dimension n − 1.

Proof. Let Qn
+ and Qn

− denote the points of Qn which are greater (resp. less) than 0 in the
given bi-ordering of Qn . Then

H = {x ∈ Rn | ∀ε > 0, ∃x+ ∈ Qn
+, x− ∈ Qn

− wi th |x − x+| < ε and |x − x−| < ε}.
We first check that H is a linear subspace:

(i) x, y ∈ H ⇒ x + y ∈ H : let ε > 0 be given and choose x+ and y+ in Qn
+ so that

|x − x+| < ε/2 and |y − y+| < ε/2. Then x+ + y+ ∈ Qn
+ and

|(x + y) − (x+ + y+)| � |x − x+| + |y − y+| < ε.

Similarly, the ε neighbourhood of x + y contains points of Qn
−.

(ii) x ∈ H ⇒ −x ∈ H : this is left to the reader.
(iii) x ∈ H, α ∈ R ⇒ αx ∈ H : by the above, we may assume α > 0. Given ε > 0, choose
x+ ∈ Qn

+ so that |x − x+| < ε/2α. Then choose r ∈ Q so that |α − r | < ε/2|x+| and r > 0.
Then r x+ belongs to Qn

+ and

|αx − r x+| � |αx − αx+| + |αx+ − r x+| < ε/2 + ε/2 = ε.

Similarly for points of Qn
−.

We’ve established that H is a linear subspace of Rn; it remains to establish its dimension.
The complement of H is the union of two disjoint open sets: the set U+ of all x ∈ Rn such
that some neighbourhood of x intersects Qn only in points of Qn

+, and U− defined similarly,
for points of Qn

−. We must verify that, in fact, U+ and U− are nonempty. To that end, referring
to Lemma 2·4 and Example 2·2, consider the maximal proper convex subgroup C ⊂ Qn ,
which is a subspace, the projection π : Qn → Qn/C and the embedding φ : Qn/C → R

given by Hölder’s theorem. Both maps are continuous, and (φπ)−1(0, ∞) is a nonempty
open subset of U+. Similarly, U− is nonempty. Since H separates Rn into two components,
its dimension must be n − 1.

We can now prove the main result of this paper.

THEOREM 3·4. Suppose G is a nontrivial finitely generated bi-orderable group and that
φ : G → G preserves a bi-ordering of G. Then φ has a positive eigenvalue.

Proof. If we knew that the commutator subgroup G ′ were convex in the ordering, then
we would be done, as we would have an induced bi-ordering of G/G ′ preserved by φ∗ :
G/G ′ → G/G ′, and Proposition 3·2 would apply to φ∗ ⊗ id : G/G ′ ⊗Q → G/G ′ ⊗Q. But
unfortunately G ′ need not be convex, so we use a somewhat different approach. Applying
Lemma 2·4, let C be the maximal proper convex subgroup of G, with respect to the bi-
ordering < preserved by φ. Since the quotient G/C is abelian, G ′ is contained in C and we
have a short exact sequence

0 −→ C/G ′ −→ G/G ′ −→ G/C −→ 0
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of abelian groups. Moreover since φ(C) = C , we have induced maps

0 −−−−→ C/G ′ −−−−→ G/G ′ −−−−→ G/C −−−−→ 0⏐⏐� φ∗

⏐⏐� φC

⏐⏐�
0 −−−−→ C/G ′ −−−−→ G/G ′ −−−−→ G/C −−−−→ 0.

Note that the map φC preserves the bi-ordering of G/C induced from the bi-ordering of G.
Writing U = C/G ′ ⊗ Q, V = G/G ′ ⊗ Q, and W = G/C ⊗ Q, tensoring with Q yields

the commutative diagram of finite-dimensional vector spaces over Q with exact rows:

0 −−−−→ U −−−−→ V −−−−→ W −−−−→ 0⏐⏐� φV

⏐⏐� φW

⏐⏐�
0 −−−−→ U −−−−→ V −−−−→ W −−−−→ 0,

where φW = φC ⊗ id and φV = φ∗ ⊗ id. Note that exactness is preserved on the right
because tensoring with Q is a right exact functor, and exactness is preserved on the left
because Tor(·, Q) = 0.

As the map U → V is injective, we may consider U as a subspace of the vector space V ,
equal to the kernel of the map V → W . Denote by φU the restriction of φV to the subspace
U , which is easily checked to be invariant under φV . Since every exact sequence of vector
spaces splits we may write V = U ⊕ W and φV = φU ⊕ φW . Therefore the characteristic
polynomial of φV factors as

χφV (λ) = χφU (λ) · χφW (λ).

By Lemmas 2·4 and 2·5, φW preserves the bi-ordering on W induced by that of G. Now
choose a basis for W and apply Proposition 3·2 to conclude that χφW (λ) has a positive real
root. It follows that this is also a root of χφV (λ), and therefore an eigenvalue of φ.

The automorphism φ may also have eigenvalues which are not real. For instance, in the
example of [15] mentioned above, the automorphism of the free group preserves a bi-order
and has eigenvalues exactly the nth roots of unity.

4. Fibrations and fibred knots

Suppose X is a topological space and f : X → X a continuous function. Then the
mapping torus M f is defined by

M f � X × [0, 1]/ ∼
where one makes the identifications (x, 1) ∼ ( f (x), 0). An important instance is any space
which is a (locally trivial) fibration over the circle S1, in which the total space can be re-
garded as the mapping torus of a homeomorphism f of the fibre. The map f is called the
(topological) monodromy associated with the fibration, and is defined up to isotopy.

The fundamental group of a mapping torus is an HNN extension of the group π1(X). If
f	 : π1(X) → π1(X) is the induced map (homotopy monodromy), then

π1(M f )� 〈π1(X), t | t−1gt = f	(g), ∀g ∈ π1(X)〉.
We have an exact sequence

1 −→ π1(X) −→ π1(M f ) −→ Z −→ 1.
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Lemma 2·3 implies the following:

PROPOSITION 4·1. The fundamental group of M f is left-orderable if and only if π1(X)

is left-orderable.

PROPOSITION 4·2. The fundamental group of M f is bi-orderable if and only if π1(X)

admits a bi-ordering which is preserved by f	.

PROPOSITION 4·3. If Y → S1 is a fibration with fibre F, then π1(Y ) is bi-orderable if
and only if π1(F) is bi-orderable and the homotopy monodromy f	 preserves a bi-ordering
of π1(F).

From Theorem 3·4 we have the following.

COROLLARY 4·4. Suppose Y fibres over S1 with fibre F, π1(Y ) is bi-orderable and
π1(F) is nontrivial and finitely generated. Then the monodromy f	 must have a real pos-
itive eigenvalue.

This can be considered a partial converse to results of [22] and [23] which we state as
follows:

THEOREM 4·5. Suppose Y fibres over S1 with fibre F. Suppose π1(F) is a finitely gen-
erated free group or the fundamental group of a compact orientable surface and that all ei-
genvalues of the homotopy monodromy f	 are real and positive. Then π1(Y ) is bi-orderable.

Recall that a knot K in S3, or more generally in a closed orientable 3-manifold M is fibred
if M \ K fibres over S1 with fibres being open surfaces. It is well known that for a fibred
knot K in S3 or, more generally, in a homology sphere, the Alexander polynomial �K (t)
is the characteristic polynomial of the associated (homotopy) monodromy. This implies the
following.

THEOREM 4·6. Suppose K is a nontrivial fibred knot in a homology sphere and its knot
group π1(M \ K ) is bi-orderable. Then �K (t) has a positive real root.

Theorem 4·5, on the other hand, implies that if all roots of a fibred knot’s Alexander
polynomial are real and positive, then its knot group is bi-orderable.

In fact, by the well-known symmetry condition of Alexander polynomials �K (t) will have
two positive real roots (mutual reciprocals) if it has one. Since �K (1) = ±1, t = 1 is never
a root. Among nontrivial prime knots of up to eight crossings, we have the following data,
compiled with the assistance of the website knotinfo.

Examples. Among prime knots of up to eight crossings, the unknot and the fibred knots
41 and 812 have bi-orderable knot groups. Their Alexander polynomials are:

�41 = 1 − 3t + t2 with roots (3 ± √
5)/2,

�812 = 1 − 7t + 13t2 − 7t3 + t4 with roots (rounded to five decimals),
0.22778, 0.54411, 1.83785 and 4.39026

Among the other seventeen fibred knots with at most eight crossings, the following
have Alexander polynomials with no real roots, and therefore their knot groups are not bi-
orderable: 31, 51, 63, 71, 77, 87, 810, 816, 819 and 820.

For example �819 = 1 − t + t3 − t5 + t6 = (t2 + √
3t + 1)(t2 − √

3t + 1)(t2 − t + 1). Its
six roots are (

√
3 ± i)/2, (−√

3 ± i)/2 and (1 ± i
√

3)/2.
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The polynomials of the remaining seven fibred knots up to eight crossings have both
real and complex roots; we do not know if their groups are bi-orderable. They are:
62, 76, 82, 85, 89, 817 and 818.

The torus knots of type (p, q), where p and q are coprime integers greater than one, have
Alexander polynomial

�(t) = (1 − t)(1 − t pq)

(1 − t p)(1 − tq)

whose roots are all in C \ R, on the unit circle. The groups of torus knots are therefore not
bi-orderable, a fact which was already known, as they are fibred and their monodromy is
periodic.

The “Fintushel-Stern” knot [7], also known as the pretzel knot of type (−2, 3, 7), is well-
known for several reasons, such as admitting seven exceptional surgeries (see Cameron Gor-
don’s discussion in problem 1·77 of Kirby’s problem list [14]). It is fibred and its Alexander
polynomial is L(−t), where L is the Lehmer polynomial

L(x) = 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10

which is the integral polynomial of smallest known Mahler measure [1, 10]. Among the
ten roots of L , two are real, the Salem number 1.17628... and its reciprocal, and eight are
complex, lying on the unit circle. Therefore the Alexander polynomial of the (−2, 3, 7)

pretzel knot has exactly two real roots and they are negative. It follows that its knot group is
not bi-orderable. (We thank Liam Watson for pointing out this example.)

Experimental evidence (see the final section of this paper) indicates that bi-orderability of
the groups of approximately one-third the fibred knots can be decided by Theorems 4·5 and
4·6.

5. Surgery

We recall the definition of surgery on a knot K in a 3-manifold M . Consider a closed reg-
ular neighbourhood N of K , so that N � D2 ×S1 and ∂ N � S1 ×S1. If J is a homologically
nontrivial simple closed curve on ∂ N , it defines the surgery manifold:

M(K , J ) = (M \ int N ) � D2 × S1/ ∼
where the boundaries are identified in such a way that J is sewn to the meridian ∂ D2 × {∗}
of D2 × S1.

This manifold is well-defined by the isotopy class of J in ∂ N , which in turn is determined
by its homology class, up to sign, ±[J ] = pµ + qλ, where p and q are relatively prime
integers (possibly the pair {0, 1}) and µ, λ are a basis for the homology H1(∂ N ) � Z ⊕ Z.
By convention, we take µ to correspond to the meridian which bounds a disk in N , with
some chosen orientation, and λ to be isotopic to K in N . There is a “framing” ambiguity for
λ unless M is a homology sphere (that is, its homology groups coincide with those of S3),
in which case it corresponds to a curve on ∂ N which is homologically trivial in M \ int N .
With this convention one also refers to M(K , J ) as the result of p/q surgery on K , where
p/q ∈ Q � ∞. The “trivial” surgery corresponds to ∞, in which case the surgery manifold
is just M itself. See [26] for further information on surgery.
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THEOREM 5·1. Suppose K is a fibred knot in S3 and nontrivial surgery on K produces
a 3-manifold M whose fundamental group is bi-orderable. Then the surgery must be lon-
gitudinal (that is, 0-framed) and �K (t) has a positive real root. Moreover, M fibres over
S1.

Proof. Let M denote the result of p/q surgery on K in S3. We calculate, by a Meyer-
Vietoris argument that H1(M) � Z/pZ, which is a finite group unless p = 0. By property
P, π1(M) is nontrivial, so by Lemma 2·4 its bi-orderability implies that H1(M) must be
infinite, so we conclude that p = 0; the surgery curve J is a longitude. The neighborhood
N of K for defining the surgery may be chosen so that S3 \ int N fibres over S1 with each
fibre an oriented surface � with boundary ∂� a longitude parallel to J on ∂ N . Now the
solid torus D2 × S1 also clearly fibres over S1 via projection onto the second coordinate,
with fibre D2. Thus M may be fibred by matching these two fibrations, and the fibre is the
closed surface �̂ obtained by sewing a disk to � along their boundaries. The abelianizations
of π1(�) and π1(�̂) coincide, and we see that the monodromies of the fibrations of M and
S3 \ K also coincide upon abelianization, and so have the same characteristic polynomial,
which is �K (t). By Corollary 4·4, this polynomial has a positive real root.

The following has almost the same proof.

THEOREM 5·2. Suppose K is a fibred knot in a homology sphere and nontrivial surgery
on K produces a 3-manifold M whose fundamental group is nontrivial and bi-orderable.
Then the surgery must be longitudinal (that is, 0-framed) and �K (t) has a positive real root.
Moreover, M fibres over S1.

Similar considerations hold for higher dimensional fibred knots, although in that case the
fibre may not necessarily have bi-orderable (or even torsion free) fundamental group.

QUESTION 5·3. Is there a version of this theory for non-fibred knots?

QUESTION 5·4. What about fibred knots which have some, but not all, roots of their Al-
exander polynomial real and positive?

QUESTION 5·5. If a knot in S3 has bi-orderable group, does every manifold resulting
from surgery on that knot have left-orderable fundamental group?

6. L-spaces

This section is devoted to the proof of the following theorem.

THEOREM 6·1. If surgery on a knot K in S3 results in an L-space, then the knot group
π1(S3 \ K ) is not bi-orderable.

As noted in [19], if surgery on a knot yields an L-space, then the knot is fibred and also an
integer surgery on the knot produces an L-space. From [21], we have the following theorem.

THEOREM 6·2. Let K be a knot in S3 for which integer surgery on K yields an L-space.
Then the Alexander polynomial of K has the form

�K (t) = (−1)k +
k∑

j=1

(−1)k− j (tn j + t−n j )

for some increasing sequence of positive integers 0 < n1 < n2 < · · · < nk.
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We will show that such an Alexander polynomial can never have a positive real root.

LEMMA 6·3. Suppose that α > 1 and s > t > 0. Then αs + α−s > αt + α−t .

Proof. For α > 1, consider the function f (x) = αx + α−x . It is continuous and differ-
entiable for all x , with derivative f ′(x) = ln(α)(αx − α−x). Since α > 1, both ln(α) and
αx − α−x are positive whenever x > 0, hence f ′(x) > 0 for all x > 0, and so f is an
increasing function on (0, ∞). Therefore, s > t > 0 implies f (s) > f (t), in other words
αs + α−s > αt + α−t .

PROPOSITION 6·4. Let 0 < n1 < n2 < · · · < nk be an increasing sequence of positive
integers. Then the polynomial

�K (t) = (−1)k +
k∑

j=1

(−1)k− j (tn j + t−n j )

does not have a positive real root.

Proof. Suppose α is a positive real root of �K (t). We observe that α = 1 is not possible,
because

�K (1) = (−1)k + 2
k∑

j=1

(−1)k− j ,

which we may rewrite as �K (1) = −1 + 2 · 1 = 1 if k is odd, and �K (1) = 1 + 2 · 0 = 1
if k is even. Moreover, as �K (t) is symmetric, α−1 must also be a root of �K (t), and so we
may assume without loss of generality that α > 1.

First, we consider the case when k is odd, so that the quantity �K (α) can be written as

−1 + (αn1 + α−n1) − (αn2 + α−n2) + · · · + (αnk + α−nk ).

Observe that αn1 +α−n1 −1 > 0, since α > 1 and n1 > 0. For integers i satisfying 1 < i < k,
since α > 1 and ni+1 > ni we may apply Lemma 6·3 to conclude that (αni+1 + α−ni+1) −
(αni + α−ni ) > 0. Therefore the quantity �K (α) can be written as

−1 + (αn1 + α−n1) +
k−1∑
i=2

i even

[
(αni+1 + α−ni+1) − (αni + α−ni )

]
,

which is a sum of positive terms and so cannot be zero.
In the case that k is even, we may write the quantity �K (α) as

1 − (αn1 + α−n1) + (αn2 + α−n2) − · · · + (αnk + α−nk ),

which we may rewrite as

1 +
k−1∑
i=1
i odd

[
(αni+1 + α−ni+1) − (αni + α−ni )

]
.

As in the case when k is odd, we apply Lemma 6·3 to conclude that this is a sum of positive
quantities, and so cannot be zero.

This completes the proof of Theorem 6·1, since by the above the Alexander polynomial
of a knot which produces an L-space cannot have a positive real root, and so the knot group
is not bi-orderable.
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7. Examples up to 12 crossings

Of the nontrivial prime knots with 12 or fewer crossings, 1246 of them are fibred, ac-
cording to knotinfo, and so we may apply Theorems 4·5 and 4·6. Among these fibred knots,
we find that 487 of them have non bi-orderable groups because their Alexander polynomi-
als have no roots in R+, while 12 have bi-orderable groups because all the roots are real
and positive. The bi-orderability of the remaining ones, whose Alexander polynomials have
some, but not all, roots real and positive, is not known to us.

The table below contains all nontrivial prime knots with 12 or fewer crossings whose
groups are known to be bi-orderable. The diagrams were produced using Rob Scharein’s
program Knotplot.

Knot Alexander polynomial

41 1 − 3t + t2

812 1 − 7t + 13t2 − 7t3 + t4

10137 1 − 6t + 11t2 − 6t3 + t4

11a5 1 − 9t + 30t2 − 45t3 + 30t4 − 9t5 + t6

11n142 1 − 8t + 15t2 − 8t3 + t4

12a0125 1 − 12t + 44t2 − 67t3 + 44t4 − 12t5 + t6

12a0181 1 − 11t + 40t2 − 61t3 + 40t4 − 11t5 + t6

12a1124 1 − 13t + 50t2 − 77t3 + 50t4 − 13t5 + t6

12n0013 1 − 7t + 13t2 − 7t3 + t4

12n0145 1 − 6t + 11t2 − 6t3 + t4

12n0462 1 − 6t + 11t2 − 6t3 + t4

12n0838 1 − 6t + 11t2 − 6t3 + t4
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The prime knots with 12 or fewer crossings which are known to have non bi-orderable
group, because they are fibred and have Alexander polynomials without positive real roots,
are as follows:

31, 51, 63, 71, 77, 87, 810, 816, 819, 820, 91, 917, 922, 926, 928, 929, 931, 932, 944, 947, 105,
1017, 1044, 1047, 1048, 1062, 1069, 1073, 1079, 1085, 1089, 1091, 1099, 10100, 10104, 10109,
10118, 10124, 10125, 10126, 10132, 10139, 10140, 10143, 10145, 10148, 10151, 10152, 10153, 10154,
10156, 10159, 10161, 10163, 11a9, 11a14, 11a22, 11a24, 11a26, 11a35, 11a40, 11a44, 11a47, 11a53,
11a72, 11a73, 11a74, 11a76, 11a80, 11a83, 11a88, 11a106, 11a109, 11a113, 11a121, 11a126, 11a127,
11a129, 11a160, 11a170, 11a175, 11a177, 11a179, 11a180, 11a182, 11a189, 11a194, 11a215, 11a233,
11a250, 11a251, 11a253, 11a257, 11a261, 11a266, 11a274, 11a287, 11a288, 11a289, 11a293, 11a300,
11a302, 11a306, 11a315, 11a316, 11a326, 11a330, 11a332, 11a346, 11a367, 11n7, 11n11, 11n12,
11n15, 11n22, 11n23, 11n24, 11n25, 11n28, 11n41, 11n47, 11n52, 11n54, 11n56, 11n58, 11n61,
11n74, 11n76, 11n77, 11n78, 11n82, 11n87, 11n92, 11n96, 11n106, 11n107, 11n112, 11n124, 11n125,
11n127, 11n128, 11n129, 11n131, 11n133, 11n145, 11n146, 11n147, 11n149, 11n153, 11n154, 11n158,
11n159, 11n160, 11n167, 11n168, 11n173, 11n176, 11n182, 11n183, 12a0001, 12a0008, 12a0011,
12a0013, 12a0015, 12a0016, 12a0020, 12a0024, 12a0026, 12a0030, 12a0033, 12a0048, 12a0058, 12a0060,
12a0066, 12a0070, 12a0077, 12a0079, 12a0080, 12a0091, 12a0099, 12a0101, 12a0111, 12a0115, 12a0119,
12a0134, 12a0139, 12a0141, 12a0142, 12a0146, 12a0157, 12a0184, 12a0186, 12a0188, 12a0190, 12a0209,
12a0214, 12a0217, 12a0219, 12a0222, 12a0245, 12a0246, 12a0250, 12a0261, 12a0265, 12a0268, 12a0271,
12a0281, 12a0299, 12a0316, 12a0323, 12a0331, 12a0333, 12a0334, 12a0349, 12a0351, 12a0362, 12a0363,
12a0369, 12a0374, 12a0386, 12a0396, 12a0398, 12a0426, 12a0439, 12a0452, 12a0464, 12a0466, 12a0469,
12a0473, 12a0476, 12a0477, 12a0479, 12a0497, 12a0499, 12a0515, 12a0536, 12a0561, 12a0565, 12a0569,
12a0576, 12a0579, 12a0629, 12a0662, 12a0696, 12a0697, 12a0699, 12a0700, 12a0706, 12a0707, 12a0716,
12a0815, 12a0824, 12a0835, 12a0859, 12a0864, 12a0867, 12a0878, 12a0898, 12a0916, 12a0928, 12a0935,
12a0981, 12a0984, 12a0999, 12a1002, 12a1013, 12a1027, 12a1047, 12a1065, 12a1076, 12a1105, 12a1114,
12a1120, 12a1122, 12a1128, 12a1168, 12a1176, 12a1188, 12a1203, 12a1219, 12a1220, 12a1221, 12a1226,
12a1227, 12a1230, 12a1238, 12a1246, 12a1248, 12a1253, 12n0005, 12n0006, 12n0007, 12n0010, 12n0016,
12n0019, 12n0020, 12n0038, 12n0041, 12n0042, 12n0052, 12n0064, 12n0070, 12n0073, 12n0090,
12n0091, 12n0092, 12n0098, 12n0104, 12n0105, 12n0106, 12n0113, 12n0115, 12n0120, 12n0121,
12n0125, 12n0135, 12n0136, 12n0137, 12n0139, 12n0142, 12n0148, 12n0150, 12n0151, 12n0156,
12n0157, 12n0165, 12n0174, 12n0175, 12n0184, 12n0186, 12n0187, 12n0188, 12n0190, 12n0192,
12n0198, 12n0199, 12n0205, 12n0226, 12n0230, 12n0233, 12n0235, 12n0242, 12n0261, 12n0272,
12n0276, 12n0282, 12n0285, 12n0296, 12n0309, 12n0318, 12n0326, 12n0327, 12n0328, 12n0329,
12n0344, 12n0346, 12n0347, 12n0348, 12n0350, 12n0352, 12n0354, 12n0355, 12n0362, 12n0366,
12n0371, 12n0372, 12n0377, 12n0390, 12n0392, 12n0401, 12n0402, 12n0405, 12n0409, 12n0416,
12n0417, 12n0423, 12n0425, 12n0426, 12n0427, 12n0437, 12n0439, 12n0449, 12n0451, 12n0454,
12n0456, 12n0458, 12n0459, 12n0460, 12n0466, 12n0468, 12n0472, 12n0475, 12n0484, 12n0488,
12n0495, 12n0505, 12n0506, 12n0508, 12n0514, 12n0517, 12n0518, 12n0522, 12n0526, 12n0528,
12n0531, 12n0538, 12n0543, 12n0549, 12n0555, 12n0558, 12n0570, 12n0574, 12n0577, 12n0579,
12n0582, 12n0591, 12n0592, 12n0598, 12n0601, 12n0604, 12n0609, 12n0610, 12n0613, 12n0619,
12n0621, 12n0623, 12n0627, 12n0629, 12n0634, 12n0640, 12n0641, 12n0642, 12n0647, 12n0649,
12n0657, 12n0658, 12n0660, 12n0666, 12n0668, 12n0670, 12n0672, 12n0673, 12n0675, 12n0679,
12n0681, 12n0683, 12n0684, 12n0686, 12n0688, 12n0690, 12n0694, 12n0695, 12n0697, 12n0703,
12n0707, 12n0708, 12n0709, 12n0711, 12n0717, 12n0719, 12n0721, 12n0725, 12n0730, 12n0739,
12n0747, 12n0749, 12n0751, 12n0754, 12n0761, 12n0762, 12n0781, 12n0790, 12n0791, 12n0798,
12n0802, 12n0803, 12n0835, 12n0837, 12n0839, 12n0842, 12n0848, 12n0850, 12n0852, 12n0866,
12n0871, 12n0887, 12n0888.
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