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ABSTRACT: Any knot in a 3-dimensional homology sphere is ho-
motopic to a knot with trivial Alexander polynomial.

1. Introduction.

A knot K in a homology 3-sphere M has a well-defined symmetrized Alexan-
der polynomial ∆K(t) in the ring Z[t±1] of Laurent polynomials. This polynomial
is an invariant of the ambient isotopy class of K in M . It is natural to ask whether
the homotopy class [K] ∈ π1(M) imposes a constraint on the Alexander polyno-
mial ∆K(t). In this note, we will prove that there is no constraint.

Theorem 1. If K is a knot in a homology sphere M3, then K is homotopic to
a knot K1 ⊂M with trivial Alexander polynomial: ∆K1(t) = 1.

The homotopy may be assumed to fix a given basepoint. This is a conse-
quence of a more general result regarding Seifert forms. As is well-known, any
oriented knot K in an oriented homology sphere M3 is the boundary of an ori-
ented surface F 2 ⊂ M whose genus we call g. Associated with F is the Seifert
form V , which may be considered as a 2g × 2g matrix with integer entries, once
a basis for H1(F ) is chosen.

Theorem 2. Let K,M,F and V be as above and W any 2g×2g integral matrix
such that W − WT = V − V T , where V T is the transpose of V . Then K is
homotopic in M to a knot with Seifert form W .

According to Seifert [S], the classical knot polynomials are exactly those
Laurent polynomials p(t) with integer coefficients satisfying

p(1) = 1, p(1/t) = p(t). (1)

Corollary 3. Within any homotopy class of knots in a homology sphere, the set
of Alexander polynomials realized is exactly the set of integral Laurent polyno-
mials satisfying (1).

Corollary 3 can be seen to follow from Theorem 2, or directly from Theorem
1 by using the trick of adding a small local classical knot (by a homotopy). Freed-
man [F] proved that any homology 3-sphere M is the boundary of a contractible
topological 4-manifold W , although there may not be such a smooth 4-manifold.
In addition, Freedman-Quinn [FQ] showed that a knot in M with trivial Alexan-
der polynomial is topologically slice, so we have the following application.
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Corollary 4. Suppose that K is a knot in M , a homology 3-sphere which bounds
the contractible topological 4-manifold W. Then K is homotopic in M to a knot
which bounds a topologically locally-flat disk embedded in W .

In the following sections we give an application to computation of certain
generalized signatures, review basic definitions and, in the last section, prove
Theorems 1 and 2. We would like to thank the referee for correcting a mistake
in the first version of this paper.

2. Application to SU(2)-signatures.

The original motivation for considering this question comes from a skein
theoretic presentation of an invariant for K in M . In [A], the invariant γK
is introduced by counting SU(2)-representations of π1(M −K) with prescribed
monodromy around a meridian of K, so that

γK : IK → Z

is a continuous function from IK , the unit circle in the complex plane minus the
square roots of roots of ∆K(t), into the integers. Two relations hold:

γK+(α)− γK−(α) = H(−∆K+(α2)∆K−(α2))
γK(1) = 4λ(M)

(2)

where H(z) is the Heaviside function (that is, H(z) = 1 if z ≥ 0 and H(z) = 0 if
z < 0), and λ(M) is the Casson invariant of M. Here K+ and K− denote knots
in M which are identical, except in a ball in which the oriented strings of the
knot form a simple crossing which is positive or negative, respectively, using the
usual conventions. The transition K− ↔ K+ is realized by a homotopy of the
knot in M , and indeed knot homotopy is generated by such moves, together with
ambient isotopy. Given a knot K ⊂M, the knot K1 provided by Theorem 1 can
be used as the basis for an inductive calculation of γK .

Corollary 5. For a knot K in a homology sphere M, the skein relations (2)
uniquely determine the invariant γK . ut

3. Seifert surfaces and the Alexander polynomial.

Suppose that M is an oriented homology 3-sphere, that is, a compact 3-
manifold with integral homology groups H∗(M) ∼= H∗(S3). Let K a knot in M
and let X denote the complement of a tubular neighborhood of K in M . Then
by Alexander duality, H1(X) ∼= Z. The kernel of the Hurewicz map π1(X) → Z
defines a covering X̃ → X whose deck transformation group Aut(X̃) is infinite
cyclic. Denoting a generator of Aut(X̃) by t, we see that H1(X̃) is a Z[t±]-
module, whose order defines the Alexander polynomial ∆K(t). That is, ∆K(t)
may be taken to be the determinant of a presentation matrix of H1(X̃) as a
Z[t±1]-module. See, for example, [M] or [R] for further details.
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A practical means of computing ∆K(t) is provided by a Seifert surface. We
first recall a construction (see [K]) for the reader’s convenience. Consider a map
f : ∂X → S1 such that the preimage of any point is the longitude of the knot K.
Now remember that there are natural correspondences H1(X) ∼= [X,S1] ∼= Z and
H1(∂X) ∼= [∂X, S1] ∼= Z⊕ Z and that we have the exact cohomology sequence

· · · → H1(X)→ H1(∂X)→ H2(X, ∂X)→ · · · .

This implies that our map f : ∂X → S1 extends to a smooth map f̄ : X →
S1. Then f̄−1(p), for some regular value p ∈ S1, is a 2-sided surface. Extending
to the tubular neighborhood of K and discarding superfluous components, we
obtain a connected orientable surface F 2 ⊂ M with K = ∂F , called a Seifert
surface for K.

There is a map H1(F )→ H1(M − F ) given by pushing a 1-cycle in F along
the positive normal bundle. We denote the image of a 1-cycle α by α+. The
Seifert form associated to F is the bilinear form:

V : H1(F )×H1(F )→ Z

V (α, β) = lk(α+, β)

where lk(·, ·) denotes the linking number of two 1-cycles in M . Once a basis is
chosen for H1(F ), we may write V as a 2g × 2g matrix with integer coefficients.

Two important properties of the Seifert form are well known. First, V −V T
is the intersection form on H1(F ) and is hence unimodular. This means that in
a canonical (symplectic) basis for H1(F ),

V − V T =



0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0


≡ ⊕g

[
0 1
−1 0

]
.

This shows that the Seifert form is completely determined by its entries on and
above the diagonal.

Secondly, tV −V T , or equivalently, t1/2V −t−1/2V T , is a presentation matrix
for H1(X̃) as a Z[t±1]-module, and so

∆K(t) = det(t1/2V − t−1/2V T ).

Example 1: In S3, the surface below has genus g and unknotted boundary.
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Figure 1. A Seifert surface for the unknot.

In fact, if we choose the natural symplectic basis for H1(F ), for this example

V = ⊕g
[

0 0
−1 0

]

so, of course, ∆K(t) = 1.

Example 2: Suppose that K is a knot in S3 and M the result of 1/n surgery
on K; that is, M = S3 −N(K) ∪h (S1 ×D2) where h : S1 × S1 → ∂N(K). If we
let L = S1 × {0} ⊂ M, then ∆L = ∆K . Although it is by no means obvious, we
will see that we can change L by a homotopy within M so that the Alexander
polynomial of the new knot is trivial.

3: Proof of Theorems 1 and 2.

As before, let K be a knot in a homology 3-sphere M and choose a basepoint
∗ in K. If F ⊂ M is a Seifert surface for K, then F has a 1-dimensional spine
consisting of a bouquet of disjoint simple loops based at ∗. A collapse of F to
a neighborhood of the spine may be covered by an ambient isotopy of M. This
means that F is ambient isotopic (with ∗ fixed) to a small disk with 2g ribbons,
which we denote by R1, . . . , R2g, attached to the boundary.

We now describe a move on the ribbons. Suppose that parts of Ri and Rj
are contained in some 3-ball in M as shown in the left half of Figure 3.1. Consider
the move that changes the embedding to be as in the right side of the figure. This
local move may change the embedded surface F and the knot K and is generally
not realizable by an ambient isotopy. It is, however, realized by a homotopy of
K in M , and in fact a regular homotopy of F . This move was used by Kauffman
[Ka], where it is called a pass equivalence; he noted that the Arf invariant of a
knot is unchanged by this move.

.
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Figure 2: A move on ribbons.

This pass equivalence move changes the Seifert form associated with F in a
simple way. We will let ri ∈ H1(F ) be the cycle defined by Ri. We can assume
that the collection {ri} forms a canonical basis for H1(F ). If we let V be the
Seifert form before the move and V ′ the Seifert form after, then we have, if i 6= j

V ′(ri, rj) = V (ri, rj)± 1, V ′(rj , ri) = V (rj , ri)± 1

while all other entries in the Seifert form are unchanged.

If i = j the corresponding entry is changed by ±2. However, a different move,
introducing a simple twist in the ribbon Ri has the effect of changing V (r1, r1)
by ±1, and can also be accomplished by a knot homotopy.

Earlier we noted that in a canonical basis, the condition

V − V T = ⊕g
[

0 1
−1 0

]
implies that the entries on or above the diagonal determine the Seifert form. The
moves described above have the effect of changing exactly one entry on or above
the diagonal, by ±1. This means that given W, a 2g × 2g matrix with integer
entries satisfying

W −WT = ⊕g
[

0 1
−1 0

]
,

we may find a sequence of these moves to modify K and F by a homotopy so
that the Seifert form becomes W , and Theorem 2 follows. In particular, we may
realize the form of Example 1, and Theorem 1 is proved. ut

Remark on genus: One should note that, although the Seifert form may be
modified radically by a homotopy, the size 2g×2g of the form will not, in general,
be reduced. Indeed, within the homotopy class of K in M , a lower bound for the
genus g is the algebraic genus. For any element k in the commutator subgroup
of a group G, we can define its algebraic genus to be the minimal n for which
there is an expression k =

∏n
i=1 xiyix

−1
i y−1

i , xi, yi ∈ G. It is an easy observation
that if K bounds a surface of genus g in M , then its homotopy class [K] has an
expression as a product of g commutators in π1(M).
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