Geometric subgroups of surface braid groups

Luis PARIS and DALE ROLFSEN

Abstract. Let M be a surface, let N be a subsurface of M, and let n < m be
two positive integers. The inclusion of N in M gives rise to a homomorphism from the
braid group B, IN with n strings on N to the braid group B,,M with m strings on
M. We first determine necessary and sufficient conditions that this homomorphism is
injective, and we characterize the commensurator, the normalizer and the centralizer of
71N in m1 M. Then we calculate the commensurator, the normalizer, and the centralizer

of B, N in B,,,M for large surface braid groups.

1. INTRODUCTION

The classical braid groups B, were introduced by Artin in 1926 ([Arl], [Ar2]) and
have played a remarkable role in topology, algebra, analysis, and physics. A natural
generalization to braids on surfaces was introduced by Fox and Neuwirth [FoN] in 1962.
The surface braid groups, for closed surfaces, were calculated in terms of generators and
relations during the ensuing decade ([Bil], [Sc], [Va], [FaV]). Since then, most progress
in this subject has been in its relation with mapping class groups and the general theory
of configuration spaces (see the surveys [Bi3], [Co]). However, recently there is renewed
interest in these fascinating groups in their own right, in part because of the action of
surface braid groups on certain topological quantum field theories.

The purpose of this paper is to continue the study of the structure of the surface
braid groups, with emphasis on certain naturally-occuring subgroups. A subsurface of a
surface gives rise to inclusion maps between their braid groups. We determine necessary
and sufficient conditions that these inclusion-induced maps are injective in Section 2. The
remainder of the paper is devoted to a detailed study of these “geometric” subgroups. In
particular, we calculate their centralizers, normalizers and commensurators in the larger
surface braid group. Commensurators, in infinite groups, are of importance in their (uni-
tary) representation theory. It is our hope that these results will be useful in the further
study of surface braid groups, their representations and applications. In the remainder of
this introductory section we present definitions, basic properties of surface braid groups,
and a brief review of the literature.

1.1. SURFACE BRAIDS AND CONFIGURATION SPACES
Let M be a topological manifold and choose distinct points Py, ..., P, € M (later we

will specialize to dim(M) = 2). A braid with m strings on M based at (P, ..., Py,) is an
m-tuple b = (b1, ..., by) of paths, b; : [0,1] — M, such that
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1) b;(0) = P; and b;(1) € {P1,..., Py} forallie {1,...,m},

2) bi(t) #b;(t) for i,j € {1,...,m}, i # j, and for t € [0, 1].

There is a natural notion of homotopy of braids. The braid group with m strings on
M based at (Py, ..., P,) is the group B,,M = B,, M (Px,...,P,,) of homotopy classes of
braids based at (P, ..., Py,). The group operation is concatenation of braids, generalizing
the construction of the fundamental group. Indeed, for the case m = 1 we clearly have
BiM(Py) = 71 (M, Py). For m > 1, it is useful to consider the class of pure braids, which
have the property b;(1) = P;. These form a subgroup of B, which we will denote by
PB,M = PB,,M(P,...,P,). Let ¥,, be the group of permutations of {Py,..., P,}.
There is a natural epimorphism o : B,,M — X,,; its kernel is the pure braid group, so we
have an exact sequence:

1— PB,M — B,,M-2%,, — 1.

Note that, if M is a connected manifold of dimension at least two, then B,,M and
PB,,M do not depend (up to isomorphism) on the choice of Py,..., P,. An m-braid
naturally gives rise to m different paths in M under the map b — (by,...,b,,). In the case
of pure braids these are loops, so there is a natural homomorphism

PBmM —>7T1(M,P1) X oo X Wl(M,Pm> gﬂ'l(Mm),

where M™ denotes the m-fold cartesian power.

PROPOSITION 1.1 ([Bil]). If M is a connected manifold with dim(M) > 2, the above map
is an isomorphism. For dim(M) = 2 it is surjective.

The proof is straightforward when one views braids from the configuration space point
of view ([FoN], [FaN].) Let F,,M denote the space of (ordered) distinct points of M, in
other words F,,M = (M™) \ V, where V is the big diagonal, consisting of m-tuples
x = (x1,...,%y) for which z; = z; for some i # j. Then we clearly have an isomorphism

PB, M = 7 (Fp, M).

Proof of Proposition 1.1. The map in question is induced by the inclusion F,,M =
(M)™\V — (M)™. Noting that V = Ui<icj<m{r; = z,} is a union of submanifolds
of codimension dim(M ), the proposition follows from well-known general position argu-
ments. 0O

Because of Proposition 1.1, braid theory (as formulated here) is of marginal interest
for dimension > 3 and we concentrate on dimension two, i. e. surface braid groups.

In the remainder of the paper, M will denote a connected surface, possibly with
boundary and possibly nonorientable. To avoid pathology, we will assume M is either
compact, or at least that it is a “punctured” compact manifold, i. e. M is homeomorphic
to a compact 2-manifold, possibly with a finite set of points removed.
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By permuting coordinates, there is a natural action of ¥, upon F;, M and we denote
the orbit space, the space of unordered m-tuples, or configuration space, by F,,M =
F,,M/%,,. We may view the full braid group as its fundamental group

By, M 2 i (F,,M).

The inclusion PB,,M C B,,M may thus be interpreted as the mapping induced by
the covering space map F,,M — E,M , which has fiber ,,. Fox and Neuwirth noted
that B,,(D), the braid groups of the disk D?, coincide with the Artin braid groups.

One of the most useful tools in studying braid groups is the Fadell-Neuwirth fibration
and its generalizations. As observed in [FaN], if M is a manifold and 1 < n < m the map
p: FpM — F,M defined by p(z1,...,2m) = (z1,...,2,) is a (locally trivial) fibration
which has the fiber F,,,_,,(M \ {P,..., P,}). This gives rise to a long exact sequence of
homotopy groups of these spaces. For example, in the case n = m — 1 we have the exact
sequence

C 7T2FmM — 7T2Fm,1M — 7T1(M\{P1,...,Pm,1}) — PBmM — PBmflM — 1.

The punctured surface M\{ Py, ..., P,,—1} has the homotopy type of a one-dimensional
complex, and we see immediately from the above long exact sequence that

ﬂ'k(FmM>§7Tk(Fm_1M>ggﬂ'k(M), k23

and
WQ(FmM) C WQ(melM) c---C WQ(M).

Because they are the only surfaces with nontrivial higher homotopy groups, the sphere
S? and the projective plane P? are exceptional cases in the general theory.

PROPOSITION 1.2. Suppose that M is a connected surface, M # S? or P2, and k > 2.
Then i Fy M and i Fry M are trivial groups.

Proof. Since F,,M — f*’mM is a covering map, it suffices to prove the proposition for
F,,M. But this follows from the observations made above, since mx(M) =1 for k> 2. O

Combining this with the Fadell-Neuwirth fibration:

PROPOSITION 1.3. Suppose that M is a connected surface, M # S? or P?, and1 <n < m.
There 1s an exact sequence

1— PB,,_,M\{Py,...,P,} — PB,,M-2PB,M — 1. O



Let %,, be the group of permutations of {P,..., P,} and let ¥,,_,, be the group of
permutations of {P,41,..., Pn}. The Fadell-Neuwirth map gives rise to a (locally trivial)
fibration

p:FnM/ (30 X Spy) — FoM/%, = F,M

which has the fiber
(FroenM\A{Py,....PY)/Smn = Ep_ M\ {P1,..., Py} .
So:

PROPOSITION 1.4. Suppose that M is a connected surface, M # S? or P2, and1 < n < m.
There is an exact sequence

1 — Bp_nM\{Py,....,P,} — 0 (8, x%p_p) — B,M — 1. O

1.2. TORSION

Except for M = S?, P2, the configuration space F,, M is an Eilenberg-Maclane space,
i. e. a classifying space for B,, M. As is well-known, a group which has elements of finite
order must have an infinite-dimensional classifying space (see, e. g. [Br, Cap VIII]). Since
F,, M has dimension 2m, we can then conclude.

PROPOSITION 1.5. If M is a connected surface, M # S? or P2, then its braid groups
B,,M have no elements of finite order.

The braid groups of S? and P? do have torsion (with the exception the trivial group
B1(S5?)). We give a quick review of these, following [FaV] and [Va]. For S? take all the
basepoints to lie in a disk D? C S? and let o4, ..., 0,,—1 be the standard braid generators
of B,,(D?); 0; exchanges P; and P;; ;. They satisfy the famous braid relations

oi0; =004, |i—j]>2

(%)

0i0i410; = 0410041, 1 <1< m—2
The same o; can also be taken to be generators of B,,(S?) where they still satisfy these
relations. The word o109« 0p—10m—1 - - - 0201 may be interpreted as the (pure) braid in

which Pj circles around P, . .., P,,, while those points stay fixed. This is clearly homotopic
in S? to the identity braid, so we have the additional relation

0102 Om—10m—1 - +0201 = 1.

It is shown in [FaV] that this, together with (*) are defining relations for B,,(S?). The
element 7 = 0109 -+ - 0,,—1 has order 2m in Bm(SQ); it can be pictured as a simple braid
which permutes the basepoints cyclically.



For the projective plane, take o; as above corresponding to a disk engulfing the base-
points, and let p; to be a braid in which the basepoint P; travels along a nontrivial loop in
P? while the other basepoints sit still. See [Va] for a more precise description and a proof
that B,,(P?) is presented by the 2m — 1 generators o1, ...,0m_1,p1,- - -, Pm and relations
(*) together with

oipj = pioi, JF L1+ 1
Pi = 0iPi+104
2 -1 -1
i = Pix1Pi Pit1Pi

2
pP1L=0102 - Om—-10m—1"""02071.

The element 7 as defined above, but considered an element of B,,(P?), again has order
2m. Thus we have the theorem of Van Buskirk, that for each m > 2, the surface braid
group B,, M has elements of finite order if and only if M = S? or P2.

Some of these braid groups are actually finite: Bo(S?) & Z/2Z, B3(S?) has order 12,
B1(P?) & Z/27 and By(P?) is a group of order 16 whose subgroup P By (P?) is isomorphic
with the quaternion group {41, &4, 7, +k}. B3(P?) is infinite, as are all the other higher
braid groups of P? and S2.

For the braid groups of higher genus closed surfaces, we refer the reader to [Sc|, and
only mention how to produce a generating set. After removing a disk from a surface M
of genus g, the remainder can be modelled as a disk with g twisted bands attached, in the
nonorientable case, or 2¢ bands if the surface is orientable. Then B,,(M) is generated by
01,...,0m—1 as above, plus p;; which represents the basepoint P; running once around the
jtn, band, while the others are fixed. A finite set of relations can be found in [Sc].

1.3. CENTERS AND LARGE SURFACES

The center Z(G) of a group G is the subgroup of elements which commute with all
elements of the group. Chow [Ch] proved that the groups B,, = B,,(D?) have infinite
cyclic center, for m > 2. Some other surface braid groups also have nontrivial centers:
those of S? [GV], P? [Va]. If 7 is defined as in the preceding section, the element 7™ is
central in B,,S?. Birman stated in [Bi2] that the torus braid groups B,,T? have center
which is free abelian with two generators, but did not include a complete proof. We will
prove this, and also calculate the center of the braid groups of the annulus S* x I in Section
4. However, apart from these and a few other exceptions, most surface braid groups have
no center. Our proof is the same as given in [Bi2].

DEFINITION. A compact surface M will be called large if M # S?,P%? D?,S' x I,T? =
St x St Mébius strip S'x1I, or Klein bottle S'xS!. In other words, we call a surface
large if its fundamental group has no finite index abelian subgroup.

PROPOSITION 1.6. Let M be a large compact surface. Then the center Z(B,,(M)) is a
trivial group.



Proof. First, we prove by induction on m that Z(PB,,M) = {1}. The case m = 1
is well-known: the only surfaces whose fundamental groups have nontrivial centers are
P2, S' % I,T?, the Mobius strip, and Klein bottle.

Let m > 1 and M large. We consider the following exact sequence

1 —m(M\{P,,...,Pn_1}) — PB,M->PB,,_ 1M — 1.

Since p is surjective, it takes center into center, and by induction, Z(PB,,-1M) = {1}.
So Z(PB,M) C m (M \ {P1,...,Pn_1}). But this latter group has trivial center, so
Z(PB,M) = {1}. Now, let ¢ € Z(B,,M). There exists an integer & > 0 such that
g® € PB,,M. Then ¢* € Z(PB,,M), thus g* = 1. By Proposition 1.5, g = 1. O

2. SUBSURFACES

A subsurface N of a surface M is the closure of an open subset of M. For simplicity
we make the extra assumption that every boundary component of N either is a boundary
component of M or lies in the interior of M.

Let P, € N. The inclusion N C M induces a morphism 1 : w1 (N, Py) — 71 (M, Py).
The following proposition is well-known.

PROPOSITION 2.1. Let N be a connected subsurface of M such that m (N, P1) # {1}.
The morphism 1 : w (N, Py) — m (M, Py) is injective if and only if none of the connected
components of the closure M\ N of M\ N is a disk. O

Let Py,...,P, € N, and let P41,...,P, € M\ N. The inclusion N C M induces a
morphism ¢ : B,N — B,,M.

PROPOSITION 2.2. Let M be different from the sphere and from the projective plane,
and let N be such that none of the connected components of M\ N is a disk. Then the
morphism 1 : B,N — B,,M is injective.

Remark. Proposition 2.2 is proved in [Go] in the particular case where N is a disk.
Proof. Let P, : PB,N — PB, M be the morphism induced by the inclusion N C M.
We prove that P, is injective by induction on n. The case n = 1 is a consequence of

Proposition 2.1.
Let n > 1. By Proposition 2.1, the inclusion

N\A{Py,...,Po1} CM\{P,...,Pr_1}
induces a monomorphism
Oéiﬂl(N\{Pl,...,Pn_l}) —)Wl(M\{Pl,...,Pn_1}> .
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The following diagram commutes.
1 — m(N\{P,...,P.1}) — PB,N -~ PB,_ N — 1
la lpwn lpi/lnq
1 — mM™M\{P,...,P,_1})) — PB,M -2 PB,_ .M — 1
By induction, P, _1 is injective. By the five lemma, P41, is injective, too.

Let Py : PB,N — PB,,M be the morphism induced by the inclusion N C M. The
following diagram commutes.

PB,N 2% pPB. M

O

PB,N — PB,M

The morphism P, is injective, thus P is injective, too.
Let ¢ : 3, — X,, be the inclusion. The following diagram commutes.

1 — PB,N — BN - %, — 1
O E
1 — PB,M — B,M - %, — 1
Both P and ¢ are injective, so, by the five lemma, 1 is injective, too. O

Let Ni,..., N, be the connected components of M \ N. For ¢ =1,...,r, we write

Pi = {Pus1, ..., Pn} N N;.

THEOREM 2.3. Let M be different from the sphere and from the projective plane. The
morphism 1 : B,N — B,,M 1is injective if and only if either N; is not a disk or P; # 0,
forallv=1,...,r.

Proof. We suppose that there exists i € {1,...,r} such that N; is a disk and such that
P; = (). We consider the following commutative diagram.

m(N\{Ps,...,P,}) — B,N

|» v
Wl(M\{PQ,...,Pm}) — BmM
By [FaN], the morphism 71 (N \ {Ps, ..., P,}) — B,N is injective. On the other hand, the
morphism ¢ : 1 (N \{Ps,...,P,}) = m(M\ {Ps,..., Py,}) is clearly not injective. Thus
v : B,N — B, M is not injective.
We suppose that either N; is not a disk or P; # (), for all = 1,...,r. We consider
the following commutative diagram.

BN -2 B,M\{Pyi1,...,Pn}

B,N — B, M



By Proposition 2.2, the morphism ¢ : B,N — B, M \ {P,41,..., Py} is injective. By
[FaN], the morphism B, M\ {P.+1, ..., Pn} — B, M is injective. Thus ¢ : B,N — B,,M
is injective. O

3. COMMENSURATOR, NORMALIZER,
AND CENTRALIZER OF m N IN m M

Let N be a subsurface of a connected surface M. We say that N is a Mdbius collar in
M if N is a cylinder S* x I and M \ N has two components N7, Ny with one of them, say
N7, a Mdbius strip (see Figure 3.1). Then My = N U Ny will be called the Mébius strip
collared by N in M.

N1

N2

FIGURE 3.1

Let G be a group, and let H be a subgroup of G. We denote by C(H) the commen-
surator of H in G, by Ng(H) the normalizer of H in G, and by Z(H) the centralizer of
H in G. That is,

Zag(H)={9€ G:gh=hgforallhec H}

No(H)={9€G:gHg™" = H}
Ca(H)={g € G:gHg ' N H has finite index in gHg~! and H}

The goal of this section is to prove the following theorem.
THEOREM 3.1. Let Py € N. We write mM = w1 (M, Py) and my N = m (N, P).

i) If M is not large or if my N = {1}, then Cr,p(m1N) = m M.

it) If M is large, if m N # {1}, and if N is not a Mébius collar in M, then
Cﬂ-lM(ﬂ'lN) = 7T1N.

iii) If M is large and if N is a Mébius collar in M, then Cryp(m1 N) = m My, where
My s the Mobius strip collared by N in M.

COROLLARY 3.2. i) If M 1is either a cylinder, or a torus, or a Mdbius strip, then
CwlM(ﬂ'lN) = N7T1M(7T1N) = Z7r1M(7TlN> = 7T1M .
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it) If M is large, if N is not a Mdébius collar in M, if ;N # {1}, and if N is not
large, then

CﬂlM(ﬂ'lN> = N7r1M(7TlN) = ZﬁlM(ﬂ'lN) = Z(ﬂ'lN) = 7T1N .
ii1) If M and N are both large, then

Oﬂ-lM(ﬂ'lN) = Nﬂ-lM(ﬂ'lN) = 7T1N s
Zp m(mN) = Z(mN) = {1} .

iv) If M is large and if N is a Mébius collar in M, then
Crim(miN) = Npy(miN) = Zn o p(miN) = m M
where My 1s the Mobius strip collared by N in M.

Before proving Theorem 3.1, we recall some well-known results on graphs of groups.

An (oriented) graph T is the following data.

1) A set V(I') of vertices.

2) A set A(T") of arrows.

3) Amap s: A(I') — V(') called origin, and a map ¢ : A(I') — V(I") called end.

A graph of groups G(I') on I is the following data.

1) A group G, for all v € V(I).

2) A group G, for all a € A(T").

3) Two monomorphisms ¢qs : Go — Gy(q) and ¢a ¢ : Gq — Gy(q) for all a € A(T).
We refer to [Se] for a general exposition on graphs of groups.

Let T be a maximal tree of I'. The fundamental group m (G(T"),T) of G(I') based
at T is the (abstract) group given by the following presentation. The generating set of
T (G(),T) is

{ea s a€ A(T)}U (Upevn)Go)

where {e,;a € A(I')} is an abstract set in one-to-one correspondance with A(I"). The
relations of 71 (G(I"),T) are

1) the relations of G, for all v € V(I'),

2) e, =1 for all a € A(T),

3) egt - bas(g) - €a = Par(g) for all a € A(T) and for all g € G,,.

There is a morphism ¢, : G, — m(G(I"),T) for all v € V(I'). By [Se], this morphism is
injective.

The fundamental group 71 (I, T') of T based at T has the following presentation. The
generating set of m1(I', T) is {eq;a € A(I")}. The set of relations of 71 (I', T) is {e, = 1;a €
A(T)}. . ) )

Let p : I' — T' be the universal cover of I'. Let G(I') be the graph of groups on T’
defined as follows.

1) Gy = Gy for all o € V(T).

2) Ga = G for all @ € A(T).



3) (b&,s = (bp(d),s and (b&,t = %(a),t for all a € A(F).

We fix a section S : T — T of p over T. We extend S to a section S : A(T') — A(T)
as follows. Let a € A(T"). Then S(a) is the unique lift of a such that ¢(S(a)) = S(t(a)).

We define an action of 71 (I, T) on 71 (G(T'),T) as follows. Let & € V(I), let § € G,
and let u € m1 (I, 7). Then

u(g) = g € Gu) -

We consider the corresponding semidirect product 71 (G(I), f’)xwrl (I, T). By [Se|, there
is an isomorphism

Fl(G(F),T) — Wl(G(F),F)Nﬂ'l(F,T)

which sends G, isomorphically on Gg(,) for all v € V(I'), and which sends e, on e, for all

a € A(T"). So, we can assume that 71 (G(I'),T) = 71 (G('),I')x 7 ([, T), that G, = Gg(v)
for all v € V(I'), and that G, = Gg(q) for all a € A(T').

Let G = m(G(I'),T), and let G = 1 (G(T),T). The universal cover of G(T') is the
graph I' defined as follows. B 3 3
V() =WV (I) xG)/ ~,

where ~ is the equivalence relation defined by
(01,G1) ~ (D2,G2) if 0y =Dy =0 and gy "G1 € Gy .
We denote by [0, ] the equivalence class of (7, g).
A(T) = (A(D) x @)/ ~ ,
where ~ is the equivalence relation defined by
(@1,91) ~ (@2,G2) if @ =ap =a and gy g1 € Ga .

We denote by [@, ] the equivalence class of (@,§). The origin map s : A(T) — V(I) is
defined by
s(la, g]) = [s(a), g]
for @ € A(I") and for § € G. The end map ¢ : A(T') — V(T) is defined by
t([a, g]) = [t(a), ]
for & € A(T") and for § € é; By [Se], T is a tree.

The group G acts on I' as follows. Let u € 7, (I',T), let h,g e G, let v € V(T), and
let a € A(T"). Then

The isotropy subgroup of a vertex v € V(I') is
Isot(v) ={g € G ; g(v) =0} .
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The isotropy subgroup of an arrow a € A(T") is
Isot(a) ={g€ G ; g(a) =a} .

Let v € V(T') and let a € A(T"). By [Se],

Tsot([S(v), 1])

GU )
Isot([S(a),1]) =G

a -

Now, we come back to our original assumptions. M is a surface (with boundary)
different from the sphere and from the projective plane. N is a subsurface of M such that
none of the connected components of M \ N is a disk. Without lost of generality, we can
also assume that N is not a disk. Let Ny,..., N, be the connected components of M \ N.

We define a graph I' as follows.

V() ={vo,v1,...,0.} .

For i € {1,...,r}, we fix an abstract set A;(I') in one-to-one correspondance with the
connected components of N N N;. We set

A) = Ui Ai(T)

If a € A;(T"), then s(a) = vy and t(a) = v;.
We define a graph of groups G(I') on I" as follows. Let i € {1,...,r}. We fix a point
P, € N; and we set
Gvi = Gz = Wl(Ni, Pz) .

We fix a point Py € N and we set
Gvo = Go = 71'1(]V7 P()) .

Let a € A;(T"). We denote by C, the connected component of N N N; which corresponds
to a. The set C, is a boundary component of both N and N;. We fix a point P, € C, and
we set

Ga = wl(Ca,Pa) ~ 7.

We fix a path v, : [0,1] — N from Py to P,. This path induces a monomorphism
¢a,s : Go — Go. We fix a path v, : [0,1] — N; from P, to P,. This path induces a
monomorphism ¢, ; : G, — Gj.

We fix an arrow a; € A;(T") for all i € {1,...,7}. We consider the graph T" defined as
follows.

1) V(T) = {vo,v1,...,0.}.

2) A(T)={a1,...,a.}.
3) s(a;) = vo and t(a;) =v; for alli € {1,...,r}.
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The graph 7' is a maximal tree of I'. We write

Ya = ’Va,s'ya_,%

Ba = 'Ya'y(;-l
for all a € A;(T"). For i =1,...,r, the path ~,, induces a morphism
¢i . Gz = Wl(Ni,Pi) — 7T1(M,P0) .

We denote by
¢0 : Gy = 77'1(N7P0> B 7T1(M7P0)

the morphism induced by the inclusion N C M.
The following theorem is a well-known version of Van Kampen’s theorem.

THEOREM 3.3. The map

{ea;GEA(F)} — 7'('1(M,P0)

€q — Ba
and the morphisms ; : G; — 7w (M, Py) (i =0,1,...,7) induce an isomorphism

w . Wl(G(F),T) — 7T1(M, P()) .

Let T be the universal cover of G(I'). Let q : ' = T be the map defined as follows.
Let v € V(I'), let a € A(T"), and let g € G. Then

q([0,9]) = p(0) ,
q([a, g]) = p(a) -

The following lemma is a preliminary result to the proof of Theorem 3.1.

LEMMA 3.4. Leti € {1,...,r}. Let v € V(I') be such that q(v) = v;. Let a,b € A(T) be

such that t(a) = t(b) = v (see Figure 3.2).

i) If q(a) = q(b) and Isot(a) NIsot(b) # {1}, then N; is a Mébius strip.

it) If q(a) # q(b) and Isot(a) NIsot(b) # {1}, then N; is a cylinder and both boundary
components of N; are included in N N N;.

Y o
AT

®
\

FIGURE 3.2
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Proof. 1) We suppose that ¢ = 1 and that a = [S(a1), 1]. Then
U= t(&) = [t(S(a1>)7 1] = [S<vl>7 1] :

Let b = [b, §]. Then B .
t(b) = [t(b)ag] = [S(Ul)a 1] ’
thus b = S(a;) (since ¢(a) = q(b) = a1), and § € G,, = G1. Note that § & Gy, , otherwise

b=[S(a1), 9] = [S(a1), 1] =a .

So,

Isot(a) = G,, and Isot(b) = §Gu, "
Let hy be a generator of G, . There exist k1, ko € Z \ {0} such that
Byt = ghytg Tt

We suppose that Nj is not a Mdbius strip. Let F' be the subgroup of GG; generated by
hy and g. The subsurface N7 has non-empty boundary, thus G; is a free group, therefore
F is a free group of rank either 1 or 2. Since F is a hopfian group (see [LS, Prop. 3.4])
and since h¥* = gh¥2G=1, the group F has rank 1. By [Ep, Thm. 4.2], h; generates F. In
particular, there exists | € Z such that

g="hl€G,, .
This is a contradiction. So, N7 is a Mobius strip.

ii) We suppose that i = 1 and that a = [S(a1), 1]. Then

I
I
<~
—~
QI
~—
|

[t(S(a1)), 1] = [S(v1), 1] -

Let b = [b,g] and let b = q(b) # a;. Then

t(Z)) = [t(b)7§] = [S(Ul)a 1] )

thus b = S(b) and § € G,, = G;. So,

Isot(a) = G,, and Isot(b) = §gGpg~*

Let hy be a generator of G,,, and let h be a generator of Gy. There exist k1, ks € Z\ {0}
such that
Wit = ghk2gt .

Let F be the subgroup of G generated by hy and ghg—!. Since G, is a free group, F is
a free group of rank either 1 or 2. Since F is a hopfian group and since ¥ = (ghg 1),
the group F' has rank 1. The subsurface N; has at least two boundary components, C,,

13



and Cy, thus N; is not a Mdobius strip. By [Ep, Thm. 4.2], both h; and ghg~! generate
F'. So, we can assume that
hy = ghg~" .

By [Ep, Lemma 2.4], it follows that N; is a cylinder and that C,, and C} are the boundary
components of Ny. O

Proof of Theorem 3.1. i) It is obvious, as all the non-large surfaces have abelian funda-
mental groups, except the Klein bottle, which has an abelian subgroup of index 2.

ii) We suppose that there exists g € Cr (w1 V) such that g € m N, and we prove
that either M is not large, or N is a Mobius collar in M.

Let vg = [S(vo), 1] € V(I'). We have g(vg) # vp since g & m1 N = Isot(vp). Let

~€15€2

ajray?...a;' (a; € A(T) and ¢; € {+1})

be the (unique) reduced path of T' from @y to () (see Figure 3.3). For j = 1,...,1 we
denote by v; the end of the path aj* .. .&;j. Note that [ > 2 since ¢(g(v9)) = q(vg) = vo. If
h € GoNgGog™!, then h € Isot(vy) and h € Isot(g(vp)), thus h € Isot(v,) and h € Isot(a;)
for all j € {1,...,1}. We suppose that ¢(v1) = v;.

{1} #£ Gy N gGog~ "' C Isot(a;) NIsot(as) ,

thus, by Lemma 3.4, either N; is a Mobius strip, or N; is a cylinder and both boundary
components of N; are included in N N N;.

@ E
> o <o—--—o <o
Vo Vi V% Vi 9(Vo)
FIGURE 3.3

The group Gy N gGog~! has finite index in Gy = m; N, it is included in Isot(a;), and
Isot(ay) is an infinite cyclic group. So, w1 N has an infinite cyclic subgroup of finite index,
thus either NV is a cylinder, or N is a Mobius strip.

If N is a Mobius strip, then N; is also a Mobius strip and M = N U N; is a Klein
bottle (see Figure 3.4).

FIGURE 3.4
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If N and Nj are both cylinders, then M = N U Nj is a torus (see Figure 3.5).

FIGURE 3.5

If N is a cylinder and if Ny is a Mobius strip, then N is a Mébius collar in M (see

Figure 3.6).
N1
N S
I
_

FIGURE 3.6

iii) We suppose that N is a cylinder, that Ny is a Mdbius strip, and that M is large
(see Figure 3.6). Let My = NUDN; be the Mdbius strip collared by N in M. The subsurface
My is not a Mobius collar in M, thus, by ii),

Cﬂ-lM(ﬂ'lMo) = 7T1M0 .
The group 71 N has finite index in 7 My, thus

Cﬂ-lM(ﬂ'lN) = Oﬂ-lM(ﬂ'lMo) =mMy. O

4. CENTERS

The goal of this section is to describe the center of B,,, M, where M is either a cylinder
or a torus.

15



Let C be a cylinder. We assume that
C={:eC;1<|<2},

and that

P=1+4—— fori=1,...,m.
m—+1

Let d; : [0,1] — C be the path defined by

7
m+ 1

d;(t) = (1 + ) e for t €[0,1] .

Let a be the element of PB,,C represented by d = (dy,...,d,,) (see Figure 4.1).

FIGURE 4.1

PROPOSITION 4.1. With the above assumptions, the center of B,,C s the infinite cyclic
subgroup generated by c.

Proof. Let
D={zeC; |z| <2}.

Let Py = 0. The inclusion C' C D\ {P} induces an isomorphism B,,,C — B,,(D \ {Fy}).
Let ¥,,+1 be the group of permutations of {Py, Py,..., P,}, and let ¥,, be the group

16



of permutations of {Py,..., P,}. We consider the morphism o : B,,+1D — ¥,,41. By
Proposition 1.4, we have the following exact sequence.

1 — Bn(D\{Po}) — 07! (Zm)—mi (D, Py) — 1

Moreover, 71(D, Py) = {1}. Thus the inclusion D \ {Py} C D induces an isomorphism
Bn(D\ {Py}) — o 1(Z,n). The image of o by this isomorphism is the element of
Bp11D, denoted by @&, represented by the braid b = (Po,dq,...,dy). By [Ch], we have
Z(Bm+1D) = Z(PB,,+1D), and this group is the infinite cyclic subgroup generated by &.
From the inclusions

PBerlD g Uﬁl(zm) g BerlD )

it follows that the center of ail(Em) is equal to the center of B,,41D which is the cyclic
subgroup generated by &. Thus, by the preceding isomorphism, the center of B,,C =
B, (D \ {Py}) is the infinite cyclic subgroup generated by «. O

Now, we describe the center of B,,T', where T' is a torus. We assume that

T =R?/Z* .

We denote by (x,y) the equivalence class of (z,y). We assume that

1+1 141
P; = fori=1,... .
i (m+3’m+3) or ¢ e,

Let a; : [0,1] — T be the path defined by

it1 it1
A1) = —t, for t € [0,1] ,
ai(t) (m+3 m+3) ort € 0,1]

and let b; : [0,1] — T be the path defined by

1+1 7+1
bi(t) = ——, —— —¢) fortelo,1].
0= (g 1) forteby

Let « be the element of PB,,T represented by a = (a1, ...,a,) (see Figure 4.2), and let
B be the element of of PB,,T represented by b = (by,...,by).

17



FIGURE 4.2

PROPOSITION 4.2. With the above assumptions, the center of B,,T is the subgroup gen-
erated by o and 3. It is a free abelian group of rank 2.

Proof. The proof of Proposition 4.2 is divided into 4 steps. Let Z,, denote the subgroup
of PB,,T generated by a and f.

Step 1. Z,, is a free abelian group of rank 2.

By [Bil, Thm. 5], a and § commute, thus Z,, is an abelian group. We consider the
following exact sequence.

1 — PB,,_1\T\{P,} — PB, T2, (T,P) — 1

The group 71 (T, Py) is a free abelian group of rank 2 and {p(«), p(3)} is a basis of w1 (T, Py),
thus Z,, is also a free abelian group of rank 2.

Step 2. Z,, € Z(B,T).

Let
_ 1 m+ 2 1 m + 2

=|— —— | X |—,———| CT.

lm+3 m—f—B} [m—f—?) m—|—3]

By Proposition 2.2, the inclusion D C T induces a monomorphism B,,D — B,,T. The
following diagram commutes.

1 — PB,D — B,D - %, — 1

| | [

1 — PB,T — B, T - %, — 1

Thus B,,T is generated by PB,, T U B,,D.
By [Bil, Thm. 5], @ commutes with all the elements of PB,,T.

Let . )
c=(Rx|— 2"}z cT.
m+3 m+3

18



By Proposition 2.2, the inclusion C' C T' induces a monomorphism B,,C — B,,T. More-
over, « € B,,C and B,,D C B,,C. By Proposition 4.1, Z(B,,C) is the infinite cyclic
subgroup generated by a. So, & commutes with all the elements of B,,D.

This shows that o € Z(B,,,T). Similarly, g € Z(B,,T).

Step 3. Z(PB,T) C Zp,.

We prove Step 3 by induction on m. Let m = 1. Then PB1T = w1 (T, P,) = Z1, thus
Z(PBT) = Z.
Let m > 1. Let g € Z(PB,,T). We consider the following exact sequence.

1 — m(T\{Py,...,Pp_1}) — PB,,T-5PB,,_ T — 1

We have p(g) € Z(PBy,—1T). By induction, Z(PB,,-1T) C Z,,—1. Moreover, p(Z,,) =
Zm—1. Thus we can choose h € Z,, such that p(h) = p(g). We write ¢/ = gh™ 1.
Then ¢’ € Z(PB,,T) and ¢’ € m(T \ {P1,...,Pmn-1}) (since p(¢’) = 1), thus ¢’ €
Z(my(T\{P1,...,Pn_1})) = {1}, thus ¢’ = gh™! = 1, therefore g = h € Z,,,.

Step 4. Z(BnT) C PB,,T.

Let ¢ € B,,T. We suppose that there exist ¢,j € {1,...,m}, i # j such that
o(g)(P;) = P;, and we prove that g € Z(B,,,T).

Let a; € PB,,T represented by (P, ..., Pi—1,a;, Piy1,..., Py,), where Py denotes the
constant path on Py for £k =1,...,m and a; is as above. We consider the following exact
sequence.

1 — PB,, T\ {P} — PB,T-t5n,(T,P) — 1

Then p;(c;) # 1 and p;(ga;g~t) = 1 (see Figure 4.3), thus ga;g~! # «;, therefore g ¢
Z(ByT). O

> o—
P, —o>—" ) —e—

> o—
P, >

FIGURE 4.3
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5. COMMENSURATOR, NORMALIZER, AND
CENTRALIZER OF B,D IN B,,M

Let M be an oriented surface different from the sphere, and let D C M be a disk
embedded in M. Let n > 2, let Py,...,P, € D, and let P,11,...,Py, € M\ D. The
goal of this section is to describe the commensurator, the normalizer, and the centralizer
of B, D in B,, M. Note that, if n = 1, then B1D = {1}, thus

Cp, m(B1D) = Np, y(B1D) = Zp, m(B1D) = B, M .

This section is divided into two subsections. We state our results in Subsection 5.1,
and we prove them in Subsection 5.2.

5.1. STATEMENTS
A tunnel on M based at (D; Ppy1,. .., Py) is a map
H:DU{Pyi1,...,Pyn} x[0,1] — M

such that

1) H(z,0) = H(x,1) =z for all x € D,

2) H(P;,0) = P, and H(P;,1) € {Py41,...,Pp} for all P, € {P,41,...,Pn},

3) H(xz,t) # H(y,t) for x,y € DU{P,11,..., Py}, v #y, and for t € [0, 1].

There is a natural notion of homotopy of tunnels. The tunnel group on M based at
(D; Pyy1, ..., Py) is the group Ty, n M = Ty M(D; Pyyq, - - ., Pp,) of homotopy classes
of tunnels on M based at (D; P,41,...,Py,). Multiplication is concatenation, as with
braids.

We define a morphism

7:Th_nM x B,D — B,,M

as follows. Let h € T,,_,M and let f € B,D. Let H be a tunnel on M based at
(D; Pyy1, ..., Py) which represents h, and let b = (by,...,b,) be a braid on D based at
(Py,...,P,) which represents f. Let b = (51,...,5n,l~)n+1,...,5m) be the braid on M
defined by

bi(t) = H(b;(t),t) for i € {1,...,n} and for ¢t € [0,1],

bi(t) = H(P;,t) for i € {n+1,...,m} and for t € [0, 1].
Then 7(h, f) is the element of B,, M represented by b.

Remark. This is related to the tensor product operation for the classical braid groups (see
[Co)).

We denote by C), ., M the image of 7. Let h € T},,_,, M and let f, f" € B,,D. Then
m(hy f)- f r(h, ) =L FF Y =
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In particular,
CnmM C Np, m(BnD) .

THEOREM 5.1. Let n > 2, and M be an orientable surface, M # S?. Then

Cp, 0(BpD) = Cra M .

Let Z,, ;M denote the image by 7 of T,,,_, M x Z(B, D).
COROLLARY 5.2. Let n > 2. Then

OBmM(BnD) = NBmM(BnD) = Cn,mM y
Z5. 11(BaD) = ZypmM .

Remark. 1) We do not know whether a similar result holds for non-orientable surfaces.
ii) Corollary 5.2 generalizes [FRZ, Thm. 4.2].

Let B}, _, 1M =B}, .M(P1; Pyt1,...,Py,) denote the subgroup of By,_pi1 M =
Bo—nt1M (P, Ppia, ..., Py) consisting of g € B,,,—p+1M such that o(g)(P1) = P,. We
define a morphism  : T},_,M — B}, _, M as follows. Let h € T,,,_, M. Let H be a
tunnel on M based at (D; Py41, - - ., Py,) which represents h. Let b = (by,b,41,...,bm) be
the braid defined by

bi(t) = H(P;,t) for i € {1,n+1,...,m} and for ¢t € [0, 1].

Then r(h) is the element of B}, _,, ;M represented by b.

THEOREM 5.3. Let n > 2. There exists a morphism 6 : Cy n M — B}, _,, . M such that

o((h, f)) = r(h)
forall h € Ty,,_, M and for all f € B, D. Moreover, we have the following exact sequences.

1— B,D — CpM—BL M — 1
1 — Z(BuD) — ZpmM—5BL (M — 1

THEOREM 5.4. Letn > 2. Let M be either with non-empty boundary or a torus. There

exists a morphism ¢ : B%%HHM — Zp.mM such that 6 o =id. In particular,

CpmM ~ B}, _, .M x B,D ,
ZpmM ~ B, M x Z(B,D) .
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Remark. Theorem 5.4 generalizes [FRZ, Thm. 4.3] and [Ro, Thm. 3].

5.2. PROOFS
LEMMA 5.5. We consider an exact sequence
1—>G1—>G2i>G3—>1
Let Hy C Gy be a subgroup, let Hs = ¢(Hs), and let Hy = Ho N G1. Then

¢(OG2 (HQ)) - CG3 (H3) ;
CG2 (Hg) NGy C Ogl (Hl) .

Proof. Let g € Cg,(Hsz). We write
Fy = HyNgHyg "
Let hy,...,hy € Hy be such that
Ho=F,UhFoU...UhpFs .

Then
¢(Hz) = H3 = ¢(F2) U p(h1)p(Fo) U... U d(hy)d(F2) .

So, ¢(F») has finite index in Hs. Moreover,

G(F2) = ¢(Hy NgHag™ ") C ¢(Ha) N p(gH29~") = H3 N ¢(g)Hsd(g) "

thus H3z N ¢(g)Hzp(g) ™! has finite index in Hs. Similarly, Hs N ¢(g)Hz¢(g)~* has finite
index in ¢(g)Hzp(g) ™. So, d(g) € Ca,(Hs).

Let g € Cq,(H2) N Gy. We write
Fy=HyNgHyg ! .
Let hq,...,hy € Hy be such that
Hy=F,UhiFyU...UhiF; .
We assume that

hiFgmHl?éQ) forizl,...,l,
hiFgﬂleﬁ) fOIZ:l+1,,k
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We can also assume that h; € Hy for i =1,...,[. Then
Hy=(F,NH)Uh(FoaNH)U...Uh(FoNHyp) .

Moreover,
Fgﬁﬂlzﬂgﬂgﬂgg ﬁHl H1 ﬂngg 1

Thus H; N gH¢g~ "' has finite index in H;. Similarly, H; N gH;g~' has finite index in
nggil. SO, g < CGl(H1>. O

LEMMA 5.6. Let M be either with non-empty boundary or a torus. There exists a morphism
Lo : B i1 M — Ty M such that ko iy = id.

Proof. Let TM be the tangent space of M. It is known that TM = R? x M. We provide
M with the flat Riemannian metric. Namely, for all x € M, the metric ( , ), on x is the
standard scalar product on R? (which does not depend on x). Furthermore, we set the
following assumptions.

1) There is no closed geodesic of length < 4.

2) D is the disk of radius 1 centred at P;.

3)d(P,P;) >2forallie{n+1,...,m}.

4) Let C4,...,C4 be the boundary components of M. Then d(P;,C;) > 2 for all
jed{l,....q}

Now, let f € B} _, 7M. Let b = (b1,bpt1,...,by) be a braid based at (P,
P,i1,..., Py) which represents f. For t € [0, 1], we write

r(t) = 1nf{ d(by (1), an(t)),...,%d(bl(t),bm(t)),%d(bl(t),(]l),...,%d(bl(t),(]q),l} .

Then r : [0,1] — R is a continuous map and r(t) > 0 for all £ € [0, 1]. Let
Do ={(X1,X5) eR*; X?+X3<1}.
Let Hy : Dy x [0,1] — M be the map defined by
Hy(X,t) = expy, (1) (r(t)X) for X € Dy and for ¢ € [0,1] .
Let F': Dy — D be the diffeomorphism defined by
F(X)=expp X for X € Dy .

Let
H:DU{P,t1,...,Pn} x[0,1]] — M

be the map defined by

H(z,t) = Hy(F~'(z),t) for z € D and for t € [0,1] ,
H(P;,t) =b;(t) for P, € {Ppt1,...,Pn} and for t € [0,1] .
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The map H is a tunnel on M based at (D; P,y1,...,Py,). We define (o(f) to be the
element of T),,_,, M represented by H.

One can easily verify that ¢q is well-defined, that ¢y is a morphism, and that Ko.y = id.
O

LEMMA 5.7. The morphism & : Tyy—yM — B}, .1 M is surjective.
Remark. We do not know whether a similar result holds for non-orientable surfaces.

Proof. We choose an open disk K, embedded in M \ D and which does not contain
any P; for i = n+ 1,...,m. The inclusion M \ Ky C M induces an epimorphism ¢ :
B} ..M\ Ky — B}, _,.1M. The following diagram commutes.

T nM\ Ko — BL_ .. M\K,

l L+

K

TpuM 2 BL M

By Lemma 5.6, k : TpyenM \ Ko — B}, .1 M \ Ky is surjective. It follows that  :
To—nM — B}, _, .1 M is surjective, too. O

From now on, we fix a (set) section vy : B},_,, 1M — T, M of k. Moreover, we
assume that ¢o is a morphism if M is either with non-empty boundary or a torus, and that
L()(l) = 1.

Theorem 5.1 is a direct consequence of the following lemma.

LEMMA 5.8. Let n > 2. Let g € Cp, m(BnD). There exist u € B},_, .M and f € B,D
such that

9 =T(w(u),f) .

The following lemmas 5.9 and 5.10 are preliminary results to the proof of Lemma 5.8.

Recall that ¥, denotes the group of permutations of {P;,..., Py}, that 3, denotes
the group of permutations of {P, ..., P,}, and that X,,_, denotes the group of permuta-
tions of {P,,41,..., Pn}. We write

B"M =0 (S n) .

LEMMA 5.9. Letn > 1. Let g € Cpny(PB,D). There exist u € B!

M and
m—n+1
f € PB,D such that

9 =T(w(u),f) .
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Proof. We prove Lemma 5.9 by induction on n. Let n = 1. Then PB1D = {1}, thus
Cpr m(PB1D) =B} M .
On the other hand, if u € B, M, then
u="T1(o(u), Pr),

where P; denotes the constant path on P;.
Let n > 1. Let g € Cpn ar(PB,D). We write M’ = M\{Py, ..., Pa_1, Pui1,. .., P},
and D' = D\ {P1,...,P,_1}. We consider the following commutative diagram.

1 — ™D — PB,D % PB,.D — 1

! | l

1 — mM — B*M 2 B lmM — 1

By Lemma 5.5, p(g) € Cgn-1 ,,(PB,,—1D). By induction, there exist u € B}, .M and
f1 € PB,,_1D such that "

p(g) = 7(to(u), f1) -
We choose fo € PB,, D such that p(f2) = f1 and we write

/

9 =g-7(o(u), )" .
We have g’ € mM' (since p(g’) = 1) and ¢’ € Cpn p(PB,, D), thus, by Lemma 5.5,
g' S CﬂlM/(ﬂ'lDl) .

If either m # n or M is not a disk, then M’ is large and D’ is not a Mobius collar in M,
thus, by Theorem 3.1,
Cﬂ-lM/ (7T1Dl) = 7T1D/ .

If m =n and M is a disk, then my M’ = 71 D’, thus
CrlM/(ﬂ'lD/> = 7TlD/ .

If follows that
¢ = fsemD C PB,D .

So,
9= f3-7(o(u), f2) = 7(0(u), f3f2) . O

LEMMA 5.10. Letn > 2. Let g € Cp, p(BpD). Then o(g) € Xy X Y.

Proof. Let g € Cp, m(Bp,D). We suppose that o(g)(P,y+1) = Pi. Let f €
(D \ {Ps,...,P,},P1), f # 1. The group PB, D has finite index in B, D, thus
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Cp, m(B,D) = Cp, y(PB,D). Since m(D \ {Ps,...,P,}) € PB,D and since g €
Cpg, m(PB,D), there exists an integer k£ > 0 such that

gf*¢~' € PB,D .
We consider the following exact sequence.
1 —m(M\{Py,...,Py,Poys,...,Pn}) — PB,M-5PB,,_ 1M —1
The morphism p sends PB,, D isomorphically on PB, D. On the other hand, gf¥g=! # 1
(since f # 1 and B,,M is torsion free) and p(gfFg~!) = 1 (see Figure 5.1). This is a

contradiction.
This proves that o(g) € ¥, X ¥,y O

Pl ._
P2 ._ _._ .
P, &— —on— —o—
_.—._
I:)n+1
_.—._
|:)n+2 . .
P, 0 —-——— o —o
W e
g fk gl
FIGURE 5.1

Proof of Lemma 5.8. Let g € Cp, p(B,D). By Lemma 5.10, o(g) € ¥,, X Xp,—p,. We
choose fi € B, D such that o(gf; ') € £,n_, and we write ¢’ = gf; *. Then ¢’ € B M,
g' € CBmM(BnD), and OBmM(BnD) = CBmM(PBnD), thus
g' € CB%M(PBTLD) .
By Lemma 5.9, there exist u € B,,,_,, .M and f, € PB,D such that
g = 7(to(u), fa) -

So,
g = T(LO(U)7f2) ’ fl = T([’O(u)7f2f1) .

Proof of Theorem 5.3. The proof of Theorem 5.3 is divided into 5 steps.
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Step 1. Definition of 4.

We consider the natural morphism & : BXM — B}, . M. Let g € C,,,, M. By
Lemma 5.10, o(g) € ¥,, X ¥py_pn. We choose f € B, D such that o(gf~!) € ¥,,_,, and we
set

5(g) =do(gf") .

We prove that the definition of §(g) does not depend on the choice of f. Let f1, fo €
B,,D be such that a(gfl_l) €X,,—n and a(gf{l) € ¥,,—n. Then

%o(9f5 ") H0o(gfr 1) = dofog Mg f ) = do(fafi ) =1,
thus do(g/1") = do(9f>)-
Step 2. The map 6 : Cp .y M — B}, M is a morphism.

Let g1, g2 € Cp m M. Let f1, fo € B, D be such that U(glfl_l) € X,_n and 0'(92f2_1) €
Ym—n. By Corollary 5.2,
Cn,mM - NBmM(BnD) ’

thus there exists f3 € B, D such that g, L 192 = f3. Moreover,
a((9192)(fof3) ™) = o(g1fi g2 f5") € Sinn -

So,

8(91)8(g2) = do(grfi )oo(g2fs ") = olgrfi 'g2fs ") = 60((g192) (f2f3)™") = 6(g1g2) -

Step 3. Let h € T,,,_,M and let f € B, D. Then

(7 (h, f)) = 6(r(h,1) - 7(1, f)) = 6((h, 1)) - 6(f) = K(h) .

Step 4. We have the following exact sequence.

1 — ByD — CpyM B, M — 1

Let u € B!

m—n-+

1 M. Then

0(7(to(u), 1)) = K(to(u)) = u .

This shows that ¢ is surjective.
Let g € Cp, M. By Lemma 5.8, there exist u € B}, ;M and f € B, D such that
g =T1(to(u), f). If g € kerd, then



thus
g=71Qo(u), f)=7(,f)=f€B,D.

Step 5. We have the following exact sequence.
1 — Z(ByD) — ZpmM—5BL (M — 1
By Step 4, it suffices to show that § : Z, ,,M — B}, _, .M is surjective. Let u €
B}, .1 M. Then 7(1o(u),1) € ZymM and 6(7(o(u),1)) = u. O

Proof of Theorem 5.4. The morphism ¢ : B}

m—n-+

M — Z, ;M is defined by
v(u) = 1(eo(u),1) forue B _, M.

Clearly, 6 o =id. O

6. COMMENSURATOR, NORMALIZER, AND
CENTRALIZER OF B,N IN B, M

Let M be a large surface, and let N be a subsurface of M such that N is neither a
disk, nor a Mébius collar in M, and such that none of the connected components of M \ N
is a disk. Let Nj,..., N, be the connected components of M \ N. Let P;,...,P, € N,
and let P,y1,..., P, € M\ N. Fori=1,...,r we write

Pi={Pus1,--., P} N N; ,

where n; denotes the cardinality of P;. If n; = 0, we make the convention that BoN; = {1}.
The goal of this section is to prove the following theorem.

THEOREM 6.1.
CBmM(BnN) =B,N x B,,,N; x...x B, N, .

COROLLARY 6.2.

Cs, v (BaN) = Ng_ 1(ByN) = ByN X By, Ny X ... % By Ny |,
75 m(BaN) = Z(BuN) x By, Ny X ... x By N, .

The remains of this section are divided into two subsections. In Subsection 6.1 we
study an action of m; N on some groupoid IT; (M \ {Fy}). In Subsection 6.2 we apply the
results of Subsection 6.1 to prove Theorem 6.1.
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6.1. AcTION OF m N ON II; (M \ {P}).

Throughout this subsection, we fix a point Py € N and a point P, € N; for all
t = 1,...,7. Moreover, we do not assume that none of the connected components of
M\ N is a disk.

The fundamental groupoid of M \ {Py} based at {P,..., P.} is the groupoid Iy (M \
{Py}) defined by the following data.

1) The set of objects of II; (M \ {Fp}) is {P1, ..., P.}.

2) Let P;, P; € {P1,...,P.}. The set of morphisms from P; to P; is the set II; (M \
{Po})[P;, P;] of homotopy classes of paths in M \ {Fy} from P; to P;.

Let P;, Pj, P, € {P1,..., P.}. For convenience, we assume that the composition map
goes from Hl(M\{P()})[PZ, PJ] X Hl(M\{P()})[PJ, Pk] to Hl(M\{P()})[PZ, Pk] Note that

I (MA\A{Fo})[Pi, Pi] = m (M \ {Fo}, Py) .
Moreover, if € II1 (M \ {Fo})[P;, P;], then the map

0. m(M\{P}, i) — IL(M\{P})[P;, Fj]

g — gx

is a bijection.

Let P;, P; € {P1,...,P.}. An interbraid on M based at (P, [P;, P;]) is a pair b =
(bo, b1) of paths, by : [0,1] — M, such that

1) bo(O) = bo(l) = Po, bl(O) = PZ', and bl(l) = Pj,

2) bo(t) 7é bl(t> for t € [0, 1]
There is a natural notion of homotopy of interbraids. The interbraid groupoid on M based
at (Po,{Pi,...,P.}) is the groupoid IBoM = IBosM(Py,{P,...,P.}) defined by the
following data.

1) The set of objects of IBoM is {Py,..., P.}.

2) Let P;,P; € {Pi,...,P}. The set of morphisms from P; to P; is the set
IB;M|P;, P;] of homotopy classes of interbraids on M based at (P, [P;, Pj]).

Let P;, Pj, P, € {P1,...,P.}. For convenience, we assume that the composition map
goes from IBoM[P;, Pj] x IByM|[P;, Py] to IBaM|[P;, Py]. Note that

IBsM[P;, P;) = PBoM(Py, P)
Moreover, if X € IByM|[P;, P;], then the map

@X : PBQM(Po,Pz) — ]BQM[P“PJ]
g — gX

is a bijection.
Let P;, Pj € {P,..., P,}. We consider the natural maps

o : IBoM[P;, Pj] — m (M, Py) ,
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Let z € II1 (M \ {FPo})[ P, Pj], and let X = 3(z). Then the following diagram commutes.

1 — T (M\{Py}, P) — PB,M(P,,P) % m(M,P) — 1

l% l@X lid

I (M\{PV[P, P -5 IBM[P,P] -2 m(M,P)
Thus, « is surjective, 3 is injective, and
a™' (1) = B (M \ {Ro})[P;, Fy]) -
So, we can assume that
I (M \ {Po})[Py, Pj] = B (M \ {Po})[Py; Pj]) € IB2MIP;, Py .

The inclusion N C M induces a morphism vy : m (N, Py) — PBoM(Py, Py) for all
k =1,...,r. We define an action of (N, Py) on IBsM[P;, P;| as follows. Let u €
m1 (N, Py) and let X € IByM|[P;, Pj]. Then

w(X) = i) - X )"

Let z € II; (M \ {Po})[P;, Pj] and let uw € m (N, Fy). Then a(u(z)) = 1, thus u(z) €
I (M \ {Po})[P;, Pj]. So, the action of (N, Fy) on IByM|[P;, P;] induces an action of
7T1(N, P()) on Hl(M \ {P()})[Pz, P]]

We denote by Sn[F;, P;] the set of x € II;(M \ {Py})[P;, P;] such that, for all u €
71 (N, Py) there exists an integer k > 0 such that u*(z) = 2. The main result of Subsection
6.1 is the following proposition.

PROPOSITION 6.3. Leti,j € {1,...,r}.
Wl(Ni,Pi)Zﬂ'l(N',P') 1f’L=j s
Sn[P;, P = e e
0 ifi#yg.

The lemmas 6.4 to 6.7 are preliminary results to the proof of Proposition 6.3.

From now on and till the end of the proof of Lemma 6.7, we set the following assump-
tions (see Figure 6.1).

1) N is a sphere with ¢+ 1 holes (¢ > 1). We denote by Co, C1, ..., C, the boundary
components of N.

2) M \ N has two connected components, N; and Ns.

3) Nle :Clu...UCq, and NﬂNQ ZC().
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Co

N1 N N2
I I
Lojof
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We choose a point P € N different from Py. We choose a point Q; € C; for all i =
0,1,...,q. According to Figure 6.2,

1) we choose a path 7 : [0,1] — N\ {Fy} from Pj to Q; for alli =0,1,...,q,

2) we choose a path 7} : [0,1] — Ny from P; to Q; for alli =1,...,q,

3) we choose a path § : [0,1] — Ny from P to Qo.

FIGURE 6.1

FIGURE 6.2

We write 1 ‘
vi="; ()" fori=0,1,...,q,

6i:7f17i€7T1(M\{P0}7P1) forz':l,...,q,
T =0 € (M \ {Po})[P1, Py .
Note that the path T" induces a morphism

m1(Noy Po) — m(M\{Po}, P1)
g — TgT_l
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The following lemma is a consequence of Van Kampen’s theorem.
LEMMA 6.4. Let F' be the subgroup of mi (M \{Po}, P1) generated by (s, ..., By,.
T (M \ {Py}, P) = m1(Ny, P1) % (T - 11 (No, Po) - T~ 1) % F .
All these groups are free and {B3a, ..., B4} is a basis for F'. O
According to Figure 6.3,

1) we choose a simple loop «; : [0,1] — C; based at Q; for all i =0,1,...,q,
2) we choose a path §; : [0,1] — N from Py to Q; for alli =0,1,...,q.

FIGURE 6.3

We write . N ,
hzzvzaz(%)f E7T1(N1,P1) forz:l,...,q,

ho = v60(76) ™" € m (N, Py)
Uizéi&iéfleﬂl(N,P()) fori:O,l,...,q.

According to Figure 6.4, we choose a loop p : [0,1] — N\ {Fy} based at P} turning around
Py.
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FIGURE 6.4

We write
he =7 'um € (M \ {Po}, Pr) .

One can easily verify that

hc _ Thalel . hl_l . /82h2_1/82_1 C ﬁqh;lﬁ;l .

LEMMA 6.5. i) ug(g) = g for all g € m(Ny, Py).
i) ug(g) = g for all g € (N2, Ps).

ZZZ) UO(ﬁZ) = f3; for all B; € {62, . ,ﬁq}.
) uo(T) = h'T.

Proof. i) We choose a loop ( : [0,1] — Ny based at P; which represents g. Then the image
of ¢ and the image of ug are disjoint (see Figure 6.5), thus ug(g) = g.

FIGURE 6.5

ii) We choose a loop ( : [0,1] — N» based at P, which represents g. The image of ¢
and the image of ug are disjoint, thus ug(g) = g.

iii) The image of 3; and the image of ug are disjoint, thus ug(3;) = f;.
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iv) In Figure 6.6, the interbraid drawn in (a) is homotopic to the interbraid drawn
in (b), and the interbraid drawn in (b) is homotopic to the interbraid drawn in (c). The
interbraid drawn in (a) represents ug(7T), and the interbraid drawn in (c) represents

v o

It follows that

w(T) =~ =" w "o =0 'T . O

- -
-------

______

- P

FIGURE 6.6.c

34



LEMMA 6.6. Let k € {2,...,q}.
i) uk(g) = g for all g € T (N1, Pr).
ii) uk(g) = g for all g € m (N2, Py).
iii) up(T) = T
w) ug(Bi) = B foralli € {2,...,k—1}.
v) ug(Br) = Brhy, By th By
vi) ui(he) = Brhy By " heBehiBy

Proof. The statements i) to iv) can be proved with the same arguments as those given in
the proofs of the statements i) to iii) of Lemma 6.5.

v) In Figure 6.7, the braid drawn in (a) is homotopic to the braid drawn in (b), and
the braid drawn in (b) is homotopic to the braid drawn in (¢). The braid drawn in (a)
represents uy (), and the braid drawn in (c) represents

v e () e Rk () !

It follows that

u(Be) =71 i (ve) T ik () !
=y i) T ke () T v () Ty e v e () T b e () T
= Bihy ' B h B

FIGURE 6.7.a
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FIGURE 6.7.b

FIGURE 6.7.c

vi) In Figure 6.8, the braid drawn in (a) is homotopic to the braid drawn in (b), the
braid drawn in (b) is homotopic to the braid drawn in (c), and the braid drawn in (c) is
homotopic to the braid drawn in (d). The braid drawn in (a) represents uy(h.), and the

braid drawn in (d) represents
e (R) T ke () Tt
It follows that
ug(he) =71 iag () T iar(R) "t
=9 O e ) T )~
Yeew() T () I
= Brhy By theBrhiBy D

R TR Vo I PRl (o Bl
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FIGURE 6.8.b
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FIGURE 6.8.d

LEMMA 6.7. SN[Pl,Pl] = 7T1(N1,P1) and SN[Pl,PQ] = .
Proof. The proof of Lemma 6.7 is divided into 5 steps.
Step 1. (N1, P1) € Sny[Pr1, P

Let g € (N1, P1) and let u € w1 (N, Py). Let ¢ : [0,1] — Ny be a loop based at Py
which represents g, and let £ : [0,1] — NN be a loop based at Py which represents u. The
image of ( and the image of £ are disjoint, thus u(g) = g.

Step 2. SN[Pl,Pl] g 7T1(N1,P1) * I,
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Let
h, = BahgB, ' - ...- BahafBy " - by .
Then

he =Thy T~ - (h)™",
hlc € 7Tl(N1,P1> * F .

Let g € m (M \ {Fo}, P1). By Lemma 6.4, g can be (uniquely) written
g=axoTyT oy, TyT 1oy,

where
x; € m (N1, Py)« F fori=0,1,...,1,

xi#1 fori=1,...,1—1,
Y; €7T1(N2,P2)\{1} for ¢ = 1,...,l .
We suppose that [ > 1. By Lemma 6.5,
Uo(Q) = xohc_lTle_lhcxl Ce hc_lTle_lhcxl
=xohl, - T -hoyrhg ' - T - (hL)tayhl - ... T - hoythgt - T~ - (B!

)l
It follows that, for an integer k£ > 0,
ug(9) = wo(he)* - T - hgyrhg® - T~ (he) Par (b)) .- T - hgyihg ™ - T - (b)) ay
thus uf(g) # .
So, if g € Sy[P1, P1], then there exists an integer k¥ > 0 such that uf(g) = g, thus
[ =0, therefore g € m1(Ny, P) x F.

For j =2,...,q, we denote by F(fs,..., ;) the subgroup of F generated by {f2, ...,
Bit-

Step 8. Sn[Pr, Pr] C mi (N1, P1) * F(B2, ..., B4-1)-

Let
h' = ﬂqﬂhqqﬁq:ll oo BohaByt - hy - TheT ™t .

Then

hc — (h/)_lﬁqhq_lﬁq_l ’
h' € m (N1, P1)* (T - m1(No, Po) - T7) % F(By, .., By-1) -

Let g € m (M \ {Fo}, P1). By Lemma 6.4, g can be (uniquely) written
g = l’oﬁglwl .. .ﬁ;lxl N
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where

x; € (Ny, P) (T - 71 (No, Po) - T 1) % F(Ba,...,08,-1) fori=0,1,...,1,
g € {1} fori=1,...,1,
i #F1lif gy =—¢; fori=1,...,0—1.

We call this expression a relative reduced expression of g with respect to 3, of length

l=1,(9).
We suppose that [ > 1. Let £ > 0 be an integer. By Lemma 6.6,

uq(Bq) = ﬁqhq_lﬁq_lhc_lﬁqhq = h/ﬁqhq )

ug(z;) =ax; fori=0,1,...,1.
Ife;, =¢€;41 =1, then
ug (BywiBg) = ()" - By - hgai(h)" - By - by .

Ife; =1 and €;41 = —1, then

ug(Bowilly ') = (W)" - By - hgaihg ™ - 8,70 - (W) 75,
and h’;xih;k # 1 (since z; # 1). If ¢, = —1 and ;41 = 1, then,

wg(By 'wify) = hg™ - Byt (W) "R (R - By - hy
and (h')~*z;(h")* # 1 (since z; # 1). If & = £;41 = —1, then

ug (B @il 1) = hg - Bt (W) T ashg - B () TE

So, u’; (9) has a relative reduced expression with respect to 3, of length I, and this expression
begins with either zo(h/)* (if e = 1) or oh, " (if &1 = —1). In particular, u%(g) # g.
So, if g € Sy[P1, P1], then there exists an integer k& > 0 such that u’; (9) = g, thus
l4(g) = 0, therefore
g €m(Ny, P)x (T -7 (Noy Po) - T 1) % F(B, ..., Bg—1) -
By Step 2, it follows that

g€ m(Ny, P1)x F(Ba,...,0q-1) .

Step 4. Sn[P1, P1] C mi(Ny, Pr).

By Step 3,
SNn[P1, Pi] C m (N1, Py) * F(Ba,...,0.-1) -
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Let j € {2,...,qg — 1}. We suppose that Sy [Py, P1] C (N1, P1) « F(B2,...,03;) and we
prove that SN[Pl, Pl] Q 7T1(N1, Pl) * F(ﬂg, e ,ﬁjfl).
Let R be the set of g € m (M \ {Fo}, P1) which can be (uniquely) written

— € €l
g = l‘oﬁjlwl . -Bj xr o,
where

either x; GWl(Nl,Pl)*F(ﬂg,...,ﬁjfl) or r; € {hc,hgl} fori=0,1,...,1,
$i7élif€i+1=—€i forizl,...,l—l,

o, Ly g{h07h51}7
gi=—land g, = 1if 2; € {he,h;'} fori=1,....1—1.

We write [ = [g(g).

In order to be able to choose j € {2,...,¢— 1}, we first have to assume that ¢ > 3. In
particular, neither Ny, nor NUNjs is a disk, thus h; £ 1 for alli =1, ..., ¢. The uniqueness
of the expression of g comes from the fact that h. can be written

he=Thy'T byt Bohy ' By - Bk 87 Bipahy Bty - Behyg "By

This kind of expression would not be necessarily unique if 7 = q.
We suppose that [ > 1. If ¢, = ¢;41 = 1, then, by Lemma 6.6,

wi(Bjify) = B -hyt- Bt ho - By - hyai - By - byt B Rt By hy
If ¢, =1 and €;41 = —1, then, by Lemma 6.6,
uj(ﬁszﬁ;l) — ﬁj . h;l ﬁ;l . hc—l ‘ﬁj 'hjxih;1 ﬁ;l e - ﬁj . hj ﬁ;l 7

and hsz-hj_l # 1 (since z; #1). If g, = —1, g;41 = 1, and x; & {h., h; '}, then, by Lemma
6.0,

uj(gjflxigj) = h;l 'ﬁ]l “he- B hy 'ﬁ]l cxi- B - hjfl .5;1 h7t B hy
If ¢, = €;41 = —1, then, by Lemma 6.6,
wi (87 iy 1) = byt Byt e By Byt ke B he By by B
Ife; = —1, gi41 = 1 and x; = hS (where € € {£1}), then, by Lemma 6.6,
uj (85 heBy) = hy By theBihg Byt - Bihy By heBihg B - Bihy By he  Bihy
=hyt- Bt R B hy

It follows that u;(g) € R, that lg(u;j(g)) > [, and that Ig(u;(g)) > { if none of the z; is
included in {he, h '} for i = 1,...,1— 1. This shows that u}(g) # g if k > 0 is an integer,
lfg € 7T1(N1,P1) * F(ﬁQ, .. .,/Bj), and if lR(g> 2 1.
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Let g € Sy[P1, P1]. By hypothesis, g € m1(Ny, Py) * F(B2,..., ;). There exists an in-
teger k > 0 such that u¥(g) = g, thus Ir(g) = 0, therefore g € m (N1, P )+ F(Ba,. .., Bj—1).

Step 5. SN[Pl,PQ] = @
Let g € II1 (M \ {Po})[P1, P2]. By Lemma 6.4, g can be (uniquely) written

g= xoTle_la;l .. .Tle_lxlT ,

where
x; € m (N1, Py)« F fori=0,1,...,1,
xi#1 fori=1,...,1—1,
yiem(Ng,Pg)\{l} forizl,...,l.
By Lemma 6.5,

Uo(Q) = xohc_lTle_lhcxl . hc_lTle_lhcxlhc_lT
= xohl, - T -hoyrhg ' - T - (hL) " ayhl - ... T - hoythgt - T~ - (BL) " rayhl, - T - by

It follows that, for an integer k£ > 0,

u(g9) =zo(hL)* - T hiyihg™ - T~ - (L) P (R)* ... T - h{yhg® - T
(h) *ay(h)* - T - hf

thus ub(g) # g. O

Now, the special assumptions on N that we made just before Proposition 6.3 are
dropped.

Proof of Proposition 6.3. We prove that Sy [Py, Pi] = 71 (N1, P1) and that Sy [Py, Py] = 0.
The same argument works for any F; and P;.

Let g € m (N1, P1) and let u € m (N, Py). Let ¢ : [0,1] — Ny be a loop based at
Py which represents g, and let £ : [0,1] — N be a loop based at P, which represents
u. The image of ¢ and the image of ¢ are disjoint, thus u(g) = g. This shows that
(N1, P1) C Sy [Pr, Pu.

Now, let (4, ..., C, be the connected components of N N N;. We choose a subsurface
N’" C N (see Figure 6.9) such that

1) N’ is a sphere with ¢ + 1 holes,

2) M \ N’ has two connected components, N; and

Ny,=N\N UNU...UN, ,
3) NNN; =C1U...UCy,
4) N’ N N} has a unique connected component that we denote by Cj,

5) Py e N'.
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Moreover, in the case where r = 1, we pick some point P, € NJ.

FIGURE 6.9

Let Sn/ [Py, P1] be the set of g € w1 (M \ {Py}, P1) such that, for all u € 7 (N', Py),
there exists an integer k > 0 such that u*(g) = g. We have Sy [Py, P1] C Sy [Py, P1] (since
N 2 N’), and, by Lemma 67, SN/[Pl,Pl] = 7T1(N1,P1), thus SN[Pl,Pl] Q 7T1(N1,P1). It
is clear by disjointness that 71 (Ny, P1) C Sy[P1, Pi], so m (N1, P1) = Sy [Py, Pi].

Now, we assume that » > 2. Let Sy/[Py, P»] be the set of g € II1 (M \ {Po})[P1, P2
such that, for all u € 7 (N’, Py), there exists an integer k > 0 such that u*(g) = g. We
have Sy [Py, P2] € Sn/[Py1, P2] (since N D N’), and, by Lemma 6.7, Sy/[Py, P2] = ), thus
SN[Pl,PQ] =0. 0

6.2. PROOF OF THEOREM 6.1
The lemmas 6.8 to 6.12 are preliminary results to the proof of Theorem 6.1.

LEMMA 6.8. Let m =2 and let n=1. Leti € {1,...,r} be such that P, € N;. Then

CPB2M(PBlN) = CPB2M(7T1N) = 7T1(N,P1) X Wl(Ni,PQ) .

Proof. We assume that ¢ =1 (i.e. P, € Ny7). The inclusion
T (N, P1) x 71 (N1, P2) € Cpp,m(m1N)

is obvious.
Let g € Cpp,m(mN). We consider the following exact sequence.

1 — m(M\{P}) — PByM-Lm M — 1
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The morphism p sends 1 (N, P;) isomorphically on 71 (N, P;). By Lemma 5.5, p(g) €
Cr,m(miN). By Theorem 3.1, p(g) = f € m (N, P1). We write ¢/ = f~1g. We have
g €em(M\{Pi}, P) (since p(g') = 1) and ¢’ € Cpp,p(m1N).
Let u € w1 (N, Py). Since ¢’ € Cpp,pm(m N), there exists an integer k > 0 such that
guF (gt em (N, P) .
The morphism p sends 71 (N, P;) isomorphically on 71 (N, Py), thus
gut(g)7t = plg"ut(g") ™) = p(g)p(uM)p(g") T = u*

therefore
ukg/u—k _ g/ )
We write Q1 = P» and we choose a point Q; € N; for alli =2, ... ,r. Let II; (M\{P1})
be the fundamental groupoid on M \ {P;} based at {Q1,Q2,...,Q,}. By the above
considerations, ¢’ € Sy[Q1, Q1], thus, by Proposition 6.3, ¢’ € 71 (N1, Ps). So,

g=fg em(N,P)xm(N,P). O

LEMMA 6.9.

Cpp, 1(PByN) = PB,N x PB,, Ny x ... x PB, N, .

Proof. The proof of Lemma 6.9 is divided into 2 steps.
Step 1. Let n = 1. We prove by induction on m that
Cpp, M(PB1N) =Cpp, m(mN)=m N x PB,,,Ny x...x PB, N, .
The case m = 1 is proved in Theorem 3.1, and the case m = 2 is proved in Lemma
6.8. Let m > 3. The inclusion
mN x PB,,N1 x ... x PB,, N, CCpp, m(mN)

is obvious.
Let g € Cpp, m(m N). We consider the following exact sequence.

1 — m(M\{P,P,,...,Pp_1}) — PB,M->PB,,_ 1M —1

The morphism p sends 1 (N, Py) isomorphically on 71 (N, P;). By Lemma 5.5, p(g) €
Cpp,,_,m(mN). We assume that P,, € N;. By induction,

CPBmflM(ﬂ-lN> = 7'('1N X PBn1—1N1 X PBn2N2 X ... X PBnrNr .
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Thus we can choose f € w1 (N, Py), b} € PB,,_1Ny, and h; € PB,,N; for alli =2,...r
such that
p(g) = fhiha.. h, .

The morphism p sends PB,,, N; isomorphically on PB,,,N; for all © = 2,...,r, and sends
PB,,, Ny surjectively on PB,,,_1N;. We choose hy € PB,, Ny such that p(h;) = h} and
we write

g =gh ' hythitf

We have ¢’ € my(M \ {P1, Pay...,Ppn—1}, Pp) (since p(¢') = 1) and ¢’ € Cpp,, pm(m1N).
We have the inclusions

7T1(M\{P1,P2,...,Pm_1})QPBQM\{PQ,...,Pm_l},
WlNgPBQM\{PQ,...,Pm_l},

where PBoM \{Ps, ..., P,_1} denotes the pure braid group on M \{Ps, ..., P,_1} based
at (P, Py). So,
g € Cppym\(Ps.....P 1} (TN

thus, by Lemma 6.6,
g' S 7T1(N, Pl) X 7T1(N1 \Pi,Pm) s

where P; = Py \ {P}. Let f € m(N,Py) and let hy € 71 (N7 \ P}, Pn) be such that
g’ = fhi. Then

1=p(g") = p(f)p(h1) = f,
thus ¢’ = hy € 1 (N1 \ P}, Pn). So,

g=g - fhihy...hy = f(g'm1)hy ... hy € TN x PBy Ny x PBy,Ny x ... x PB, N, .

Step 2. We prove by induction on n that

Cpp, m(PB,N) = PB,N x PB, Ny x ... x PB, N, .

The case n =1 is proved in Step 1. Let n > 1. The inclusion

PB,N x PB,, Ny x ...x PB, N, C Cpp, 1/(PB,N)

is obvious.
Let g € Cpp, m(PB,N). Let N' = N\ {P1,...,P,_1} and let M/ = M\ {P,...,
P,_1,Put1,...,Py}. We consider the following commutative diagram.

1 —» mN — PB,N % PB, N — 1

| | !

1 — mM — PB,M % PB, M — 1
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By Lemma 5.5, p(g9) € Cpp,,_,m(PB,—-1N). By induction,
Cpp,,_mM(PB,-1N)=PB,,_ 1N x PB,,, Ny X ... x PB,, N, .
Thus we can choose f' € PB,_1N and h; € PB,,,N; for all i = 1,...,r such that
p(g) = f'hi...hy .

The morphism p sends PB,,, N; isomorphically on PB,,,N; for all + = 1,...,r, and sends
PB, N surjectively on PB,,_1N. We choose f € PB, N such that p(f) = f’ and we write

g =ght. . htfh.

We have ¢’ € m1(M’, P,) (since p(¢') = 1) and ¢’ € Cpp,, p(PB,N), thus, by Lemma 5.5,
g € Crypp(mN'). By Theorem 3.1, ¢’ € 71 (N’, P,) C PB,N. So,

g=('f)h1...h. € PB,N x PB, Ny X...x PB, N, . O

LEMMA 6.10. Let m =n. Then

Cp,m(BnN)=B,N .

Proof. The inclusion
B,N C Cp, m(B,N)

is obvious.

Let g € Cp,m(BnN). We choose f € B, N such that o(f) = o(g) and we write
g = gf~'. We have ¢’ € PB,M and ¢’ € Cp, y(B,N) = Cp, v (PB,N), thus ¢’ €
Cpp, M(PB,N). By Lemma 6.9, ¢’ € PB,,N. So,

g=¢feB,N. O
Recall that %, denotes the group of permutations of {P;,..., Py}, that ¥, denotes
the group of permutations of { P, ..., P,}, and that ,,_,, denotes the group of permuta-
tions of {P,41,..., Pn}. The following lemma can be proved with the same arguments as

those given in the proof of Lemma 5.10. Note that, since m (N, P;) # {1}, we do not need
to assume that n > 2 in Lemma 6.11.

LEMMA 6.11. Let g € Cp,, p(BnN). Then o(g) € Xy X Xy O
Let 3,,, denote the group of permutations of P; for i =1,...,r.
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LEMMA 6.12. Let g € Cp, p(BnN). Then

0(g) €3 X Xp, X oo X By .

Proof. Let g € Cp, nm(BnN). By Lemma 6.11, g € 071 (%, x ¥,,_,,). We consider the
following exact sequence.

1 — By oM\ {Py,....,P,} — 0 (Z0 X Spp_p) B, M — 1

The morphism p sends B,, N isomorphically on B, N. By Lemma 5.5, p(g) € Cp, p(BpN).
By Lemma 6.10, p(g) = f € B,N. We write ¢ = gf~!. We have ¢’ € B,,,_.M \
{P1,...,P,} (since p(¢') =1) and ¢’ € Cp,, m(BnN).

Let h € B, N. Since ¢’ € Cp, pm(B,N), there exists an integer k > 0 such that

gh* (g™t € B,N .
Since p is an isomorphism on B, N,
gh* () = plg'h* (g7 = plg)p(h*)p(g) ™ = h*

therefore
hkg/h—k: _ g/ )

We suppose that P,11 € Nj, that P,y1o2 € No, and that o(g)(Py11) = Ppy2. We
also have 0(¢')(Pn4+1) = Ppt2. We write Q1 = P41 and Q2 = P,12. We choose a point
Q; € N, forall i =3,...,r. Let II;(M \ {P1}) be the fundamental groupoid on M \ {P;}
based at {Q1,...,Q,}. Let b = (b),,,,...,b),) be a braid on M \ {P,...,P,} based at
(Ppt1, ..., Py) which represents ¢'. Let x € II1 (M \ {P1})[Q1, Q2] be represented by b;, ;.
By the above considerations, x € Sy[Q1,Q2]. This contradicts Proposition 6.3.

So,

o(g) €Xy XXy, X...x X, . O

Proof of Theorem 6.1. The inclusion
B,N x B, N1 x ... x B, N, CCpg, rm(B,N)

is obvious.
Let g € Cp, v (BnN). By Lemma 6.12,

o(g) €Xp X Xp, X oo X Xy
Thus we can choose f € B, N and h; € B,,N, for all i =1,...,r such that
o(g)=oc(f)o(h1)...o(h,) .
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We write

g =ght. . hytft.

We have ¢ € PB,M and ¢ € Cp, yu(B,N) = Cp, um(PB,N), thus ¢ €
Cpp, mM(PB,N). By Lemma 6.9, there exist f € PB,N and h, € PB,,N, for all

i=1,..

So,

.,r such that

g = f'h,.. K.

g=f'Ry...h. - fhy...h. = (f'f)(h\h1)...(hL.R,)
€ BN xB, Ny x...xB, N.. O
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