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1 Introduction and Statement of Results

This paper concerns the Artin braid groups Bn and especially the subgroups
Pn of pure braids. Our main result is the explicit construction of a strict total
ordering, <, of pure braids which is invariant under multiplication on both sides
(for α, β, γ ∈ Pn, α < β implies αγ < βγ and γα < γβ) and has the following
properties:

1. There is a straightforward algorithm to decide which of two given pure
braids is the greater. It is, in a sense, an extension of Artin’s solution of
the word problem for Pn.

2. The ordering respects the standard inclusions Pn ⊂ Pn+1, and so defines
an ordering on the direct limit P∞. It is also compatible with the homo-
morphism f : Pn+1 → Pn which “forgets the last string,” meaning that
α < β implies f(α) ≤ f(β).

3. The pure braids β ∈ Pn which are positive in the sense of Garside [14]
are also positive in our ordering. That is, if β is a nontrivial pure braid
expressible in the standard braid generators σi with no negative exponents
(β ∈ P +

n = Pn ∩ B+
n ) then 1 < β, where 1 denotes the identity n-string

braid. (see sec. 8)

4. P +
n is well-ordered under our ordering.

5. Our ordering of Pn extends Garside’s partial ordering of P +
n . (see sec. 9)

The ordering is defined by a combination of the “combing” technique of
Artin and the Magnus expansion of free groups in rings of formal power se-
ries. The existence of an ordering of Pn, invariant under multiplication on both
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sides, implies that the group ring ZPn embeds in a division ring, using a result
proved independently by Malćev [19] and Neumann [22]1. An important result
of Dehornoy [8] (see also [13] and [29]) is that the full braid groups Bn can be
given a strict total ordering which is invariant under multiplication on one side
(but not both). We will see that Dehornoy’s ordering of Bn and our ordering
of Pn are fundamentally incompatible; indeed any right- or left-ordering of Bn

is necessarily incompatible with any bi-ordering of Pn, according to [27].
In the following sections, we describe a few basics of the braid groups, or-

derable groups, Artin’s combing, Magnus expansions, Dehornoy’s ordering and
establish our particular conventions. We also discuss the connection with partial
orderings which have been defined by Garside and Elrifai-Morton.

We are grateful to L. Paris for pointing out that our methods also apply to a
large class of complex hyperplane arrangements, those of fibre type, as defined
in [12]. Thus we can define explicit orderings to show the following:

Theorem: The fundamental group of the complement of a complex hyper-
plane arrangement of fibre type can be given a strict total ordering which is
invariant under multiplication on both sides.

As pointed out in [28], the existence of a bi-ordering of Pn (as well as the
fibre-type hyperplane arrangement groups) follows directly from the observation
of [12] that these groups are residually nilpotent, torsion-free (using the main
result of [23]). The contribution of the present paper is the explicit construc-
tion with the properties cited above, perhaps most notably the well-ordering of
Garside-positive pure braids.

2 Braid groups

Emil Artin [1] defined the braid groups Bn as isotopy classes of n disjoint strings
embedded in 3-space, monotone in a given direction, and beginning and ending
at certain specified points. The product of two braids is given by concatenation.
These groups have played an extremely important rôle in topology, analysis,
algebra and theoretical physics. Artin showed that Bn admits a presentation
with generators σ1, . . . , σn−1, and relations

σiσj = σjσi if |i− j| > 1, 1 ≤ i, j ≤ n− 1 (1)
σiσi+1σi = σi+1σiσi+1 i = 1, . . . , n− 2, (2)

where the generators σi can be interpreted geometrically as the so-called ele-
mentary braids (shown in figure 2) whose only crossing takes the (i + 1)-st
strand over the i-th; this corresponds to a right-hand screw twist.

Corresponding to any braid is a permutation of the set {1, · · · , n} recording
how the strings connect the endpoints. In particular, a braid whose permutation
is the identity is called a pure braid. These form a normal subgroup Pn of

1Added in proof: P. Linnell has announced that ZBn also embeds in a division ring.
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Figure 1: The elementary braid σi

index n! in Bn, and fit into an exact sequence

1→ Pn → Bn → Sn → 1.

3 Automorphisms of free groups

Let Fn be a free group of rank n, with generators x1, . . . , xn. Artin showed
that Bn embeds in Aut(Fn), the automorphism group of the free group, in
the following way. Let Dn := D2 − Qn denote the disk with n punctures
Qn = {p1, . . . , pn} arranged in order along a straight line in D2. Fn can be
identified with π1(Dn). A braid can be regarded as the graph of a motion of
n distinct points in the disk, beginning and ending in Qn; this motion extends
to the whole disk, so that a braid gives rise to a self-homeomorphism of Dn,
unique up to isotopy, fixing the punctures and boundary of D2. Passing to the
fundamental group, this induces an automorphism of Fn.

To be precise, let x1, . . . , xn be loops in Dn representing generators of
π1(Dn), oriented in the clockwise sense, as shown in Figure 2. The arcs stand
for loops which are small regular neighbourhoods of the arcs.

The braid σi corresponds to the (say right-hand) screw motion interchanging
pi and pi+1 and fixed off a small neighborhood of the interval between these
points. The automorphism corresponding to σi is given by

xi 7→ xixi+1xi
−1,

xi+1 7→ xi,

xj 7→ xj (j 6= i, i + 1.)

This action is illustrated in Figure 2. Thus a braid β will take xi to wixπ(i)wi
−1,

where π is the permutation corresponding to β, and wi also depends on β. It
is well-known that this determines an embedding of Bn into Aut(Fn). We
point out for later reference that a pure braid corresponds to an automorphism
which is a “local conjugation,” i.e., one in which each generator is sent to some
conjugate of itself.

Further details may be found, for example, in [5], or in [7].
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Figure 2: The action of σ1 on π1(Dn)

4 Ordered groups

If G is a group whose elements can be given a strict total ordering < which is
right-invariant,

g < h⇒ gk < hk,

for all g, h, k ∈ G, then (G, <) is said to be a right-ordered group. If the
ordering is also left-invariant, we say (G, <) is a bi-ordered group (also called
fully-ordered, or simply “ordered” in the literature.)

A right-orderable group G can be recognized by the existence of a “positive
cone” P ⊂ G. A group G is right-orderable if and only if there exists P ⊂ G such
that: (1) P is multiplicatively closed: P · P ⊂ P , and (2) G \ {1} = P

∐
P−1

where P−1 = {p−1 | p ∈ P}, i.e., P partitions G. For if G is a right orderable
group, take P = {g | 1 < g}. Conversely, if such a subset P exists, we may
define a right order on G by g < h⇔ hg−1 ∈ P . (Note: the criterion g−1h ∈ P
would give a left-invariant ordering; a group is right-orderable if and only if it
is left-orderable, but the orderings may differ.)

G is bi-orderable if and only if properties (1) and (2) above hold, for some
subset P and in addition, (3): for all g ∈ G, gPg−1 ⊂ P (normality).

It is clear that subgroups of right-orderable (resp. bi-orderable) groups are
right-orderable (resp. bi-orderable) groups. The theory of orderable groups is
over a century old. A classical theorem of Hölder [15] asserts that if an orderable
group is Archimedean, then it is isomorphic (algebraically and in the ordering
sense) with a subgroup of the additive reals, and therefore abelian. An ordering
on a group is said to be Archimedean if whenever 1 < x < y in the group,
there exists an integer p such that y < xp.

Orderability is a strong property. For example, if G is right-orderable, then
G is torsion-free. Furthermore, if R is a ring with no zero-divisors, and G is
right-orderable, then the group ring RG has no zero-divisors and no units, other
than the “trivial units” of the form rg where r is a unit in R and g ∈ G. It
is nontrivial, but well-known (see [23], [4], [9], [16]) that free groups are bi-
orderable (we will present a proof shortly). More generally, Vinogradov [30]
proved that bi-orderability is preserved under free products. Good references
on ordered groups are [26], [21], or [17].
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Right orderability is easily seen to be preserved under extensions, that is, if
1 → G → K → H → 1 is an exact sequence of groups and G and H are right
orderable, so is K, by taking k ∈ K to be positive iff its image in H is positive, or
the image is the identity and k is positive in G. However, bi-orderability is not
quite so well-behaved, being preserved under direct products, but not necessarily
even semi-direct products. If G and H are bi-orderable, then G×H is also bi-
orderable: simply take the lexicographic ordering: (g, h) < (g′, h′) ⇐⇒ g <G g′

or g = g′ and h <H h′.
Now suppose G acts on H , the action being denoted by h 7→ hg. In this

situation, we can define the semi-direct product G n H to have underlying
set G × H , but taking as the product (g, h)(g′, h′) = (gg′, hg

′
h′). The Klein

bottle group
〈x, y | yxy−1 = x−1〉

is not bi-orderable, although it is a semi-direct product of two infinite cyclic
groups (which are, of course, bi-orderable). The reason this group cannot be
bi-orderable is that x and x−1 are conjugate, and so one is positive if and only
if the other one is positive, which leads to a contradiction. A similar argument
can be made in the braid group B3, taking x = σ1σ

−1
2 and y = σ1σ2σ1. It

follows that none of the braid groups Bn, n ≥ 3 are bi-orderable, as observed in
[24].

We shall need the following lemma, whose proof is routine.

Lemma 1 Let G and H be bi-ordered groups. Then the lexicographical order
on G n H is a bi-ordering if and only if the action of G on H preserves the
order on H (equivalently, (PH)g ⊂ PH for all g ∈ G.)

5 The Magnus ordering of the free group Fn

Let Fn denote the free group of rank n, generated by x1, . . . , xn. By using a
representation of Fn into a sufficiently large ring, due to Magnus [20], we can
produce a bi-ordering with special invariance properties.

Define Z[[X1, X2, . . . , Xn]] to be the ring of formal power series in the non-
commuting variables X1, . . . , Xn, and let µ : Fn → Z[[X1, X2, . . . , Xn]] be the
Magnus map, defined on generators by

µ :
{

xi 7→ 1 + Xi

xi
−1 7→ 1−Xi + Xi

2 −Xi
3 + · · ·

Each term of a formal series has a degree, simply the sum of the exponents,
and we use the usual notation O(d) to denote the sum of all terms of degree at
least d. As noted in [20], the subset G = {1 +O(1)} of Z[[X1, X2, . . . , Xn]] is a
subgroup. The inverse of an element 1 + W is simply 1 −W + W 2 − · · · , even
when W ∈ O(1) is itself an infinite series. Also shown in [20] is the following.

Theorem 2 (Magnus) The map µ : Fn → G is injective.
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Because of this, we may omit mention of the map µ and identify Fn with its
image, writing x1 = 1 + X1, etc.

Definition 3 We now define an ordering on Z[[X1, X2, . . . , Xn]]. See [20],
chapter 5, exercise 5.6.10, and also [3]. First declare X1 ≺ X2 ≺ · · · ≺ Xn.
If V, W are two distinct series, consider the smallest degree at which they dif-
fer, and sort the monomial terms of that degree with variables in lexicographic
order, using ≺. Compare the coefficients of the first term, when written in the
order described, at which V and W differ. Declare V < W precisely when the
coefficient of that term in V is smaller than the corresponding coefficient in W .
We call this the Magnus ordering on Z[[X1, X2, . . . , Xn]].

Example 1 Under the Magnus map, we have x1 = 1 + X1 and x2 = 1 + X2.
The images differ in that x1 has coefficient 1 at term X1 while x2 has coefficient
0 in this term. Hence x1 > x2. Similarly, we have x1 > x2 > · · · > xn > 1.

Theorem 4 The Magnus order on Z[[X1, X2, . . . , Xn]] induces a bi-ordering
on G and hence on Fn. Moreover, this ordering of Fn is preserved under any
ϕ ∈ Aut(Fn) which induces the identity on H1(Fn) = Fn/[Fn, Fn].

Proof. The ordering is clearly invariant under addition, but not necessarily
under multiplication in general (for example multiplication by −1 reverses or-
der.) However, we shall establish right-invariance under multiplication in G by
verifying that if u, v ∈ G then we have

u < v ⇔ vu−1 > 1.

Write u = 1+U and v = 1+V where U, V ∈ O(1). It is clear from the definition
that u < v if and only if V − U > 0. In the calculation

vu−1 = (1 + V )(1− U + U2 − · · · ) = 1 + V − U + R

every term of the remainder R = (V − U)(−U + U2 − U3 + · · · ) has degree
exceeding that of the lowest degree term of V − U , and so V − U is positive if
and only if vu−1 > 1. A similar calculation shows that u < v ⇔ u−1v > 1, and
therefore the ordering is also left-invariant.

To prove the second statement, consider an automorphism ϕ : Fn → Fn
which induces the identity on first homology. This means that ϕ(xi)x−1

i is in
the commutator subgroup [Fn, Fn]. As observed in [20], the image of [Fn, Fn]
lies in the subgroup {1 + O(2)} of G. For convenience, write x′i = ϕ(xi). The
corresponding Magnus expansion is

x′i = 1 + X ′i = (1 +O(2))(1 + Xi) = 1 + Xi +O(2)

and therefore
X ′i = Xi +O(2).

Now if w is a word in the free group Fn, its image under ϕ has Magnus expansion
obtained from that of w by replacing each occurence of Xi by Xi + O(2). It
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follows that the first non-zero non-constant terms of w and its image under ϕ are
identical, and therefore ϕ preserves the positive cone of Fn, which is equivalent
to being order-preserving.

6 Artin Combing and the Structure of Pn

There is a “natural” inclusion of Pn−1 ↪→ Pn, which adds an n-th strand to an
(n− 1)-strand pure braid β, as illustrated in Figure 3.

.
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.
.
.
.

.

.
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.
.n-1

β
n-1

β

Figure 3: The natural inclusion of Pn−1 ↪→ Pn

There is also a retraction f : Pn → Pn−1 defined by “deleting the n-th
strand”. Define Fn−1 to be the kernel of f ; then Fn−1 consists of all braids
with representatives for which strands 1, 2, . . . , n− 1 pass straight through and
the n-th strand weaves among the remaining ones. This presents Fn−1

∼=
π1(R2 \ (n − 1) points), a free group of rank n − 1, as a normal subgroup
of Pn. We may write β ∈ Pn as β = f(β)f(β)−1β. Note that f(β) ∈ Pn−1

while f(β)−1β ∈ Fn−1.

i + 1

j

n

1

Figure 4: The generator xj,i of Fi = 〈x1,i, . . . , xi,i〉 ⊂ Pn.

For any i ∈ {1, . . . , n−1}, we may thus consider the subgroup Fi ⊂ Pi ⊂ Pn
as consisting of all braids having all strands going straight across, except the
one of index i + 1, which may have crossings only with strings of lower index.
Free generators x1,i, . . . , xi,i of Fi are illustrated in Figure 4. In terms of the
Artin generators,

xj,i = σiσi−1 · · ·σj+1σj
2σj+1

−1 · · ·σi−1
−1σi

−1.

When the context of Fi is understood, we will drop the second subscript and
write simply Fi = 〈x1, . . . , xi〉.
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Theorem 5 (Artin [2]) The map β 7→ (f(β), f(β)−1β) is an isomorphism
Pn ∼= Pn−1 n Fn−1. The action of Pn−1 on Fn−1 = 〈x1, . . . , xn−1〉 induces the
identity on the abelianization H1(Fn−1) = Fn−1/[Fn−1, Fn−1].

Proof. The semi-direct product decomposition is well-known and immediate
from the observation that Fn−1 is normal and intersects Pn−1 in precisely the
identity element. For a good explanation, see [7], which also explains that the
action of Pn−1 on Fn−1 turns out to be the Artin action of Bn−1 as described
in Section 3, restricted to the pure braids. As remarked earlier, each such auto-
morphism is a local conjugation, and therefore the identity upon abelianization.

The full “Artin combing” of Pn is the iterated semi-direct product decom-
position Pn ∼= (· · · (F1 n F2) n F3) n · · · n Fn−1). This provides a unique
factorization of a pure braid β as a product β = β1β2 . . . βn−1 in which the
pure braid βi belongs to Fi. Thus we introduce coordinates in the semi-direct
product:

β = (β1, β2, . . . , βn−1),

in which βi may be expressed in terms of the generators x1, . . . , xi of Fi.

Theorem 6 The lexicographic order on Pn ∼= F1 n F2 n F3 n · · · n Fn−1, with
terms in the free factors compared using the Magnus order, is a bi-ordering.

Proof. This is just a recursive application of Theorem 5, Theorem 4 and
Lemma 1.

We will refer to this order on Pn as the Artin-Magnus order.

7 Examples and properties of the ordering

We will begin with some examples in P4 = (F1 n F2) n F3. An element β ∈ P4

will be written β = (β1, β2, β3), where each βi ∈ Fi. The convention for labeling
generators of the Fi is explained in Figure 4.
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Example 2 First consider the simplest nontrivial pure braids.

σ1
2 = (x1, 1, 1) = (1 + X1, 1, 1).

σ2
2 = (1, x2, 1) = (1, 1 + X2, 1).

σ3
2 = (1, 1, x3) = (1, 1, 1 + X3).

This shows that σ1
2 > σ2

2 > σ3
2 > 1. In general, σi

2 > σi+1
2N for every

power N , illustrating that for n > 2, the Artin-Magnus ordering on Pn is non-
Archimedean (as it must be, by Hölder’s theorem).

Example 3 The generator of the center of P4:

∆2

=

(x1, x1x2, x1x2x3)

Example 4 The common braid used for hair, on the first three strings.

(σ1σ2
−1)3

=

(1, x2
−1x1

−1x2x1, 1)
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Applying the Magnus expansion to the second coordinate,

x2
−1x1

−1x2x1 7→
(1−X2 + X2

2 −X2
3 + · · · )(1−X1 + X1

2 −X1
3 + · · · )(1 + X2)(1 + X1)

= 1−X1X2 + X2X1 +O(3)

Since the first non-constant term is negative, we conclude (σ1σ2
−1)3 < 1.

The Artin-Magnus ordering is natural in several senses. Consider the in-
creasing sequence

P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · · ⊂ P∞,

where the group P∞ is the direct limit.

Proposition 7 If m < n, the Artin-Magnus ordering of Pn, restricted to Pm,
is the Artin-Magnus ordering of Pm. Therefore, this defines an ordering of P∞.
Moreover, the retraction map f : Pn → Pn−1 is as order-preserving as possible:
β < γ =⇒ f(β) ≤ f(γ).

Proof. The statement is obvious when considering coordinates: Pm ex-
tends to Pn by adding an appropriate number of “identity” coordinates. The
retraction simply deletes the last coordinate.

It will be useful to consider the linking numbers associated with a pure braid
β. Define the linking number of the i-th strand with the j-th strand, i 6= j
(indices refer to the left-endpoints), by

lki,j(β) =
1
2

∑
c

sign(c),

where the sum is over all crossings c involving the two strings of index i and j,
and sign(c) is the power, ±1, of the corresponding braid generator σk

±1. Each
lki,j : Pn → Z, 1 ≤ i 6= j ≤ n is additive: lki,j(αβ) = lki,j(α) + lki,j(β).

Proposition 8 Let β be a pure braid with n strands, expressed in Artin coor-
dinates: β = (β1, . . . , βn−1). Then the Magnus expansion

βi = 1 + q1X1 + · · ·+ qiXi +O(2)

in Fi ⊂ Z[[X1, X2, . . . , Xi]] has coefficients of its linear terms:

qj = lkj,i+1(β).

Proof. The formula is a straightforward calculation, using two observations.
First, the exponent sum of xj = xj,i in a word w = w(x1, . . . , xi) equals the
coefficient of Xj in the Magnus expansion of w. Second, if j ≤ i, then xj,i
contributes +1 to lkj,i+1(β) = lki+1,j(β) and zero to all other linking numbers.
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The abelianization functor takes all the braid groups Pn and Bn, n ≥ 2,
to infinite cyclic groups. The abelianization map Bn → Z can be taken to be
the total exponent count of a braid when expressed in the generators σi. This
map sends Pn to 2Z; in this setting it can also be interpreted as twice the total
linking number

β → 2
∑

1≤i<j≤n
lki,j(β).

The abelianization map on Pn is clearly not order-preserving. However, it
does respect the orderings if one confines attention to the free subgroups Fi ⊂ P
in the Artin decomposition

Pn = F1 n F2 n F3 n · · · n Fn−1.

The abelianization of Fi is the free abelian group of rank i, which we may
identify with i-tuples of integers, Zi, and order lexicographically. In this setting
the abelianization may be realized as the map abi(w) = (q1, . . . , qi) where qj is
the exponent sum of xj in w. We shall say that a mapping x → x′ of ordered
sets is order-respecting if x < y implies x′ ≤ y′. Then we see, from the
definition of the Magnus ordering of Fi that abi is order respecting. The next
proposition follows directly from the above discussion.

Proposition 9 With the Artin-Magnus ordering on Pn and lexicographic or-
dering on the product of infinite cyclic groups, the product of abelianization maps
ab1× ab2× · · · × abn−1, as a mapping

Pn = F1 n F2 n · · · n Fn−1 → Z× Z2 × · · · × Zn−1,

is order-respecting. Moreover, it is compatible with the retraction f : Pn → Pn−1

in that the following diagram commutes:

Pn
ab1 ×···×abn−1−−−−−−−−−−−→ Z× Z2 × · · · × Zn−1yf yprojection

Pn−1
ab1 ×···×abn−2−−−−−−−−−−−→ Z× Z2 × · · · × Zn−2

8 Garside Positive Braids

In his celebrated solution of the conjugacy problem in Bn, Garside [14] intro-
duced the so-called “positive” braids, i.e., nontrivial braids which have an ex-
pression in the generators σi without any negative exponents. We will call such
braids “Garside positive.” Let B+

n denote the semigroup of Garside positive
braids together with the identity.

Theorem 10 If a braid in Pn is Garside positive, then it is also positive in the
Artin-Magnus ordering.
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Proof. The statement is clear for elements of P2. Inductively, suppose
that it is true for Pn−1. Let β ∈ Pn be Garside positive, and consider the
braid f(β) ∈ Pn−1. Note that f(β) is either Garside positive (case (1)) or
has no crossings (case (2)). In case (1), applying induction, f(β) is Artin-
Magnus positive, hence β is positive, by definition of the lexicographic order
of Pn−1 n Fn−1. In case (2), β is an element of Fn−1. We may assume the
first n− 1 strings are straight and read the expression for β in terms of the free
generators of Fn−1 from the places where the nth string passes under the first
n − 1 strings. By our convention (choice of xj,i), and Garside positivity, β is
therefore a strictly positive word in x1, . . . , xn. It follows from Proposition 8
that its Magnus expansion has positive leading coefficient (occurring at a linear
term). Therefore β > 1.

Recall that an ordered set is said to be well-ordered if every non-empty
subset has a least element.

Theorem 11 The set of Garside positive pure n-braids is well-ordered by the
Artin-Magnus ordering.

Proof. The statement is clear for n = 2. Now suppose that n > 2 and the
theorem holds for n− 1. Consider a non-empty set S ⊂ Pn of Garside positive
braids. We need to show S has a least element. The set f(S) = {f(β) ∈ Pn−1 |
β ∈ S}, being a subset of Pn−1 ∩B+

n−1, has a least element; call it α0. Let

S0 = {γ ∈ S | f(γ) = α0};

clearly if there is a least element of S0 it is also the least element of S. Note
that the coordinates of γ ∈ S0 in Pn−1 n Fn−1 are γ = (α0, α0

−1γ). We now
appeal to lemma 12 to find a γ0 ∈ S0 whose last coordinate α0

−1γ0 is minimal.
Then γ0 is the least element of S.

Lemma 12 Consider a subset T ⊂ Fn−1 ⊂ Pn of the form

T = {α0
−1γ | γ ∈ S0},

where S0 is some set of Garside-positive pure n-braids and α0 is a fixed pure
braid in Pn−1 ⊂ Pn. Then T has a least element in the Magnus ordering of
Fn−1.

Proof. The condition α0
−1γ ∈ Fn−1 is equivalent to the equation f(γ) =

α0. Since α0 is in Pn−1, and γ is Garside positive, we have lkj,n(α0
−1γ) =

lkj,n(γ) ≥ 0. This implies that the coefficients (q1, . . . , qn−1) of the linear terms
in the Magnus expansion of all elements of T are positive, hence there is a
lexicographically minimal one, say (q̂1, . . . , q̂n−1). Let

T ′ = {τ ∈ T | τ = 1 + q̂1X1 + · · · q̂n−1Xn−1 +O(2)}.
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Then T ′ is nonempty, and its elements are < other elements of T . We now claim
that T ′ is finite. It follows that T ′ has a least element, which is also the least
element of T . To verify the claim, observe that the exponent sum (as a word in
x1, . . . , xn−1) of every element of T ′ is q̂1 + · · · + q̂n−1. Each xi has exponent
sum +2 when expanded in the braid generators σj . The σ-exponent sum is an
invariant of braids, and we use it to conclude that for every α0

−1γ ∈ T ′, the
length of γ is exactly 2

∑
i q̂i minus the exponent sum of α0. There are only

finitely many distinct γ satisfying this.

We note that the analogue of Theorem 11 was proved in [6, 18] for the
Dehornoy ordering of the full braid groups.

We next compare the Artin-Magnus ordering <AM on Pn with Dehornoy’s
and several other orderings on the braid groups appearing in the literature.

9 The Garside partial order

Garside [14] defined a partial order ≺ on the semigroup B+
n by α ≺ β for

α, β ∈ B+
n , if there exists a γ ∈ B+

n such that αγ = β. Thurston [11] showed
that this in fact defines a lattice order on the set of non-repeating braids D =
{α ∈ B+

n | α ≺ ∆}.

Proposition 13 The Artin-Magnus order on Pn extends the Garside order on
P +
n = Pn ∩B+

n .

Proof. This follows immediately from Theorem 10.

10 The partial order of Elrifai and Morton

In [10], Elrifai and Morton define a partial order on Bn, as follows: for α, β ∈ Bn,
write α ≤EM β when β = γ1αγ2, for some γ1, γ2 ∈ B+

n . Then 1 ≤EM α if and
only if α ∈ B+

n . Furthermore, taking ∆ = ∆n ∈ Bn to be the “half-twist” braid,
defined inductively by ∆2 = σ1, ∆n = ∆n−1σn−1 · · ·σ1, they show that in their
partial order each generator σi satisfies

1 ≤EM σi ≤EM ∆. (3)

We remark that 1 ≤EM σi
2 ≤EM ∆2 holds also for each generator σi, since

∆ = γ1σi = σiγ2, for some γ1, γ2 ∈ B+
n . Hence ∆2 = γ1σi

2γ2. This is consistent
with the Artin-Magnus order on Pn:

Proposition 14 For each generator σi ∈ Bn,

1 <AM σi
2 ≤AM ∆2.

We have equality in the second inequality only when i = 1, n = 2.
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Proof. The inequalities follow immediately from example 3.

However, the following example shows that the Artin-Magnus order on Pn
does not extend the partial order defined by Elrifai and Morton. Let α =
σ1

2σ2
−2. This has Artin-combing (x1, x2

−1), hence is positive in the Artin-
Magnus ordering. Taking γ1 = σ1σ2 and γ2 = σ2σ1, and defining β = γ1αγ2,
we have β <AM 1, so in particular, β < α in the Artin-Magnus order. We note
that γ1αγ1

−1 is also negative in the Artin-Magnus ordering — conjugation by
non-pure braids is not order-preserving.

11 The Dehornoy ordering

The Dehornoy ordering [8] on Bn may be defined in terms of the generators
σ1, · · · , σn−1 as follows: A braid β is in the positive cone if and only if there is,
for some i ∈ {1, . . . , n− 1}, an expression

β = w1σiw2σi · · ·wk−1σiwk (4)

in which each wj is a word in σ±1
i+1, · · · , σ±1

n−1. In other words, the generator with
the lowest subscript appears with only positive exponent. A more geometric
view of the same ordering appears in [13]. Then we define a right-ordering by
α < γ iff γα−1 is in the positive cone. (Actually Dehornoy chose his ordering to
be left-invariant by using the criterion α−1γ positive, but the choice is arbitrary
and right-invariance seems to dominate the literature on ordered groups.)

As noted already, no ordering of Bn can be a bi-ordering, for n ≥ 3. Even
when restricted to Pn, as noted in [13], the Dehornoy ordering is not bi-invariant.
However, there are some similarities between the Dehornoy and Artin-Magnus
orderings. In both orderings we have

σ1
2 � σ2

2 � σ3
2 � · · · > 1,

where the notation α� β means that α is greater than all powers of β. Another
similarity is that the Dehornoy ordering is also a well-ordering when applied to
Garside positive braids (see [18] and [6]).

On the other hand, the pure braid (σ1σ2
−1)3 is clearly Dehornoy positive,

whereas we saw that it is negative in the Artin-Magnus ordering. Of course, its
inverse is Dehornoy negative and Artin-Magnus positive.

We wish to thank R. Fenn for pointing out the following proposition. It
shows that the Dehornoy ordering is fundamentally different from our ordering
of Pn.

Theorem 15 Bn has a least positive element in the Dehornoy ordering, namely
σn−1. Similarly, σn−1

−1 is the greatest element which is < 1 in Bn. In Pn,
σn−1

2 is the least Dehornoy-positive, and σn−1
−2 is the greatest element which

is < 1 in the Dehornoy ordering.

14



Proof. If a braid has the form of eq. (4), call it i-positive, so that β ∈ Bn

is Dehornoy-positive if and only if it is i-positive for some i = 1, . . . , n − 1.
To prove the first statement, note that σn−1 is (n − 1)-positive. Suppose that
there is a β ∈ Bn with 1 < β < σn−1. Then βσn−1

−1 < 1 by right-invariance.
Now β is i-positive for some i. If i < n − 1 we conclude βσn−1

−1 is also i-
positive, contradicting βσn−1

−1 < 1. On the other hand, if i = n − 1, β must
be a positive power of σn−1, contradicting β < σn−1. This establishes the first
statement. The other parts follow similarly.

Corollary 16 The Dehornoy ordering of Bn is discrete: every element β has a
unique successor, σn−1β, and predecessor, σn−1

−1β. Similarly, in the Dehornoy
ordering restricted to Pn, a pure braid β is the only element of Pn strictly between
σn−1

−2β and σn−1
2β.

Theorem 17 For n ≥ 3, the Artin-Magnus ordering of Pn is order-dense:
given any two pure n-braids α < γ, there exist (infinitely many) pure braids β
with α < β < γ.

Proof. By invariance, we may assume α = 1. In the free group Fn−1 =
〈x1, . . . , xn−1〉, consider the sequence of commutators {ci} defined recursively
by

c1 = x1x2x1
−1x2

−1, ck = x1ck−1x1
−1ck−1

−1.

A simple calculation shows that their Magnus expansions are, in ascending order:

ck = 1 + X1
kX2 − kX1

k−1X2X1 + · · · .

It follows that each ck > 1 in the Magnus order of Fn−1, but that ck → 1 in the
sense that if 1 < w ∈ Fn−1, then 1 < ck < w for sufficiently large k; just take
k bigger than the degree of the first nonzero non-constant term of the Magnus
expansion of w. Now, in Pn, consider the sequence of braids {β(k)} with Artin
coordinates

β(k) = (1, . . . , 1, ck).

It is clear that given any γ > 1 in Pn, we have 1 < β(k) < γ for all sufficiently
large k.

Since for n ≥ 3, Pn with the Artin-Magnus ordering is a countable totally or-
dered set, dense and with no greatest or least element, it is order-isomorphic with
the rational numbers, by a classical result. Of course this order-isomorphism
cannot be an algebraic isomorphism, as Pn is non-abelian.

We note that for B∞ or P∞ the Dehornoy ordering is no longer discrete, but
is (like the Artin-Magnus ordering) order-dense.

Theorem 18 For n ≥ 3, the Artin-Magnus ordering on Pn does not extend to
any right-ordering on Bn. It also does not extend to a left-invariant ordering
on Bn.
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Proof. We may assume that n = 3. It has already been shown that
(σ1σ2

−1)3 < 1. A similar calculation shows that (σ1
−1σ2)3 < 1. If the ordering

extends to a right- (or left-) invariant ordering of B3, we must have σ1σ2
−1 < 1

and σ1
−1σ2 < 1.

Assuming right invariance we conclude

σ1σ2
−1σ1

−1σ2 < σ1
−1σ2 < 1,

which would imply (σ1σ2
−1σ1

−1σ2)3 < 1. But a direct calculation shows

(σ1σ2
−1σ1

−1σ2)3 = (1, x2
−1x1

−1x2
−1x1x2

2) = (1, 1 + X1X2 + · · · ) > 1,

a contradiction showing no right-invariant extension to B3 exists.
If instead we assume left-invariance, we argue that

σ1σ2
−1σ1

−1σ2 < σ1σ2
−1 < 1,

and reach the same contradiction.

Recently, Rhemtulla and Rolfsen [27] have shown that no right- or left-
invariant ordering of Bn whatsoever can be bi-invariant when restricted to Pn,
or any finite index subgroup.

12 Fibre-type hyperplane arrangements

A hyperplane arrangement is a collection of complex (n−1)-dimensional hyper-
planes in complex n-space. The theory of hyperplane arrangements is a deep
subject with many unsolved problems. The fundamental group of the comple-
ment of the union of the hyperplanes is an important invariant of an arrangement
(see the recent survey paper by Paris [25]). It is conjectured, but not known in
general, that all such groups are torsion-free.

The pure braid group Pn can be viewed as the fundamental group of the
complement of the hyperplanes zi = zj , 1 ≤ i < j ≤ n in Cn. Fibre-type
hyperplane arrangements are defined in [12], and are in a sense a generalization
of this example.

Theorem 19 Let G be the fundamental group of (the complement of) a fibre-
type hyperplane arrangement. Then G is bi-orderable.

Proof. By definition of a fibre-type arrangement, its complement Mr is the
top of a tower of fibrations Mi → Mi−1, with fibre the complex plane minus
di points. The space M1 at the bottom of the tower is likewise a punctured
complex plane. Therefore π1(Mi) ∼= π1(Mi−1) n Fdi . Moreover, according
to [12], proposition 2.5, the action of π1(Mi−1) upon Fdi is trivial on H1(Fdi).
It follows, in the same way as Theorem 6, that if each free group Fdi is given
the Magnus ordering, then the lexicographic ordering on

G ∼= (· · · (Fd1
n Fd2) n Fd3) n · · · n Fdr )

is bi-invariant.
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