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Université de Bourgogne, BP 47870

21078 - Dijon Cedex, France.
e-mail: perron@topolog.u-bourgogne.fr

and DALE ROLFSEN

Pacific Institute for the Mathematical Sciences and
Department of Mathematics,

University of British Columbia,
Vancouver, BC, Canada V 6T 1Z 2.

e-mail: rolfsen@math.ubc.ca

(Received 3 September 2001; revised 10 June 2002)

Abstract

It is known that knot groups are right-orderable, and that many of them are not bi-
orderable. Here we show that certain fibred knots in S3 (or in a homology sphere) do have
bi-orderable fundamental group. In particular, this holds for fibred knots, such as 41, for
which the Alexander polynomial has all roots real and positive. This is an application of
the construction of orderings of groups, which are moreover invariant with respect to a
certain automorphism.

1. Introduction

A group is right-orderable (RO) if its set of elements can be given a strict total ordering
which is invariant under right multiplication: x < y implies xz < yz. A right-orderable
group is easily seen to be left orderable, by a different ordering (compare inverses), but
if it has an ordering which is simultaneously left and right invariant, it is said to be
orderable, or “bi-orderable” for emphasis. See [8] and [9]. Our application to knot theory
is the following.

Theorem 1·1. If K is a fibred knot in S3, or in any homology 3-sphere, such that
all the roots of its Alexander polynomial ∆K(t) are real and positive, then its knot group
π1(S3 \K) is bi-orderable.

It is a special case of a more general result regarding fibrations. In the next section we
discuss the behavior of group ordering under extensions and apply this to fundamental
groups of manifolds which fibre over S1. A key problem is to find bi-orderings of a
group, invariant under some automorphism(s). A final section is devoted to solving this
problem, provided the group is free and the automorphism, on the homology level as a
linear mapping, has all eigenvalues real and positive.
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2. Extensions and fibrations

Consider a normal subgroup K of a group G, with quotient H, i.e. an exact sequence

1 −→ K
i−→ G

p−→ H −→ 1.

Moreover, suppose K and H are right-ordered. We can define an ordering of G by declar-
ing that g < g′ if and only if either p(g) <H p(g′) or else p(g) = p(g′) and 1 <K g′g−1.

Proposition 2·1. If K and H are right-ordered, then the ordering described above is
a right-ordering of G. If K and H are bi-ordered, this ordering is a bi-ordering of G if
and only if the ordering of K is invariant under conjugation by elements of G.

Proof. Routine, and left to the reader.
Of particular relevance to this paper are HNN extensions. If K is a group, and ϕ:K →

K an automorphism, the corresponding HNN extension G has presentation consisting of
the generators of K plus a new generator t, and the relations of K together with relations
t−1kt = ϕ(k) for all generators k ∈ K. Here we have an exact sequence 1 → K → G →
Z→ 1.

Corollary 2·2. If K is RO, so is the HNN extension G. If K is bi-ordered, then G

is bi-orderable if the automorphism ϕ preserves order : k < k′ ⇔ ϕ(k) < ϕ(k′).

Now consider a fibration p:E → B with fibre F . There is an exact homotopy sequence

· · · −→ π2(B) −→ π1(F ) i∗−→ π1(E)
p∗−→ π1(B) −→ 1.

Corollary 2·3. If i∗π1(F ) and π1(B) are right-orderable, then so is π1(E). If π1(B)
is bi-orderable and i∗π1(F ) has a bi-ordering invariant under conjugation by π1(E), then
π1(E) is bi-orderable.

Now consider the special case of a manifold Xn which fibres over S1, with fibre Y n−1.
One may represent X as a product Y × [0, 1] modulo the identification (y, 1) ∼ (f(y), 0).
Here f :Y → Y is a homeomorphism; one calls f or its induced mappings on homology
or homotopy groups, the associated monodromy. We may regard X as the mapping torus
of f .

Proposition 2·4. If the manifold X fibres over S1, with fibre Y , and π1(Y ) is RO,
then so is π1(X). If π1(Y ) is bi-orderable, by an ordering preserved by the monodromy
f∗:π1(Y )→ π1(Y ), then π1(X) is bi-orderable.

Proof. This is an application of Corollary 2·2 and the fact that π1(X) is an HNN
extension of π1(Y ), corresponding to the automorphism f∗.

Corollary 2·5. If the 3-manifold X3 fibres over S1, then π1(X) is right-orderable,
unless the fibre is a projective plane P2.

Proof. The group of every surface except P2 is right-orderable. See [12].
This raises the question: given a bi-orderable group and an automorphism, can one find

a biordering of the group, which is also invariant under the automorphism? The answer
may be yes or no, and in general, this seems a difficult problem. If the automorphism has
a finite nontrivial orbit, the answer is no, that is, no invariant ordering exists, by an easy
argument. However, there is one reasonably general situation in which we can establish
sufficient conditions for a “yes” answer.
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Suppose F is a free group with finite basis {x1, . . . , xk} and ϕ:F → F is an auto-
morphism. Consider the abelianization ϕab:Zk → Z

k, which may be considered a k by
k matrix of integers, using the images of the xi as a basis. The eigenvalues of ϕab are,
of course, the roots of the characteristic polynomial det (ϕab − tI), where I is the iden-
tity k by k matrix. They are, in general, a set of k complex numbers, possibly with
multiplicities.

Theorem 2·6. Given the free group automorphism ϕ:F → F it is possible to bi-order
F by an ordering which is invariant under ϕ provided the eigenvalues of the abelianization
ϕab are all real and positive (multiplicities allowed).

The proof of this is rather involved, and will be the subject of the final section. It has
an immediate application to fibrations.

Theorem 2·7. Suppose Xn fibres over S1 with fibre Y n−1. If π1(Y ) is a free group
and the homology monodromy H1f :H1(Y ) → H1(Y ) has only real positive eigenvalues,
then π1(X) is bi-orderable.

3. Fibred knots

We recall that a link is a pair (S3, L), where L is a smooth compact 1-manifold in the
3-sphere; if L has a single component it is called a knot. The corresponding link group
is π1(S3 \ L). A fibred knot or link L is one for which S3 \ L fibres over S1, with fibres
open surfaces, each of whose closures has L as boundary. The Alexander polynomial
of a fibred knot is also the characteristic polynomial of its homology monodromy (see
e.g [11]). Thus Theorem 1·1 follows from Theorem 2·7; fibred knots with positive-root
polynomials have bi-ordered groups. To put this in perspective consider the following.

Proposition 3·1. Classical link groups are right-orderable.

Proof. This has been noted by Howie and Short [5]. The argument is to first observe
that, since a free product of groups is RO if and only if each of them is RO, we can assume
the link complement is irreducible. In [5] it is shown that if M is orientable, irreducible
and has positive first Betti number, then π1(M) is locally indicable, meaning that any
finitely generated subgroup has Z as a quotient. According to a theorem of Burns and
Hale, [3], locally indicable groups are right-orderable.

Proposition 3·2. Torus knot groups are not bi-orderable. The same holds for satel-
lites of torus knots, e.g. complex algebraic knots in the sense of Milnor [6], and for groups
of nontrivial cables of arbitrary knots.

Proof. The group of a torus knot has a presentation 〈x, y : xp = yq〉 where p and q

are relatively prime integers greater than 1. In this group, it is easily established that x
and y do not commute, but that their powers xp = yq are central (in fact generate the
center of the knot group). That this group is not bi-orderable follows from the lemma
below. Any satellite of a torus knot contains the torus knot’s group as a subgroup, and
therefore its group could not be bi-ordered either. The same is true of a (p, q)-cable, as
long as |p| and |q| are greater than 1.

Lemma 3·3. Suppose G is a group containing elements g and h which do not commute,
but some power of g commutes with h. Then G is not bi-orderable.
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Proof. Suppose there were an ordering “<” on G invariant under multiplication on
both sides, and therefore under conjugation. Suppose g−1hg < h. Then g−2hg2 < g−1hg

by invariance and by transitivity g−2hg2 < h. An easy induction shows that g−nhgn < h,
for all n, contradicting the assumption that some power of g commutes with h. If h <
g−1hg a similar contradiction arises.

The question had been raised, whether there exist any knot groups (other than Z, the
group of the trivial knot) which are bi-orderable. This was the motivation for the present
paper and was answered by Theorem 1·1.

Corollary 3·4. The group of the figure-eight knot 41 is bi-orderable.

Proof. The knot 41 has ∆ = t2 − 3t+ 1 whose roots are (3±
√

5)/2.
To our knowledge, this is the first known nontrivial bi-ordered knot group. It is in-

teresting to note that 41 can be realized as the link of an isolated singularity of a real
algebraic variety in R4, c.f. [10], but not that of a complex curve in C2. On the other
hand its knot group is better behaved, in terms of orderings, than those of complex
algebraic knots.

We recall that a knot polynomial ∆ is the Alexander polynomial of some fibred knot
in S3 if and only if it is monic. In other words, a polynomial

∆ = a0 + a1t+ · · ·+ art
r

is a fibred knot polynomial if and only if r is even and:

∀i, ai = ar−i, ∆(1) = Σai = ±1, a0 = ar = 1.

The condition of having, in addition, all roots real and positive seems to be rather
uncommon. We count 121 nontrivial prime fibred knots of fewer than 11 crossings. Ac-
cording to [2] in that range, the fibred knot conditions on its Alexander polynomial are
not only necessary, but also sufficient, that the knot be fibred. Besides 41, only two other
prime knots of fewer than 11 crossings have polynomials which satisfy the conditions of
the Theorem 1.1, namely 812 : ∆ = t4− 7t3 + 13t2− 7t+ 1 and 10137 : ∆ = (t2− 3t+ 1)2.

On the other hand, there are infinitely many fibred knot polynomials with the property
of having only positive real roots. It is known [7] that, in general, each can be realized
by infinitely many fibred knots. The only one of degree 2 is ∆ = t2 − 3t+ 1. In degree 4,
it is not difficult to show that the class of such polynomials is exactly those of the form
∆ = t4−at3 +(2a−1)t2−at+1, for integers a > 5. To see this, note that any polynomial
with all real positive roots must be alternating, thus our degree 4 polynomial has the form
∆ = t4− at3 + bt2− at+ 1 with a, b positive integers and where moreover b = 2a− 2± 1.
Symmetrizing, we have that t2∆(t) = ∆̂(t+ t−1), where ∆̂(u) = u2− au+ b− 2. We also
see that ∆ has all roots t real and positive if and only if all roots u of ∆̂(u) are real and
> 2. This happens only when b = 2a− 1 and a > 5.

4. Invariant orderings

It is well known [8] that free groups are bi-orderable. Our aim in this section is to
find a bi-ordering which is also invariant with respect to a given automorphism, and in
particular to prove Theorem 2·6.

First we consider the analogous problem of ordering a k-dimensional real vector space
V , by an ordering which is to be invariant with respect to vector addition and under
an invertible linear transformation L:V → V . If L has a finite orbit (other than that
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of the zero vector), this will be impossible: this corresponds to an eigenvalue which is a
(complex) root of unity. It is also clear that negative real eigenvalues pose a problem, and
we do not know how to deal with complex eigenvalues in general. On the other hand,
suppose all the eigenvalues λ1, ..., λk of L are real and positive. It is standard linear
algebra that, although L may not be diagonalizable, there exists a basis v1, . . . ,vk with
respect to which L has a matrix which is upper triangular, with the eigenvalues on the
diagonal. Let (x1, . . . , xk) denote the coordinates of a vector x in such a basis, that is
x = x1v1 + · · · + xkvk. We now order the vectors x,y ∈ V by (reverse) lexicographic
ordering using these coordinates. In other words, x < y ⇔ xi < yi (under the usual
ordering of R) at the last i for which the coordinates differ. It is a routine exercise to
verify the following, noting that L(vi) = λivi+ some fixed linear combination of vj , j > i.

Proposition 4·1. If L:V → V is a linear transformation of a real vector space, and
the eigenvalues of L are all real and positive, then the (reverse) lexicographic ordering of
V in a basis as described above, is invariant under vector addition and under L, that is
x < y if and only if L(x) < L(y).

Corollary 4·2. If L:V → V is a linear transformation of a real vector space, and
the eigenvalues of L are all real and positive, then each tensor power V ⊗p can be bi-
ordered (as an additive group) by an ordering invariant under the induced linear mapping
L⊗p:V ⊗p → V ⊗p.

Proof. The eigenvalues of L⊗p are products of eigenvalues of L and therefore real and
positive.

Corollary 4·3. If h:H → H is an automorphism of a free abelian group H ∼= Z
k, all

of whose eigenvalues are real and positive, then one can bi-order H by an ordering that
is invariant under h. Moreover, the tensor powers H⊗p can be bi-ordered by an ordering
invariant under h⊗p.

Proof. Just apply Proposition 4·1 and Corollary 4·2 to the real vector space V = H⊗R
and L = h⊗ 1, then restrict.

Of course, in the above context of abelian groups, bi-orderability is equivalent to right-
orderability. We are now ready to turn attention to the proof of Theorem 2·6, involving
free nonabelian groups. The appropriate ordering will be defined using the so-called
free Lie algebra, which involves the lower central series. It is a well-known technique
for ordering residually nilpotent-torsion-free groups, with the added feature of attention
to the automorphism. We recall that the lower central series of a group G is defined
by G1 = G and Gk+1 = [G,Gk], the subgroup generated by commutators [g, h] =
ghg−1h−1, g ∈ G, h ∈ Gk. The quotients Gk/Gk+1 are abelian groups, finitely generated
if G is. Suppose we know that

(∗) Gk/Gk+1 is torsion-free, and ∩∞k=1Gk = {e}.

Choose an arbitrary bi-ordering <k for each of the groups Gk/Gk+1, which is certainly
possible since they are free abelian. Then for any distinct elements g, h ∈ G let k = k(g, h)
be the unique integer such that hg−1 ∈ Gk \Gk+1, so the class [hg−1] in Gk/Gk+1 is not
the identity. If [1] <k [hg−1], define g < h in G, otherwise say h < g.

Proposition 4·4. If G satisfies (∗), then G is bi-ordered by <, as defined above. If
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ϕ:G → G is an automorphism, and each of the orderings <k is invariant under the
induced mapping ϕk:Gk/Gk+1 → Gk/Gk+1, then < is ϕ-invariant.

Proof. The proof is routine.
We now turn to proving Theorem 2·6. Let ZF be the group ring of the free group F ,

with integer coefficients, ε:ZF → Z the augmentation map sending
∑
i nigi to

∑
i ni. We

denote by I the two-sided ideal I = ker(ε) and Ik, the kth power of I in ZF .
According to [4], section 4.5, z ∈ Fk if and only if z − 1 ∈ Ik, where Fk denotes the

kth term of the lower central series of F . This implies that the map

Fk/Fk+1
σ−→ Ik/Ik+1

given by [z]→ [z − 1] is a well-defined injective homomorphism of abelian groups. Here,
[·] denotes the class in the appropriate quotient.

Suppose z1, . . . , zn generate F , let H = F/[F, F ]. The additive group Ik/Ik+1 has a
basis of elements of the form [(zi1 − 1) · · · (zik − 1)]. We may identify Ik/Ik+1 with the
tensor power H⊗k, via the mapping

[(zi1 − 1) · · · (zik − 1)] −→ ai1 ⊗ · · · ⊗ aik ,

where ai is the image of zi under the canonical homomorphism F → H.

Lemma 4·5. Let ϕ:F → F be a homomorphism of the free group F and let ϕab:H →
H be its abelianization. Then the following diagram is commutative:

Fk/Fk+1
σ
↪→ Ik/Ik+1 ∼= H⊗k

↓ ϕk ↓ ϕ′k ↓ ϕ⊗kab

Fk/Fk+1
σ
↪→ Ik/Ik+1 ∼= H⊗k

Here ϕk and ϕ′k are the maps induced by ϕ and ϕ⊗kab is the tensor power of ϕab.

Proof. Commutativity of the left-hand square is obvious, so we only have to verify the
right-hand square commutes. By definition

ϕ′k[(zi1 − 1) · · · (zik − 1)] = [(ϕ(zi1)− 1) · · · (ϕ(zik)− 1)].

According to the fundamental theorem of the Fox free calculus (see [1], prop. 3.4):

ϕ(w)− 1 =
n∑
j=1

ε

(
∂ϕ(w)
∂zj

)
(zj − 1) +O(2),

where O(2) ∈ I2 and so

(ϕ(zi1)− 1) · · · (ϕ(zik)− 1) = n∑
j1=1

ε

(
∂ϕ(zi1)
∂zj1

)
(zj1 − 1)

 · · ·
 n∑
jk=1

ε

(
∂ϕ(zik)
∂zjk

)
(zjk − 1)

+O(k + 1),
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where O(k + 1) ∈ Ik+1. Using the identification of Ik/Ik+1 with H⊗k we see that

ϕ′k[(zi1 − 1) · · · (zik − 1)] =

 n∑
j1=1

ε

(
∂ϕ(zi1)
∂zj1

)
aj1

⊗ · · · ⊗
 n∑
jk=1

ε

(
∂ϕ(zik)
∂zjk

)
ajk

 .

It is well known that the matrix of ϕab:H → H in the basis {a1, . . . an} is the Jacobian
matrix (ε(∂ϕ(zi)/∂zj)). In other words,

n∑
j=1

ε

(
∂ϕ(zi)
∂zj

)
aj = ϕab(ai).

This implies the identity

ϕ′k[(zi1 − 1) · · · (zik − 1)] = ϕab(ai1)⊗ · · · ⊗ ϕab(aik)

which proves the lemma.
Theorem 2·6 follows from Lemma 4·5, Corollary 4·3 and Proposition 4·4, and all the

results of the paper are proven.
We conclude with the question: which other knot or link groups are bi-orderable, in

classical and higher dimensions?
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