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Abstract. We begin with the observation that the group algebras CBn of
Artin’s braid groups have no zero divisors or nontrivial units. This follows
from the recent discovery of Dehornoy that braids can be totally ordered by
a relation < which is invariant under left multiplication. We then show that
there is no ordering of Bn, n ≥ 3 which is simultaneously left and right
invariant. Nevertheless, we argue that the subgroup of pure braids does possess
a total ordering which is invariant on both sides. This follows from a general
theorem regarding orderability of certain residually nilpotent groups. As an
application, we show that the pure braid groups have no generalized torsion

elements, although full braid groups do have such elements.

1. Introduction and statement of results

The Artin braid group B∞ has countably many generators σ1, σ2, · · · and rela-
tions

σjσk = σkσj if |j − k| > 1, σjσkσj = σkσjσk if |j − k| = 1.
The n-strand braid group Bn is the subgroup generated by σj , j < n. There is

a natural homomorphism Bn → Sn, where Sn is the permutation group, sending
σ2
j → 1; its kernel is the pure braid group Pn, n ≤ ∞. An equivalent geometric

description of braids as strings in space, see [Ar], [Bi1], allows us to study knots and
links via braid groups. Many well known knot invariants, such as the Alexander
and Jones polynomials and their generalizations, quantum invariants, etc., can be
obtained from representations of braid groups; see [Bi2], [Jo], for example. Rep-
resentations of the braid groups are also important in mathematical physics. The
group algebras CBn arise naturally in the representation theory, and as explained
in [Bi2], they also arise in the study of Vassiliev invariants. The following shows
these algebras are well-behaved; in particular multiplication in CBn is cancellative.
Theorem 1. The group algebra CB∞ has no zero divisors.

The same is true, of course, for CBn, CPn and the group rings ZBn and ZPn
since they are subrings of CB∞. As will be explained in the next section, Theorem
1 is an immediate application of a remarkable construction of Dehornoy.
Theorem 2. CB∞ has no nontrivial units; its invertible elements are exactly the
monomials zβ with 0 6= z ∈ C, β ∈ B∞.

The pure and full braid groups share many properties. They are torsion-free,
and for finite n both Pn and Bn are of finite cohomological dimension, residually
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finite, Hopfian. On the other hand, as we will show in the remainder of this paper,
their orderability properties are quite different.
Theorem 3. The pure braid group P∞ has a (strict total) ordering which respects
both left and right multiplication.
Theorem 4. If 3 ≤ n ≤ ∞, the full braid group Bn cannot be given an ordering
which respects both left and right multiplication.

Theorem 3 is an application of the following general result, which does not seem
to be in the literature, although it may be known to some experts in the area. We
are indebted to A. Rhemtulla for pointing out that it is implicit in Chapter 2 of
[MR].
Theorem 5. Let G be a group whose lower central series G = γ1(G) ⊃ γ2(G) ⊃ · · ·
satisfies (1) ∩∞k=1γk(G) = 1 and (2) γk(G)/γk+1(G) is torsion-free for every k.
Then G has a strict total ordering which respects both left and right multiplication.

Proof of these theorems, and some related results, will occupy the remainder of
the paper.

2. Ordered groups and their group rings

Let G be a group, and consider a relation < on G which is a strict total ordering.
That is, for every g, h ∈ G, exactly one of g < h, h < g or g = h holds, and
g < h, h < k implies g < k. The ordering will be called right invariant if for all
g, h, k ∈ G, g < h implies gk < hk. A group G which possesses a right invariant
ordering is said to be right orderable. The concept of left orderable is defined
similarly, and it is easy to see that a right orderable group is also left orderable, but
generally by a different ordering. If some strict total ordering of G simultaneously
respects multiplication on both sides, then G is said to be orderable. Orderable
groups have been studied for over fifty years; good general references are [MR] and
[Pa], the latter emphasizing applications to group rings. They are rather special,
for example it is easily seen that right-orderable groups must be torsion-free (but
not conversely). Following is another algebraic reason to be interested in orderings.
Proposition 6. Suppose G is a left orderable (or right orderable) group and that
R is a ring with no zero divisors. Then the group ring RG has no zero divisors.
Moreover, the only units of RG are the monomials, rg, with r invertible in R.

We will include a proof of this well-known result for the reader’s convenience,
but first some comments on zero divisors are appropriate. If g is a torsion element
of a group G, meaning g 6= 1 but gk = 1 for some k > 1, consider the following
product in the integral group ring ZG:

(1− g)(1 + g + g2 + · · ·+ gk−1) = (1− gk) = 0.

This shows that groups having torsion also have nontrivial zero divisors in their
group rings. An old conjecture attributed to Kaplanski, and still unsolved in gen-
eral, is that if G is torsion-free, then ZG has no zero divisors.

Proof of Proposition 6: Assume G is left-orderable and consider a product
in the group ring:

(r1g1 + · · ·+ rpgp)(s1h1 + · · ·+ sqhq) =
∑
i,j

(risj)(gihj)

with all ri and sj nonzero ring elements, gi, hj ∈ G.
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If such a product is zero, it means each term is cancelled by some other term(s)
in the product. We assume the notation chosen so that h1 < h2 < · · · < hq. Among
all pq terms of the product, consider a term (risj)(gihj) such that gihj is minimal
in the ordering. In particular, gihj ≤ gih1, but by left invariance, the opposite
inequality also holds, so that gihj = gih1 and so hj = h1. We’ve shown that if gkhl
is any minimal product among these terms, we must have l = j = 1, and therefore
gk = gi. In other words, gihj is the unique minimal product in the expansion,
and since risj 6= 0 the product in the group ring cannot be zero. To prove the
last sentence of the proposition, observe there is also a unique maximal element in
the product, and if either p or q is greater than one, it must be different from the
minimal one. It follows that the product cannot equal 1 in the group ring. �

Proof of Theorems 1 and 2: These follow from Proposition 6 and the following
theorem of Dehornoy. �

Dehornoy’s Theorem [De1,2]: B∞ is left-orderable.

Again for the reader’s convenience, we briefly describe Dehornoy’s ordering
[D1,2]. In general, for a left-invariant ordering, the set of “positive” elements
P = {g ∈ G; 1 < g} satisfies: (1) P 2 ⊂ P , that is P is closed under multipli-
cation, and (2) G is the disjoint union G = P ∪ P−1 ∪ {1}. On the other hand, if
one can find any subset P of a group G satisfying conditions (1) and (2), then it is
easy to verify that the recipe, x < y if and only if x−1y ∈ P , defines a left-invariant
ordering on G. In the case of the braid group B∞, Dehornoy defines the set P to be
the set of all braids which can be expressed as a word in the generators σj in such
a way that the generator with the lowest subscript appearing has only positive ex-
ponent. Verification that this choice of P satisfies (1) is easy, but Dehornoy’s proof
of (2) uses difficult technical results of set theory and “left-distributive” systems.
An alternative proof of Dehornoy’s theorem, using topological techniques, appears
in [FGRRW].

3. Generalized torsion

Definition: An element g in a groupG is said to be a generalized torsion element
if g 6= 1 and there exist xi ∈ G, 1 ≤ i ≤ k, such that

(x1gx
−1
1 )(x2gx

−1
2 ) · · · (xkgx−1

k ) = 1.

Lemma 7. An orderable group contains no generalized torsion element.

Proof. Suppose 1 6= g in the orderable group G. Assume 1 < g, the case g < 1
being similar. Then use left and right invariance to conclude that any conjugate of
g is also greater than 1 and therefore

(x1gx
−1
1 )(x2gx

−1
2 ) · · · (xkgx−1

k ) > 1,

so g cannot be a generalized torsion element. �

Once Theorem 3 is proved, we have the following consequence.

Corollary 8. The pure braid groups have no generalized torsion. �
Theorem 9. The braid groups Bn, 3 ≤ n ≤ ∞, contain generalized torsion ele-
ments.
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Proof. It suffices to consider B3. Let ∆ = σ1σ2σ1 and a = σ−1
2 σ1. It is then an

easy job to verify that ∆a∆−1a = 1. �

Proof of Theorem 4: Follows directly from Theorem 9 and Lemma 7. �
It is interesting to note that the Klein bottle group < x, y;xyx−1 = y−1 > is

another example which is torsion free but not generalized torsion free. It embeds
in B3 by sending x to ∆ and y to a.

4. Lower central series

Recall that the lower central series γi(G) of a group G is defined inductively by
γ1(G) = G and γk+1(G) = [γk(G), G], where [A,B] denotes the subgroup generated
by all commutators aba−1b−1 for a ∈ A and b ∈ B. If some γi(G) = {1}, G is said
to be nilpotent. If ∩∞k=1γk(G) = {1}, G is said to be residually nilpotent.

We will need the following lemmas from Passman [Pa].
Lemma 10. If G is a torsion-free nilpotent group, then G is orderable. �
Lemma 11. If G has a family of normal subgroups Hr with ∩rHr = {1} and such
that each quotient G/Hr is orderable, then G is orderable. �
Lemma 12. A group G is orderable (or right-orderable) if and only if the same is
true of all its finitely-generated subgroups. �

Proof of Theorem 5: Let G denote a residually nilpotent group such that
γk(G)/γk+1(G) is torsion-free for every k. Denote Hk = γk(G). By the last lemma,
it suffices to show that each quotient G/Hk is orderable. To this end, we need to
show that G/Hk is torsion-free, since it is obviously nilpotent. We use induction.
Clearly G/H1 = 1 is torsion free. Assume G/Hk is torsion free and consider the
exact sequence

1 −→ Hk/Hk+1 −→ G/Hk+1 −→ G/Hk −→ 1

Suppose g ∈ G/Hk+1 satisfies gp = 1. Then the image of g in G/Hk is also a
torsion element. By inductive assumption, that image has to be the identity, so
exactness implies g ∈ Hk/Hk+1, which has no torsion by hypothesis. Therefore
g = 1. �

Proof of Theorem 3: According to Falk and Randall [FR], the pure braid
groups Pn satisfy the hypothesis of Theorem 5, and hence are orderable. Lemma
12 implies P∞ is also orderable. �
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